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Despite the remarkable similarities between convolutional neural networks (CNN) and
the human brain, CNNs still fall behind humans in many visual tasks, indicating
that there still exist considerable differences between the two systems. Here, we
leverage adversarial noise (AN) and adversarial interference (AI) images to quantify
the consistency between neural representations and perceptual outcomes in the two
systems. Humans can successfully recognize AI images as the same categories as
their corresponding regular images but perceive AN images as meaningless noise.
In contrast, CNNs can recognize AN images similar as corresponding regular images
but classify AI images into wrong categories with surprisingly high confidence. We use
functional magnetic resonance imaging to measure brain activity evoked by regular and
adversarial images in the human brain, and compare it to the activity of artificial neurons
in a prototypical CNN—AlexNet. In the human brain, we find that the representational
similarity between regular and adversarial images largely echoes their perceptual
similarity in all early visual areas. In AlexNet, however, the neural representations of
adversarial images are inconsistent with network outputs in all intermediate processing
layers, providing no neural foundations for the similarities at the perceptual level.
Furthermore, we show that voxel-encoding models trained on regular images can
successfully generalize to the neural responses to AI images but not AN images.
These remarkable differences between the human brain and AlexNet in representation-
perception association suggest that future CNNs should emulate both behavior and the
internal neural presentations of the human brain.

Keywords: adversarial images, convolutional neural network, human visual cortex, functional magnetic
resonance imaging, representational similarity analysis, forward encoding model

INTRODUCTION

The recent success of convolutional neural networks (CNNs) in many computer vision tasks
inspire neuroscientists to consider them as a ubiquitous computational framework to understand
biological vision (Jozwik et al., 2016; Yamins and DiCarlo, 2016). Indeed, a bulk of recent studies
have demonstrated that visual features in CNNs can accurately predict many spatiotemporal
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characteristics of brain activity (Agrawal et al., 2014; Yamins et al.,
2014; Güçlü and van Gerven, 2015, 2017; Cichy et al., 2016;
Hong et al., 2016; Horikawa and Kamitani, 2017; Khaligh-Razavi
et al., 2017). These findings reinforce the view that modern CNNs
and the human brain share many key structural and functional
substrates (LeCun et al., 2015).

Despite the tremendous progress, current CNNs still fall
short in several visual tasks. These disadvantages suggest that
critical limitations still exist in modern CNNs (Grill-Spector and
Malach, 2004). One potent example is adversarially perturbed
images, a class of images that can successfully “fool” even the
most state-of-the-art CNNs (Szegedy et al., 2013; Nguyen et al.,
2015). Adversarial noise (AN) images (Figure 1B) look like
meaningless noise to humans but can be classified by CNNs
into familiar object categories with surprisingly high confidence
(Nguyen et al., 2015). Adversarial interference (AI) images
are generated by adding a small amount of special noise to
regular images (Figure 1C). The special noise looks minimal to
humans but severely impairs CNNs’ recognition performance
(Szegedy et al., 2013). Perception here can be operationally
defined as the output labels of a CNN and object categories
reported by humans. Therefore, adversarial images present
a compelling example of double-dissociation between CNNs
and the human brain, because artificially created images can
selectively alter perception in one system without significantly
impacting the other one.

It remains unclear the neural mechanisms underlying the
drastically different visual behavior between CNNs and the
human brain with respect to adversarial images. In particular,
why do the two systems receive similar stimulus inputs but
generate distinct perceptual outcomes? In the human brain,
it has been known that the neural representations in low-
level visual areas mostly reflect stimulus attributes whereas the
neural representations in high-level visual areas mostly reflect
perceptual outcomes (Grill-Spector and Malach, 2004; Wandell
et al., 2007). For example, the neural representational similarity
in human inferior temporal cortex is highly consistent with
perceived object semantic similarity (Kriegeskorte et al., 2008).
In other words, there exists a well-established representation-
perception association in the human brain.

This processing hierarchy is also a key feature of modern
CNNs. If the representational architecture in CNNs truly
resembles the human brain, we should expect similar neural
substrates supporting CNNs’ “perception.” For CNNs, AI images
and regular images are more similar at the pixel level but
yield different perceptual outcomes. By contrast, AN images and
regular images are more similar at the “perceptual” level. We
would expect that AI and regular images have more similar neural
representations in low-level layers while AN and regular images
have similar neural representations in high-level layers. In other
words, there must exist at least one high-level representational
layer that supports the same categorical perception of AN
and regular images, similar to the representation-perception
association in the human brain. However, as we will show later in
this paper, we find no representational pattern that supports RE-
AN perceptual similarity in all intermediate representation layers
except the output layer.

The majority of prior studies focused on revealing similarities
between CNNs and the human brain. In this paper, we instead
leverage adversarial images to examine the differences between
the two systems. We particularly emphasize that delineating
the differences here does not mean to object CNNs as a useful
computational framework for human vision. On the contrary,
we acknowledge the promising utilities of CNNs in modeling
biological vision but we believe it is more valuable to understand
differences rather than similarities such that we are in a better
position to eliminate these discrepancies and construct truly
brain-like machines. In this study, we use a well-established
CNN—AlexNet and investigate the activity of artificial neurons
toward adversarial images and their corresponding regular
images. We also use functional magnetic resonance imaging
(fMRI) to measure the cortical responses evoked by RE
and adversarial images in humans. Representational similarity
analysis (RSA) and forward encoding modeling allow us to
directly contrast representational geometries within and across
systems to understand the capacity and limit of both systems.

MATERIALS AND METHODS

Ethics Statement
All experimental protocols were approved by the Ethics
Committee of the Henan Provincial People’s Hospital. All
research was performed in accordance with relevant guidelines
and regulations. Informed written consent was obtained from
all participants.

Subjects
Three healthy volunteers (one female and two males, aged
22∼28 years) participated in the study. The subject S3 was
the author C.Z. The other two subjects were naïve to the
purpose of this study. All subjects were monolingual native-
Chinese speakers and right-handed. All subjects had a normal
or corrected-to-normal vision and considerable experience of
fMRI experiments.

Convolutional Neural Network
We chose AlexNet and implemented it using the Caffe deep
learning framework (Deng et al., 2009; Krizhevsky et al., 2012).
AlexNet consists of five convolutional layers and three fully-
connected layers (Figure 1D). The five convolutional layers each
have 96, 256, 384, 384, and 256 linear convolutional kernels.
The three fully-connected layers each have 4096, 4096, and
1000 artificial neurons. All convolutional layers perform linear
convolution and rectified linear unit (ReLU) gating. Spatial max
pooling is used only in layers 1, 2, and 5 to promote the
spatial invariance of sensory inputs. In layers 1 and 2, local
response normalization implements the inhibitory interactions
across channels in a convolutional layer. In other words, the
strong activity of a neuron in the normalization pool suppresses
the activities of other neurons. Lateral inhibition of neurons
is a well-established phenomenon in visual neuroscience and
has proven to be critical to many forms of visual processing
(Blakemore et al., 1970). The ReLU activation function and
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FIGURE 1 | (A–C) Example regular (RE, panel A), adversarial noise (AN, panel B) images and adversarial interference (AI, panel C) images. The five AN and five AI
images one-by-one correspond to the five RE images. The labels provided by AlexNet and humans are listed under the images. The AI images contain a small
amount of special image noise but overall look similar to the corresponding RE images. Humans can easily recognize the AI images as corresponding categories but
the AN images as noise. AlexNet can classify the AN images into corresponding categories with over 99% confidence, but recognize the AI images as wrong
categories. (D) The architecture of AlexNet. Details have been documented in Krizhevsky et al. (2012). Each layer uses some or all the following operations: linear
convolution, ReLU gating, spatial max-pooling, local response normalization, inner product, dropout and softmax.

dropout are used in fully-connected layers 6 and 7. Layer 8 uses
the softmax function to output the probabilities for 1000 target
categories. In our study, all images were resized to 227 × 227
pixels in all three RGB color channels.

Image Stimuli
Regular Images
Regular (RE) images (Figure 1A) in our study were sampled from
the ImageNet database (Deng et al., 2009). ImageNet is currently
the most advanced benchmark database on which almost
all state-of-the-art CNNs are trained for image classification.
We selected one image (width and height > 227 pixels and
aspect ratio > 2/3 and < 1.5) from each of 40 representative
object categories. AlexNet can classify all images into their
corresponding categories with probabilities greater than 0.99.

The 40 images can be evenly divided into 5 classes: dogs,
birds, cars, fruits, and aquatic animals (see Supplementary
Table 1 for details).

Adversarial Images
Adversarial images include adversarial noise (AN) (Figure 1B)
and adversarial interference (AI) images (Figure 1C). A pair of
AN and AI images were generated for each RE image. As such,
a total of 120 images (40 RE + 40 AN + 40 AI) were used in the
entire experiment.

The method to generate AN images has been documented in
Nguyen A et al. (Nguyen et al., 2015). We briefly summarize the
method here. We first used the averaged image of all images in
ImageNet as the initial AN image. Note that the category label
of the corresponding RE image was known, and AlexNet had
been fully trained. As such, we first fed the initial AN image to
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AlexNet and forwardly computed the probability for the correct
category. This probability was expected to be initially low. We
then used the backpropagation method to transduce error signals
from the top layer to image pixel space. Pixel values in the
initial AN image were then adjusted accordingly to enhance the
classification probability. This process of forwarding calculation
and backpropagation was iterated many times until the pixel
values of AN image converged.

We also included an additional regularization item to control
the overall intensity of the image. Formally, let Pc(I) be the
probability of class c (RE image label) given an image I. We would
like to find an L2-regularized image I∗, such that it maximizes the
following objective:

I∗ = arg max
I

Pc(I)− λ ||I-Imean||
2
2 , (1)

where, λ is the regularization parameter and Imean is the grand
average of all images in ImageNet. Finally, all the probabilities of
generated AN images used in our experiment being classified into
RE images were greater than 0.99. Note that the internal structure
(i.e., all connection weights) of AlexNet was fixed throughout
the entire training process, and we only adjusted pixel values in
input AN images.

The AI images were generated by adding noise to the RE
images. For an RE image (e.g., dog), a wrong class label (e.g.,
bird) was pre-selected (see Supplementary Table 1 for details).
We then added random noise (uniform distribution −5∼5) to
every pixel in the RE image. The resulted image was kept if
the probability of this image being classified into the wrong
class (i.e., bird) increased, and was discarded otherwise. This
procedure was repeated many times until the probability for
the wrong class exceeded 0.5 (i.e., wrong class label as the top1
label). We deliberately choose 0.5 because under this criteria the
resulted images were still visually comparable to the RE images.
A higher stopping criteria (e.g., 0.99) may overly load noises and
substantially reduce image visibility. We further used the similar
approach as AN images (change the Imean in Eq. 1 to IRE.) to
generate another set of AI images (with a probability of over
0.99 to be classified into the “wrong” class) and confirmed that
the results in AlexNet RSA analyses did not substantially change
under this regime (see Supplementary Figure 4). We adopted the
former not the latter approach in our fMRI experiment because
the differences between the AI and the RE images were so small
that the human eye can hardly see it in the experiment. This
is meaningless for an fMRI experiment as the AI and the RE
images look “exactly” the same, which is equivalent to present the
identical images twice.

Apparatus
All computer-controlled stimuli were programmed in Eprime
2.0 and presented using a Sinorad LCD projector (resolution
1920 × 1080 at 120 Hz; size 89 cm × 50 cm; viewing distance
168 cm). Stimuli were projected onto a rear-projection monitor
located over the head. Subjects viewed the monitor via a mirror
mounted on the head coil. Behavioral responses were recorded
by a button box.

fMRI Experiments
Main Experiment
Each subject underwent two scanning sessions in the main
experiment. In each session, half of all images (20 images x 3
RE/AN/AI = 60 images) were presented. Each session consisted
of five scanning runs, and each run contained 129 trials (2
trials per image and 9 blank trials). The image presentation
order was randomized within a run. In a trial, a blank lasted
2 s and was followed by an image (12◦ × 12◦) of 2 s. A 20 s
blank period was included to the beginning and the end of each
run to establish a good baseline and compensate for the initial
insatiability of the magnetic field. A fixation point (0.2◦ × 0.2◦)
was shown at center-of-gaze, and participants were instructed to
maintain steady fixation throughout a run. Participants pressed
buttons to perform an animal judgment task—whether an image
belongs to animals. The task aimed to engage subjects’ attention
onto the stimuli.

Retinotopic Mapping and Functional Localizer
Experiments
A retinotopic mapping experiment was also performed to
define early visual areas, as well as two functional localizer
experiments to define lateral occipital (LO) lobe and human
middle temporal lobe (hMT+).

The retinotopic experiment used standard phase-encoding
methods (Engel et al., 1994). Rotating wedges and expanding
rings were filled by textures of objects, faces, and words, and were
presented on top of achromatic pink-noise backgrounds (http:
//kendrickkay.net/analyzePRF/). Early visual areas (V1–V4) were
defined on the spherical cortical surfaces of individual subjects.

The two localizer experiments were used to create a more
precise LO mask (see region-of-interest definition section below).
Each localizer experiment contained two runs. In the LO localizer
experiment, each run consisted of 16 stimulus blocks and 5 blank
blocks. Each run began with a blank block, and a blank block
appeared after every 4 stimulus blocks. Each block lasted 16 s.
Intact images and their corresponding scrambled images were
alternately presented in a stimulus block. Each stimulus block
contained 40 images (i.e., 20 intact + 20 scramble images). Each
image (12◦ × 12◦) lasted 0.3 s and was followed by a 0.5 s blank.

In the hMT+ localizer experiment, each run contained 10
stimulus blocks, and each block lasted 32 s. In a block, a static dot
stimulus (24 s) and a moving-dot stimulus (8 s) were alternately
presented. All motion stimuli subtended a 12◦ × 12◦ square area
on a black background. An 8 s blank was added to the beginning
and the end of each run. Note that hMT+ here is only used to
remove motion-selective vertices from the LO mask (see Region-
Of-Interest definitions). We did not analyze motion signals in
hMT+ as all our images were static.

MRI Data Acquisition
All MRI data were collected using a 3.0-Tesla Siemens
MAGNETOM Prisma scanner and a 32-channel head coil
at the Department of Radiology at the People’s Hospital
of Henan Province.

An interleaved T2∗-weighted, single-shot, gradient-echo
echo-planar imaging (EPI) sequence was used to acquire
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functional data (60 slices, slice thickness 2 mm, slice gap 0 mm,
field of view 192 × 192 mm2, phase-encode direction anterior-
posterior, matrix size 96 × 96, TR/TE 2000/29 ms, flip angle 76◦,
nominal spatial resolution 2 × 2 × 2 mm3). Three B0 fieldmaps
were acquired to aid post-hoc correction for EPI spatial distortion
in each session (resolution 2 × 2 × 2 mm3, TE1 4.92 ms, TE2
7.38 ms, TA 2.2 min). In addition, high-resolution T1-weighted
anatomical images were also acquired using a 3D-MPRAGE
sequence (TR 2300 ms, TE 2.26 ms, TI 900 ms, flip angle 8◦, field
of view 256× 256 mm2, voxel size 1.× 1.× 1. mm3).

MRI Data Preprocessing
The pial and the white surfaces of subjects were constructed
from T1 volume using FreeSurfer software (http://surfer.nmr.
mgh.harvard.edu). An intermediate gray matter surface between
the pial and the white surfaces was also created for each subject.

Our approach for dealing with EPI distortion followed Kay
et al. (2019). Fieldmaps acquired in each session were phase-
unwrapped using the FSL utility prelude (version 2.0) with
flags -s -t 0. We then regularized the fieldmaps by performing
3D local linear regression using an Epanechnikov kernel with
radius 5 mm. We used values in the magnitude component
of the fieldmap as weights in the regression in order to
improve robustness of the field estimates. This regularization
procedure removes noise from the fieldmaps and imposes spatial
smoothness. Finally, we linearly interpolated the fieldmaps over
time, producing an estimate of the field strength for each
functional volume acquired.

For functional data, we discarded the data points of the first
18 s in the main experiment, the first 14 s in the LO localizer
experiment, and the first 6 s in the hMT+ localizer experiment.
This procedure ensures a 2 s blank was kept before the first task
block in all three experiments.

The functional data were initially volume-based pre-processed
by performing one temporal and one spatial resampling. The
temporal resampling realized slice time correction by executing
one cubic interpolation for each voxel’s time series. The spatial
resampling was performed for EPI distortion and head motion
correction. The regularized time-interpolated field maps were
used to correct EPI spatial distortion. Rigid-body motion
parameters were then estimated from the undistorted EPI
volumes with the SPM5 utility spm_realign (using the first EPI
volume as the reference). Finally, the spatial resampling was
achieved by one cubic interpolation on each slice-time-corrected
volume (the transformation for correcting distortion and the
transformation for correcting motion are concatenated such that
a single interpolation is performed).

We co-registered the average of the pre-processed functional
volumes obtained in a scan session to the T1 volume (rigid-
body transformation). In the estimation of the co-registration
alignment, we used a manually defined 3D ellipse to focus the cost
metric on brain regions that are unaffected by gross susceptibility
effects (e.g., near the ear canals). The final result of the co-
registration is a transformation that indicates how to map the EPI
data to the subject-native anatomy.

With the anatomical co-registration complete, the functional
data were re-analyzed using surface-based pre-processing. The

reason for this two-stage approach is that the volume-based pre-
processing is necessary to generate the high-quality undistorted
functional volume that is used to determine the registration
of the functional data to the anatomical data. It is only
after this registration is obtained that the surface-based pre-
processing can proceed.

In surface-based pre-processing, the exact same procedures
associated with volume-based pre-processing are performed,
except that the final spatial interpolation is performed at the
locations of the vertices of the intermediate gray matter surfaces.
Thus, the only difference between volume- and surface-based
pre-processing is that the data are prepared either on a regular 3D
grid (volume) or an irregular manifold of densely spaced vertices
(surface). The entire surface-based pre-processing ultimately
reduces to a single temporal resampling (to deal with slice
acquisition times) and a single spatial resampling (to deal with
EPI distortion, head motion, and registration to anatomy).
Performing just two simple pre-processing operations has the
benefit of avoiding unnecessary interpolation and maximally
preserving spatial resolution (Kang et al., 2007; Kay and Yeatman,
2017; Kay et al., 2019). After this pre-processing, time-series data
for each vertex of the cortical surfaces were ultimately produced.

General Linear Modeling
We estimated the vertex responses (i.e., beta estimates from
GLM modeling) of all stimulus trials in the main experiment
using the GLMdenoise method (Kay et al., 2013). All blank trials
were modeled as a single predictor. This analysis yielded beta
estimations of 241 conditions (120 images × 2 trials + 1 blank
trial). Notably, we treated two presentations of the same image as
two distinct predictors in order to calculate the consistency of the
response patterns across the two trials.

Region-of-Interest Definitions
Based on the retinotopic experiment, we calculated the
population receptive field (pRF) (http://kendrickkay.net/
analyzePRF) of each vertex and defined low-level visual areas
(V1–V4) based on the pRF maps. To define LO, we first
selected vertices that show significantly higher responses to
intact images than scrambled images (two-tails t-test, p < 0.05,
uncorrected). In addition, hMT+ was defined as the area that
shows significantly higher responses to moving than static dots
(two-tails t-test, P < 0.05, uncorrected). The intersection vertices
between LO and hMT+ were then removed from LO.

Vertex Selection
To further select task-related vertices in each ROI (Figure 2A),
we performed a searchlight analysis on flattened 2D cortical
surfaces (Chen et al., 2011). For each vertex, we defined a 2D
searchlight disk with 3 mm radius. The geodesic distance between
two vertices was approximated by the length of the shortest path
between them on the flattened surface. Given the vertices in the
disk, we calculated the representational dissimilarity matrices
(RDM) of all RE images for each of the two presentation trials.
The two RDMs were then compared (Spearman’s R) to show the
consistency of activity patterns across the two trials. Here rank-
correlation (e.g., Spearman’s R) is used as it was recommended
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FIGURE 2 | (A) Regions of interest (ROIs) in a sample subject. Through retinotopic mapping and functional localizer experiments, we identified five ROIs—V1, V2,
V3, V4 and lateral occipital (LO) cortex—in both left (LH) and right (RH) hemispheres. (B) Calculation of RE-AN and RE-AI similarity. For each CNN layer or brain ROI,
three RDMs are calculated with respect to the three types of images. We then calculate the Spearman correlation between the AN and the RE RDMs, obtaining the
RE-AN similarity. Similarly, we can calculate the RE-AI similarity.

when comparing two RDMs (Kriegeskorte et al., 2008;
Nili et al., 2014).

The 200 vertices (100 vertices from each hemisphere) with the
highest correlation values were selected in each ROI for further
analysis (Figure 3). Note that vertex selection was only based on
the responses to the RE images and did not involve any response
data for the AN and the AI images. We also selected a total of 400
vertices in each area and we found our results held. The results
are shown in Supplementary Figure 2.

Representational Similarity Analysis
We applied RSA separately to the activity in the
CNN and the brain.

RSA on CNN Layers and Brain ROIs
For one CNN layer, we computed the representational
dissimilarity between every pair of the RE images, yielding
a 40 × 40 RDM (i.e., RDMRE) for the RE images. Similarly, we
obtained the other two RDMs each for the AN (i.e., RDMAN) and
the AI images (i.e., RDMAI). We then calculated the similarity
between the three RDMs as follows:

RRE−AN = corr(RDMRE,RDMAN), (2)

RRE−AI = corr(RDMRE,RDMAI), (3)

This calculation generated one RE-AN similarity value and one
RE-AI similarity value for that CNN layer (see Figure 2B). We
repeated the same analysis above on the human brain except that
we used the activity of vertices in a brain ROI.

In a given ROI or AlexNet layer, we first resampled 80%
voxels or artificial neurons without replacement (Supplementary
Figure 5). In each sample, we calculated RE, AI, and AN RDM,
and calculated the difference between RE-AI similarity and RE-
AN similarity, obtaining one difference value. This was done 1000

times, yielding 1000 different values as the baseline distribution
for RE-AI and RE-AN difference. This method is used for
examining the relative difference between the RE-AN and the
RE-AN similarities.

To construct the null hypotheses for the absolute RE-AN
and the RE-AI similarities, in each voxel or artificial neuron
sample, we further permuted the image labels with respect to
their corresponding activities for the RE images (Supplementary
Figure 6). In other words, an image label may be paired with
a wrong activity pattern. We then recalculated the RE-AN and
the RE-AI similarities. In this way, 1000 RE-AN and 1000 RE-AI
similarity values were generated. The two distributions consisting
of 1000 values were regarded as the null hypothesis distributions
of RE-AN or RE-AI, respectively.

In addition, the Mann-Kendall test was applied to assess the
monotonic upward or downward trend of the RE-AN similarities
over CNN layers. The Mann-Kendall test can be used in place
of a parametric linear regression analysis, which can be used
to test if the slope of the estimated linear regression line is
different from zero.

In order to verify the statistical effectiveness of the fMRI
experimental results of the three subjects, we used the G∗Power
tool (Faul et al., 2009) to re-analyze our experimental results. For
each ROI, we carried out a paired t-test (i.e., “means: difference
between two dependent means (matched pairs)” in G∗Power) on
the RE-AI similarities and the RE-AN similarities of the three
subjects. We calculated three RE-AI/RE-AN difference values
(i.e., the height difference between blue and red bars in Figure 3),
each for one subject. The effect size was determined from the
mean and SD of the difference values. We first set the type of
power analysis to “post hoc: compute achieved power – given
α, sample size, and effect size” to estimate the statistical power
given N = 3. The statistical power (1-β error probability, α error
probability was set to 0.05) was then calculated. We then set the
type of power analysis to “a priori: compute required sample
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FIGURE 3 | RE-AI and RE-AN similarities in the human brain. Three subplots
indicate the three human subjects. In all five brain ROIs, the RE-AI (red bars)
similarities are substantially higher than the RE-AN (blue bars) similarities. Error
bars are 95% confidence intervals of similarity values by bootstrapping
vertices in one brain ROI (see Methods). The black asterisks above bars
indicate that the similarity values are significantly different from null hypotheses
(permutation test, p < 0.05, see Methods).

size – given α, power, and effect size,” and calculated the estimated
minimum required sample size to achieve a statistical power of
0.8 with the current statistics.

Searchlight RSA
We also performed a surface-based searchlight analysis in order
to show the cortical topology of the RE-AN and the RE-AI
similarity values. For each vertex, the same 2D searchlight disk
was defined as above. We then repeated the same RSA on the
brain, producing two cortical maps with respect to the RE-AN
and RE-AI similarity values.

Forward Encoding Modeling
Here, forward encoding models assume that the activity of a
voxel in the brain can be modeled as the linear combination
of the activity of artificial neurons in CNNs. Thus, forward
encoding modeling can bridge the representations of the two
systems. Thus, forward encoding modeling can bridge the

representations of the two systems. This is also the typical
approach in existing related works (Güçlü and van Gerven, 2015;
Kell et al., 2018).

We first trained the forward encoding models only based on
the RE images data in the brain and the CNN. For the response
sequence y = {y1, . . . , yd}T of one vertex to the 40 RE images, it
is expressed as Eq. (4):

y = Xw, (4)

X is an m-by-(n+1) matrix, where m is the number of training
images (i.e., 40), and n is the number of units in one CNN
layer. The last column of X is a constant vector with all elements
equal to 1. w is an (n+1)-by−1 unknown weighting matrix
to solve. Because the number of training samples m was less
than the number of units n in all CNN layers, we imposed an
additional sparse constraint on the forward encoding models to
avoid overfitting:

min
w
||w||0 subject to y = Xw, (5)

Sparse coding has been widely suggested and used in both
neuroscience and computer vision (Vinje and Gallant, 2000; Cox
and Savoy, 2003). We used the regularized orthogonal matching
pursuit (ROMP) method to solve the sparse representation
problem. ROMP is a greedy method developed by Needell D and
R Vershynin (Needell and Vershynin, 2009) for sparse recovery.
Features for prediction can be automatically selected to avoid
overfitting. For the selected 200 vertices in each human ROI, we
established 8 forward encoding models corresponding to the 8
CNN layers. This approach yielded a total of 40 forward encoding
models (5 ROIs× 8 layers) for one subject.

Based on the train forward encoding models, we calculated
the Pearson correlation between the empirically measured
and model-predicted response patterns evoked by the
adversarial images. To test the prediction accuracy against
null hypotheses, we randomized the image labels and
performed permutation tests as described above. Specifically,
we resampled 80% vertices in a brain ROI 1000 times without
replacement and in each sample recalculated the mean response
prediction accuracy, resulting in a bootstrapped accuracy
distribution with 1000 mean response prediction accuracy
values (Supplementary Figure 7). The upper and lower
bounds of the 95% confidence intervals were derived from
the bootstrapped distribution. Similarly, we compared the
bootstrapped distributions of two types of adversarial images
to derive the statistical difference between the RE-AI and the
RE-AN similarity.

RESULTS

Dissociable Neural Representations of
Adversarial Images in AlexNet and the
Human Brain
Human Brain
For one brain ROI, we calculated the representational
dissimilarity matrix (i.e., 40 x 40 RDM) for each of the
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FIGURE 4 | Cortical topology of RE-AI and RE-AN similarities. The RE-AI similarities are overall higher than the RE-AN similarities across all early visual areas in the
human brain.

three image types. We then calculated the RE-AN similarity—the
correlation between the RDM of the RE images and that of the
AN images, and the RE-AI similarity between the RE images
and the AI images.

We made three major observations. First, the RE-AI
similarities were significantly higher than null hypotheses in
almost all ROIs in the three subjects (red bars in Figure 3,
permutation test, all p-values < 0.005, see Methods for the
deviation of null hypotheses). Conversely, this was not true
for the RE-AN similarities (blue bar in Figure 3, permutation
test, only four p-values < 0.05 in 3 subjects x 5 ROI = 15
tests). Third and more importantly, we found significantly
higher RE-AI similarities than the RE-AN similarities in all
ROIs (Figure 3, bootstrap test, all p-values < 0.0001). These
results suggest that the neural representations of the AI images,
compared with the AN images, are much more similar to that
of the corresponding RE images. Notably, this representational
structure is also consistent with the perceptual similarity of the
three types of images in humans. In other words, the neural
representations of all images in the human brain largely echo
their perceptual similarity.

In addition, the results of the statistical power analysis showed
that the final average power (1-β error probability, α error
probability was set to 0.05, N = 3) across five ROIs for the
paired t-test on RE-AI similarities and RE-AN similarities of
the three subjects equaled 0.818 (V1:0.911, V2: 0.998, V3:0.744,

V4:0.673, LO:0.764). And the average minimum required sample
size was 2.921 (V1:2.623, V2:2.131, V3:3.209, V4:3.514, LO:3.129,
the power was set to 0.8). In other words, the number of subjects
can meet the minimum statistical power.

We also performed a searchlight analysis to examine the
cortical topology of the neural representations. The searchlight
analysis used the same calculation as above (see Methods). We
replicated the results (see Figure 4) and found a distributed
pattern of higher RE-AI similarities in the early human visual
cortex. In addition, we expanded our searchlight analysis for
broader regions (see Supplementary Figure 3) and obtained the
qualitatively same main results.

AlexNet
We repeated our analyses above in AlexNet and again made
three observations. First, the RE-AI similarities were higher than
null hypotheses across all layers (Figure 5, permutation test, all
p-values < 0.001), and the RE-AI similarities declined from low
to high layers (Mann–Kendall test, p = 0.009). Second, the RE-
AN similarities were initially low (p-values > 0.05 in layers 1–2)
but then dramatically increased (Mann–Kendall test, p < 0.001)
and became higher than the null hypotheses from layer 3 (all
p-values < 0.05 in layers 3–8). Third and most importantly, we
found that the RE-AN similarities were not higher than the RE-
AI similarities in all intermediate layers (i.e., layers 1–7, bootstrap
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FIGURE 5 | RE-AN and RE-AI similarities across layers in AlexNet. the RE-AN
similarity increases and the RE-AI similarities decline along the processing
hierarchy. The RE-AN similarities are not higher than the RE-AI similarities in all
representational layers (i.e., layer 1–7). Error bars indicate 95% bootstrapped
confidence intervals (see Methods).

test, all p-values < 0.05, layer 7, p = 0.375) except the output layer
(i.e., layer 8, p < 0.05).

These results are surprising because it suggests that neural
representations of the AI images, compared with the AN images,
are more similar to the representations of the RE images.
However, the output labels of the AN images are similar to those
of the corresponding RE images in AlexNet. In other words, there
exists substantial inconsistency between the representational
similarity and perceptual similarity in AlexNet. We emphasize
that, assuming that in order for two images look similar, there
must be at least some neural populations somewhere in a
visual system that represents them similarly. But, astonishingly,
we found no perception-compatible neural representations in
any representational layer. Also, the transformation from layer
7 to the output layer is critical and eventually renders the
RE-AN similarity higher than the RE-AI similarity in the
output layer. This is idiosyncratic because AlexNet does not
implement effective neural codes of objects in representational
layers beforehand but the last transformation reverses the relative
RDM similarity of the three types of images. This is drastically
different from the human brain that forms correct neural codes
in all early visual areas.

Forward Encoding Modeling Bridges
Responses in AlexNet and Human Visual
Cortex
The RSA above mainly focuses on the comparisons across image
types within one visual system. We next used forward encoding
modeling to directly bridge neural representations across the two
systems. Forward encoding models assume that the activity of a
voxel in the brain can be modeled as the linear combination of
the activity of multiple artificial neurons in CNNs. Following this
approach, we trained a total of 40 (5 ROIs x 8 layers) forward
encoding models for one subject using regular images. We then
tested how well these trained forward encoding models can
generalize to the corresponding adversarial images. The rationale

is that, if the brain and AlexNet process images in a similar
fashion, the forward encoding models trained on the RE images
should transfer to the adversarial images, and vice versa if not.

We made two major findings here. First, almost all trained
encoding models successfully generalized to the AI images
(Figure 6, warm color bars, permutation test, p-values < 0.05
for 113 out of the 120 models for three subjects) but not to
the AN images (Figure 6, cold color bars, permutation test,
p-values > 0.05 for 111 out of the 120 models). Second, the
forward encoding models exhibited much stronger predictive
power on the AI images than the AN images (bootstrap test,
all p-values < 0.05, except the encoding model based on layer
8 for LO in subject 2, p = 0.11). These results suggest that
the functional correspondence between AlexNet and the human
brain only holds when processing RE and AI images but not AN
images. This result is also consonant with the RSA above and
demonstrates that both systems treat RE and AI images similarly,
but AN images very differently. But again, note that AlexNet
exhibits the opposite behavioral pattern of human vision.

DISCUSSION AND CONCLUSION

Given that current CNNs still fall short in many tasks, we
use adversarial images to probe the functional differences
between a prototypical CNN—AlexNet, and the human visual
system. We make three major findings. First, the representations
of AI images, compared with AN images, are more similar
to the representations of corresponding RE images. These
representational patterns in the brain are consistent with
human percepts (i.e., perceptual similarity). Second, we discover
a representation-perception disassociation in all intermediate
layers in AlexNet. Third, we use forward encoding modeling
to link neural activity in both systems. Results show that
the processing of RE and AI images are quite similar but
both are significantly different from AN images. Overall,
these observations demonstrate the capacity and limit of the
similarities between current CNNs and human vision.

Abnormal Neural Representations of
Adversarial Images in CNNs
To what extent neural representations reflect physical or
perceived properties of stimuli is a key question in modern vision
science. In the human brain, researchers have found that early
visual processing mainly processes low-level physical properties
of stimuli, and late visual processing mainly supports high-level
categorical perception (Grill-Spector and Malach, 2004). We ask
a similar question here—to what extent neural representations in
CNNs or the human brain reflect their conscious perception.

One might argue that the representation-perception
disassociation in AlexNet is trivial, given that we already know
that AlexNet exhibits opposite behavioral patterns compared
to human vision. But we believe thorough quantifications
of their neural representations in both systems are still of
great value. First, neural representations do not necessarily
follow our conscious perception, and numerous neuroscience
studies have shown disassociated neural activity and perception
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FIGURE 6 | Accuracy of forward encoding models trained on RE images and then tested on adversarial images. After the models are fully trained on the RE images,
we input the adversarial images as inputs to the models can predict corresponding brain responses. The y-axis indicates the Pearson correlation between the brain
responses predicted by the models and the real brain responses. The generalizability of forward encoding models indicates the processing similarity between the RE
and AN (cool colors) or AI (warm colors) images. Error bars indicate 95% bootstrapped confidence intervals (see Methods).

in both the primate or human brain in many cases, such
as visual illusion, binocular rivalry, visual masking (Serre,
2019). The question of representation-perception association
lies at the center of the neuroscience of consciousness and
should also be explicitly addressed in AI research. Second,
whether representation and perception are consistent or
not highly depends on processing hierarchy, which again
needs to be carefully quantified across visual areas in the
human brain and layers in CNNs. Here, we found no similar
representations of AN and regular images in any intermediate
layer in AlexNet even though they “look” similar. This is
analogous to the scenario that we cannot decode any similar
representational patterns of two images throughout a subject’s
brain, although the subject behaviorally reports the two
images are similar.

Adversarial Images as a Tool to Probe
Functional Differences Between the CNN
and Human Vision
In computer vision, adversarial images impose problems on
the real-life applications of artificial systems (i.e., adversarial
attack) (Yuan et al., 2017). Several theories have been proposed
to explain the phenomenon of adversarial images (Akhtar
and Mian, 2018). For example, one possible explanation is
that CNNs are forced to behave linearly in high dimensional
spaces, rendering them vulnerable to adversarial attacks
(Goodfellow et al., 2014b). Besides, flatness (Fawzi et al.,
2016) and large local curvature of the decision boundaries
(Moosavi-Dezfooli et al., 2017), as well as low flexibility of
the networks (Fawzi et al., 2018) are all possible reasons.
(Szegedy et al., 2013) has suggested that current CNNs
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are essentially complex nonlinear classifiers, and this
discriminative modeling approach does not consider generative
distributions of data. We will further address this issue in
the next section.

In this study, we focused on one particular utility of
adversarial images—to test the dissimilarities between
CNNs and the human brain. Note that although the effects
of adversarial images indicate the deficiencies of current
CNNs, we do not object to the approach to use CNNs as
a reference to understand the mechanisms of the brain.
Our study here fits the broad interests in comparing CNNs
and the human brain in various aspects. We differ from
other studies just because we focus on their differences.
We do acknowledge that it is quite valuable to demonstrate
functional similarities between the two systems. But we
believe that revealing their differences, as an alternative
approach, might further foster our understandings of
how to improve the design of CNNs. This is similar
to the logic of using ideal observer analysis in vision
science. Although we know human visual behavior is not
optimal in many situations, the comparison to an ideal
observer is still meaningful as it can reveal some critical
mechanisms of human visual processing. Also, we want to
emphasize that mimicking the human brain is not the only
way or even may not be the best way to improve CNN
performance. Here, we only suggest a potential route given
that current CNNs still fall short in many visual tasks as
compared to humans.

Some recent efforts have been devoted to addressing CNN-
human differences. For example, Rajalingham et al. (2018)
found that CNNs explain human (or non-human primate)
rapid object recognition behavior at the level of category
but not individual images. CNNs better explain the ventral
stream than the dorsal stream (Wen et al., 2017). To further
examine their differences, people have created some unnatural
stimuli/tasks, and our work on adversarial images follows this
line of research. The rationale is that, if CNNs are similar to
humans, they should exhibit the same capability in both ordinary
and unnatural circumstances. A few studies adopted some other
manipulations (Flesch et al., 2018; Rajalingham et al., 2018),
such as manipulation of image noise (Geirhos et al., 2018) and
distortion (Dodge and Karam, 2017).

Possible Caveats of CNNs in the
Processing of Adversarial Images
Why CNNs and human vision behave differently on adversarial
images, especially on AN images? We want to highlight three
reasons and discuss the potential route to circumvent them.

First, current CNNs are trained to match the classification
labels generated by humans. This approach is a discriminative
modeling approach that characterizes the probability of
p(class | image). Note that natural images only occupy
a low-dimensional manifold in the entire image space.
Under this framework, there must exist a set of artificial
images in the image space that fulfills a classifier but does
not belong to any distribution of real images. Humans

cannot recognize AN images because humans do not
merely rely on discriminative classifiers but instead
perform Bayesian inference and take into consideration
both likelihood p(image| class) and prior experience
p(class). One approach to overcome this is to build
generative deep models to learn latent distributions
of images, such as variational autoencoders (Kingma
and Welling, 2013) and generative adversarial networks
(Goodfellow et al., 2014a).

Another advantage of deep generative models is to
explicitly model the uncertainty in sensory processing
and decision. It has been well-established in cognitive
neuroscience that the human brain computes not only
form a categorical perceptual decision, but also a full
posterior distribution over all possible hidden causes given
a visual input (Knill and Pouget, 2004; Wandell et al., 2007;
Pouget et al., 2013). This posterior distribution is also
propagated to downstream decision units and influences
other aspects of behavior.

Third, more recurrent and feedback connections are needed.
Numerous studies have shown the critical role of top-down
processing in a wide range of visual tasks, including recognition
(Bar, 2003; Ullman et al., 2016), tracking (Cavanagh and
Alvarez, 2005), as well as other cognitive domains, such
as memory (Zanto et al., 2011), language comprehension
(Zekveld et al., 2006) and decision making (Fenske et al., 2006;
Rahnev, 2017). In our results, the responses in the human
visual cortex likely reflect the combination of feedforward
and feedback effects whereas the activity in most CNNs
only reflects feedforward inputs from earlier layers. A recent
study has shown that recurrence is necessary to predict
neural dynamics in the human brain using CNN features
(Engel et al., 1994).

CONCLUDING REMARKS

In the present study, we compared neural representations
of adversarial images in AlexNet and the human visual
system. Using RSA and forward encoding modeling,
we found that the neural representations of RE and AI
images are similar in both systems but AN images were
idiosyncratically processed in AlexNet. These findings open
a new avenue to help design CNN architectures to achieve
brain-like computation.
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