
TECHNOLOGY AND CODE
published: 22 September 2021
doi: 10.3389/fninf.2021.679838

Frontiers in Neuroinformatics | www.frontiersin.org 1 September 2021 | Volume 15 | Article 679838

Edited by:

Ludovico Minati,

Tokyo Institute of Technology, Japan

Reviewed by:

Matthew Brett,

University of Birmingham,

United Kingdom

Dimitris Pinotsis,

City University of London,

United Kingdom

Pieter Simoens,

Ghent University, Belgium

*Correspondence:

Lukas Muttenthaler

muttenthaler@cbs.mpg.de

Martin N. Hebart

hebart@cbs.mpg.de

Received: 12 March 2021

Accepted: 10 August 2021

Published: 22 September 2021

Citation:

Muttenthaler L and Hebart MN (2021)

THINGSvision : A Python Toolbox

for Streamlining the Extraction of

Activations From Deep Neural

Networks.

Front. Neuroinform. 15:679838.

doi: 10.3389/fninf.2021.679838

THINGSvision: A Python Toolbox for
Streamlining the Extraction of
Activations From Deep Neural
Networks
Lukas Muttenthaler 1,2* and Martin N. Hebart 1*

1 Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig,

Germany, 2Machine Learning Group, Technical University of Berlin, Berlin, Germany

Over the past decade, deep neural network (DNN) models have received a lot of attention

due to their near-human object classification performance and their excellent prediction

of signals recorded from biological visual systems. To better understand the function

of these networks and relate them to hypotheses about brain activity and behavior,

researchers need to extract the activations to images across different DNN layers. The

abundance of different DNN variants, however, can often be unwieldy, and the task of

extracting DNN activations from different layers may be non-trivial and error-prone for

someone without a strong computational background. Thus, researchers in the fields

of cognitive science and computational neuroscience would benefit from a library or

package that supports a user in the extraction task. THINGSvision is a new Python

module that aims at closing this gap by providing a simple and unified tool for extracting

layer activations for a wide range of pretrained and randomly-initialized neural network

architectures, even for users with little to no programming experience. We demonstrate

the general utility of THINGsvision by relating extracted DNN activations to a number

of functional MRI and behavioral datasets using representational similarity analysis, which

can be performed as an integral part of the toolbox. Together, THINGSvision enables

researchers across diverse fields to extract features in a streamlined manner for their

custom image dataset, thereby improving the ease of relating DNNs, brain activity, and

behavior, and improving the reproducibility of findings in these research fields.

Keywords: deep neural network, computational neuroscience, Python (programming language), artificial

intelligence, feature extraction, computer vision

1. INTRODUCTION

In recent years, deep neural networks (DNNs) have sparked a lot of interest in the connected
fields of cognitive science, computational neuroscience, and artificial intelligence. This is mainly
owing to their power as arbitrary function approximators (LeCun et al., 2015), their near-human
performance on object recognition and natural language understanding tasks (e.g., Russakovsky
et al., 2015; Wang et al., 2018, 2019), and, most crucially, the fact that their latent representations
often show a close correspondence to brain recordings and behavioral measurements (Güçlü and
van Gerven, 2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Kriegeskorte, 2015;
Kietzmann et al., 2018; Schrimpf et al., 2018, 2020b; King et al., 2019).

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.679838
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.679838&domain=pdf&date_stamp=2021-09-22
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:muttenthaler@cbs.mpg.de
mailto:hebart@cbs.mpg.de
https://doi.org/10.3389/fninf.2021.679838
https://www.frontiersin.org/articles/10.3389/fninf.2021.679838/full

Muttenthaler and Hebart THINGSvision

One important limiting factor for a much broader
interdisciplinary adoption of DNNs as computational models
lies in the difficulty of extracting layer activations for DNNs.
This difficulty is twofold. First, the number of existing models
is enormous and increases by the day. Due to this diversity,
an extraction strategy that is suited for one model may not
apply to any other model. Second, for users without a strong
programming background it can be non-trivial to extract
features while being confident that no mistakes were made
in the process, for example during image preprocessing,
layer selection, or making sure that images corresponded to
extracted activations. Beyond these difficulties, even experienced
programmers would benefit from an efficient and validated
toolbox to streamline the extraction process and prevent errors
in the process. Together, this demonstrates that researchers in
cognitive science and computational neuroscience would benefit
from a readily-available package for a streamlined extraction of
neural network activation.

With THINGSvision , we provide a Python toolbox that
enables researchers to extract features for most state-of-the-art
neural networkmodels for existing or custom image datasets with
just a few lines of code. While feature extraction may not seem
to be a difficult task for someone with a strong computational
background, this toolbox is primarily aimed at supporting those
researchers who are inexperienced with Python programming
and deep neural network architectures, but interested in the
analysis of their representations. However, we believe that
even computer scientists will benefit from a publicly available
toolbox that is well-maintained and efficiently written. Thus,
we regard THINGSvision as a tool that can be used across
research domains.

In the remainder of this article, we introduce and motivate
the main functionalities of the library and how to use them.
We start by providing an overview of the collection of neural
network models for which features can be extracted. The code
for THINGSvision is publicly available and readily available
as a Python package under the MIT license https://github.com/
ViCCo-Group/THINGSvision.

1.1. Model Collection
All neural network models that are part of THINGSvision
are built in PyTorch (Paszke et al., 2019) or TensorFlow
(Abadi et al., 2015), which are the two most commonly used
deep learning frameworks. We include every neural network
model that is part of PyTorch ’s publicly available model-
zoo, torchvision , and TensorFlow ’s model zoo, including
many DNN models commonly used in research such as AlexNet
(Krizhevsky et al., 2012), VGG-16 and VGG-19 (Simonyan
and Zisserman, 2015), and ResNet (He et al., 2016). Whenever
a new vision architecture is added to torchvision or
TensorFlow ’s model zoo, THINGSvision is designed to
automatically make it available, as well.

In addition to models from the torchvision and
TensorFlow library, we provide both feedforward and
recurrent variants of CORnet, a recent DNN model that was
inspired by the architecture of the non-human primate visual
system and that leverages recurrence to more closely resemble

biological processing mechanisms (Kubilius et al., 2018, 2019).
At the time of writing, CORnet-S is the best performing
computational model on the BrainScore benchmark (Schrimpf
et al., 2018, 2020b), a composition of various neural and
behavioral benchmarks aimed at assessing the degree to which
a DNN is a good model of cortical visual object processing.

Moreover, we include both versions of CLIP (Radford et al.,
2021), a multimodal DNN model developed by OpenAI that is
based on the Transformer architecture (Vaswani et al., 2017),
which has surpassed the performance of previous recurrent and
convolutional neural networks on a wide range of core natural
language processing and image recognition tasks. CLIP’s training
procedure makes it possible to simultaneously extract both image
and text features for visual concepts and their natural language
counterparts. CLIP exists as an advanced, multimodal version of
ResNet50 (He et al., 2016) and the so-called Vision-Transformer,
ViT (Dosovitskiy et al., 2021). We additionally provide the
possibility to upload model weights pretrained on custom image
datasets beyond ImageNet.

To facilitate the reproducibility of computational analyses
across research groups and fields, it is crucial to not only
make code pertaining to the proposed analysis pipeline publicly
available but additionally offer a general and well-documented
framework that can easily be adopted by others (Peng, 2011;
Esteban et al., 2018; Rush, 2018; Van Lissa et al., 2020). This is
why we aspired to follow high software engineering principles
such as PEP8 guidelines during development. We regard
THINGSvision as a toolbox that aims at promoting both the
interpretability and comparability of research at the intersection
of cognitive science, computational neuroscience, and artificial
intelligence. Instead of simply providing an unwieldy collection
of existing computational models, we decided to focus on
models whose functional composition has been demonstrated
to be similar to the primate visual system (Kriegeskorte, 2015;
Kietzmann et al., 2018) and models that are widely adopted by
the research community.

2. METHOD

THINGSvision is a toolbox that was written in the high-level
programming language Python and, therefore, requires Python
version 3.7 or later to be installed on a user’s machine. The
toolbox leverages two of the most widely used packages in the
context of machine learning research and numerical analysis,
namely PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al.,
2015) and NumPy (Harris et al., 2020). Since all relevant NumPy
operations were made an integral part of THINGSvision ,
it is not necessary to import NumPy or any other Python
package explicitly.

To extract features from a neural network model for a
custom set of images, users are first required to select a
model and additionally define whether the model’s weights
were pretrained on ImageNet (Deng et al., 2009; Russakovsky
et al., 2015) or randomly initialized. If the comparison is
aimed at investigating the correspondence between learned
representations of a model and brain or behavior, we recommend

Frontiers in Neuroinformatics | www.frontiersin.org 2 September 2021 | Volume 15 | Article 679838

https://github.com/ViCCo-Group/THINGSvision
https://github.com/ViCCo-Group/THINGSvision
https://pytorch.org/vision/0.8/models.html
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

to use pretrained weights. If the comparison is aimed at
investigating how architectural constraints alone can lead to
similar representations in models and brain or behavior, then
representations from randomly initialized weights carry valuable
additional information irrespective of learning (Yamins et al.,
2014; Güçlü and van Gerven, 2015; Schrimpf et al., 2020a; Storrs
et al., 2020b). Second, input and output folders as well as the
number of samples to be processed in parallel in so-called mini-
batches are passed to a function that converts the user’s images
into a PyTorch dataset. This dataset subsequently serves as the
input to a function that extracts features for the selected module
(e.g., the penultimate layer). The above operations are performed
with the following lines of code, which essentially encompass the
basic flow of THINGSvisions ’s extraction pipeline.

import torch
import thingsvision.vision as vision

from thingsvision.model_class importModel

device= 'cuda' if torch.cuda.is_available() else 'cpu'

model=Model(

model_name='alexnet' ,

pretrained=True ,

model_path=None,

device=device,

backend='pt' ,

)

dl= vision.load_dl(

root='./images/' ,

out_path='./alexnet/features.10/features/' ,

batch_size=64,

transforms=model.get_transformations(),

backend='pt' ,

)

features, targets=model.extract_features(

data_loader=dl,

module_name='features.10' ,

batch_size=64,

flatten_acts=True ,

device=device,

)

vision.save_features(features, out_path='./alexnet/features.10/
features/' , 'npy')

Note that at this point it appears crucial to stress the difference
between a layer and a module. Module is a more general
reference to the individual parts of a model. A module can
refer to non-linearities, pooling operations, batch normalization
and convolutional or fully-connected layers, whereas a layer
usually refers to an entire model block, such as the composition
of the latter set of modules or a single layer (e.g., fully-
connected or convolutional). We will, however, use the two
terms interchangeably in the remainder of this article whenever
a module refers to a layer. Moreover, extracting features is used
interchangeably with extracting network activations.

Figure 1 depicts a high-level overview of how feature
extraction is streamlined in THINGSvision . Given that a user
provides the system path to an image dataset, the input to a neural
network model is a three-dimensional matrix, I ∈ R

H×W×C,

which is the numerical representation of any image. Assuming
that a user wants to apply the flattening operation to the
activations from the selected module, the output corresponding
to each input is a one-dimensional vector, z ∈ R

KHW .
In the following paragraphs, we will explain both operations

and the variables necessary for feature extraction in more detail.
We start by introducing variables that we deem helpful for
structuring the extraction workflow.

2.1. Variables
Before leveraging THINGSvision ’s full functionality, a user
is advised to assign values to seven variables, which, for
simplicity, we define as their corresponding keyword argument
names: root , model_name , pretrained , batch_size ,
out_path , file_format , and device . Note that this is
not a necessity, since the values pertaining to those variables
can simply be passed as input arguments to the respective
functions. It does, however, facilitate the ease of reading,
and in our opinion clearly contributes to a better workflow.
Moreover, there is the option to additionally assign a value to
the variable module_name whose significance we will explain
in section 2.2.2. The above variables, their data types, example
assignments, and short descriptions are displayed in Table 1. We
will explain the details of these variables in the remainder of
this section. We want to stress that our variable assignments are
arbitrary examples rather than a general recommendation. The
exact values are depending on the specific needs of a user. More
advanced users can simply jump to section 2.2.

2.1.1. Root
We recommend starting with the assignment of the root
variable. This variable is supposed to correspond to the system
directory where a user’s image set is stored.

root= './images/'

2.1.2. Model Name
Next, a user is required to specify the name of the neural network
model whose features corresponding to the images in root
ought to be extracted. The model’s name can be defined as one
of the available neural network models in torchvision or
TensorFlow . Conveniently, as soon as a new model is added
to torchvision or TensorFlow , it will also be included in
THINGSvision , since we inherit from both torchvision
and TensorFlow . For simplicity, we use alexnet throughout
the remainder of the article, as shown in Table 1.

model_name= 'alexnet'

2.1.3. Pretrained
As a subsequent step, a user needs to specify whether to load a
pretrained model (i.e., pretrained on ImageNet) into memory,
or whether to solely load the parameters of a model that has
not yet been trained on any publicly available dataset (so-called
randomly initialized networks). The latter may be relevant for
architectural comparisons when one is concerned not with the
knowledge of a model but with its architecture. In the current
example, we assume that the user is interested in a model’s

Frontiers in Neuroinformatics | www.frontiersin.org 3 September 2021 | Volume 15 | Article 679838

https://pytorch.org/vision/0.8/models.html
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

FIGURE 1 | THINGSvision feature extraction pipeline for an example convolutional neural network architecture. Images and activations in early layers of the model

are represented as four-dimensional arrays. The first dimension represents the batch size, i.e., the number of images in a subsample of the data. For simplicity, in this

example this number is set to two. The second dimension refers to the channel-dimension, and the last two dimensions represent the height and width of an image or

feature map, respectively.

TABLE 1 | Overview of the variables that are relevant for THINGSvision ’s

feature extraction pipeline and that facilitate a user’s workflow.

Variable Example assignment Short description

root (str) “./images/” System directory where a user’s

image set is stored

model_name (str) “alexnet” Name of the neural network

model

pretrained (bool) True Pretrained or random weights

batch_size (int) 64 Number of image samples per

mini-batch

module_name (str) “features.10” Part of the model from which to

extract features

out_path (str) f’./{root}/{model_name}/

{module_name}/’

Location on machine where to

store features

file_format (str) “.npy” Format in which to store features

device (str) “cuda” Whether to perform feature

extraction on GPU or CPU

knowledge and not its function composition, which is why we set
the variable pretrained to true . Note that pretrained
must be assigned with a Boolean value (see Table 1).

pretrained= True

2.1.4. Batch Size
Modern neural network architectures process several images at
a time in batches. To make the extraction of neural network

activations more time efficient, THINGSvision follows this
processing choice, sampling B images in parallel. Thus, the choice
of the user lies in the trade-off between processing time and
memory usage (GPU memory or RAM). For users who are not
concerned with extraction speed, we recommend setting B to 32.
In our example B is set to 64 (see Table 1).

batch_size= 64

2.1.5. Backend
A user can specify whether to load a neural network model built
in PyTorch (‘pt’) or TensorFlow (‘tf ’).

backend= 'pt'

2.1.6. Device
A user can choose between using a CPU and a GPU if a GPU
is available. The advantage of leveraging a GPU lies in its faster
computation. Note that GPU usage is possible only if a machine
is equipped with an NVIDIA GPU.

device= 'cuda' if torch.cuda.is_available() else 'cpu'

2.1.7. Module Name
Module_name refers to the part of the model from which
network activations should be extracted. In case a user is familiar
with the architecture of the neural network model for which
features should be extracted, the variable module_name can

Frontiers in Neuroinformatics | www.frontiersin.org 4 September 2021 | Volume 15 | Article 679838

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

be set manually (e.g., features.10) . There is, however, the
possibility to first inspect the model architecture through an
additional function call, and subsequently select a module based
on the output of this function. The function prompts a user to
select a module, which is then assigned to module_name in the
form of a string. In section 2.2.2, we will explain in more detail
how this can be done.

module_name= 'features.10'

2.1.8. Output Directory
Before saving features to disk, a user is required to specify the
directory where image features should be stored. For simplicity,
in Table 1 we define out_path as a succession of previously
defined variables.

out_path= f'./{root}/{model_name}/{module_name}/'

2.1.9. File Format
A user can specify the file_format in which the image
features are stored. This variable can be set either to hdf5 , txt ,
mat or npy . If subsequent analyses are performed in Python,
we recommend to set file_format to npy , as storing large
matrices in npy format is both more memory and time efficient
than doing the same in txt format. This is due to the fact that the
npy format was specifically designed to accommodate the storing
of large matrices to NumPy(Harris et al., 2020).

out_path= 'npy'

2.2. Model and Modules
2.2.1. Loading Models
With the previously defined variables in place, a user can
now start loading a model into a computer’s memory. Since
model_name is set to alexnet and pretrained to true ,
we load an AlexNet model pretrained on ImageNet and the
corresponding image transformations (which are used in section
2.3) into memory with the following line,

model, transforms= vision.load_model(model_name, pretrained=pretrained,

device=device)

2.2.2. Selecting Modules
Before extracting DNN features for an image dataset, a user is
required to select the part of the model for which features should
be extracted. In case a user is familiar with the architecture of
a specific neural network model, they can simply assign a value
to the variable module_name (see section 2.1.7). If a user is,
however, unfamiliar with the specific architecture of a neural
network model, we recommend visualizing the composition of
the model’s modules through the following function call,

module_name= vision.show_model(model, model_name)

The output of this call, in the case of alexnet , looks as follows,

AlexNet(

(features): Sequential(

(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))

(1): ReLU(inplace=True)

(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=

False)

(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(4): ReLU(inplace=True)

(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=

False)

(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(7): ReLU(inplace=True)

(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(9): ReLU(inplace=True)

(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(11): ReLU(inplace=True)

(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode

=False)

)

(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))

(classifier): Sequential(

(0): Dropout(p=0.5, inplace=False)

(1): Linear(in_features=9216, out_features=4096, bias=True)

(2): ReLU(inplace=True)

(3): Dropout(p=0.5, inplace=False)

(4): Linear(in_features=4096, out_features=4096, bias=True)

(5): ReLU(inplace=True)

(6): Linear(in_features=4096, out_features=1000, bias=True)

)

)

For users unfamiliar with details of neural network architectures,
this output may look confusing, given that it is well-known that
AlexNet consists only of 8 layers. Note, however, that the above
terminal output displays the individual modules of AlexNet as
well as their specific attributes, such as how many features their
inputs and outputs have, or whether a layer is followed by a
rectifier non-linearity or pooling operation. Note further that
the modules are enumerated in the order in which they appear
within the model’s composition. This is crucial for the module
selection step. During this step, THINGSvision prompts a user
to “enter the part of the model for which a user would like to
extract image features.” The user’s input is automatically assigned
to the variablemodule_name in the form of a string. In order to
extract features from layers that correspond to early areas of the
primate visual system, we recommend selecting convolutional or
pooling modules, and linear layers for later areas that encode
high-level features.

It is important to stress that each model in PyTorch
or TensorFlow is represented by a tree structure, where
the name of the model refers to the root of the tree (e.g.,
AlexNet). To access a module, a user is required to compose
the string variable module_name by both the name of one of
the leaves that directly follow the tree’s root (e.g., features ,
avgpool , classifier) and the number of the module to
be selected, separated by a period (e.g., features.5). This
approach to module selection accounts for all models that are
part of THINGSvision . How to compose the string variable
module_name differs between PyTorch and TensorFlow .
We use PyTorch module naming.

In this example, we select the 10th module of AlexNet’s leaf
features (i.e., features.10), which corresponds to the
fifth convolutional layer in AlexNet (see above). Hence, features
will be extracted exclusively for this module.

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2021 | Volume 15 | Article 679838

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

2.3. Dataset and Data Loader
Through a dedicated dataset class, THINGSvision can deal
with various types of image data (.eps , .jpg , .jpeg ,
.png , .PNG, .tif , .tiff) and is able to transform
the images into a ready-to-use PyTorch or TensorFlow
dataset. System paths to images can follow the folder structure
./root/class/img_xy.png or ./root/img_xy.png ,
where the former directory contains sub-folders for the respective
image classes. A dataset is subsequently wrapped with a
PyTorch or TensorFlow iterator to enable batch-wise
feature extraction. The above is done with,

dl= vision.load_dl(root, out_path=out_path, batch_size=batch_size, \

transforms=model.get_transformations(), backend=backend)

THINGSvision automatically sorts image files alphabetically
(i.e., A-Z or 0-9). Sorting, however, depends on a machine’s
operating system. An alphabetic sort differs across Windows,
macOS, and Ubuntu, which is why we provide the possibility to
sort the data according to a list of file names, manually defined by
the user. The features will, subsequently, be extracted in the order
of the provided file names.

This list must follow the List[str]
data structure (i.e., containing strings),
such as [aardvark/aardvark_01.jpg,
aardvark/aardvark_02.jpg, ...] or
[aardvark.jpg, anchor.jpg, ...] , depending
on whether the dataset tree consists of subfolders for classes
(see above). The list of file names can be passed as an optional
argument as follows,

dl= vision.load_dl(root, out_path=out_path, batch_size=batch_size, \

transforms=model.get_transformations(), backend=backend, \

file_names=file_names)

We use the variable dl here since it is a commonly used
abbreviation for “data loader.” It is, moreover, necessary to pass
out_path to the above function to save a txt to out_path
consisting of the image names in the order in which features are
extracted. This is done to ensure that a user can easily correspond
the rows of a feature matrix to the image names, as shown in
Figure 1.

2.4. Features
The following section is meant for readers curious to understand
what is going on under the hood of THINGSvision ’s feature
extraction pipeline and, additionally, who aim to get a better
grasp of the dimensions depicted in Figure 1. Readers who are
familiar with matrices and tensors may want to skip this section
and jump directly to Section 2.4.2, since the following paragraphs
are not crucial for using the toolbox. We use mathematical
notation to denote images (inputs) and features (outputs).

2.4.1. Extracting Features
When all variables necessary for feature extraction are set,
the user can extract image features for a specific (here, the
fifth convolutional) layer in AlexNet (i.e., features.10).
Figure 1 shows THINGSvision ’s feature extraction pipeline
for two example images. The algorithm first searches for the

images in the root folder, subsequently converts them into a
ready-to-use dataset, and then passes sub-samples of the data
in the form of mini-batches as inputs to the network. For
simplicity and to demonstrate the extraction procedure, Figure 1
displays an example of a simplified convolutional neural network
architecture. Recall that an image is numerically represented as a
three-dimensional array, usually in the following format.

I ∈ R
H×W×C, (1)

where H = height, W = width, C = channels. C = 1 or 3,
depending on whether images are represented in grayscale or
RGB format. In PyTorch , however, image batches, denoted as
X, are represented as four-dimensional tensors,

X ∈ R
B×C×H×W , (2)

s where B = batch_size , and all other dimensions are
permuted. Note, that this is not the case for TensorFlow ,
where image dimensions are not permuted. In the example in
Figure 1, B = 2, since two images are concurrently processed.
The channel dimension, now, represents the tensor’s second
dimension (inside the toolbox, it is the first dimension, since
Python starts indexing at 0) to more easily apply convolutions to
input images. Hence, features at the level of the selected module,
denoted as Z, are represented as four-dimensional tensors in
the format,

Z ∈ R
B×K×H×W , (3)

where the channel parameter C is replaced with K referring
to the number of feature maps within a representation. Here,
K = 256, and H and W are significantly smaller than at the
input level. For most analyses in computational neuroscience,
researchers are required to flatten this four-dimensional tensor
into a two-dimensional matrix of the format,

Zflat ∈ R
B×KHW , (4)

i.e., one vector per image representation in a batch, which is
what we demonstrate in the following example. We provide a
keyword argument, called flatten_acts , that communicates
to the function to automatically perform the previous step during
feature extraction (see the flatten operation in Figure 1). A user
must simply set the argument to True as follows,

features, targets=model.extract_features(dl, module_name, batch_size=

batch_size, \

flatten_acts=True , device=device)

The final, two-dimensional, feature matrix is of the form,

Zflat ∈ R
N×KHW , (5)

where N corresponds to the number of images in the dataset. In
addition to the feature matrix, extract_features returns a
target vector of size N × 1 corresponding to the image classes.
A user can decide whether to save or ignore this target vector,
depending on the subsequent analyses. Note that flattening a
tensor is not necessary for feature extraction to work. If a user

Frontiers in Neuroinformatics | www.frontiersin.org 6 September 2021 | Volume 15 | Article 679838

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

wants the original four-dimensional tensor, flatten_acts
must be set to False . A flattened representation may be
desirable when the neural network representations are supposed
to be compared against representations extracted from brain or
behavior, which are typically compared using multiple linear
regression or by computing correlation coefficients, which
cannot operate on multidimensional arrays directly. However,
if the goal is to compare activations between different model
architectures or leverage interpretability techniques to inspect
feature maps, then the tensor should be left in its original four-
dimensional shape.

To offer a user more flexibility and control over the feature
extraction procedure, we do not provide a default value for
this keyword argument. Since a user may want store a four-
dimensional tensor in txt format to disk, THINGSvision
comes (1) with a function that slices a four-dimensional tensor
into multiple two-dimensional matrices, and (2) a corresponding
function that merges the slices back into their original shape at
the time of loading the features back into memory.

2.4.2. Saving Features
To save network activations (no matter from which part of the
model) in a flattened format, the following function can be called,

vision.save_features(features, out_path, file_format)

When features are extracted from any of the convolutional layers
of the model, the output is a four-dimensional tensor. Since it is
not trivial to save four-dimensional tensors in txt format to be
readily used for subsequent analyses of a model’s feature maps, a
user is required to set the file format argument to hdf5 , npy , or
mat , of which all enable the saving of four-dimensional tensors
in their original shape.
When storing network activations from convolutional layers in
their flattened format, it is possible to run into MemoryErrors .
We account for that potential caveat with splitting two-
dimensional matrices into k equally large splits, whenever that
happens. The default value of k is set to 10. If 10 splits are not
sufficient to counteract the memory issues, a user can change this
value to a larger number. We recommend trying multiples of 10,
such as

vision.save_features(features, out_path, file_format, n_splits=20)

To merge the array splits back into a single, two-dimensional,
feature matrix, a user can call,

features= vision.merge_features(out_path, file_format)

2.5. Representational Similarity Analysis
Representational Similarity Analysis (RSA), a technique that
originated in cognitive computational neuroscience, can be used
to relate object representations from different measurement
modalities (e.g., fMRI or behavior) and different computational
models with each other (Kriegeskorte et al., 2008a,b). RSA is
based on representational dissimilarity matrices (RDMs), which
capture the representational geometry present in a given system
(e.g., in the brain or a DNN), thereby abstracting away from the
underlying multivariate pattern. Rather than directly comparing
measurements, RDMs compare representational similarities

between two systems. RDMs are symmetric, square matrices,
where the rows and columns are indexed by the different
conditions or objects. Hence, RSA is a convenient analysis
tool to compare visual object representations obtained from
different DNNs.

The dissimilarity between each object pair (e.g., two images)
is computed within the row space of an RDM. Dissimilarity
is quantified as the distance between two objects in the
measured representational space, defined by the chosen distance
metric. The user can choose between the Euclidean distance
(euclidean), the correlation distance (correlation),
the cosine distance (cosine) and a radial basis function
applied to pairwise distances (gaussian). Equivalent object
representations show a dissimilarity score close to 0. For
the correlation and cosine distances, the maximum
dissimilarity score is bounded to 2, whereas there is no theoretical
upper limit for the euclidean distance.

Since RDMs are symmetric around their main diagonal,
it is simple to compare them by correlating their lower or
upper triangles. We include both the possibility to compute
and visualize an RDM and to correlate the upper triangles of
two distinct RDMs. Computing an RDM based on a Pearson
correlation distance matrix is as simple as calling

rdm= vision.compute_rdm(features, method='correlation'),

Note that similarities are computed between conditions or
objects, not features. To compute the representational similarity
between two distinct RDMs, a user can make the following call,

rdm_correlation= vision.correlate_rdms(rdm_1, rdm_2, correlation='
pearson')

The default correlation value is the Pearson correlation
coefficient, but this can be changed to spearman if a user
assumes that the similarities are not ratio scale and require the
computation of a Spearman rank correlation (Nili et al., 2014;
Arbuckle et al., 2019). To visualize an RDM and automatically
save the output image (in .png or .jpg format) to disk, one
may call

vision.plot_rdm(out_path, features, method='correlation' ,\

format='.png' , colormap='cividis' , show_plot=True)

The default value of format is set to .png but can easily be
changed to .jpg . Note that .jpg is a lossy image compression,
whereas .png is lossless, and, hence, with .png no information
gets lost during compression. Therefore, the format argument
influences both the size and the final resolution of the RDM
image representation. The dpi value is set to 200 to guarantee
for a high image resolution, even if .jpg is selected.

3. RESULTS AND APPLICATIONS

To demonstrate the usefulness of THINGSvision , in the
following, we present analyses of the image representations of
different deep neural network architectures and compare them
against representations obtained from behavioral experiments
(section 3.1.1) and functional MRI responses to higher visual
cortex (section 3.1.2). To qualitatively inspect the DNN
representations, we compute and visualize representational

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2021 | Volume 15 | Article 679838

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

dissimilarity matrices (RDMs) within the framework of
representational similarity analysis (RSA), as introduced in
section 2.5. Moreover, we calculate the Pearson correlation
coefficients between human and DNN representations to
quantify their similarities, and show how this can easily be
done with THINGSvision . We measure the correspondence
between layer activations and human brain or behavioral
representations as the Pearson’s correlation coefficient, in line
with the recent finding that the linearity assumption holds for
functional MRI data which validates the use of an interval rather
than an ordinal scale (Arbuckle et al., 2019).

In addition to results for pretrained models, we compare
randomly initialized models against human brain and behavioral
representations. This reveals the degree to which the architecture
by itself, without any prior knowledge (e.g., through training),
may perform above chance and which model achieves the
highest correspondence to behavioral or brain representations
under these circumstances. Indeed, a comparison to randomly-
initialized networks is increasingly used as a baseline for
comparisons (e.g., Yamins et al., 2014; Güçlü and van Gerven,
2015; Cichy et al., 2016; Schrimpf et al., 2020a; Storrs et al.,
2020b).

Note that this section should not be regarded as an
investigation in its own right. It is supposed to demonstrate the
usefulness and versatility of the toolbox. This is the main reason
for why we do not make any claims about hypotheses and how to
test them. RSA is just one out of many potential applications, of
which a subset is mentioned in the section 4.

3.1. The Penultimate Layer
The correspondence of a DNN’s penultimate layer to human
behavioral representations has been studied extensively and is
therefore often used when investigating the representations of
abstract visual concepts in neural network models (e.g., Mur
et al., 2013; Bankson et al., 2018; Jozwik et al., 2018; Peterson
et al., 2018; Battleday et al., 2019; Cichy et al., 2019). To the
best of our knowledge, our study is the first to compare visual
object representations extracted from CLIP (Radford et al.,
2021) against the representations of well-known vision models
that have previously shown a close correspondence to neural
recordings of the primate visual system. We computed RDMs
based on the Pearson correlation distance for seven models,
namely AlexNet (Krizhevsky et al., 2012), VGG16 and VGG19
with batch normalization (Simonyan and Zisserman, 2015),
which show a close correspondence to brain and behavior
(Schrimpf et al., 2018, 2020b), ResNet50 (He et al., 2016),
BrainScore’s current leader CORnet-S (Kubilius et al., 2018, 2019;
Schrimpf et al., 2020b), and OpenAI’s CLIP variants CLIP-RN
and CLIP-ViT (Radford et al., 2021). The comparison was done
for six different image datasets that included functional MRI of
the human visual system and behavior (Mur et al., 2013; Bankson
et al., 2018; Cichy et al., 2019; Mohsenzadeh et al., 2019; Hebart
et al., 2020). For the neuroimaging datasets, participants viewed
different images of objects while performing an oddball detection
task in an MRI scanner. For the behavioral datasets, participants
completed similarity judgments using the multiarrangement task

(Mur et al., 2013; Bankson et al., 2018) or a triplet odd-one-out
task (Hebart et al., 2020).

Note that Bankson et al. (2018) exploited two different datasets
which we label with “(1)” and “(2)” in Figure 2. The number
of images per dataset are as follows: Kriegeskorte et al. (2008b),
Mur et al. (2013), Cichy et al. (2014): 92; Bankson et al. (2018)
84 each; Cichy et al. (2016, 2019): 118; Mohsenzadeh et al.
(2019): 156; Hebart et al. (2019, 2020): 1854. For each of these
datasets except for Mohsenzadeh et al. (2019), we additionally
computed RDMs for group averages obtained from behavioral
experiments. Furthermore, we computed RDMs for brain voxel
activities obtained from fMRI recordings for the datasets used
in Cichy et al. (2014), Cichy et al. (2016), and Mohsenzadeh
et al. (2019), based on voxels inside a mask covering higher
visual cortex.

Figure 2A visualizes all RDMs. We clustered RDMs
pertaining to group averages of behavioral judgments into
five object clusters and sorted the RDMs corresponding to
object representations extracted from DNNs according to the
obtained cluster labels. The image datasets used in Kriegeskorte
et al. (2008b), Mur et al. (2013), and Cichy et al. (2014), and
Mohsenzadeh et al. (2019) were already sorted according to
object categories, which is why we did not perform a clustering
on RDMs for those datasets. The number of clusters was chosen
arbitrarily. The reordering was done to highlight the similarities
and differences in RDMs.

3.1.1. Behavioral Correspondences

3.1.1.1. Pretrained Weights
Across all compared DNN models, CORnet-S and CLIP-
RN showed the overall closest correspondence to behavioral
representations. CORnet-S, however, was the only model that
performed well across all datasets. CLIP-RN showed a high
Pearson correlation (ranging from 0.40 to 0.60) with behavioral
representations across most datasets, withMur et al. (2013) being
the only exception, for which both CLIP versions performed
poorly. Interestingly, for one of the datasets in Bankson
et al. (2018), VGG16 with batch normalization (Simonyan and
Zisserman, 2015) outperformed both CORnet-S and CLIP-RN
(see Figure 2B). AlexNet consistently performed the worst for
behavioral fits. Note that the broadest coverage of visual stimuli
is provided by Hebart et al. (2019, 2020), which should therefore
be seen as the most representative result (rightmost column in
Figure 2B).

3.1.1.2. RandomWeights
Another interesting finding is that for randomly-initialized
weights, CLIP-RN is the poorest performing model in four out
of five datasets (see bars in Figure 2B corresponding to lower
correlation coefficients). Here, AlexNet seems to be the best
performingmodel across datasets, although it achieved the lowest
correspondence to behavioral representations when leveraging a
pretrained version (see Figure 2B). This indicates the possibility
of complex interactions between model architectures and
training objectives that require further investigations which
THINGSvision may facilitate.

Frontiers in Neuroinformatics | www.frontiersin.org 8 September 2021 | Volume 15 | Article 679838

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

FIGURE 2 | (A) RDMs for penultimate layer representations of different pretrained neural network models, for group averages of behavioral judgments, and for fMRI

responses to higher visual cortex. For Mohsenzadeh et al. (2019), no behavioral experiments had been conducted. For both datasets in Bankson et al. (2018), and for

Hebart et al. (2020), no fMRI recordings were available. For display purposes, Hebart et al. (2020) was downsampled to 200 conditions. RDMs were reordered

according to an unsupervised clustering. (B,C) Pearson correlation coefficients for comparisons between neural network representations extracted from the

penultimate layer and behavioral representations (B) and representations corresponding to fMRI responses of higher visual cortex (C). Activations were extracted from

pretrained and randomly initialized models.

3.1.2. Brain Correspondences
We performed a similar analysis as above, but this time
leveraging RDMs corresponding to fMRI responses to examine

the correlation between model and brain representations of
higher visual cortex. We first report results obtained from
analyses with pretrained models.

Frontiers in Neuroinformatics | www.frontiersin.org 9 September 2021 | Volume 15 | Article 679838

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

3.1.2.1. Pretrained Weights
While AlexNet (Krizhevsky et al., 2012) showed the worst
correspondence to human behavior in four out of five
datasets (see Figure 2C), AlexNet correlated strongly with
representations extracted from fMRI responses to higher
visual cortex, except for the dataset used in Cichy et al.
(2016) (see Figure 2C). This is interesting, given that among
the entire set of analyzed deep neural network models
AlexNet shows the poorest performance on ImageNet
(Russakovsky et al., 2015). This result contradicts findings
from previous studies arguing that object recognition
performance is correlated with correspondences to fMRI
recordings (Yamins et al., 2014; Schrimpf et al., 2020b).
This time, CORnet-S and CLIP-RN performed well for the
datasets used in Cichy et al. (2016) and in Mohsenzadeh
et al. (2019), but were among the poorest performing DNNs
for Cichy et al. (2014). Note, however, that the dataset used
in Cichy et al. (2014) is highly structured and contains
a large number of faces and similar images, something
AlexNet might pick up more easily in its image features
but something that is not reflected in human behavior
(Grootswagers and Robinson, 2021).

3.1.2.2. RandomWeights
When comparing representations corresponding to network
activations from models with random weights, there appears
to be no consistent pattern as to which model correlated most
strongly with brain representations of higher visual cortex,
although VGG16 and CORnet-S were the only two models
that yielded a Pearson correlation coefficient > 0 across
datasets. Note, however, that for each model we extracted
network activations from the penultimate layer. Results might
look different when extracting activations from earlier layers
of the networks or when reweighting the DNN features
prior to RSA (Kaniuth and Hebart, 2020; Storrs et al.,
2020a). We leave further investigations to future studies, as
our analyses should only demonstrate the applicability of
our toolbox.

3.1.3. Model Comparison
Although CORnet-S and CLIP-RN achieved the overall
highest correspondence to both behavioral and human
brain representations, our results indicate that more
recent, deeper neural network models are not necessarily
preferred over previous, shallower models, at least when
exclusively leveraging the penultimate layer of a network.
Their correspondences appear to be highly dataset-
dependent. Although a pretrained version of AlexNet
correlated poorly with representations obtained from
behavioral experiments (see Figure 2B), there are datasets
where AlexNet showed close correspondence to brain
representations (see Figure 2C). Similarly, VGG16 was mostly
outperformed by CLIP-RN, but in one out of five datasets it
yielded a higher correlation with behavioral representations
than CLIP-RN.

4. DISCUSSION

Here we introduce THINGSvision , a Python toolbox for
extracting activations from hidden layers of a wide range of
deep neural network models. We designed THINGSvision
to facilitate research at the intersection of cognitive science,
computational neuroscience, and artificial intelligence.

Recently, an API was released (Mehrer et al., 2021) that
enables the extraction of image features from AlexNet and
vNet without the requirement to install any library, making
it a highly user-friendly contribution to the field. Apart from
requiring an installation of Python, THINGSvision provides
a comparably simple way to extract network activations,
yet for a much broader set of DNNs and with a higher
degree of flexibility and control over the extraction procedure.
THINGSvision can easily be integrated with any other
computational analysis pipeline performed in Python or Matlab.
We additionally allow for a streamlined comparison of visual
object representations obtained from various DNNs employing
representational similarity analysis.

We demonstrated the usefulness of THINGSvision through
the application of RSA and the quantification of correspondences
between representations extracted from models and human
behavior (or brains). Please note that the extracted network
activations are not only useful for visualizing and comparing
network activations through frameworks such as RSA, but for
any downstream application, including regression onto brain
data (Yamins et al., 2014; Güçlü and van Gerven, 2015), feature
selectivity analysis (e.g., Xu et al., 2021), or fine-tuning of
individual layers for external tasks (e.g., Khaligh-Razavi and
Kriegeskorte, 2014; Tajbakhsh et al., 2016).

THINGSvision enabled us to investigate object
representations of CLIP (Radford et al., 2021) against
representations extracted from other neural network models
as well as representations from behavioral experiments and
fMRI responses to higher visual cortex. To understand why
Transformer layers and multimodal training objectives help to
achieve strong correspondences to behavioral representations
(see Figure 2B), further studies are encouraged to investigate
the representations of CLIP and its differences to previous DNN
architectures with unimodal objectives.

We hope that THINGSvision will serve as a useful tool
that supports researchers in carrying out such analyses, and we
intend to extend the set of models and functionalities that are
integral to THINGSvision over the coming years as a function
of advancements and demands in the field.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://osf.io/jum2f/, http://twinsetfusion.
csail.mit.edu/, http://userpage.fu-berlin.de/rmcichy/nn_project_
page/main.html, http://brainmodels.csail.mit.edu/, https://www.
frontiersin.org/articles/10.3389/fpsyg.2013.00128/full, https://
www.sciencedirect.com/science/article/pii/S1053811919302083.
The code for THINGSvision is also publicly available: https://
github.com/ViCCo-Group/THINGSvision.

Frontiers in Neuroinformatics | www.frontiersin.org 10 September 2021 | Volume 15 | Article 679838

https://osf.io/jum2f/
http://twinsetfusion.csail.mit.edu/
http://twinsetfusion.csail.mit.edu/
http://userpage.fu-berlin.de/rmcichy/nn_project_page/main.html
http://userpage.fu-berlin.de/rmcichy/nn_project_page/main.html
http://brainmodels.csail.mit.edu/
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00128/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00128/full
https://www.sciencedirect.com/science/article/pii/S1053811919302083
https://www.sciencedirect.com/science/article/pii/S1053811919302083
https://github.com/ViCCo-Group/THINGSvision
https://github.com/ViCCo-Group/THINGSvision
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

AUTHOR CONTRIBUTIONS

LM designed the toolbox and programmed the software. LM and
MH collected the data, analyzed and visualized the data, and
wrote the manuscript. MH supervised the study and acquired
the funding. Both authors agreed with the final version of
the manuscript.

FUNDING

This work was supported by a Max Planck Research Group grant
of the Max Planck Society awarded to MH.

ACKNOWLEDGMENTS

The authors would like to thank Katja Seeliger, Oliver Contier
and Philipp Kaniuth for useful comments on earlier versions
of this paper, and in particular Hannes Hansen, who helped
running all sorts of tests and enhancing continuous integration
of the toolbox.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2021.679838/full#supplementary-material

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available

online at: tensorflow.org

Arbuckle, S. A., Yokoi, A., Pruszynski, J. A., and Diedrichsen, J. (2019). Stability

of representational geometry across a wide range of fmri activity levels.

Neuroimage 186, 155–163. doi: 10.1016/j.neuroimage.2018.11.002

Bankson, B., Hebart, M., Groen, I., and Baker, C. (2018). The temporal

evolution of conceptual object representations revealed through models of

behavior, semantics and deep neural networks. Neuroimage 178, 172–182.

doi: 10.1016/j.neuroimage.2018.05.037

Battleday, R. M., Peterson, J. C., and Griffiths, T. L. (2019). Capturing human

categorization of natural images at scale by combining deep networks and

cognitive models. Nat. Commun. 11:5418. doi: 10.1038/s41467-020-18946-z

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., and Oliva, A. (2016).

Comparison of deep neural networks to spatio-temporal cortical dynamics of

human visual object recognition reveals hierarchical correspondence. Sci. Rep.

6:27755. doi: 10.1038/srep27755

Cichy, R. M., Kriegeskorte, N., Jozwik, K. M., van den Bosch, J. J., and

Charest, I. (2019). The spatiotemporal neural dynamics underlying

perceived similarity for real-world objects. Neuroimage 194, 12–24.

doi: 10.1016/j.neuroimage.2019.03.031

Cichy, R. M., Pantazis, D., and Oliva, A. (2014). Resolving human object

recognition in space and time. Nat. Neurosci. 17:455. doi: 10.1038/nn.3635

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F. (2009). “Imagenet:

a large-scale hierarchical image database,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition (Miami, FL), 248–255.

doi: 10.1109/CVPR.2009.5206848

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,

T., et al. (2021). “An image is worth 16x16 words: Transformers for

image recognition at scale,” in 9th International Conference on Learning

Representations, ICLR 2021, Virtual Event, Austria.

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe,

A., et al. (2018). fMRIPrep: a robust preprocessing pipeline for functional MRI.

Nat. Methods 16, 111–116. doi: 10.1038/s41592-018-0235-4

Grootswagers, T., and Robinson, A. K. (2021). Overfitting the literature

to one set of stimuli and data. Front. Hum. Neurosci. 15:386.

doi: 10.3389/fnhum.2021.682661

Güçlü, U., and van Gerven, M. A. J. (2014). Unsupervised feature learning

improves prediction of human brain activity in response to natural images.

PLoS Comput. Biol. 10:e1003724. doi: 10.1371/journal.pcbi.1003724

Güçlü, U., and van Gerven, M. A. J. (2015). Deep neural networks reveal a

gradient in the complexity of neural representations across the ventral stream.

J. Neurosci. 35, 10005–10014. doi: 10.1523/JNEUROSCI.5023-14.2015

Harris, C. R., Millman, K. J., van der Walt, S., Gommers, R., Virtanen, P.,

Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,

357–362. doi: 10.1038/s41586-020-2649-2

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for

image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016 (Las Vegas, NV: IEEE Computer Society), 770–778.

doi: 10.1109/CVPR.2016.90

Hebart, M. N., Dickter, A. H., Kidder, A., Kwok, W. Y., Corriveau, A., Van

Wicklin, C., et al. (2019). THINGS: a database of 1,854 object concepts

and more than 26,000 naturalistic object images. PLoS ONE 14:e0223792.

doi: 10.1371/journal.pone.0223792

Hebart, M. N., Zheng, C. Y., Pereira, F., and Baker, C. I. (2020). Revealing the

multidimensional mental representations of natural objects underlying

human similarity judgements. Nat. Hum. Behav. 4, 1173–1185.

doi: 10.1038/s41562-020-00951-3

Jozwik, K. M., Kriegeskorte, N., Cichy, R. M., and Mur, M. (2018).

“Deep convolutional neural networks, features, and categories perform

similarly at explaining primate high-level visual representations,” in 2018

Conference on Cognitive Computational Neuroscience (Philadelphia, PA), 1–4.

doi: 10.32470/CCN.2018.1232-0

Kaniuth, P., and Hebart, M. N. (2020). Tuned representational similarity analysis:

improving the fit between computational models of vision and brain data. J. Vis.

20:1076. doi: 10.1167/jov.20.11.1076

Khaligh-Razavi, S.-M., and Kriegeskorte, N. (2014). Deep supervised, but not

unsupervised, models may explain IT cortical representation. PLoS Comput.

Biol. 10:e1003915. doi: 10.1371/journal.pcbi.1003915

Kietzmann, T. C., McClure, P., and Kriegeskorte, N. (2018). Deep neural networks

in computational neuroscience. bioRxiv [Preprint]. doi: 10.1101/133504

King, M. L., Groen, I. I., Steel, A., Kravitz, D. J., and Baker, C. I. (2019).

Similarity judgments and cortical visual responses reflect different properties

of object and scene categories in naturalistic images.Neuroimage 197, 368–382.

doi: 10.1016/j.neuroimage.2019.04.079

Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling

biological vision and brain information processing. Annu. Rev. Vis. Sci. 1,

417–446. doi: 10.1146/annurev-vision-082114-035447

Kriegeskorte, N., Mur, M., and Bandettini, P. A. (2008a). Representational

similarity analysis-connecting the branches of systems neuroscience. Front.

Syst. Neurosci. 2:4. doi: 10.3389/neuro.06.004.2008

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky,

H., et al. (2008b). Matching categorical object representations in

inferior temporal cortex of man and monkey. Neuron 60, 1126–1141.

doi: 10.1016/j.neuron.2008.10.043

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, eds F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger (Lake Tahoe, NV: Curran Associates, Inc.), 1097–1105.

Kubilius, J., Schrimpf, M., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., et al.

(2019). “Brain-like object recognition with high-performing shallow recurrent

ANNs,” in Annual Conference on Neural Information Processing Systems 2019,

NeurIPS 2019, eds H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-

Buc, E. B. Fox, and R. Garnett (Vancouver, BC), 12785–12796.

Frontiers in Neuroinformatics | www.frontiersin.org 11 September 2021 | Volume 15 | Article 679838

https://www.frontiersin.org/articles/10.3389/fninf.2021.679838/full#supplementary-material
tensorflow.org
https://doi.org/10.1016/j.neuroimage.2018.11.002
https://doi.org/10.1016/j.neuroimage.2018.05.037
https://doi.org/10.1038/s41467-020-18946-z
https://doi.org/10.1038/srep27755
https://doi.org/10.1016/j.neuroimage.2019.03.031
https://doi.org/10.1038/nn.3635
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.3389/fnhum.2021.682661
https://doi.org/10.1371/journal.pcbi.1003724
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/10.1038/s41562-020-00951-3
https://doi.org/10.32470/CCN.2018.1232-0
https://doi.org/10.1167/jov.20.11.1076
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1101/133504
https://doi.org/10.1016/j.neuroimage.2019.04.079
https://doi.org/10.1146/annurev-vision-082114-035447
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1016/j.neuron.2008.10.043
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Muttenthaler and Hebart THINGSvision

Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L. K., and DiCarlo, J.

J. (2018). Cornet: Modeling the neural mechanisms of core object recognition.

bioRxiv [Preprint]. doi: 10.1101/408385

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, N., and Kietzmann, T.

C. (2021). An ecologically motivated image dataset for deep learning yields

better models of human vision. Proc. Natl. Acad. Sci. U.S.A. 118:e2011417118.

doi: 10.1073/pnas.2011417118

Mohsenzadeh, Y., Mullin, C., Lahner, B., Cichy, R. M., and Oliva, A.

(2019). Reliability and generalizability of similarity-based fusion of meg

and fmri data in human ventral and dorsal visual streams. Vision 3:8.

doi: 10.3390/vision3010008

Mur, M., Meys, M., Bodurka, J., Goebel, R., Bandettini, P., and

Kriegeskorte, N. (2013). Human object-similarity judgments reflect and

transcend the primate-it object representation. Front. Psychol. 4:128.

doi: 10.3389/fpsyg.2013.00128.eCollection2013

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., and Kriegeskorte,

N. (2014). A toolbox for representational similarity analysis. PLoS Comput. Biol.

10:e1003553. doi: 10.1371/journal.pcbi.1003553

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

“Pytorch: an imperative style, high-performance deep learning library,” in

Annual Conference on Neural Information Processing Systems 2019, NeurIPS

2019, eds H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B.

Fox, and R. Garnett (Vancouver, BC), 8024–8035.

Peng, R. D. (2011). Reproducible research in computational science. Science 334,

1226–1227. doi: 10.1126/science.1213847

Peterson, J. C., Abbott, J. T., and Griffiths, T. L. (2018). Evaluating (and improving)

the correspondence between deep neural networks and human representations.

Cogn. Sci. 42, 2648–2669. doi: 10.1111/cogs.12670

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., et al. (2021).

Learning transferable visual models from natural language supervision. arXiv

preprint arXiv:2103.00020.

Rush, A. (2018). “The annotated transformer,” in Proceedings of Workshop for

NLP Open Source Software (NLP-OSS) (Melbourne, VIC: Association for

Computational Linguistics), 52–60. doi: 10.18653/v1/W18-2509

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115,

211–252. doi: 10.1007/s11263-015-0816-y

Schrimpf, M., Blank, I., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher,

N., et al. (2020a). The neural architecture of language: Integrative reverse-

engineering converges on a model for predictive processing. bioRxiv [Preprint].

doi: 10.1101/2020.06.26.174482

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., et

al. (2018). Brain-score: Which artificial neural network for object recognition is

most brain-like? bioRxiv [Preprint]. doi: 10.1101/407007

Schrimpf, M., Kubilius, J., Lee, M. J., Murty, N. A. R., Ajemian, R., and DiCarlo, J. J.

(2020b). Integrative benchmarking to advance neurally mechanistic models of

human intelligence. Neuron 108, 413–423. doi: 10.1016/j.neuron.2020.07.040

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks for

large-scale image recognition,” in 3rd International Conference on Learning

Representations, ICLR 2015, eds Y. Bengio and Y. LeCun (San Diego, CA), 1–14.

Storrs, K. R., Khaligh-Razavi, S.-M., and Kriegeskorte, N. (2020a). Noise ceiling

on the cross-validated performance of reweighted models of representational

dissimilarity: Addendum to Khaligh-Razavi & Kriegeskorte (2020a). bioRxiv

[Preprint]. doi: 10.1101/2020.03.23.003046

Storrs, K. R., Kietzmann, T. C., Walther, A., Mehrer, J., and Kriegeskorte, N.

(2020b). Diverse deep neural networks all predict human it well, after training

and fitting. bioRxiv [Preprint]. doi: 10.1101/2020.05.07.082743

Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M.

B., et al. (2016). Convolutional neural networks for medical image analysis:

full training or fine tuning? IEEE Trans. Med. Imaging 35, 1299–1312.

doi: 10.1109/TMI.2016.2535302

Van Lissa, C. J., Brandmaier, A. M., Brinkman, L., Lamprecht, A.-L., Peikert, A.,

Struiksma, M., et al. (2020). WORCS: a workflow for open reproducible code in

science. Data Sci. 4, 29–49. doi: 10.3233/DS-210031

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.

(2017). “Attention is all you need,” inAnnual Conference on Neural Information

Processing Systems 2017, eds I. Guyon, U. von Luxburg, S. Bengio, H. M.

Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett (Long Beach, CA),

5998–6008.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F.,

et al. (2019). “Superglue: a stickier benchmark for general-purpose language

understanding systems,” in Annual Conference on Neural Information

Processing Systems 2019, NeurIPS 2019, eds H. M. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett (Vancouver, BC),

3261–3275.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2018).

“GLUE: a multi-task benchmark and analysis platform for natural language

understanding,” in Proceedings of the Workshop: Analyzing and Interpreting

Neural Networks for NLP, eds T. Linzen, G. Chrupala, and A. Alishahi (Brussels:

Association for Computational Linguistics), 353–355.

Xu, S., Zhang, Y., Zhen, Z., and Liu, J. (2021). The face module emerged in a deep

convolutional neural network selectively deprived of face experience. Front.

Comput. Neurosci. 15:626259. doi: 10.3389/fncom.2021.626259

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and

DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural

responses in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624.

doi: 10.1073/pnas.1403112111

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Muttenthaler and Hebart. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 September 2021 | Volume 15 | Article 679838

https://doi.org/10.1101/408385
https://doi.org/10.1038/nature14539
https://doi.org/10.1073/pnas.2011417118
https://doi.org/10.3390/vision3010008
https://doi.org/10.3389/fpsyg.2013.00128.eCollection2013
https://doi.org/10.1371/journal.pcbi.1003553
https://doi.org/10.1126/science.1213847
https://doi.org/10.1111/cogs.12670
https://doi.org/10.18653/v1/W18-2509
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1101/2020.06.26.174482
https://doi.org/10.1101/407007
https://doi.org/10.1016/j.neuron.2020.07.040
https://doi.org/10.1101/2020.03.23.003046
https://doi.org/10.1101/2020.05.07.082743
https://doi.org/10.1109/TMI.2016.2535302
https://doi.org/10.3233/DS-210031
https://doi.org/10.3389/fncom.2021.626259
https://doi.org/10.1073/pnas.1403112111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	THINGSvision: A Python Toolbox for Streamlining the Extraction of Activations From Deep Neural Networks
	1. Introduction
	1.1. Model Collection

	2. Method
	2.1. Variables
	2.1.1. Root
	2.1.2. Model Name
	2.1.3. Pretrained
	2.1.4. Batch Size
	2.1.5. Backend
	2.1.6. Device
	2.1.7. Module Name
	2.1.8. Output Directory
	2.1.9. File Format

	2.2. Model and Modules
	2.2.1. Loading Models
	2.2.2. Selecting Modules

	2.3. Dataset and Data Loader
	2.4. Features
	2.4.1. Extracting Features
	2.4.2. Saving Features

	2.5. Representational Similarity Analysis

	3. Results and Applications
	3.1. The Penultimate Layer
	3.1.1. Behavioral Correspondences
	3.1.1.1. Pretrained Weights
	3.1.1.2. Random Weights

	3.1.2. Brain Correspondences
	3.1.2.1. Pretrained Weights
	3.1.2.2. Random Weights

	3.1.3. Model Comparison

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

