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The acquisition of high quality maps of gene expression in the rodent brain is of

fundamental importance to the neuroscience community. The generation of such

datasets relies on registering individual gene expression images to a reference volume, a

task encumbered by the diversity of staining techniques employed, and by deformations

and artifacts in the soft tissue. Recently, deep learning models have garnered particular

interest as a viable alternative to traditional intensity-based algorithms for image

registration. In this work, we propose a supervised learning model for general multimodal

2D registration tasks, trained with a perceptual similarity loss on a dataset labeled by

a human expert and augmented by synthetic local deformations. We demonstrate the

results of our approach on the Allen Mouse Brain Atlas (AMBA), comprising whole brain

Nissl and gene expression stains. We show that our framework and design of the loss

function result in accurate and smooth predictions. Our model is able to generalize to

unseen gene expressions and coronal sections, outperforming traditional intensity-based

approaches in aligning complex brain structures.

Keywords: multimodal image registration, perceptual similarity, gene expression brain atlas, Allen mouse brain

atlas, non-rigid, machine learning, deep learning

1. INTRODUCTION

Mouse brain atlases are an essential tool used by neuroscientists to investigate relationships between
structural and functional properties of different brain regions. The Allen Institute for Brain Science
has produced a reference whole brain atlas, associated Nissl stains, and about 20,000 different gene
expression atlases obtained using high-throughput in situ hybridization (ISH) techniques (Lein
et al., 2007; Dong, 2008).

In order to utilize the information provided by the different markers, gene expressions must be
aligned to the reference Nissl atlas, so that all the data can be put into a common coordinate system.
To this end, the Allen Mouse Brain Atlas (AMBA) includes an alignment module, but this module
is limited to non-deformable transformations (Sunkin et al., 2012). For this reason, previous works
(Erö et al., 2018) have had to resort to a manual landmark-based non-rigid approach to correct
inaccuracies. However, this solution is not scalable to the whole genomic database.

We can describe our problem in terms of image registration, whereby the goal is to identify a
transformation that maps a moving image to a target reference image. Our task is made particularly
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challenging by the multimodality of gene expressions with
respect to reference Nissl stains and by several artifacts like air
bubbles and tears in the brain tissue samples.

In this work, we propose a supervised deep learning
framework that efficiently leverages labels provided by a trained
expert to accurately register multimodal 2D coronal section
images showing gene expression stains. Our approach offers
novel contributions in the following aspects:

1. Our model achieves high accuracy and generalizes to new
gene expressions and coronal sections. It therefore constitutes
a valuable tool for the integration of gene expression
brain atlases.

2. By training with a perceptual similarity loss, our model
learns to produce smooth deformations without the need any
parametric constraint or post-processing stage.

1.1. Related Work
There has been some research on registration of Allen Brain
datasets. Notably, Xiong et al. (2018) proposed a similarity metric
addressing such artifacts and used it to register slices to the
reference Nissl volume. Andonian et al. (2019) utilized groupwise
registration to create multiple templates that are in turn used for
pairwise registration of slices.

Among traditional image registration methods, intensity-
based schemes (Klein et al., 2009) such as Symmetric
Normalization (SyN) (Avants et al., 2008) represent the
most popular approach. They do not require ground truth and
rely on maximizing a similarity metric between the reference
and registered moving image. These methods usually provide
accurate and diffeomorphic predictions. However, they are
limited by runtime overhead due to their intrinsically iterative
nature, and also require a careful choice of hyperparameters. In
particular, in the case of multimodal images like ours, tuning
the pre-processing stages and the choice of the similarity metric
required several time consuming trial-and-error iterations. In
contrast, the model we propose can be easily deployed and used
as-is, without the need for any tuning.

To address the limitations of traditional intensity-based
approaches like SyN, several deep learning solutions have
been proposed. Many approaches, such as VoxelMorph (Dalca
et al., 2018; Balakrishnan et al., 2019), focused on unsupervised
registration of magnetic resonance volumes following a similar
approach to intensity-based models. Even though these methods
reduced the runtime of the registration process, they cannot yield
an improvement in accuracy over intensity-based methods, since
they seek to optimize the same loss function (Lee et al., 2019).
Furthermore, VoxelMorphmaximizes cross-correlation, which is
effective on unimodal data like magnetic resonance volumes, but
fails on our multimodal images.

Among supervised approaches, RegNet (Sokooti et al., 2017)
minimized mean absolute error with respect to a ground truth
displacement field without adding any penalty guaranteeing
smooth transformations. Moreover, this approach relied on
synthetic training data and is therefore necessarily limited to
unimodal problems and is therefore not applicable to our data.

Another popular supervised model is SVF-Net (Rohé et al.,
2017), which has the advantage of training the model on
ground truth transformations derived from region segmentation.
The framework is based on training a network to align the
boundaries of a pre-defined region of interest, which is not
suitable for our use case since the visible brain regions vary across
coronal sections.

Finally, while our proposed model learns to predict smooth
deformations solely through the usage perceptual loss, previous
methods relied either on: (i) parametric approaches like B-
splines (de Vos et al., 2017), which restrict the space of
possible deformations; (ii) introducing an explicit penalty term
in the loss function (Balakrishnan et al., 2019), which further
increases the number of hyperparameters; or (iii) integrating
a predicted velocity field (Dalca et al., 2018), which requires
post-processing steps.

The idea of training a model for image regression with
a perceptual loss that uses the features extracted by a pre-
trained network was first introduced in Johnson et al. (2016).
In that work, the authors tested the approach on style transfer
and super-resolution problems and showed that training with
this loss produced models that better predict complex features
such as texture and sharpness. The intuition behind this work
was confirmed by Zhang et al. (2018), which proved that, on
a variety of image datasets, the perceptual loss outperforms
classical metrics in terms of correlation with human judgement.
Perceptual loss has since then been successfully applied to
various image generation tasks. To name a few, Huang et al.
(2018) improved their results on higher resolutions when
working on image-to-image translation, while Li et al. (2020)
obtained artifact reduction and structure preservation on image
denoising tasks.

Compared to these previous works using perceptual similarity,
our approach also relies on the perceptual loss in order to
learn to predict outputs that preserve complex visual features of
the ground-truth, namely the smoothness of the displacements.
However, our approach introduces elements of novelty in that we
compute perceptual loss on the components of the displacement
vector field rather than on images, and moreover we apply this
approach to a new task such as multimodal image registration.

2. MATERIALS AND METHODS

Given a reference image Iref and a moving image Imov, image
registration is defined as the problem of finding a transformation
φ such that the registered image Ireg = Imov ◦ φ is as similar
as possible to the reference Iref. In the following, we assume that
our input consists of a pair of multimodal images Iref, Imov ∈

R
H×W×C (H=height, W=width, C=number of channels), and

that the output wewant to predict is a transformation represented
by an array φ ∈ R

H×W×2 such that for every pixel (x, y) in Iref,
φ(x, y) ∈ R

2 defines the corresponding position of that pixel
in Imov. Equivalently, one can predict the per-pixel displacement
u ∈ R

H×W×2 such that u(x, y) = φ(x, y)− (x, y).
The method we propose is based on supervised learning, so

we assume that we have access to training samples (Iref, Imov,φ)
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where the ground truth label φ is provided by a human expert.
These labeled samples are used to train a neural network model
as described in the remainder of this section.

All the relevant code can be found at https://github.com/
BlueBrain/atlas_alignment.

2.1. Network Architecture
Registration methods can be classified based on the family of
transformations considered for the predicted deformation φ̂. Our
model predicts pixel-wise displacements û, so that it is non-
parametric and allows for elastic transformations. This represents
a considerable advantage in terms of expressive power in contrast
to parametric models, such as affine or thin plate spline methods.

Specifically, the architecture of the neural network we propose
is shown in Figure 1. Our model consists of two modules,
predicting an affine (global) transformation φ̂global and an elastic
(local) deformation φ̂local, respectively. Our final prediction is the
composition of the two transformations φ̂ = φ̂global ◦ φ̂local.

Unlike many related works on medical image registration
(Sokooti et al., 2017; Yang et al., 2017; Balakrishnan et al.,
2018; Dalca et al., 2018), we do not assume that our inputs are
pre-centered and rescaled. Consequently, we employ a global
alignment module to simplify the registration of the local one.

The architecture of the global and local modules are inspired
by the Spatial Transformer Network (Jaderberg et al., 2015) and
VoxelMorph (Balakrishnan et al., 2018), respectively.

2.2. Loss Function
In the case of multimodal registration, measuring image
similarity between reference Iref and predicted registration
Îreg = Imov ◦ φ̂ without pre-processing may provide misleading
information due to the different appearance of these images.
Thanks to our supervised learning framework, we can instead
directly compare predictions û and Îreg with ground truths u and
Ireg, respectively.

We train our model using a loss function composed of three
terms

Ltot = LIE + LEPE + LLPIPS. (1)

The loss term LIE is an image error between the predicted
registered image Îreg = Imov ◦ φ and the ground truth Ireg.
As the two images have the same modality, pre-processing is
unnecessary, and we can simply take

LIE = ‖Ireg − Îreg‖
2
2. (2)

The second term LEPE is the squared average endpoint error,
which is commonly used as a metric for optical flow estimation
(Zhu et al., 2017). We define this loss as

LEPE =




H∑

x=1

W∑

y=1

‖u(x, y)− û(x, y)‖2

HWT




2

, (3)

where T is a normalizing constant representing the
average displacement size computed from training data
(in our case, T ≈ 20).

Note that LEPE is a pixel-wise loss which does not take into
account information from neighboring pixels. As a consequence,
our model often predicted non-smooth fields φ̂ with a significant
number of corrupted pixels, i.e., (x, y) where the Jacobian
J
φ̂
(x, y) ∈ R

2×2 has a non-positive determinant. In order to

teach the model to predict transformations with smooth texture
as the ground truth, we introduce in our total loss Ltot the
loss term LLPIPS defined as the Learned Perceptual Image Patch
Similarity Loss version 0.1 with VGG-lin configuration (see
Zhang et al., 2018 for details), which allows us to generate
deformations that are perceptually similar to ground truth labels,
including smoothness properties. To this end, we view the x and
y components of u as two images.

Unlike other traditional metrics, LLPIPS not only compares
pixel-wise differences but also extracts and compares feature
maps using a pre-trained VGG (Simonyan and Zisserman, 2014)
network and then computes differences between these deep
features. As explained in section 1.1, perceptual similarity is
known to be effective in a variety of tasks where complex image
features such as texture or sharpness have to be preserved in
the predictions. In our case, the two images we compare are
the ground truth and the predicted transformation, and the
qualitative feature traits we try to preserve by relying on LLPIPS
consist in the smoothness of the ground truth displacements.
Our results, presented and discussed in section 3.2, confirm the
validity of this idea.

Finally, inspired by Zhao et al. (2019), we train our model
to predict not only how to register Imov to Iref, but also Iref
to Imov. We therefore effectively use L′EPE = LEPE(u, û) +

LEPE(u
−1, û−1) and L′LPIPS = LLPIPS(u, û) + LLPIPS(u

−1, û−1).
Given the ground truth u, we compute u−1 numerically using
scattered data interpolation (SDI) (Crum et al., 2007).

To minimize the loss function Ltot we apply the RMSProp
(Root Mean Square Propagation) optimizer (Tieleman and
Hinton, 2012) which has a learning rate η = 10−3 and a
forgetting factor γ = 0.9. Additionally, the batch size is set to
4 due to GPU memory limitations.

2.3. Data Augmentation
To improve the generalization performance of our model, we
generate synthetic samples of the form (Iref, I

′
mov,φ

′) from each
training sample (Iref, Imov,φ).

A first class of augmentations generates I′mov from Imov by
applying random blurring, brightness perturbation, and other
image processing techniques. These augmentations help improve
the accuracy of predictions on images having different perceptual
appearance, and generalize to gene expressions not present in the
training set. Note that for these augmentations φ′ = φ.

Another class of augmentations consists of geometric
transformations, affecting both Imov and φ. These are particularly
relevant for our application, since our focus is on predicting
elastic deformations. First, control points are sampled on the
edges of a brain section, and random displacements are generated
for each of these points. Interpolating these displacement vectors
with radial basis functions yields a smooth transformation ψ
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FIGURE 1 | Architecture of the proposed model to register gene expressions Imov to Nissl stains Iref. Blue boxes represent trainable layers. Under all 3× 3

convolutional layers (3D boxes) and fully connected layers (2D boxes) we display the number of channels and dense units, respectively. Blue circles denote where

predicted transformations φ̂ are applied.

defined over the whole Imov. We obtain a synthetic sample by
considering I′mov = Imov ◦ ψ and φ′ = φ ◦ ψ−1.

2.4. Dataset and Evaluation Metrics
The reference Nissl stain volume of the AMBA comprises 528
coronal sections. Typically 8 markers per specimen were assayed,
yielding approximately 60 coronal sections per gene expression.
Our goal is to register the moving gene expression Imov to the
reference Nissl slice Iref.

In order to train and evaluate our model, we selected 277
section pairs from the Nissl atlas and 7 different gene atlases for
calbindin (CALB1), calretinin (CALB2), cholecystokinin (CCK),
neuropeptide Y (NPY), parvalbumin (PVALB), somatostatin
(SST), and vasointestinal peptide (VIP). Even though all the gene
expressions were pre-aligned using the affine registration module
provided by the Allen Brain API, significant misalignments were
still present. The original sections have various resolutions, so we
had to rescale the images in order to be able to run our model,
which assumes all moving and reference inputs to have the
same shape. We therefore downscaled all slices to a fixed 320 ×
456 pixels resolution, which corresponds to a 25 µm sampling
distance that is the same value of the slices thickness in the Nissl
atlas, in order to have a uniform resolution across the three axes.
Finally, all images were converted to grayscale.

We collected ground truth labels from a human expert
provided with a manual landmark-based non-rigid registration
tool that we designed to export the deformation field and
registered image. This annotation tool is named label-tool
and is part of our open-source Python package. On average

TABLE 1 | Average number of keypoint pairs used by the annotation expert (per

gene and coronal section group).

Gene 1–176 177–352 353–528

CALB1 19.1 36.3 40.8

CALB2 18.7 36.9 39.4

CCK 18.6 30.4 35.1

NPY 19.4 27.4 27.0

PVALB 17.9 24.4 37.3

SST 17.7 29.6 26.0

VIP 19.6 31.2 33.4

the expert used 27.7 keypoint pairs (with a standard deviation
of 10.7) to register a sample. However, the number required
keypoints significantly depends on the gene expression and on
the coronal section location, as shown in Table 1. This provides
a further argument in favor of our supervised learning approach,
which exports the whole deformation field provided by a human
expert and does not constrain the annotator to a fixed number
of control points, unlike the case of parameteric models such
as de Vos et al. (2017).

To measure the performance of our model, we considered
the hierarchical segmentation maps provided by the AMBA to
compute the average Dice score (Dice, 1945) (using weights
proportional to the number of pixels of each segmentation class)
at different levels, as shown in Figure 2. We performed this
comparison in the moving space by warping the ground truth
segmentation by φ−1 and φ̂−1 (both computed numerically).
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FIGURE 2 | Hierarchical segmentation of a Nissl stain (coronal section 250) used to compute Dice score to evaluate our model. Level 0 only distinguishes background

from foreground, while deeper levels define an increasing number of brain subregions.

TABLE 2 | Summary of results on an 80:20 train-test stratified data split (mean and standard deviation in percentage).

Model Dice-0 Dice-2 Dice-4 Dice-6 Dice-8 |J
φ̂
| ≤ 0

Ours 94.2 ± 4.0 84.4 ± 6.9 80.6 ± 7.9 68.0 ± 13.3 55.2 ± 11.9 0.11 ± 0.17

SyN 94.1 ± 4.2 83.9 ± 7.6 79.8 ± 8.8 66.1 ± 13.9 52.3 ± 12.5 0.01 ± 0.02

Affine 91.4 ± 5.9 79.9 ± 10.0 75.5 ± 11.0 61.2 ± 17.7 46.8 ± 15.8 0.00 ± 0.00

Bold values indicate the highest (= best) Dice score in the various experiments.

As a benchmark, we used an affine model and SyN as
implemented in the Advanced Normalization Tools (ANTs)
software package (Avants et al., 2011). We opted for mutual
information as a similarity metric to handle multimodality.

3. RESULTS

3.1. Quantitative Analysis
We evaluated the performance of our model on two different
experiments. In the first experiment, we applied an 80:20 train-
test split using a stratified partitioning scheme based on the
different genes and on the section locations on the anterior-
posterior axis.

As indicated inTable 2, ourmodel outperforms both the affine
model and SyNwith respect toDice score. The improvement over
SyN is marginal for level 0, which corresponds to a background-
foreground segmentation as shown in Figure 2. However, our
model’s relative advantage increases as we consider more regions.
Indeed, aligning complex brain structures in multimodal images
is a harder task for intensity-based models. Table 2 shows
that our model tends to predict smooth transformations with
only 0.11% of corrupted pixels, mostly occurring at image
borders. This is particularly noteworthy since the smoothness
emerges naturally from training with the loss function defined
in section 2.2.

In the second experiment, we studied how our model
generalizes to new genes by training on slices of 6 genes and
evaluating performances on the remaining holdout gene. Results
in terms of Dice-8 score, where difference between models is
more visible, are reported in Table 3. Even in this more difficult
scenario, where slices of the holdout gene are never shown to the
model during the training phase, our network achieves higher
scores than SyN on all but one gene. The overall results of this
second experiment confirm that our model generalizes to new
genes and is therefore suitable for registering and leveraging
multimodal gene atlases.

Finally, running on an Intel Core i7-4770 CPU, registering a
sample takes either ∼ 3 s or ∼ 0.2 s using SyN or our model,
respectively. On an NVIDIA Tesla V100 GPU, the runtime of
our model is further reduced to ∼ 0.009 s (the ANTs package
does not provide GPU implementations of SyN). These results
demonstrate that our approach is also competitive in terms
of runtime.

3.2. Qualitative Analysis
A qualitative analysis of the predictions of our model is
shown in Figure 3. Our global module provides a first affine
transformation that rescales and centers the moving image. The
need and the efficacy of this module are particularly visible in
the case of samples (Figures 3B,C), where the global module
significantly rescales and shifts the input gene expression. The
local module then applies an elastic deformation that accurately
aligns the gene expression to the reference Nissl stain.

We already mentioned in section 1 that our registration
task is made particularly challenging by the presence of tears
and air bubbles in the gene expression stains. In Figure 4, we
demonstrate the stability of our approach by showing examples of
gene expression slices including these kinds of artifacts together
with the ground truth and predicted registrations.

As explained previously in section 2.2, the smoothness of
the predicted deformation field φ̂ can be entirely ascribed to
our choice of loss function. Figure 5 illustrates how results
vary depending on whether or not Ltot includes the perceptual
similarity term LLPIPS. Notice that, without this term, the model
produces a significant number of corrupted pixels.

Further insight with respect to these results is provided in
Figure 6, where we can observe some of the feature maps used
to compute LLPIPS. As previously described, these deep features
are the internal activations of a pre-trained VGG network. The
similar, smooth appearance of the ground truth u and predicted
transformation û obtained by training with LLPIPS is well-
captured by these activations, which look significantly different
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TABLE 3 | Summary of results on a gene-holdout split (Dice-8, mean, and standard deviation in percentage).

Model CALB1 CALB2 CCK NPY PVALB SST VIP

Ours 48.8 ± 9.5 55.3 ± 12.3 54.5 ± 13.0 44.4 ± 12.5 56.0 ± 13.6 60.3 ± 12.4 58.4 ± 13.3

SyN 46.9 ± 10.9 54.6 ± 12.9 50.7 ± 14.3 41.7 ± 15.4 58.5 ± 10.6 57.0 ± 12.5 55.6 ± 11.5

Affine 40.5 ± 15.8 51.5 ± 14.3 46.7 ± 12.0 36.6 ± 15.5 53.0 ± 12.1 54.3 ± 13.4 52.5 ± 14.3

Bold values indicate the highest (= best) Dice score in the various experiments.

FIGURE 3 | Predicted registrations on slices from the 7 different gene expression atlases used in our experiments (see section 2.4 for details). (A) PVALB gene,

section 236; (B) CALB1 gene, section 100; (C) NPY gene, section 52; (D) SST gene, section 328; (E) CALB2 gene, section 451; (F) VIP gene, section 129; (G) CCK

gene, section 190.

for the non-smooth predicted transformation û we obtained
when training without the LLPIPS term. These observations
help justify the importance of using the perceptual loss in our
framework to produce smooth results.

Interestingly, if we evaluate the predicted transformations
shown in Figure 6 using LEPE, the prediction obtained by training

with the perceptual loss (LEPE = 6.83) seems to be worse than the
one obtained without it (LEPE = 6.03). This strongly contrasts
with the fact that this latter looks smooth and qualitatively
similar to the ground truth, while the other prediction clearly
includes a large number of artifacts. However, if we evaluate
the same transformations using LLPIPS we reach the opposite
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FIGURE 4 | Gene expressions containing artifacts, and corresponding predicted registrations. (A) PVALB gene, section 160; (B) VIP gene, section 316.

FIGURE 5 | Influence of the loss function on the smoothness of the predicted deformation, for SST gene, section 352. If we use a loss without perceptual similarity,

∼ 3% of pixels are corrupted. By introducing the LLPIPS term, this is reduced to ∼ 0.1%.

FIGURE 6 | Activations of the pre-trained network used to compute LLPIPS on the y component of the transformation u for the coronal section 352 of SST gene (same

as in Figure 5). The deep features of the non-smooth predicted û obtained by training without LLPIPS significantly differ from those of smooth transformations

corresponding to the ground truth u and predicted û obtained by training with LLPIPS.

conclusions, as the prediction obtained by training with the
perceptual loss (LLPIPS = 0.30) appears to be better than the
one obtained without it (LLPIPS = 0.53). These results are

consistent with Zhang et al. (2018), where perceptual similarity is
shown to strongly correlate with human perception, unlike other
traditional metrics.
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4. DISCUSSION

In this paper, we presented a supervised deep learningmodel with
perceptual similarity for the 2D registration of gene expressions
to Nissl stains of the Allen Mouse Brain Atlas. The main novelty
of our method lies in its unique non-parametric approach which
allows the prediction of smooth deformations by exclusively
relying on a perceptual loss function. In contrast to this, previous
works had to resort to using parametric methods, extra penalty
terms with hyperparameters requiring careful tuning, or post-
processing steps.

By testing on two different experiments, we showed that
the proposed approach produces accurate predictions that
generalize well to unseen gene expressions and coronal sections.
This is particularly significant given the high variability of
shape and appearance across stains and sections, as shown in
Figure 3. We benchmarked our results against the state-of-the-
art method SyN, and our results showed that our model is
significantly faster and it also achieves higher accuracy in almost
all cases.

Our qualitative analysis shows that our model is able
to predict deformation fields that are very close to the
ground truth annotations provided by a human expert,
even in case of slices affected by artifacts such as air
bubbles and tears. Indeed, during the training phase,
our model is presented with samples including various
kinds of anomalies, and therefore learns how to predict
a deformation field in a correct way, as opposed to
intensity-based approaches.

Our framework has therefore proven capable of enabling the
neuroscience community to leverage large-scale complex brain-
derived datasets, with a significant scientific impact in terms of
acceleration and accuracy improvement.

We identify three drawbacks of the presented approach.
Firstly, it assumes that we have access to expert labels. Manual
registration with any annotation tool is a difficult task and the

resulting ground truth deformation might vary from one expert
to another. The second shortcoming is that a generalization of
our approach to 3D registration is not straightforward. This
is due to the fact that perceptual loss is computed on images
rather than volumes. Lastly, the training of our neural network
represents the most time consuming stage of the pipeline. This is
a common problem of many deep learning models and it should
not be completely overshadowed by fast inference.

The future research direction is to apply our approach to new
datasets. One specific example is to investigate sagittal sections.
In general, themost promising applications are in the registration
of multimodal datasets where using traditional approaches might
lead to inaccurate results.
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