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Independent Component Analysis (ICA) is a conventional approach to exclude non-
brain signals such as eye movements and muscle artifacts from electroencephalography
(EEG). A rejection of independent components (ICs) is usually performed in
semiautomatic mode and requires experts’ involvement. As also revealed by our study,
experts’ opinions about the nature of a component often disagree, highlighting the
need to develop a robust and sustainable automatic system for EEG ICs classification.
The current article presents a toolbox and crowdsourcing platform for Automatic
Labeling of Independent Components in Electroencephalography (ALICE) available via
link http://alice.adase.org/. The ALICE toolbox aims to build a sustainable algorithm
to remove artifacts and find specific patterns in EEG signals using ICA decomposition
based on accumulated experts’ knowledge. The difference from previous toolboxes is
that the ALICE project will accumulate different benchmarks based on crowdsourced
visual labeling of ICs collected from publicly available and in-house EEG recordings.
The choice of labeling is based on the estimation of IC time-series, IC amplitude
topography, and spectral power distribution. The platform allows supervised machine
learning (ML) model training and re-training on available data subsamples for better
performance in specific tasks (i.e., movement artifact detection in healthy or autistic
children). Also, current research implements the novel strategy for consentient labeling
of ICs by several experts. The provided baseline model could detect noisy IC and
components related to the functional brain oscillations such as alpha and mu rhythm.
The ALICE project implies the creation and constant replenishment of the IC database,
which will improve ML algorithms for automatic labeling and extraction of non-brain
signals from EEG. The toolbox and current dataset are open-source and freely available
to the researcher community.

Keywords: EEG, automatic preprocessing, ICA, children, automatic artifact detection, machine learning
algorithms
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INTRODUCTION

Electroencephalography (EEG) signal reflects the bioelectrical
activity of brain neuronal networks. For more than a century,
human neuroscience and clinical research applied scalp
EEG recording to study and assess a broad scope of sensory
and cognitive functions. One of the crucial steps of EEG
preprocessing is “purifying” the brain signal by extraction of the
electrical activity of non-neuronal origins such as eye movements
and muscle artifacts. For recent decades, Independent
Component Analysis (ICA) offered a solution to this problem
based on the isolation of statistically independent sources called
independent components (ICs) as linear combinations of signals
from electrodes (Makeig et al., 1996; Delorme and Makeig, 2004).
A source of each IC can be projected onto the electrode cap
and estimated via timecourse and spectral power. For example,
ICA allows identifying components related to eye-movement
and muscle artifacts based on their bioelectrical signals’ specific
characteristics, e.g., frequency and spatial distribution (Chaumon
et al., 2015; Frølich et al., 2015). However, due to other frequent
contaminations of EEG, a rejection of non-brain ICs is usually
performed in the semiautomatic mode under the visual
inspection of researchers. Herewith, labelings of ICs by different
experts can substantially disagree, which might considerably
affect the further analysis and reproducibility of EEG results
(Robbins et al., 2020). Artifact rejection by ICA in children
and patient EEG is especially challenging even for experts.
The dependence of EEG analysis from subjective opinions of
experts may explain that EEG data have been rarely included
in large-scale studies or meta-analyses. For this reason, the
automatic algorithms for EEG processing are the main objectives
of many research groups (Nolan et al., 2010; Mognon et al., 2011;
Winkler et al., 2011; da Cruz et al., 2018; Tamburro et al., 2018;
Pedroni et al., 2019).

To create a robust and sustainable automatic system for EEG
ICs classification, one needs to extract the most informative
features from ICs and have an appropriate machine learning
(ML) model inside the system. The accurate labeling of ICs is the
crucial step in training and validating this model. The training of
ML algorithms to automatically identify artifactual ICs will allow
to set up a more objective methodology for EEG preprocessing.

Currently, a limited number of projects aims to create an
automatic cleaning system of the EEG signal. For example,
Automatic EEG artifact Detection based on the Joint Use of
Spatial and Temporal features (ADJUST) (Mognon et al., 2011)
and Fully Automated Statistical Thresholding for EEG artifact
Rejection (FASTER) (Nolan et al., 2010) use empirical threshold-
based algorithms. Machine learning approach was introduced
in Multiple Artifact Rejection Algorithm (MARA) (Winkler
et al., 2011), algorithms from the studies of Frølich et al.
(2015) and Tamburro et al. (2018). SASICA software (Chaumon
et al., 2015) is an EEGLAB Matlab plug-in (Chaumon et al.,
2015), includes ADJUST, MARA, FASTER, and some other
methods. The more novel study describes Adjusted-ADJUST
approach (Leach et al., 2020) that is known as an advanced
version for the previously described ADJUST software. It is
aiming to produce automatic labeling for the pediatric ICA

that differs from the ICA of adults because of infant EEG
features. The suggested approach shows the higher quality even
for adult data. All these studies used their private datasets for
training and validation purposes. Those datasets were relatively
small, consisting of several hundred ICs. In most cases, each
IC was annotated by only one expert, which complicates the
estimation of algorithm actual performance and comparison with
other algorithms. Moreover, the lack of a large dataset with
verified annotation limits the potential performance of machine
learning models.

Pion-Tonachini et al. (2019) addressed this problem by
proposing ICLabel Toolbox, which includes the annotation tool
with crowdsourcing mechanics, datasets, and several machine
learning algorithms. The annotation tool provides an interface
to label a particular IC from the database by visualizing different
components’ characteristics. In this toolbox, the ML algorithms
are based on artificial neural networks and claimed to be the
fastest and most accurate than other studies.

While the ICLabel project is an excellent resource for
automatic artifact rejection in EEG, it has several drawbacks.
The first one is potentially insufficient annotation quality as
a non-expert user can annotate ICs. It means that even if an
ML algorithm has high accuracy, the predicted classes may
be wrong as ICs have no order or intrinsic interpretations
and their classification by experts requires practice. Potential
technical issues that prevent the best performance from experts
are inability to see other ICs from the same EEG record, which
is helpful in ambiguous cases (e.g., horizontal eyes component
can consist of two ICs, so seeing them in parallel helps to infer
their nature) and limitation of component time-window plots to
only 3 s ranges. Clinical experts usually require at least 30 s to
properly detect various slow-wave components or alpha rhythm,
hardly detected in a short time interval. Another limitation of
ICLabel that the authors themselves pointed to is a limited variety
of EEG data (Pion-Tonachini et al., 2019), as their dataset does
not contain data from infants and most clinical groups.

The current study presents a toolbox and crowdsourcing
platform for Automatic Labeling of Independent Components in
Electroencephalography (ALICE), which is available via link http:
//alice.adase.org/. The ALICE toolbox aims to build a sustainable
algorithm to remove artifacts and find specific patterns in EEG
signals using ICA decomposition. The presented toolbox was also
designed to overcome the limitations of the previous approaches
mentioned above.

For developing a sustainable ML-based EEG component
classification, the proposed toolbox should have two components:
a high-quality labeled dataset of ICs and a proper ML pipeline to
train and validate models.

Thus, the first aim of the ALICE project was to create a high-
quality dataset with IC labels. In order to achieve this goal, we
performed the following steps:

• The definition of a rigorous set of possible IC classes
that would cover a wide variety of cases and be easily
understandable by experts.
• The annotation of IC reliability by combining opinions

from multiple experts.
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• Resolving the possible poor concordance between experts
by various merging strategies.
• Attracting researchers to share their datasets, including

unique EEG recordings from rare clinical groups.

The second aim of the ALICE project was to develop a robust
but flexible ML pipeline for automated IC classification. The
ML module includes implementing various features (both well-
established and original), multiple ML models, and the validation
pipeline. The ALICE project also invites the research community
to develop their models using our dataset, which is available via
link http://alice.adase.org/downloads.

The other ambitious goal for ALICE development is the
automatic identification of components related to the functional
brain oscillations, such as alpha and mu rhythm. Mu rhythm
overlaps with alpha rhythm in a frequency range of 8-13 Hz
but has a different oscillation shape and localization at scalp
electrodes. While alpha rhythm is recorded predominantly from
the occipital lobes with closed eyes and suppressed when eyes
open (Berger, 1931), mu rhythm emerges over the sensorimotor
cortex and is attenuated during movements. Importantly, mu
rhythm does not react to opening or closing the eyes (Kuhlman,
1978). Despite the described differences, the automatic separation
of mu from alpha waves in EEG is challenging and drawing
the attention of many methodological studies (Cuellar and del
Toro, 2017; Garakh et al., 2020). Still, the identification of mu
rhythm often requires visual inspection and expertise. The ALICE
toolbox aims to accumulate expert labeling of alpha and mu
rhythms to improve automatic identification of functional brain
oscillations by supervised ML.

MATERIALS AND METHODS

Automatic Labeling of Independent
Components in Electroencephalography
Toolbox High-Level Architecture
Automatic Labeling of Independent Components in
Electroencephalography contains two modules (Figure 1):

• Annotation module, which consists of a user interface (UI)
and ICs database. An HTTP API allows uploading
ICs data to the database. Web-based UI allows
experts to label uploaded data for future ML models
training and validation.
• ML module is based on a Python library, which trains ML

models based on expert annotations and uses pre-trained
ML models to apply to new IC data.

Annotation Module
By annotation, we mean a process of manual IC labeling by
experts based on various data visualization tools available at the
ALICE platform, such as IC topographic mapping, plots of time
series, and power spectrum. An expert may choose IC labels from
a predefined number of options.

We propose a set of IC component labels including major
artifact types with subtypes as well as brain signal subtypes:

• Eye artifacts – eye movement artifacts of any type.
• Horizontal eye movements – components that represent

activity during eye movements in horizontal directions.
• Vertical eye movements – components that represent

activity during eye movements in vertical directions.
• Line noise – line current noise evoked by surrounding

electrical devices.
• Channel noise – the noise associated with channels that can

be Or.
• Brain activity – brain activity of any type.
• Alpha activity – alpha rhythm with oscillation in the

frequency band of 8–13 Hz with predominance in the
occipital lobe channels.
• Mu activity – mu rhythm with oscillation in the frequency

band of 8–13 Hz with predominance or dipole localization
in the frontal-central-parietal area.
• Muscle activity – artifacts from a recording of muscle

activity on the head surface.
• Heartbeat artifacts – artifacts that represent

electrocardiographic activity.
• Other – components with explicit nature that label is not

listed in the labeling system, for example, breathing (experts
could comment on the label choice in the comments
section, the ALICE developers collect data from comments
and expand the list of labels in the subsequent versions
of the toolbox).
• Uncertain – components with unclear nature.

The web-based UI supports the annotation process (Figure 2).
An expert has the following data visualization options:

• Topomap of IC weights.
• Power spectrum density plot.
• Plot of all ICs time series for the current subject (the time-

series length is 30 s with the possibility of scrolling and
zooming selected time interval).
• Epoch image illustrates the color-coded amplitude

fluctuations of the IC in all available EEG epochs and
averaged ICs time series values.
• This plot is helpful for the annotation of epoched data.

After a particular expert has finished the labeling process, the
data of ICs with annotations can be packed into an archive by the
annotation module by an administrator. Then, annotated data
becomes available at the Downloads page of the ALICE toolbox
and could be used both by the experts and ALICE data scientists.

Machine Learning Pipeline
There could be many discrepancies between experts’ annotations
due to ambiguities in IC patterns, data quality, and differences
at the expert level. The annotation inconsistency means that we
need to create final IC labels in the dataset as a function of
the individual annotations. So, before conventional ML pipeline
steps, such as Feature calculation and ML model training and
selection, we need to include an additional step – Data label
aggregation. The whole data processing and ML pipeline are
presented in Figure 3, and each step is discussed in detail below.
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FIGURE 1 | ALICE toolbox high-level architecture and user roles. Annotation module UI serves for Data Owners to upload IC data to the database and for Experts to
provide annotation on existing or newly uploaded data. Data Scientists and Researchers work with ML module: the former train models based on selected samples
from the database, the latter take pretrained models to work with their own data (online or offline). Online version of the ALICE toolbox is available at
http://alice.adase.org/.

Data Labels Aggregation
This part aims to create a boolean variable between each
component and each IC class, reflecting whether a specific activity
is present or not in a particular component. The first step is
to create an annotation table (Figure 4A). The annotation is a
term denoting the labeling produced by an expert to a particular
component. Experts have their own unique opinion about the
component’s ICA class. Our goal is to develop an approach
to grouping expert annotations to form a common opinion
on each component.

A simple voting strategy seems to be a logically correct
option: if most experts choose that a component contains
a particular activity, for example, an eye artifact, then this
component is classified as an eye artifact. This approach
is the basis of Strategy 1, which we called “Majority vote,”
although it does not require that the majority (more than
50%) of the experts assign the component this particular
label. The threshold value can be changed. We provided an
example where it equals to 33% which means we expect
agreement over 33% of experts. In other words, by grouping
experts’ annotations, we form the average of the experts’
votes (Figure 4C). We will consider this average value as the
probability of assigning the component to a specific class. If
the probability is higher than the threshold, we assume that
the component encodes the given IC class; otherwise, it does
not (Figure 4D).

Nevertheless, if an expert assigned a component to several
classes, it means s/he recognizes several types of activity present
in the IC. This situation can lead to ambiguous results if
the expert acted with an approach where s/he labels mixed
components with all types of activity s/he believes are potentially
intermixed in a particular IC. If we were to use Majority vote for
such situations, it would lead to low quality of the target variable
as IC with only one label is a more genuine representation of this
class than the component that contains a mixture of artificial and
brain activity. An example of what this can affect is illustrated
in Figure 5. We see that the component, due to such markup, is
assigned to all classes simultaneously.

In order to overcome this situation, Strategy 2 was developed
and titled “Probabilistic vote.” Imagine that, when labeling
a component, an expert has one vote, which they equally
distributed among all the classes to which they attributed
this component. In other words, if a person marks a
component as eyes and as muscles, and as heart, then with
a probability of 0.33, they assign it to each of these classes
(Figure 4B). Further, these probabilities are again averaged
(Figure 4C). Then, a threshold is chosen, according to
which it is decided whether this weighted probability will be
transformed to 1 or 0 (Figure 4D). The threshold of 0.33
was chosen as the optimal threshold for the current data,
assuming that components that consist of three or fewer labels
still represent the simple pattern of interest for the model.
This approach is rather valuable for cases where the mixed
nature of components can affect the target variable; Figure 5
provides the example.

The threshold value is highly dependent on the level of
agreement between experts since a too tight threshold with a low
agreement will significantly reduce the number of objects. On the
other hand, a weak threshold with a high agreement will lead to
noisy, ambiguous components in the training set. We decided to
use an equal threshold of 0.33 for both strategies. The threshold
change for Majority vote will make sense with an increase in the
number of experts.

Agreement Between Experts
We also computed metrics of expert agreement to be able to
compare annotation quality of various classes as well as datasets.
For the case of two experts, we propose using Cohen’s kappa
(Cohen, 1960).

κ =
p0 − pe
1 − pe

Where p0 is the relative observed agreement (similar to
accuracy), pe is the hypothetical probability of agreement
by chance.

For the case of multiple experts, we propose using
Fleiss’ kappa (Fleiss and Cohen, 1973), which has a similar
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FIGURE 2 | Annotation module interface. Top row: IC topomap and spectrum as well as Epochs image, illustrating the color-coded amplitude fluctuations (arbitrary
units) of the IC in all available epochs (time relative to sound presentation on the x-axis, epochs on the y-axis). Image at the bottom shows averaged values of ICs
timeseries; bottom row: all IC for considered subject are plotted together.

formula with a different definition of p0 and pe, that
depend on weighted estimates. Basically, that shows the
level agreement between the multiple experts above the
value of agreement expected by chance for details refer to
Fleiss and Cohen (1973).

Based on the metrics from Pion-Tonachini et al. (2019),
we computed the inter-expert correlation between experts to

compare our level of agreement with the level of agreement in
ICLabel.

IEC =
1
N

N∑
n=1

Corr(v1,n, v2,n)

N, number of components marked by both experts; v1,n,
annotation vector made by the 1st expert corresponding to the
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FIGURE 3 | Data processing and machine learning pipeline in ALICE. Raw ICs data with annotations are passed to Data labels aggregation and Feature calculation
blocks to form a labeled dataset and extract informative features from ICs. Three ML models are trained with repeated train-test validation and different model quality
metrics are calculated. The best model is then selected and could be exported as a Python pickle-object.

FIGURE 4 | Data labeling strategies. There are several annotations for one component from various experts, but we strive to designate its belonging to a particular
class strategies of data belling aggregation, those are “Majority vote” and “Probabilistic vote.” (A) Is a table of annotations of a specific component. (B) Transform
into a matrix of probabilities that each component belongs to a particular class. (C) Group the experts’ opinions using the mean of the probabilities to obtain a
weighted probability. (D) Determine whether the weighted probability is higher than the threshold or not.
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FIGURE 5 | Discrepancies in experts’ opinions and difference in strategies handling. Experts may have different approaches in labeling samples with mixed nature of
activity. Expert 1 marked such components with all activity types that are present in the component. Expert 2 instead focused on the components that have a clear
pattern of a single IC class. Within a provided example we can see how the difference in their approaches lead to different annotations for the same IC component.
The application of “Majority vote” and “Probabilistic vote” strategies for the suggested example affect significantly the final label of the component. With the first one
the component corresponds to many IC classes, while in the second case the component is assigned only as a Brain activity.

nth component; v2,n, annotation vector made by the 2nd expert
corresponding to the nth component.

All computational details about data label aggregation are
available via link https://github.com/ledovsky/alice-eeg-ml that
we share with interested researchers who might achieve higher
performance rates on our dataset using their settings for
strategies and thresholds.

Features Calculation
To reduce data dimensionality while preserving the most
characteristic information for each IC class, we calculate specific
temporal and spatial features of each signal. Most features
are well established and based on previous research. Still, we
introduced some modifications to existing ones and treated them
as new features.

Among the established features are:

• Kurtosis of the component time series (Nolan et al., 2010;
Mognon et al., 2011; Winkler et al., 2011; Tamburro et al.,
2018). By definition, kurtosis is the fourth standardized
moment of the time series. In epoched data, we calculate
an average of the feature computed for each epoch

separately. It helps to distinguish ICs that correspond to
eyes and brain activity.
• Maximum Epoch Variance (Mognon et al., 2011; Tamburro

et al., 2018) is used to detect eye movements. The value of
this feature is a ratio between the maximum of the signal
variance over epochs and the mean signal variance. As
proposed in Mognon et al. (2011), we excluded one percent
of the largest variance values to improve its robustness
when calculating this feature.
• Spatial Average Difference (SAD), Spatial Variance

Difference (SVD), and Spatial Eye Difference (SED). Spatial
features proposed in Mognon et al. (2011) depend on IC
weights of eyes-related electrodes. SAD is calculated as the
difference between channel weight averages over frontal
and posterior regions. SVD is the difference between
weight variances in these regions. These are used to
distinguish vertical eye movements. SED is the difference
between the absolute values of weight averages in the
left eye and right areas. This feature detects horizontal
eye movements.
• Myogenic identification feature (MIF) (Tamburro et al.,

2018) is used to detect muscle activity and is calculated as
the relative strength of the signal in the 20–100 Hz band.
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• Correlations with manually selected signal patterns
(Tamburro et al., 2018). We use these to detect eye blinks
and eye movements.

The ALICE toolbox also offers a possibility of mu and alpha
rhythms annotation and classification. Thus, some features must
be specific to these components’ spatial and temporal properties.

Alpha rhythm is known to be localized in occipital and
parietal areas with increased power in 8–12 Hz for adults.
Close to the alpha band frequency, mu rhythm is generated
in central and frontal areas. We used those electrodes that
maximally emphasize the contrast between mu and alpha
localization by the topography-related features. Thus, the original
features include:

• Mu topography (MT): A feature which is sensitive to
topomaps of mu rhythm ICs, where Mu is the following set
of electrodes in 10–20: “Fp1,” “Fpz,” “Fp2,” “F3,” “Fz,” “F4,”
“Fc3,” “Fcz,” “Fc4,” “C3,” “Cz,” “C4.”

MT =
∑
e∈Mu

|we| −
∑
e/∈Mu

|we|

• Alpha topography (AT): A feature which is sensitive to
topomaps of alpha rhythm ICs where A is the following set
of electrodes in 10–20: “C3,” “Cz,” “C4,” “Cp3,” “Cpz,” “Cp4,”
“P3,” “Pz,” “P4,” “O1,” “Oz,” “O2.”

AT =
∑
e∈A

|we| −
∑
e/∈A

|we|

• Average magnitude in alpha band (AMALB): The ratio
between average amplitude in the alpha band (6–12 Hz)
and average amplitude in other frequencies (0–6 Hz; 13–
125 Hz) is sensitive to alpha ICs. The alpha range was
expended to 6 Hz because alpha band tends to be in the
lower frequency range for children (Marshall et al., 2002;
Lyakso et al., 2020).

AMALB =

∑
f∈[6, 12] x(f )∑
f /∈[6, 12] x(f )

Source code used to compute the features can be found via link
https://github.com/ledovsky/alice-eeg-ml.

Machine Learning Models Training and Selection
The current version of ALICE Toolbox provides three different
machine learning models: logistic regression (LR), linear
support vector machine (SVM), and gradient boosting (XGB).
These models are built on different principles and are
relatively simple compared to neural networks and deep
neural networks. Keeping in mind a relatively small initial
dataset, we considered the three models mentioned above as
an optimal initial model choice. All of them are optionally
available for new training and testing procedures in ALICE.
In particular, we used the LR implementation from scikit-
learn package (Pedregosa et al., 2011) with default parameters
(including regularization parameter C = 1.0, L2 penalty
and liblinear solver). Linear SVM is taken from scikit-
learn package (Pedregosa et al., 2011) with default parameters
(including regularization parameter C = 1.0). Finally, we used the

XGB model implementation from XGBoost package (Chen and
Guestrin, 2016) with default patameters of 30 estimators with a
maximal depth of 4.

In the ALICE, we implement the repeated train-test split
cross-validation technique. We trained the model on 70% of
samples and validated on the rest 30% with repeated train-test
cross-validation and did not optimize any hyperparameters on
cross-validation. We performed this procedure 50 times using
different random train-test splits, estimating three main metrics
of classification accuracy: Area Under the Receiver Operating
Characteristic Curve (ROC-AUC), Area Under the Precision-
Recall Curve (PR-AUC) and F1-score using the implementation
of scikit-learn package (Pedregosa et al., 2011). ROC-AUC and
PR-AUC were used as overall metrics of model performance for
different thresholds and considered the main ones. F1 was used as
a performance metric of optimal model splits and was considered
as an additional metric.

Thorough code used for computations is open access
https://github.com/ledovsky/alice-eeg-ml/blob/main/Basic%
20Pipeline.ipynb. Thus, any person can go through our pipeline
and make his/her changes to achieve higher results and easily
compare them with our original performance rates. The Basic
Pipeline explains how the models may be applied to any dataset.

Initial Dataset
The ALICE project aims to involve the neurophysiological
community in labeling existing publicly available and new IC
datasets to improve ML models’ quality. However, the Baseline
model trained on the dataset provided by IHNA&NPh RAS is
already available to users.

Electroencephalography data were recorded using the
NeuroTravel amplifier (EB Neuro, Italy) with sampling rate
500 Hz, and with 31-scalp electrodes arranged according to
the international 10–10 system and included the following
electrodes: “Fp1,” “Fpz,” “Fp2,” “F3,” “Fz,” “F4,” “F7,” “F8,” “FC3,”
“FCz,” “FC4,” “FT7,” “FT8,” “C3,” “Cz,” “C4,” “CP3,” “CPz,”
“CP4,” “P3,” “Pz,” “P4,” “TP8,” “TP7,” “T3,” “T4,” “T5,” “T6,” “O1,”
“Oz,” “O2.” Ear lobe electrodes were used as reference, and the
grounding electrode was placed centrally on the forehead. The
initial dataset consists of recordings from 20 typically developing
children aged 5–14 years. Within the experiment’s framework,
sound stimulation was performed according to the odd-ball
paradigm with a standard stimulus of 1,000 Hz and two deviant
stimuli at 980 and 1,020 Hz. The interstimulus interval was
400 ms. Stimulus intensity were 75 dB.

Obtained data were filtered (0.1–40 Hz) and divided into
epochs (−500; 800 s), where noisy epochs were removed by
threshold (350 mV). Only the first 650 epochs of recording gained
from the first 650 presentations of stimuli were used for posterior
ICA decomposition (FASTICA) with resampling on the level of
250 Hz. Final data that were uploaded into ALICE consisted of
30 ICA components. All preprocessing steps were done using the
MNE Python package (Gramfort, 2013).

The data annotation for training the Baseline model was
carried out by two experts – experienced scientists of the Institute
of Higher Nervous Activity and Neurophysiology of RAS. The
first expert is a clinical neurologist, while the second one clinical
psychologist; both experts had more that 15 years of experience
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in analysis of pediatric EEG ICA. For the correct work with
the program, they received an instruction, which outlined the
main steps they took when working with ALICE. Experts’ main
task was set as follows – to mark each component using the
set of labels: Eyes, Horizontal eye movements, Vertical eye
movements, Line noise, Channel noise, Brain, Alpha activity,
Mu activity, Muscle activity, Other, Uncertain. Following the
instructions, if an expert saw that a component consisted of
several activity types, s/he can assign the component to several
classes. For example, among annotated components, there were
often components marked both as eye artifacts and muscle
activity simultaneously.

Additional Datasets
For additional validation we used another dataset with children
EEG. The recordings of 17 children aged 5–14 years were
decomposed using ICA. Data were recorded using the same
EEG system as in initial dataset. Participants watched series of
videos in terms of the experimental paradigm. The collected
data were filtered in the range 3–40 Hz, no other processing
steps were applied. The same experts were asked to mark only
those components that correspond to eye artifacts. The overall
number of components was 149. The dataset is marked as
Children dataset 2.

To test how ALICE performs on adult data the recordings of
21 adults were added to the ALICE platform. The experimental
design, EEG system and data processing steps were the same as we
used in the initial dataset. The data were annotated by four new
experts. To facilitate the labeling process, the task for experts was
to label only those components that correspond to eye artifacts.
The datasets is called Adults’ dataset.

These additional datasets allowed us to estimate model
performance when trained using initial dataset and re-trained
on additional datasets. Moreover, it was mentioned previously
that adult ICA and children ICA automatic labeling require
different approaches to modeling. Thus, the second dataset
allowed us to check whether suggested approach is suitable
for EEG of any age, whereas the first dataset was acquired
from the same cohort of participants. In order to assess model
generalizability, data preprocessing was also different: the first
dataset was prepared with different ICA method – AMICA
(Palmer et al., 2011).

Ethics Statement
The datasets were obtained from the research project (A
physiological profile of autism spectrum disorders: a study of
brain rhythms and auditory evoked potentials). It is conducted
according to the guidelines of the Declaration of Helsinki and
approved by the Ethics Committee of the Institute of Higher
Nervous Activity and Neurophysiology (protocol code 3, date
of approval July 10, 2020). All children provided their verbal
consent to participate in the study and were informed about
their right to withdraw from the study at any time during the
testing. Written informed consent was also obtained from a
parent/guardian of each child.

RESULTS

Data Labeling Aggregation
First, we explored the level of consistency between two annotators
for various IC classes. Due to limited available data and only
two annotators, we decided to merge some classes with a small
number of label matches between annotators. One reason for
this small number could be the possible difference in labeling
strategies between the experts, as was discussed in the section
“Materials and Methods.” The final manipulations with class
labels are:

• Eyes, Horizontal eye movement, Vertical eye movement
were merged to the one Eye movement class.
• Line noise labels were dropped due to a lack of actual line

noise in available data.
• Alpha and mu labels were checked to be marked as a

Brain label too.

For the rest of the IC classes, we used the following aggregation
strategies based on each class’s total number of positive samples
(see Table 1). When the samples of a particular class were
poorly represented, we took Majority vote strategy to have
enough labeled samples for the model fitting; otherwise, we
took Probabilistic vote strategy. The details of Majority vote and
Probabilistic vote are explained in the section “Materials and
Methods.”

The final number of positive labels and concordance between
the two experts are shown in Table 2.

According to arbitrary settled thresholds (Landis and Koch,
1977), the agreement between two experts’ opinions was highest
but still moderate (<0.4) only for labeling the ICs of brain signals.
The other ICs were labeled with a relatively poor agreement
between experts (Table 2). The Inter-expert correlation between
our experts equals 0.43, and the approximate level of agreement
was also reviewed (Pion-Tonachini et al., 2019). Based on the
experts’ comments, we understood that many IC components
contain more than one activity type. This mixture led to
uncertainty for experts’ labeling strategy. Summing up their
annotations and based on the comments, we can conclude that
one expert was inclined to label only those components where
a clear pattern of chosen IC class could be detected. Another
expert labeled all activity types present at given components,
even when there was only a slight indication of its presence in
multi-nature ICs. This difference in labeling strategies produced
relatively poor agreement even for (usually well recognized) Eyes
activity. The annotation dataset is available via http://alice.adase.
org/downloads.

Independent Component Classification
As it can be seen from Table 2, many classes are relatively small.
This leads to imbalanced classification tasks, for example, for
Alpha, Mu, and Channel noise IC classes. In this case, Precision-
Recall (PR) curve better reflects classifier performance compared
to the conventional ROC-AUC curve. So, we explored LR, XGB,
and SVM as ML models and calculated both ROC-AUC and
PR-AUC scores as performance measures. We selected among
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TABLE 1 | IC classes and corresponding aggregation strategies based on the total number of positive samples of each class.

IC class Brain activity Alpha brain activity Mu brain activity Eyes Muscles Heart Channel noise

Strategy 2 1 1 2 2 1 2

TABLE 2 | Number of samples and Cohen’s kappa for each class.

Label Number of samples Cohen’s kappa

Brain 449 0.47

Alpha 60 0.13

Mu 92 0.22

Eyes 78 0.10

Muscles 135 0.36

Heart 231 0.04

Channel noise 48 0.12

three models for each IC type separately. All the models showed
comparable performance for most ICs classes (see Figure 6 for
ROC curves and Table 3 for values) based on ROC-AUC curves.
Brain, Eyes, and Muscles models showed the best performance
among others with ROC-AUC greater than 0.9. We could not
train a good model for Heart ICs detection due to inadequate
labeling as suggested by the lack of consistency among experts
and probably not specific extracted features.

However, the picture was different when analyzing PR curves
and PR-AUC values (see Figure 7 and Table 4). As we mentioned,
PR curves better indicate classification performance in case of
imbalanced data, which results in worse performance for Alpha,
Mu, and Eyes IC types, all of which have fewer positive labels
than Brain or Muscles IC classes. It also can be seen that
for Heart and Channel Noise classes, all of the models and
SVM in particular performed poorly. The possible reasons for

this might be both a small number of samples in each class
and a low level of agreement between the annotators resulting
in poor labeling quality and lack of robustness. Probably,
new robust predictive features should be developed to address
these types of artifacts. We also provided F1-score values
(see Table 5), alternative statistics based on precision-recall
interaction. The need for further investigation of the models’
performance on Heart and Channel Noise IC classes is also
backed up by the low F1-score, which is significantly lower than
the rest IC types.

It is worth mentioning that the main reason for measuring
PR-AUC was to compare the performance of the models with
each other. In general, specific PR-AUC values, unlike ROC-
AUC, do not reflect the model’s performance. For that, it is
better to refer to the PR curve itself. Each point on this curve
corresponds to certain precision and recall levels closely related
to type I and II errors, respectively. We could achieve this
by choosing the appropriate threshold (by default, each model
predicts probabilities for each class that can be interpreted as
either True or False by comparing with the threshold value).
To better illustrate this idea, we suggest the following example.
Supposing, we want to detect muscles with the recall of 0.75 (that
is, we will detect 75% ICs with muscular activities). Then, by
looking at Figure 7, we can see that SVM will achieve a precision
value of about 0.7, which means that out of all ICs selected, about
70% will correspond to Muscles.

We chose an ML model for each IC type based on the ROC-
AUC score if the class is relatively balanced (Brain and Heart and

FIGURE 6 | Aggregated Receiver Operating Characteristic (ROC) curves for all IC types and ML models. The solid line indicates the mean curve and the colored
area indicates the 95% confidence interval for the ROC curve. The best classification results were achieved for the Brain Muscles and Eyes ICs. For the Alpha Mu
and Channel Noise classes, the scores are also high, however, the stability is lower, especially in the case of detecting Channel Noise using SVM. Finally, the
performance on Heart components was poor, which could be due to low expert concordance. The blue line on each plot represents the no-skill classifier which
assigns labels at random. Thus, we can consider the performance of a particular model on a particular label type statistically significant, if the confidence interval lies
above the blue line. Thus, most of our models classify the components significantly better than at chance, expert for SVM that was not able to do it for Heart and
Channel noise component.
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TABLE 3 | Average ROC-AUC values and their standard deviations.

ROC-AUC Brain Alpha Mu Eyes Muscles Heart Channel noise

Logistic regression 0.93 (±0.02) 0.83 (±0.05) 0.83 (±0.03) 0.91 (±0.03) 0.89 (±0.03) 0.64 (±0.04) 0.81 (±0.05)

XGBoost 0.92 (±0.02) 0.81 (±0.05) 0.83 (±0.03) 0.89 (±0.04) 0.88 (±0.02) 0.61 (±0.03) 0.77 (±0.05)

Support vector machine 0.93 (±0.02) 0.81 (±0.05) 0.82 (±0.03) 0.92 (±0.03) 0.90 (±0.03) 0.55 (±0.10) 0.61 (±0.09)

Mean ± St. deviation.

FIGURE 7 | Aggregated Precision Recall (PR) curves for all IC types and ML models. The solid line indicates the mean curve and the colored area indicates the 95%
confidence interval for the PR curve. PR curves better indicate classification performance in case of imbalanced data, which can be seen in worse results for Alpha,
Mu, Eyes, and especially Channel Noise IC types, all of which have fewer positive labels compared to Brain or Muscles IC classes. As with the ROC curves, we can
claim that on all IC types except for Heart and Channel Noise, our models perform significantly better than the unskilled classifier.

TABLE 4 | Average PR-AUC values and their standard deviations.

PR-AUC Brain Alpha Mu Eyes Muscles Heart Channel noise

Logistic regression 0.96 (±0.02) 0.59 (±0.08) 0.50 (±0.07) 0.74 (±0.06) 0.77 (±0.05) 0.46 (±0.04) 0.23 (±0.06)

XGBoost 0.96 (±0.01) 0.54 (±0.10) 0.48 (±0.07) 0.71 (±0.07) 0.75 (±0.05) 0.45 (±0.03) 0.27 (±0.09)

Support vector machine 0.96 (±0.02) 0.59 (±0.08) 0.49 (±0.07) 0.76 (±0.06) 0.79 (±0.05) 0.41 (±0.07) 0.13 (±0.04)

Mean ± St. deviation.

TABLE 5 | Average F1-scores and their standard deviations.

PR-AUC Brain Alpha Mu Eyes Muscles Heart Channel noise

Logistic regression 0.92 (±0.01) 0.50 (±0.11) 0.31 (±0.08) 0.62 (±0.08) 0.66 (±0.05) 0.14 (±0.05) 0.00 (±0.00)

XGBoost 0.91 (±0.01) 0.50 (±0.12) 0.39 (±0.08) 0.64 (±0.07) 0.69 (±0.04) 0.40 (±0.04) 0.18 (±0.11)

Support vector machine 0.92 (±0.01) 0.42 (±0.10) 0.20 (±0.09) 0.63 (±0.07) 0.72 (±0.04) 0.01 (±0.02) 0.00 (±0.00)

Mean ± St. deviation.

Muscles) and based on PR-AUC if the class is unbalanced. Thus,
we selected PR for Brain, Alpha Mu, and Heart, XGB for Channel
Noise, and SVM for Eyes and Muscles.

Additional Tests
The obtained models were applied to additional datasets
to decode eye artifacts. The model trained on the main
dataset showed a controversial result while being tested on
Children dataset 2 (F1-score = 0.12; PR-AUC = 0.18; ROC-
AUC = 0.5). Nonetheless, the models perform well after
retraining (Figure 8A) with PR-AUC values on the level of
0.94 (see Table 6). The latter implies that model re-training is

beneficial for new datasets (even of the same age cohort) making
model flexibility an important part of the proposed framework.
After aggregation of experts labeling the dataset consisted of 64
eye components out of 527.

We also tested model performance on eye components from
Adults’ dataset (with 61 labeled eye-components out of 337).
The model trained on initial dataset again performed weakly
(F1 = 0.36; ROC-AUC = 0.61; PR-AUC = 0.65), while the re-
trained models showed a dramatic increase in all quality measures
(see Figure 8B). The obtained performance rate makes up 0.95
for PR-AUC. Thus, we examined that ALICE machine learning
pipeline is also appropriate for adult EEG.
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FIGURE 8 | PR curves and ROC curves for Eyes class for additional datasets. The performance rate for additional datasets illustrated using ROC-curve and
PR-curve. The solid line indicates the mean curve and the colored area indicates the 95% confidence interval for the curves. (A) Is a pair of plots for Children dataset
2 and we observe that both plots illustrate high quality of predictions for Eye components. (B) Is a pair of plots that show a high performance rate for Eye
components for Adults’ dataset.

TABLE 6 | Performance rate on additional datasets.

Children dataset 2 Adults’ dataset

ROC-AUC PR-AUC F1-score ROC-AUC PR-AUC F1-score

Logistic
regression

0.96 0.81 0.76 0.97 0.94 0.83

Support vector
machine

0.96 0.81 0.76 0.97 0.94 0.83

DISCUSSION

Independent component analysis is a powerful tool for the
segregation of various types of activities from the raw EEG data.
It is widely used for the detection of different artifacts such
as eye blinks or muscle contractions. Nevertheless, IC signals’
correspondence to any class of activity largely depends on a
particular expert, affecting the study results. This issue is worth
highlighting as the application of ICA in EEG studies becomes
more and more popular. The ALICE toolbox is a particular
instrument to resolve these issues.

The developed web application stores ICA data and makes
it publicly available. This data includes IC annotations given
by experts, which assign each component to the appropriate
category. Moreover, the annotated dataset expands using the
interface where each expert can make their labeling. ALICE’s
goal is to build a community where experts from neuroscience,
neurophysiology, and other related areas, share their ICA data
and encourage each other to make the annotations. Our study’s
low Cohen’s kappa coefficient and low inter-expert correlation
in IC annotation point to high disagreement in components
annotation evident even between two experts. Noteworthy, the
only other crowdsourcing platform for IC classification [ICLabel,
(Pion-Tonachini et al., 2019)] also report similar results: their
mean inter-expert correlation was 0.50, ranging from 0.46 to
0.65, clearly pointing to different strategies of identification ICs.

This finding emphasizes the need to study the reason for such
low agreement between experts and to develop an automatic IC
classification toolbox that will work objectively.

The ALICE has the potential to unite the efforts of experts
from different fields that are vital to developing an ML model
that could be used in EEG studies for the objective assessment
of various artifacts. Our baseline model is clear evidence
that ICA artifacts selection can be easily automated using
ML approaches. The novel aspects of the work include the
algorithm for mu and alpha rhythm detection. The critical
point is that the model is publicly available and additionally
can be used as a pre-trained model for posterior modifications
for other tasks.

Subjective labeling and ML training was performed on a
dataset of ICs obtained on EEG data recorded in pre-school and
school-age children, a population with usually many artifacts.
This type of dataset is relatively unrepresented in the previous
research on automatic IC extraction. The main work with infant
ICA was done by Adjusted ADJUST algorithm (Leach et al.,
2020) does not rely on machine learning techniques. The dataset
consists of 630 ICA components acquired from 20 children,
making up a unique publicly available dataset that can be
used for various goals, e.g., for refitting new private models
for ICA detection.

There are several points for future development of the project
related to the annotation module and the ML module. The
annotation module advances are related to the reorganization of
available classes to mark into a hierarchical structure. Users can
first select the artifact and specify it more precisely, for example,
Eyes->Horizontal eye movements. Moreover, the first trial of
expert annotations forces us to reestablish an expert policy and
force them to choose no more than two IC classes to train our
models using representative samples.

The ML module showed a high-performance rate for most
classes. Although the Heart class was not detected, the reason
for that is the lack of class representatives and a low agreement
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between the annotators. Moreover, the Mu/Alpha rhythms
and Eyes results were also obtained with fewer data samples.
Nevertheless, the ALICE approach (including newly designed
features for Mu and Alpha classes) showed good classification
accuracy for ICs labeling even though the agreement between
expert opinions was relatively poor. Still, for Heart and Channel
Noise classes, none of the trained models worked well. Probably
new robust predictive features or more complex ML models
(i.e., based on convolutional neural networks) should also be
developed to address these types of artifacts. We compared the
performance of our algorithms with results reported in other
studies. In Pion-Tonachini et al. (2019) authors report ROC
curves with F1 scores. Eyes class F1 score is greater than 0.9, brain
and muscles classes are in the range between 0.8 and 0.9, which is
higher than results obtained using our model; at the same time,
the heart class, like in our case, is reported as uninformative. In
Tamburro et al. (2018), the authors reported accuracy, sensitivity,
and false omission rates and provided complete data for eye
movements, eye blinks, and muscle activity. The resulted F1
scores were greater than 0.9. In terms of our model, the low
agreement between experts as an outcome of different labeling
approaches might affect the final score.

Nevertheless, with additional datasets we discovered that the
result can gain higher values for Eyes IC class with F1 score on
the level of 0.87. Such values can be achieved for both adult EEG
as well as for children EEG. This result implies that ALICE ML
pipeline is robust to datasets of different ages. On the other hand,
models require retraining to be suitable for data of different age or
data of different ICA algorithm. This observation examined that
database requires more components to show stable result over
any type of dataset.

The current performance of ML algorithms in the ALICE
toolbox is based mainly on two experts’ estimations, whereas a
manifold of professional annotations produces more objective
estimates for components labeling. In future research, we aim
to invite the wider expert community to label their datasets and
expand current models’ abilities or future models to define the
functional nature of IC components. Thus, we encourage any
reader to become a part of the ALICE project. More information
about the potential contribution is provided on our web site
http://alice.adase.org/docs/contribute.

To summarize, the main improvements implemented in
ALICE as compared to previously developed toolboxes are the
following:

• The ALICE toolbox allows not only detection of noisy IC
but also automatic identifications of components related
to the functional brain oscillations such as alpha and mu-
rhythm.
• The ALICE project accumulates different benchmarks

based on crowdsourced visual labeling of ICs collected from
publicly available and in-house EEG recordings, resulting in
a constantly growing high-quality IC dataset.
• ALICE implements the new strategy for consentient

labeling of ICs by several experts.
• ALICE allows supervised ML model training and

re-training on available data subsamples for better

performance in specific tasks (i.e., movement artifact
detection in healthy or autistic children).
• Finally, ALICE provides a platform for EEG artifact

detection model comparison as well as a platform
for neuroscientist self-assessment based on established
performance metrics.

Thus, strength of the ALICE project implies the creation
and constant updating of the IC database, which will be used
for continuous improvement of ML algorithms for automatic
labeling and extraction of non-brain signals from EEG. The
developed toolbox will be available to the scientific community
in an online service and open-source codes.
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