
TECHNOLOGY AND CODE
published: 16 September 2021
doi: 10.3389/fninf.2021.723406

Frontiers in Neuroinformatics | www.frontiersin.org 1 September 2021 | Volume 15 | Article 723406

Edited by:

Felix Schürmann,

École Polytechnique Fédérale de

Lausanne, Switzerland

Reviewed by:

Marcel Stimberg,

Sorbonne Université, France

Fernando S. Borges,

Federal University of ABC, Brazil

Bruno Golosio,

University of Cagliari, Italy

*Correspondence:

Florian Porrmann

fporrmann@techfak.uni-bielefeld.de

Received: 10 June 2021

Accepted: 16 August 2021

Published: 16 September 2021

Citation:

Porrmann F, Pilz S, Stella A,

Kleinjohann A, Denker M,

Hagemeyer J and Rückert U (2021)

Acceleration of the SPADE Method

Using a Custom-Tailored FP-Growth

Implementation.

Front. Neuroinform. 15:723406.

doi: 10.3389/fninf.2021.723406

Acceleration of the SPADE Method
Using a Custom-Tailored FP-Growth
Implementation
Florian Porrmann 1*, Sarah Pilz 1, Alessandra Stella 2,3, Alexander Kleinjohann 2,3,

Michael Denker 2, Jens Hagemeyer 1 and Ulrich Rückert 1

1Cognitronics and Sensor Systems, CITEC, Bielefeld University, Bielefeld, Germany, 2 Institute of Neuroscience and Medicine

(INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10),

Jülich Research Center, Jülich, Germany, 3 RWTH Aachen University, Aachen, Germany

The SPADE (spatio-temporal Spike PAttern Detection and Evaluation) method was

developed to find reoccurring spatio-temporal patterns in neuronal spike activity (parallel

spike trains). However, depending on the number of spike trains and the length of

recording, this method can exhibit long runtimes. Based on a realistic benchmark data

set, we identified that the combination of pattern mining (using the FP-Growth algorithm)

and the result filtering account for 85–90% of the method’s total runtime. Therefore, in this

paper, we propose a customized FP-Growth implementation tailored to the requirements

of SPADE, which significantly accelerates pattern mining and result filtering. Our version

allows for parallel and distributed execution, and due to the improvements made, an

execution on heterogeneous and low-power embedded devices is now also possible.

The implementation has been evaluated using a traditional workstation based on an Intel

Broadwell Xeon E5-1650 v4 as a baseline. Furthermore, the heterogeneous microserver

platform RECS|Box has been used for evaluating the implementation on two HiSilicon

Hi1616 (Kunpeng 916), an Intel Coffee Lake-ER Xeon E-2276ME, an Intel Broadwell

Xeon D-D1577, and three NVIDIA Tegra devices (Jetson AGX Xavier, Jetson Xavier NX,

and Jetson TX2). Depending on the platform, our implementation is between 27 and 200

times faster than the original implementation. At the same time, the energy consumption

was reduced by up to two orders of magnitude.

Keywords: FP-growth, pattern mining, spike train analysis, embedded devices, performance optimization, low

power, parallel and distributed computing, heterogeneous computing

1. INTRODUCTION

Increasing evidence from neuroscience suggests that in order to understand the principles of
information processing in the brain, it is important to study not only the activity of isolated neurons
in response to the environment and behavior, but also to investigate the concerted dynamics
of neuronal networks as a whole. With the rapid advancement of electrophysiological recording
techniques in the recent decades, scientists are now able tomonitor the spiking activity of individual
nerve cells in large neuronal populations, enabling the investigation of the dynamics of hundreds
of neurons recorded in parallel (e.g., Jun et al., 2017; Brochier et al., 2018; Steinmetz et al., 2018;
Juavinett et al., 2019; Chen et al., 2020). The cell assembly hypothesis (Hebb, 1949) postulates
that information is represented by interactions within groups of neurons. Signatures of assemblies

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.723406
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.723406&domain=pdf&date_stamp=2021-09-16
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fporrmann@techfak.uni-bielefeld.de
https://doi.org/10.3389/fninf.2021.723406
https://www.frontiersin.org/articles/10.3389/fninf.2021.723406/full

Porrmann et al. Acceleration of SPADE

in the observed dynamics are groups of synchronously active
neurons (e.g., Harris, 2005), or spatio-temporal sequences of
neuronal activation. Efficient methods to detect and characterize
this coordinated activity are in high demand (Quaglio et al.,
2018). Such methods need to deal with challenges related to
the highly non-stationary spike time series and the statistical
complexity of high-dimensional activity patterns, since the
number of possible patterns exponentially increases with the
number of observed neurons. Several complementary methods
have been developed and calibrated in the past (e.g., Grün
et al., 2002a,b; Pipa et al., 2008; Gerstein et al., 2012; Lopes-
dos Santos et al., 2013; Torre et al., 2013; Russo and Durstewitz,
2017; Diana et al., 2019; Watanabe et al., 2019; Williams et al.,
2020). While the nature and underlying assumptions of these
approaches differ, they share the need to scale in runtime
performance as the number of observed neurons or the length
of the recording increases. This holds true, in particular, with
an increasing interest to employ such techniques to analyze and
validate simulations of large-scale models of neuronal networks
(cf., e.g., Trensch et al., 2018; Gutzen et al., 2018) that easily
exceed the volume of available experimental data.

One of the state-of-the-art methods to detect spatio-temporal
patterns in large sets of parallel spike trains (Quaglio et al.,
2018) is SPADE1, originally proposed by Torre et al. (2013).
The method is based on frequent itemset mining (Agrawal
et al., 1993). The existing Python implementation of the SPADE
method in the Electrophysiology Analysis Toolkit2 (Elephant;
RRID:SCR_003833; Denker et al., 2018) is able to analyze current
data sets of moderate size at relatively high computational
cost, making the availability of distributed compute resources
mandatory and discouraging interactive exploratory analyses.
In this work, we put forward an accelerated version of SPADE
by optimizing the underlying pattern mining flow using a
custom-tailored FP-Growth3 (Han et al., 2000) implementation
to address the need for enhanced scalability and thereby increase
the range of data sets for which the method is practically
applicable. Additionally, we show that our optimizations enable
the execution of SPADE on heterogeneous and low-power
embedded devices, which is significantly more energy-efficient
than the execution on a modern workstation.

Previously, the focus of development efforts related to SPADE
concentrated on improving or extending the capabilities of the
method, which makes this work the first to address performance
and energy efficiency. After Torre et al. (2013) developed the
concepts for the statistical evaluation of synchronous spike
patterns through FP-Growth, Yegenoglu et al. (2016) introduced
a technique to identify spatio-temporal patterns in massively
parallel spike trains using formal concept analysis (FCA; Ganter
and Wille, 1999), extending the detection of patterns from
synchronous to spike patterns with delays. In 2017, these
approaches were combined by Quaglio et al. (2017). Since the
FCA implementation used by Yegenoglu et al. (2016) required
significantly more time and computational power, it was replaced

1Spike PAtternDetection and Evaluation.
2http://python-elephant.org
3Frequent Pattern Growth.

by FP-Growth. Stella et al. (2019) introduced an extension to
SPADE, called 3d-SPADE, which also accounts for the temporal
extent of patterns with delays in the significance estimation. The
SPADEmethod is explained in more detail in section 2.3.

On a similar path, the FP-Growth algorithm used in
SPADE (Picado-Muiño et al., 2013) was subject to numerous
extensions and modifications from a methodological perspective.
PicadoMuiño et al. (2012) and Borgelt and Picado-Muiño (2013)
introduced a version of FP-Growth in continuous time called
CoCoNAD, which avoids the need to discretize the input spike
train. CoCoNAD was used for benchmarking of artificial data
(Picado-Muiño et al., 2013) and analyses of electrophysiological
experiments (Torre et al., 2016). Furthermore, CoCoNAD was
extended in Borgelt et al. (2015) to account for patterns
with selective neuronal participation, or fuzzy patterns. When
extending the SPADE analysis to delayed patterns, it was
necessary to resort back to discretizing data (Quaglio et al., 2017).

In contrast to SPADE, where performance improvements were
never the main focus, several publications focused primarily on
improving and accelerating FP-Growth through, e.g., parallel or
distributed computing. A detailed explanation of the pattern
mining and FP-Growth related terms used in this section can be
found in sections 2.1, 2.2. The first parallel FP-Growth variation,
called MLFPT, was developed by Zaiane et al. (2001). It divides
the input database across all available processors and creates a
local FP-tree4, the data structure used by FP-Growth, on each.
Afterward, a global header table, a linked list used by FP-Growth,
is created, linking the different items to their occurrences in local
FP-trees. Each processor is assigned an equal portion of the entire
itemset on which it performs the pattern mining step.

Chen et al. (2009) developed a parallel FP-Growth variant,
called Grided FP-Growth (GFP-Growth), designed to be used on
large compute clusters. The main difference to the original FP-
Growth is that they skip the FP-tree construction by directly
mining the conditional pattern bases, sub-databases, created
from the FP-tree, using the projection method proposed in Bin
and Li (2008). This allows them to split the mining process into
independent groups, which can be executed in parallel on any
number of compute nodes.

Li et al. (2008) proposed a massively parallel and distributed
implementation, called PFP-Growth. Their approach is based on
MapReduce (Dean and Ghemawat, 2004), a programming model
for large-scale distributed computing. By dividing the input
data into independent groups, they can distribute the workload
across massive compute clusters without any computational
dependencies between the different nodes. In their tests, they
achieved nearly linear performance scaling when executing their
implementation with a data set consisting of 802,939 web
pages on between 100 and 2,500 computers. Zhou et al. (2010)
improved PFP-Growth by adding load balance features, resulting
in a new version they called BPFP-Growth. Through proper
load balancing during the parallel execution of the pattern
mining process, a speedup of 1.5 over the original PFP-Growth
implementation was achieved. Xia et al. (2018) improved the
performance of PFP-Growth when processing a massive number

4Frequent Pattern Tree.

Frontiers in Neuroinformatics | www.frontiersin.org 2 September 2021 | Volume 15 | Article 723406

http://python-elephant.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

of small files on a Hadoop compute platform, resulting in
the creation of MR-PFP-Growth. Shi et al. (2017) proposed a
distributed FP-Growth algorithm, using Apache Spark5 called
DFPS, which achieved a significant speedup over PFP-Growth.

The previously introduced parallel implementations for FP-
Growth are designed for use with large data sets, containing a
vast number of transactions (1–100 million) and items (more
than 10 million), and target large-scale compute clusters with
up to several thousand nodes. The algorithms were developed to
make pattern mining on these data sets possible in a reasonable
time frame. In addition, the use of such massive compute clusters
requires good load balancing and fault tolerance so that the
computation does not have to be restarted in case a node fails.
In contrast, the data sets used with SPADE are relatively small,
consisting of only a few thousand transactions with, on average,
two to three thousand items. Furthermore, while the cited
implementations target the parallelization of the baseline FP-
Growth algorithm, the version developed in this work is custom-
tailored for the use in the SPADEmethod. As such, the improved
implementation presented here, based around a rather naive
approach to parallel and distributed computing of FP-Growth, is
more suitable for the given problem, as it does not inhibit the
portability and can be easily disabled if required. One of the main
differences between our implementation and the ones described
previously is based on the filter function, a part of the SPADE
algorithm which significantly reduces the number of patterns
mined. It enables us to pursue an implementation approach
that would not be possible under normal conditions. Therefore,
using code optimizations and minimized overhead, we managed
to achieve high performance and high energy efficiency using
server- and distributed embedded processors.

The main contributions of this work are as follows.

1. We propose an optimized FP-Growth implementation,
custom-tailored to the problem presented by the SPADE
method. A significant performance increase was achieved by
incorporating the pattern filtering function used by SPADE
into the pattern mining. Furthermore, we have implemented
parallelization and distributed computing concepts in our
customized version of FP-Growth to take full advantage of the
available hardware.

2. Moving the pattern filtering task into FP-Growth resulted
in a considerable decrease in memory consumption, to the
point where execution on low-power embedded devices is now
possible.

3. We evaluated our implementation’s performance and showed
that a significant performance increase could be achieved with
our optimizations compared to the original.

The remainder of this article is structured as follows. In
section 2, we first provide an introduction to pattern mining.
Subsequently, we introduce the SPADE method, in particular,
its core algorithm, FP-Growth. We identify the bottlenecks
of the current implementation and present our optimizations
in terms of efficient data handling, memory optimizations,
and parallelizations. In section 3, we compare the runtime,

5http://spark.apache.org/

energy efficiency, and memory consumption of the original
implementation to our optimized solution. For this purpose,
we run the optimized version on several different platforms.
We demonstrate that our improvements can achieve up to 280
times higher energy efficiency in addition to an acceleration by a
factor of up to 200. Finally, in section 4, we discuss the impact
of our optimizations on SPADE’s overall runtime and energy
efficiency and present possible future research to improve its
performance further.

2. METHOD

In this section, we propose an optimization to significantly
accelerate the SPADE method used to detect spike patterns
in massively parallel spike trains. Therefore, we first discuss
the method itself, focusing on the FP-Growth algorithm used
to identify frequent spike patterns. Afterward, we present our
version of FP-Growth, optimized for use in the SPADE pipeline.
By integrating the result filtering step, that had previously been
performed separately, directly into the pattern mining process,
we achieve a significant performance improvement.

2.1. Introduction to Frequent Pattern
Mining
In this paragraph, we first give a short introduction into frequent
pattern mining and its terminology. Afterward, these concepts
are showcased in a small example. Frequent pattern mining
refers to the task of identifying reoccurring patterns within large
databases. Agrawal et al. (1993) initially introduced this concept
to find patterns in large databases of customer transactions, e.g.,
from large stores or businesses. Such patterns can, for instance, be
used to optimize the product placement in a supermarket, as they
provide information about products commonly bought together.
In the following, the terms used in conjunction with pattern
mining and the concept itself are explained in more detail. Most
terms reflect the method’s origin in purchase analysis, i.e., item
and transaction. Given an itemset I, a transaction T is defined
as a subset of items from I. A transaction database D is defined
as a collection of transactions. A frequent pattern (itemset) is
a combination of items within a transaction that reoccurs in
one or more different transactions of the same database. The
occurrence count of a pattern is called support S. There are
different ways to limit the number of patterns produced, e.g.,
by setting a minimum pattern length, i.e., that a pattern has
to contain at least n-items to be counted or by specifying a
minimum occurrence count, i.e., that a pattern has to occur at
least m-times to be counted. Additionally, there are two unique
categories of frequent patterns: closed frequent patterns and
maximal frequent patterns. A pattern P is considered closed when
there exists no superset, i.e., a pattern containing P with the same
support S as P. Similarly, a pattern P is regarded as a maximal
frequent pattern if it has no frequent superset, i.e., there exists no
frequent pattern containing P.

The following example showcases the concepts defined above.
A pattern P is depicted in the form P = {i1, ..., in} (S) with i ∈ I.
Given the itemset I =

{

a, b, c, d
}

and database D = {T1,T2,T3}

Frontiers in Neuroinformatics | www.frontiersin.org 3 September 2021 | Volume 15 | Article 723406

http://spark.apache.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 1 | Left: All patterns from the pattern mining example presented in section 2.1. Right: The header table and FP-tree created from the same

example transactions.

where the transactions are T1 =
{

a, b, c
}

, T2 =
{

a, c, d
}

and
T3 =

{

a, b, c, d
}

, without any limitations, 15 frequent patterns
can be found in D, as shown in Figure 1. Once the minimum
pattern length n is increased to 2, only 11 patterns remain. If
now also a minimum occurrence s of 2 is specified, the amount
of patterns is reduced to 7. Of these patterns, a, c(3), a, c, d(2)
and a, b, c(2) are closed and a, c, d(2) and a, b, c(2) are maximal
frequent patterns.

2.2. FP-Growth-Based Pattern Mining
The FP-Growth algorithm is a highly efficient method to mine
frequent patterns from a transaction database. Other well-known
algorithms for frequent pattern mining, such as the Eclat (Zaki,
2000) or the Apriori (Agrawal and Srikant, 1994) algorithm,
perform this task through candidate generation, which has the
drawback that it can consume a large amount of memory. FP-
Growth builds a so-called FP-tree, which contains all information
about the relations between different items in all transactions. By
traversing this tree and recursively creating so-called conditional
sub-trees, it is possible to find all frequent patterns without
candidate generation, while also requiring significantly less
memory. The algorithm operates as follows. First, it iterates over
the entire database to store all unique items and their occurrence
in a list L, sorted by occurrence. Afterward, all items with an
occurrence count below the threshold can directly be discarded.
The same applies to transactions that have fewer items than
required for the minimum pattern length. Next, the items in
each transaction are sorted in descending order based on their

occurrence. Subsequently, the actual FP-tree is created by first
creating a root-node and sequentially inserting the transactions
into the tree. Starting at the root node, for the first item of the
current transaction, either a new node is created (if no node
for this item exists) or the counter is incremented (if a node
exists). This process is repeated for each item in the transaction,
always using the newly created node as a base. Once the current
transaction has been fully processed, the same process is done for
the next transaction, starting once again at the root node. This is
repeated until all transactions have been processed and the FP-
tree is completed. In parallel to the FP-tree, a header table is built,
linking each unique item to its first occurrence in the tree, which
then, in turn, links to the second occurrence, and so on. These
links are known as node-links. The items’ order is defined by their
occurrence and is equal to the order in the previously created list
L. The header table and the FP-tree for the example presented in
section 2.1 are depicted in Figure 1.

After the FP-tree and the header table are created, the frequent
patterns are mined. This is done by iterating over the header
table and evaluating the node-link for the respective item i. If i
only occurs once within the tree, the frequent patterns can be
determined by creating all combinations of i with its preceding
nodes. Should i occur multiple times in the tree, the preceding
nodes form the so-called conditional pattern base of i, from
which a sub-FP-tree is created, called conditional FP-tree of i. The
mining process is recursively performed on the conditional tree
until all patterns have been mined. Once all patterns for a header
table entry have been computed, the same process is repeated for

Frontiers in Neuroinformatics | www.frontiersin.org 4 September 2021 | Volume 15 | Article 723406

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

the next entry until the entire header table has been processed,
and therefore, all frequent patterns have been mined. It should
be noted that there exist no dependencies between the different
header table iterations, meaning that they could, in theory, all be
performed in parallel. The compute complexity of the FP-Growth
algorithm depends on the number of items in the header table
and the maximum depth of the FP-tree, i.e., again, the number of
items. Let n be the number of items. Therefore, the complexity of
FP-Growth is O(n2) (Wicaksono et al., 2020).

2.3. Spike Activity Analysis Using the
SPADE Method
The SPADE method was introduced by Torre et al. (2013) and
has since been continuously advanced and improved (Quaglio
et al., 2017; Stella et al., 2019). Using SPADE, it is possible to
detect spatio-temporal spike patterns in parallel spike trains.
Spatio-temporal spike patterns are precisely reoccurring delayed
sequences of spikes across neurons. They are defined by the
times of their occurrences, by the neurons involved, and by
the temporal delays between spikes. In order to detect spatio-
temporal patterns, SPADE employs frequent itemset mining to
find reoccurring candidate patterns in the parallel spike train
data given as input. The mined patterns are then evaluated for
significance by Monte Carlo testing. First, different realizations
of surrogate data are generated, which are mined using FP-
Growth similarly to the original data. Second, patterns detected
in surrogates are grouped by shared characteristics, i.e., their
number of spikes, duration in time, and number of occurrences,
and a p-value is estimated for each group. In a third step,
candidate patterns are selected according to their p-value,
correcting for multiple testing. Finally, the set of statistically
significant patterns is further reduced by conditionally testing
each pair of patterns with common spikes. Within this study, we
concentrate on the mining of frequent patterns without taking
into consideration the statistical tests.

In terms of required computation, between 85 and 90% of
SPADE’s runtime is spent detecting spike patterns within the
parallel spike train data fed into the method. For this, first, the
spike trains for all N neurons are discretized into time bins
by segmenting time into small intervals with a bin size b of
typically a few milliseconds and mapping each spike onto one
bin. If two spikes of the same neuron fall into the same bin, they
are considered as one spike. This binning technique accounts
for small temporal variability that could prevent patterns from
being detected. As a next step, in order to detect delayed spike
patterns, a sliding window with a length of w bins (duration
equal to w · b) is shifted bin by bin over the data (Figure 2A).
The quantity ω coincides with the maximal allowed duration of
a pattern, calculated as the difference in bins between the first
and the last spike. Each window is first provided in a matrix
representation with the neurons mapped to the rows and the bins
to the columns. For further computation, the matrix is converted
to a row vector (cf., Figure 2B). For each element within the
window, its position in the vector is calculated as n · w + B,
where n is the neuron id (row), w the length of the window,
and B the bin id (column). We use ω to denote the index of

the window positions (cf. Figures 2A,C). This row vector equals
a transaction, as described in section 2.1. The vectors of all
windows compose the input data for FP-Growth (see section 2.2),
the pattern mining algorithm employed by SPADE. Figure 2C
shows a highly simplified version of the pattern mining process,
and Figure 2D depicts the spike trains fed into SPADE with the
found pattern highlighted in green.

Since typically, a large number of neurons is involved, only
closed frequent patterns are kept, while non-closed patterns
are rejected (Torre et al., 2013). After the mining is done, the
output can still contain repeating patterns caused by the shifting
window. A pattern with a duration shorter than the shifting
window size will reoccur several times in different windows.
Therefore, only those patterns whose first spike occurs in the
first bin are kept, and all others are discarded. This can be
quickly done, assuming that P is the position of the pattern
within the row vector by checking if P mod w = 0 for any of
the occurrences of the pattern. Furthermore, a pattern should
also contain a minimum number of individual neurons and only
occur a maximum number of times to be considered relevant.
Patterns with fewer individual neurons or too many occurrences
are therefore also ignored. Due to the use of the window and
binning, the same neuron can be part of a pattern multiple times,
therefore, it is checked, that at least a minimum number of
individual neurons are part of the pattern. This entire filtering
step is done by applying a custom filter function (cf.Algorithm 1)
to all found patterns, removing a significant portion of them. Of
the three filter criteria mentioned, most patterns are discarded
when performing the first bin check. Thereby, a large part
(typically, between 90 and 100%) of all found patterns are
removed. While SPADE is in most parts implemented using
Python, for the FP-Growth algorithm, the highly optimized
C-implementation PyFIM6, developed by Christian Borgelt, is
used (Borgelt and Picado-Muiño, 2013; Picado-Muiño et al.,
2013).

2.4. Identification of Bottlenecks
As mentioned in section 2.3, one of the most time-consuming
parts of the SPADE method consists of the closed frequent
pattern mining, using the FP-Growth algorithm, and the
result filtering. Therefore, we will first analyze the current
implementations of the aforementioned parts and identify their
respective bottlenecks. Subsequently, in section 2.5, we will
present our optimized version, which achieves a significant
speedup compared to the original.

Figure 3 illustrates the current implementation of SPADE’s
pattern mining flow and its pre-processing steps, on the example
of the movement_PGHF data set, which is also used during the
evaluation (cf., section 3.1). As described in section 2.3, the
input spike data is first discretized using binning and the sliding
window. Afterward, FP-Growth is applied to analyze the resulting
row vectors, and all closed patterns are identified. After filtering,
only relevant patterns remain and are further processed. For this
data set, from 3 MB of spike input data, 200 MB of row vectors
are generated and transferred to FP-Growth. Depending on the

6https://borgelt.net/pyfim.html

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2021 | Volume 15 | Article 723406

https://borgelt.net/pyfim.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 2 | Data preprocessing and evaluation flow of SPADE [based on Stella et al. (2019)]. (A) Example of 4 spike trains recorded in parallel, where each black line

represents a spike. Time is divided into bins (gray vertical areas) of length b. A sliding window of size w is shifted bin by bin over the data (in blue, purple and orange).

(B) The window matrix representation is converted to a row vector. (C) Simplified visualization of the pattern mining process (also called incidence table), where spikes

occurring in the same bin in two window positions (ω = i and ω = i+ n) are detected. Coincident spikes across the two windows are indicated with a green cross. (D)

Representation of the original spike trains as in panel A, where the spike pattern is detected and indicated with green lines.

Frontiers in Neuroinformatics | www.frontiersin.org 6 September 2021 | Volume 15 | Article 723406

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 3 | Representation of the original FP-Growth embedding in SPADE with special regard to transferred data volumes.

Algorithm 1: Filter function used by SPADE

Input: The pattern P, the support of the pattern S, the minimum
number of neuronsmn and the maximum supportms.

Output: Whether to keep the pattern or discard it.
function FILTER_RESULT(P, S,w,mn,ms)

if S > ms then
return false

end if

valid← false
neurons← [] ⊲ Initialize the list of known neurons
cnt← 0
for each e ∈ P do

if e mod w = 0 then ⊲ Check if the spike occurred in
the first bin

valid← true
end if

n← e
w ⊲ Get the neuron id

if n /∈ neurons then ⊲ Check if the neuron has already
been checked

neurons[cnt]← n ⊲ Add the neuron to the known
list

cnt← cnt + 1 ⊲ Increment the counter
end if

end for

if cnt < mn then

valid← false
end if

return valid
end function

minimum support and occurrence configurations, FP-Growth
can consume up to 70 GB of memory.

From our analysis of the current state, we identified threemain
factors for the long runtime of this part of the algorithm. First,
a generic FP-Growth implementation is used instead of one that
is custom-tailored to the problem at hand. Second, all frequent
patterns found by the algorithm are sent back to the Python
code. Last, the filtering of the results is performed in Python.

As noted in section 2.3, the highly optimized C-implementation
of the FP-Growth algorithm is used in SPADE. However, due
to the way SPADE operates, it does not need all possible closed
patterns; it, in fact, only needs a fraction of them. Therefore,
using an implementation that mines all closed patterns, as is
currently the case, can significantly impact the performance.
Furthermore, due to the data structures used internally by the FP-
Growth implementation, all items of each found pattern have to
be mapped back to their original data elements and inserted into
a numpy-array to be usable in Python. This process can require
a significant amount of time and memory and will be referred to
as conversion to Python. Depending on the number of patterns,
this can take several tens of minutes and consume up to 70 GB of
memory. Finally, filtering out the repeating patterns takes a long
time, as this is done in pure Python, without the assistance of an
optimized C or C++ function, which could considerably speed up
the process.

2.5. Optimized Implementation
We resolved the bottlenecks identified in section 2.4, thereby
increasing the performance by several orders of magnitude.
This was done by developing a custom C++-based FP-Growth
implementation, which directly includes the result filtering in an
external C++-library.

2.5.1. Custom FP-Growth Implementation With

Result Filtering
The developed custom C++-based FP-Growth implementation
is, in parts, based on PyFIM by Christian Borgelt. The core
implementation of the closed pattern detection, using conditional
itemset repositories (Grahne and Zhu, 2003), is entirely adopted
from PyFIM. There are two significant differences between our
version of FP-Growth and the general-purpose solution used
before. First, the result filter function, applied by SPADE to the
found closed frequent patterns, is integrated directly into FP-
Growth. This shifts the filtering from Python to C++, thereby
significantly decreasing the runtime and memory consumption,
as only a fraction of all patterns needs to be saved. Second, the
closed detection is not performed during the pattern mining
process but instead afterward. This step was taken because, as

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2021 | Volume 15 | Article 723406

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 4 | Representation of the optimized FP-Growth embedding in SPADE with special regard to transferred data volumes.

mentioned before, the runtime of the closed frequent pattern
detection scales with the number of patterns to check. Therefore,
integrating the filter function into FP-Growth considerably
reduces the number of patterns to check for closure. This
decreases the runtime of the closed pattern detection and
thus results in pattern mining requiring most of the runtime.
Furthermore, the implementation for closed frequent pattern
detection used in this work cannot be parallelized, in contrast
to the pattern mining, which, as noted in section 2.2, can be
reasonably easily performed in parallel. In a situation where the
closed pattern detection has to be performed on all patterns, i.e.,
when there is no filter in place, splitting the mining and detection
usually either does not affect the runtime or can even increase
it. This is because detecting closed patterns is significantly more
complex than pattern mining. Figure 4 shows how SPADEs
pattern mining flow changes when using our optimized FP-
Growthmodule. Compared to the original flow, the peakmemory
consumption was reduced from up to 70 GB down to 4 GB.

2.5.2. Pattern Collector
In our custom FP-Growth version, we implemented a pattern
collector to efficiently and adequately store the found patterns.
It stores the pattern, its length, and support directly in memory.
The collector allocates a block of memory each time the previous
block is full or the new pattern’s size exceeds the remaining space.
Additionally, access functions have been integrated to allow for
fast iteration over all stored patterns. Furthermore, we directly
integrated the pattern filter function into the collector. This way,
whenever a new pattern is passed to the collector, it first runs
through the filter, and if it is invalid, it is discarded. As a result,
only valid patterns are stored, and all others are discarded.

2.6. Parallelization and Distributed
Computing
As an additional step, we integrated OpenMP7 into our
FP-Growth implementation, allowing us to parallelize the
pattern mining process across all available CPU-cores, thereby
significantly increasing the performance. As mentioned in

7Open Multi-Processing - https://www.openmp.org/.

section 2.2, parallelization of the pattern mining is possible
because, when iterating over the header table, all iterations are
entirely independent of each other, allowing them to be executed
in parallel and in any order. Memory conflicts and potential
race conditions were evaded by replicating the internal memory
structures for each thread, preventing the threads from affecting
each other. However, the closed frequent pattern detection
algorithm requires its input patterns to be in an orderly fashion,
i.e., the results of the first iteration, followed by the results of
the second iteration, and so on. Therefore, we further modified
the code to instantiate n pattern collector objects, where n is the
header table’s size. This way, each entry in the header table has its
own pattern collector to store all found patterns. This allows the
closed detector to operate correctly and removes overhead caused
by the threading, as all threads no longer share a single pattern
collector. Once the pattern mining process is finished, the closed
pattern detector iterates over all n collector objects and identifies
the closed frequent patterns. As mentioned in section 2.5.1,
our implementation uses the closed pattern detector developed
by Christian Borgelt, which cannot be easily parallelized, as
mentioned in section 2.2. Therefore, at the moment, the closed
pattern detection is performed sequentially on a single core.

The complete independence of the header table iterations
allows for the pattern mining to be performed in parallel on all
cores of a local processor and computed in parallel on several
compute nodes. For this purpose, we integrated MPI8 into our
application to distribute the workload across different compute
nodes. Through the use of the MPI execution environment
mpirun, it is possible to spawn an arbitrary number of processes
for a given application. Furthermore, spawning processes is not
limited to the local system but can be done on an arbitrary
number of remote nodes, e.g., a compute cluster. However,
without integrating MPI-specific modifications into the code,
execution across multiple nodes will only cause each node to run
the entire application. Therefore, the MPI-API provides a large
selection of functions to allow the processes to communicate,
i.e., pass messages between each other. Each process possesses a
unique identification number, the so-called rank. The rank will

8Message Passing Interface.

Frontiers in Neuroinformatics | www.frontiersin.org 8 September 2021 | Volume 15 | Article 723406

https://www.openmp.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

be a number between 0 and the number of processes spawned
by MPI. In most cases, one process, usually with rank 0, collects
all results from all processes once they are finished and presents
them to the user or continues working with them.

When integratingMPI into our code, only a fewmodifications
were necessary. First, the header table loop was modified to start
at the rank of the current process and stops iterating in steps of
one, but instead in steps of size p, where p equals the total number
of processes. This way, each process processes n

p iterations. We

equally distributed the workload across all nodes using a round-
robin-styled loop to decrease the chance that one process finishes
significantly ahead of the others. Finally, after the header table has
been processed and all patterns have been mined, all processes
except for the root process send their mined patterns, in the
correct order, to the root, where they are added to the correct
collectors. Afterward, all but the root process terminate, and the
root process performs the closed pattern detection and outputs
the final results to the user. It should be noted that our distributed
approach requires the entire FP-tree to be built on each node,
which can take a significant amount of time for large data sets.
However, this is not of any concern because due to the nature
of the data, the data sets used with SPADE are relatively small,
causing the FP-tree creation to only take a few seconds.

3. RESULTS

In this section, we evaluate the performance, in terms of runtime,
memory consumption, and energy efficiency, of our optimized
patternmining flow on several different devices and compare it to
SPADE’s original program flow. Since in this work, we primarily
focused on accelerating the pattern mining and filtering, only the
runtimes of the associated steps are examined in the following.
Therefore, full runtime refers to the total runtime required by all
tasks, i.e., patternmining, data conversion to Python, and pattern
filtering. Since in the original implementation, the patternmining
step also included closed pattern detection and data conversion
to Python, for the baseline, these steps are not listed separately.
Because we have separated these steps in our optimized version,
we include the corresponding runtimes. We show that using
our optimizations considerably reduces the runtime andmemory
consumption and noticeably increases energy efficiency, while
producing the same results as the original. Furthermore, due
to the memory optimizations, it is now possible to perform the
pattern mining on low-power embedded devices.

3.1. Test Setup
We used different platforms for evaluation. The first platform,
serving as a baseline, was a workstation equipped with an
Intel Xeon E5-1650 v4 (6 cores running at 3.60 GHz) server
CPU and 256 GB quad-channel DDR4 memory, running
Ubuntu 16.04. For the other evaluations, we used our
RECS|Box9 server (Oleksiak et al., 2019), a modular and scalable
microserver platform for resource-efficient heterogeneous high-
performance computing.

9Resource-Efficient Cluster Server – https://embedded.christmann.info/products.

The RECS|Box is a heterogeneous cluster server that allows
the user to choose between several computer architectures,
network systems, network topologies, and microserver sizes. In
this context, a microserver refers to an independent computer-
on-module (CoM) that integrates all components (e.g., CPU,
memory, IO, and power subsystem) in a small, compact form
factor for integration into a server or embedded environment.
In contrast to existing homogeneous microserver platforms
that support only a single microserver architecture, RECS|Box
seamlessly integrates the full range of microserver technologies
in a single chassis, including various CPUs as well as accelerators
based on FPGAs10 and GPUs. Hence, it can be used to
easily set up heterogeneous processing platforms optimized
for specific application requirements. CoMs are available for
all major computing platforms in both low-power and high-
performance versions. Like the big-little approach known from
mobile processors, this can be used to further increase energy
efficiency by dynamically switching, e.g., between 64-bit ARM
server processors and 64-bit ARM mobile SoCs11 or between
different FPGA/GPU devices.

Figure 5 gives a high-level overview of the modular approach
used for the design of the RECS|Box system architecture.
This modularity guarantees flexibility and reusability and thus
high maintainability. Microservers are grouped on carrier
boards that support hot-swapping and hot-plugging, similar
to a blade-style server. Three different carriers are available:
one integrating 16 low-power microservers, one for three
high-performance microservers, and one integrating PCIe-
based hardware accelerators. All microservers are designed
based on well-established CoM form factors12, which facilitates
the integration of third-party microserver modules into the
RECS|Box. Not only can the platform be individually adapted
to the given problem due to its modularity, but it is also able
to monitor the power consumption of the individual compute
modules very precisely. Furthermore, the installed modules can
communicate with each other through high-speed Ethernet
over PCI-Express, allowing for fast data exchange, e.g., when
performing distributed computing.

For our evaluation, we used high-performance as well as low-
power microservers. Firstly, we used a microserver equipped
with a HiSilicon Hi1616 (Kunpeng 916) dotriaconta-core ARM
processor (32 cores running at 2.4 GHz) and 64 GB of quad-
channel DDR4 memory, running CentOS 7.6, in a dual-socket
configuration (resulting in 64 cores/128 GB). In the following,
this will be referred to as the Hi1616 microserver. Next, an
ADLINK Express-BD713 module, equipped with an Intel Xeon D-
1577 (16 cores running at 1.30 GHz) and 32 GB dual-channel
DDR4 memory running Ubuntu 18.04 was used. Additionally,
we used an ADLINK Express-CFR-E14 microserver, equipped
with an Intel Xeon E-2276ME (6 cores running at 2.8 GHz)

10Field Programmable Gate Array.
11System-on-a-Chip.
12https://www.picmg.org/openstandards/com-express/
13https://www.adlinktech.com/Products/Computer_on_Modules/

COMExpressType7/Express-BD7
14https://www.adlinktech.com/Products/Computer_on_Modules/

COMExpressType6/Express-CFR

Frontiers in Neuroinformatics | www.frontiersin.org 9 September 2021 | Volume 15 | Article 723406

https://embedded.christmann.info/products
https://www.picmg.org/openstandards/com-express/
https://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType7/Express-BD7
https://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType7/Express-BD7
https://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType6/Express-CFR
https://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType6/Express-CFR
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 5 | Overview of the RECS|Box hardware platform.

and 32 GB of dual-channel DDR4 memory, also running
Ubuntu 18.04. Finally, we executed our implementation on
three different types of embedded NVIDIA Jetson devices, each
running Ubuntu 18.04.

As mentioned above, we also evaluated energy efficiency by
measuring each platform’s system power consumption during
the execution of the test. System power consumption refers to
the amount of power consumed by the entire system after the
power supply unit (PSU), i.e., CPU, memory, storage, and system
accessories. We measure after the PSU because, depending on
the unit’s quality and overall load, there can be a significant
difference between the system’s power and the PSU. Using the
monitoring features of the RECS|Box, we were able to accurately
measure the power consumption of the different devices installed
in it. For the workstation, the power consumption was calculated
based on continuous voltage and current measurements using
a Tektronix MDO4054B-615 oscilloscope in combination with
a Tektronix TCP0030A16 current probe. Using the TCP0030A
probe, it is possible to continuously measure the electrical current
of the 12 V power supply with a sampling rate between 500 and

15https://www.tek.com/oscilloscope/mdo4054b-6
16https://www.tek.com/datasheet/30-ac-dc-current-probe

2,500 samples per second. All tests were performed in an air-
conditioned room at about 19◦C; therefore, the DC gain accuracy
of the probe is < 1% (cf. Tektronix, 2006).

For the evaluation, we used neural data extracted from in-vivo
experimental recordings. In the experiment, a macaque monkey
performs a delayed reaching and grasping task, while its neural
activity is recorded using a 10x10 electrode array chronically
inserted in the premotor and motor cortex (Riehle et al., 2013;
Brochier et al., 2018). The experimental protocol is as follows:
the monkey is trained to self-initiate the trial by pressing a start
button, then to wait for a first visual cue, indicating the type of
grip that it has to perform (either precision grip -PG- or side grip
-SG-). After a delay period of 1 s, the monkey receives the GO
signal, together with the information of the amount of force to
apply on the object (high force -HF- or low force -LF-). After the
monkey has successfully grasped and pulled the object with the
correct grip, a reward is given. In this study, we consider session
i140703-001 of Monkey N which lasts 1003 s, and consists of 141
correct trials with randomized trial type order (i.e., combinations
of grip and force conditions: PGHF, PGLF, SGHF, SGLF). Detailed
descriptions of this published data set are given in Brochier et al.
(2018). For this data, the SPADE method can be used to detect
behaviorally-locked spatio-temporal spike patterns, mimicking

Frontiers in Neuroinformatics | www.frontiersin.org 10 September 2021 | Volume 15 | Article 723406

https://www.tek.com/oscilloscope/mdo4054b-6
https://www.tek.com/datasheet/30-ac-dc-current-probe
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

the analysis performed in (Torre et al., 2016). In this scenario,
it is necessary to segment the data in order to perform a time-
resolved analysis: we segment trials into six 500 ms long epochs,
each related to a behaviorally relevant event of the trial (start, cue
presentation, early delay, late delay, movement, reward). Identical
epochs belonging to the same trial type are concatenated to form
a total of 6x4 = 24 data sets to be analyzed with SPADE. In this
example, we consider the segment in which themonkey performs
the reaching and grasping movement with precision grip and
high force (movement_PGHF). The data set has a total duration
of 22.32 s, consists of 32 concatenated trials, and has 150 units
recorded in parallel after pre-processing. We select specifically
only single unit activities (SUA) exhibiting signal to noise ratio
(SNR) > 2.5. Furthermore, a buffer time of 200 ms is inserted
between successive trials.

This data set is a typical use case for SPADE in both length
and number of observed neurons, making it a fitting example to
benchmark the performance of the method. When transforming
the input data, as described in section 2.3, 3602 transactions
with 3,000 unique items were created, using a bin size of
5 ms and a window length of 100 ms (20 bins). We divide
the analysis into eight different jobs, each for a fixed pattern
size (number of spikes), starting from 2 and ending at 10+ in
steps of one. For each pattern size, the minimum number of
occurrences is estimated for optimizing the pattern mining: the
distribution of number of occurrences of a chance pattern of fixed
size is estimated with a Poisson assumption using the average
estimated rate of all neurons. By taking the 95% percentile of this
distribution, we estimate the number of occurrences that a non-
significant pattern would have under independence, giving us a
lower bound for the support in the pattern search. The absolute
lower bound for pattern occurrences is fixed to 10. In fact, in a
classical use case of the method, we would focus on behavior-
specific patterns. Thus, patterns occurring in less than 30% of
the total number of trials (∼ 30 trials per combination of epoch
and trial type) are not considered. The different configurations
of pattern sizes and number of pattern occurrences are described
in Table 1. In addition to the configurations, the table also lists
the total number of unfiltered frequent patterns found for each
job and how many are left after filtering. With these values,
the impact of one of our main optimizations, i.e., filtering the
patterns directly when they are mined, can be seen very clearly.
This significantly reduces the number of patterns to be stored,
thus reducing overall memory consumption and reducing the
number of patterns fed to the closed detector to a fraction of the
original amount. Through filtering, between 90 and 100% of the
mined patterns are discarded.

3.2. Evaluation of the Software Baseline on
x86 Server
To determine the runtime, memory consumption, and energy
efficiency of the current flow, i.e., create a performance baseline,
we executed the latest SPADE version (v0.9.0) on the workstation
mentioned before, base on an Intel Broadwell Xeon E5-1650 v4.
The considerable memory consumption of the baseline flow
made execution on the embedded devices impossible. Table 2

TABLE 1 | Configurations of the eight jobs used for the evaluation.

Job Min. occ. Min. spikes Patterns Filtered patterns

0 88 2 200,971 22,709

1 25 3 16,477,189 1,562,086

2 12 4 246,958,100 8,486,483

3 10 5 424,713,012 398,618

4 10 6 259,915,712 41

5 10 7 109,269,024 0

6 10 8 29,385,509 0

7 10 9 4,637,531 0

TABLE 2 | Workstation runtime and memory consumption of the implementation

currently used in SPADE.

Job
FP-growth

runtime (s)

Filtering

runtime (s)

Full

runtime (s)

Peak mem.

Consumption (GB)

0 0.9 0.9 1.8 0.4

1 41.4 83.6 125.0 3.3

2 2299.0 1386.9 3685.9 44.0

3 6506.7 2351.9 8858.6 77.5

4 3033.1 1451.7 4484.8 45.8

5 1651.5 647.5 2299.0 21.3

6 1369.1 187.7 1556.8 8.0

7 1336.7 30.8 1367.5 3.7

Sum 16238.4 6141.0 22379.4

depicts the time, in seconds, required for the entire C-based
FP-Growth flow, the time, in seconds, to perform the result
filtering in Python, and the accumulated runtime, in minutes.
The runtime for the FP-Growth flow includes the data conversion
from Python to C, the pattern detection (including closed pattern
detection), and the conversion of the results back to Python.
Furthermore, the table also lists the peak memory consumption
for each job. As can be seen, increasingly complex jobs can take
from a few minutes up to 2 h and consume more than 70 GB
of memory. As mentioned in section 2, these high memory
requirements are mainly caused by the need to convert all
closed patterns (up to 400 million, depending on the job) back
to Python, where the filtering is performed. The baseline flow
required 6 h and 13 min to complete all eight jobs. Based on the
workstations’ average power consumption of 64.8W17, the entire
computation consumed 1.45 MJ18.

Afterward, we executed our optimized implementation both
in single- and in multi-threaded (12-threads) mode. Both
runtimes, as well as the peak memory consumption, are depicted
in Table 3. As only the FP-Growth implementation is affected by
threading, there was no noticeable difference in the time required
for the closed frequent pattern detection or the conversion
to Python, so only the results from the single-threaded test
are listed. By filtering the results directly during the creation

17Watt.
18Joule (watt-second).

Frontiers in Neuroinformatics | www.frontiersin.org 11 September 2021 | Volume 15 | Article 723406

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

TABLE 3 | Workstation runtime of the optimized implementation in single (ST)- and multi (MT)-threaded mode.

Job

FP-growth

runtime (s)
Closed

det. (s)

Conversion

to Python (s)

Full runtime (s)
Peak mem.

cons. (GB)

ST MT ST MT ST MT

0 1.2 0.5 0.0 0.0 1.3 0.6 0.5 0.5

1 14.9 2.4 1.3 1.0 17.2 4.7 1.3 1.3

2 116.4 17.4 13.3 14.3 143.9 45.1 3.5 3.5

3 205.4 32.7 0.5 0.7 206.6 34.0 3.4 3.4

4 195.9 31.3 0.0 0.0 196.0 31.4 1.9 1.9

5 180.9 29.8 0.0 0.0 181.0 29.9 1.8 1.8

6 174.1 25.7 0.0 0.0 174.1 25.8 1.8 1.8

7 171.0 25.2 0.0 0.0 171.1 25.3 1.8 1.8

Sum 1059.8 165.0 15.1 16.0 1091.2 196.8

TABLE 4 | Runtime of the multi-threaded implementation on the ADLINK Express-BD7, the ADLINK Express-CFR-E and the HiSilicon Hi1616 microserver.

Job FP-growth runtime (s) Closed detection (s) Conv. to Python (s) Full runtime (s)

BD7 CFR Hi16 BD7 CFR Hi16 BD7 CFR Hi16 BD7 CFR Hi16

0 0.9 0.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.9

1 2.6 2.2 1.2 2.9 1.1 2.4 1.5 0.6 2.2 7.1 4.0 6.0

2 16.0 16.8 5.0 24.8 10.8 22.9 20.3 8.2 35.6 61.2 35.8 63.7

3 28.0 31.8 8.6 0.8 0.4 0.8 1.1 0.4 1.6 30.0 32.7 11.1

4 27.0 32.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 27.2 32.1 8.1

5 25.0 30.2 7.5 0.0 0.0 0.0 0.0 0.0 0.0 25.2 30.3 7.6

6 23.8 31.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0 24.0 31.1 7.3

7 23.1 30.4 7.0 0.0 0.0 0.0 0.0 0.0 0.0 23.3 30.5 7.1

Sum 146.4 174.9 45.3 28.5 12.3 26.1 22.9 9.2 39.4 199.0 197.0 111.8

process, it was possible to significantly reduce the peak memory
consumption to amaximumof 4GB. The single-threaded version
required 18 min and 11 s to complete all eight jobs, while the
multi-threaded version finished all jobs in 3min and 17 s, making
it 114 times as fast as the baseline (see Table 7). Regarding energy
efficiency, 65W (70,876 J) and 109.9W (21,638 J) were consumed
in single- and multi-threaded mode, respectively. The multi-
threaded implementation achieved an energy efficiency 67 times
higher than the current implementation (see Table 7).

3.3. Evaluation on RECS|Box for Server
Processors
Due to its combined 64 cores running at 2.4 GHz, the Hi1616
microserver achieved the highest parallel processing speed and
overall lowest runtime of all considered platforms (cf. Table 4).
In terms of overall runtime, compared to the workstation, it
finished all jobs in 57% of the time, with an average power
consumption of 123.3 W (13,780 J), 64% of the energy the
workstation required. Compared to the baseline, a speedup of
200 was achieved while being 105 times as energy efficient (see
Table 7). The Intel Xeon D-1577 in the ADLINK Express-BD7,
on the other hand, required just 2 s longer (3 min and 19 s) than

the workstation to finish all jobs. However, the average power
consumption of the Xeon D was only 51.1 W (10,164 J), meaning
only 47% of the energy was required to finish all jobs compared
to the workstation. When comparing the results to the baseline,
the Xeon D achieved a speedup of 113 while being 143 times
more energy efficient. Finally, the Intel Xeon E-2276ME finished
all jobs in the same time as the workstation while requiring
on average only 60.3 W (11,887 J), i.e., 55% of the energy the
workstation required. Compared to the baseline, a speedup by a
factor of 114 together with a 122 times higher energy efficiency
was achieved (see Table 7).

3.4. Evaluation on RECS|Box for Embedded
Processors
Over the last decade, energy efficiency has become increasingly
important in data centers, especially when focusing on cloud
computing (Oleksiak et al., 2017). Therefore, we evaluated our
implementation’s performance and energy efficiency on several
embedded devices, namely the NVIDIA Jetson AGX Xavier19,
the NVIDIA Jetson Xavier NX20, and up to four NVIDIA Jetson

19https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
20https://developer.nvidia.com/embedded/jetson-xavier-nx

Frontiers in Neuroinformatics | www.frontiersin.org 12 September 2021 | Volume 15 | Article 723406

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-xavier-nx
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

TABLE 5 | Runtime of the multi-threaded implementation on all three embedded devices.

Job FP-growth runtime (s) Closed detection (s) Conversion to Python (s) Full runtime (s)

AGX NX TX2 AGX NX TX2 AGX NX TX2 AGX NX TX2

0 1.0 1.7 1.9 0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.9 2.1

1 5.9 10.5 8.7 1.6 2.5 1.9 1.8 2.7 2.8 9.3 15.8 13.6

2 39.3 75.5 55.3 15.0 21.7 19.6 19.3 35.9 31.2 73.6 133.3 106.3

3 71.3 143.8 94.1 0.5 0.7 0.6 0.8 2.2 1.7 72.6 146.8 96.5

4 68.6 137.2 90.6 0.0 0.0 0.0 0.0 0.0 0.0 68.6 137.4 90.8

5 69.6 119.9 89.0 0.0 0.0 0.0 0.0 0.0 0.0 69.7 120.0 89.1

6 68.6 132.5 83.7 0.0 0.0 0.0 0.0 0.0 0.0 68.7 132.6 83.8

7 67.0 128.2 88.9 0.0 0.0 0.0 0.0 0.0 0.0 67.1 128.3 89.0

Sum 391.4 749.3 512.2 17.1 24.9 22.1 21.9 40.7 35.7 430.7 816.1 571.2

TX221, each running Ubuntu 18.04. These devices feature low
power consumption along with a small form factor and are
equipped with between four and eight ARM cores. In addition
to its quad-core ARM Cortex-A57 CPU, the Jetson TX2 also
possesses a dual-core NVIDIA Denver 2 CPU. In contrast to
that, the Jetson AGX and NX use hexa- and octa-core NVIDIA
Carmel ARMv8.2 CPUs, respectively. With its 32 GB of DDR4
memory, the AGX Xavier possesses four times as much memory
as the Xavier NX and the Jetson TX2, which each are equipped
with 8 GB. Changing the power mode makes it possible to adjust
the CPU and GPU clock frequency and disable all but one core,
e.g., disable the Denver cores on the TX2 and only use the ARM
cores or only use four of the eight cores on the AGX Xavier.
For our tests, we configured each device to use all available CPU
cores at their maximum clock frequency. While each core of
the Jetson TX2 and the AGX Xavier can achieve a maximum
frequency of 2 GHz, the cores on the Xavier NX are limited
to 1.4 GHz when all cores are enabled. Because currently, the
GPUs integrated in the devices are not used at all, the GPU
frequency was limited as much as possible to reduce power
consumption. The achieved performance and energy efficiency
values were compared to the original flow and the results from
the workstation test presented in section 3.2.

3.4.1. Execution on a Single Device
Table 5 summarizes the runtimes of the three different embedded
platforms for all eight jobs. The best performance is achieved
by the NVIDIA Jetson AGX Xavier, which completed all jobs in
7 min and 11 s, followed by the Jetson TX2 and the Xavier NX
with 9 min, 31 s, and 13 min, 36 s, respectively. Although
compared to the workstation, the embedded devices’ runtime
is between 2.2 and 4.4 times longer, they required significantly
less power and consumed overall less energy. The most power
was required by the AGX Xavier, which consumed an average
of 20.4 W, resulting in an energy consumption of 8,786 J,
followed by the Xavier NX with 6.7 W (5,468 J, one-fourth of
the workstation), and the least amount of energy was required
by the Jetson TX2 with 9.1 W (5,181 J, less than one-fourth of

21https://developer.nvidia.com/embedded/jetson-tx2

the workstation). Compared to the baseline flow, the embedded
devices are between 52 and 27 times faster and between 280 and
165 times more energy efficient (see Table 7). These results show
that even though the runtime is higher than on a workstation, the
use of embedded platforms may be more suitable in situations
where energy efficiency is of a higher priority than runtime.

3.4.2. Execution on Multiple Devices
In addition to the previous single device execution, we also
utilized the OpenMPI-based distributed flow described in
section 2.6 to run the implementation on up to four NVIDIA
Jetson TX2. As mentioned before, only the FP-Growth part is
accelerated using multi-threading and distributed computing,
while everything else is performed sequentially on the root
node. Therefore, the runtimes for the closed detection and the
conversion to Python are omitted here, as they equal those of
the single node execution, depicted in Table 5. Table 6 shows
the time required for the FP-Growth-based pattern mining, the
full runtime of the accelerated section, and the communication
overhead. It should be noted that the communication time is
part of the FP-Growth runtime and is listed separately to show
its impact. When looking at the accumulated runtime of the
FP-Growth part, a noticeable improvement compared to the
execution on a single node is visible. For a single TX2, this part
took 8:32 min, while, when using two, three, or four TX2, it was
reduced to 4:36, 3:15, and 2:32 min, respectively. Two Jetson TX2
significantly outperform the AGXXavier in terms of runtime and
energy efficiency, as the two TX2 only consume 5,986 J 68% of the
energy required by the AGX. As only a part of the computation is
performed in parallel, an increase in compute nodes will result in
a decrease in energy efficiency. However, four TX2 modules are
able to finish all jobs in nearly the same amount of time as the
workstation (16 s slower) while only consuming 31% (6,670 J)
of the energy required by the workstation. Compared to the
baseline, the use of between two and four TX2 modules achieved
an acceleration by a factor of 66 to 105 and an increase in energy
efficiency by a factor of 217 to 242 (see Table 7). Ultimately, the
decision to make is whether to decrease the runtime by adding
more TX2 nodes, resulting in increasing energy consumption or
increasing energy efficiency at the cost of an increased runtime.

Frontiers in Neuroinformatics | www.frontiersin.org 13 September 2021 | Volume 15 | Article 723406

https://developer.nvidia.com/embedded/jetson-tx2
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

TABLE 6 | Runtime of the multi-threaded implementation on up to four NVIDIA Jetson TX2.

Job FP-growth runtime (s) Communication (s) Full runtime (s)

2 TX2 3 TX2 4 TX2 2 TX2 3 TX2 4 TX2 2 TX2 3 TX2 4 TX2

0 1.5 1.7 1.7 0.1 0.2 0.3 1.7 1.8 1.9

1 5.3 4.1 3.8 0.5 0.6 0.9 9.8 0.9 8.3

2 29.5 21.9 17.4 1.5 2.0 2.3 82.7 71.2 70.4

3 52.6 35.3 27.4 0.3 0.5 0.6 55.1 37.8 30.0

4 50.4 33.9 27.9 0.2 0.4 0.5 50.5 34.0 28.0

5 47.4 34.0 23.7 0.2 0.4 0.5 47.5 34.1 23.9

6 45.2 31.5 23.9 0.2 0.4 0.5 45.3 31.6 24.0

7 44.1 32.3 26.0 0.2 0.4 0.5 44.2 32.4 26.1

Sum 276.0 194.7 151.8 3.2 4.9 6.1 336.8 243.8 212.6

TABLE 7 | Runtime and energy consumption of all platforms.

System Power (W) Runtime (s)
Energy Improvement over baseline

Joule Wh Energy Runtime

Workstation (Baseline) 64.8 22,379.4 1,450,182 402.83 1 1

Workstation (ST) 65.0 1091.2 70,879 19.69 20 21

Workstation (MT) 109.9 196.8 21,638 6.01 67 114

Express-BD7 51.1 198.9 10,164 2.82 143 113

Express-CFR-E 60.3 197.0 11,887 3.30 122 114

Hi1616 123.3 111.8 13,780 3.82 105 200

AGX Xavier 20.4 430.7 8,786 2.44 165 52

Xavier NX 6.7 816.1 5,468 1.52 265 27

Jetson TX2 9.1 571.2 5,181 1.44 280 39

2x Jetson TX2 17.8 336.8 5,986 1.66 242 66

3x Jetson TX2 25.0 243.8 6,093 1.69 238 92

4x Jetson TX2 31.4 212.6 6,670 1.85 217 105

TABLE 8 | Full runtime (in seconds) comparison of the original and the optimized flow for different data sets.

Data set Length (s) Neurons Found patterns
Original flow Optimized flow

Runtime Baseline-% Runtime Baseline-%

Baseline 22.32 150 10,214,712 22379.4 100% 196.8 100%

Long 1003.00 150 7,097,875 – – 3052.6 1551%

Short 5.00 150 73,172 89.4 0.4% 4.0 2%

300 Neurons 22.32 300 28,077,304 28257.7 126% 432.2 220%

450 Neurons 22.32 450 64,933,631 64167.5 287% 1241.1 631%

3.5. Scalability
We analyzed the scalability of our optimized flow in terms of
increased compute power, e.g., multiple NVIDIA Jetson TX2 and
with regards to data sets with varying properties, i.e., longer
and shorter recordings as well as recordings with up to 450
neurons. All measurements for both the original flow and our
optimized version were performed on the workstation system.
For this evaluation, we used four different data sets. First, the
entire 1,003 s long recording session of 150 neurons mentioned
in section 3.1 was used as a baseline data set to analyze how both

implementations handle long data sets. Next, to test the opposite,
the first 5 s of themovement_PGHF data set were used to analyze
the performance when working with short inputs. Finally, to
test the effect an increase in neurons has on the runtime, we
created two data sets, each with a length of 22.32 s and with
300 and 450 neurons, respectively, by stacking spike trains of
the original data set. The total runtime, i.e., FP-Growth, filtering,
closed detection, and conversion to Python, for each data set
and both flows, is given in Table 8. Furthermore, the table lists
the runtime as a percentage of the baseline data set’s runtime.

Frontiers in Neuroinformatics | www.frontiersin.org 14 September 2021 | Volume 15 | Article 723406

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

The original flow was unable to process the long recording, as
we had to stop it after 30 h after it consumed over 200 GB
of memory.

When analyzing the table, it can be seen that when the number
of neurons is increased, our implementation does not scale as
well as the original. This becomes particularly evident when
considering that a tripling of the neurons leads to a more than
sixfold increase of the runtime in our version. In comparison, the
runtime of the original version did not even triple. In contrast
to this, when the recording duration increases or decreases, the
scaling is comparable to the original. On the one hand, when
the recording time is decreased from 22.32 to 5 s, only 2% of
the original runtime was required, i.e., a reduction by a factor of
50. On the other hand, when the recording length is increased
by a factor of 45, the runtime increases only by a factor of
about 15. The main bottleneck and one of the primary factors
for the inadequate scaling of the optimized flow are the closed
detection and the data conversion to Python. As seen before, in
jobs where many valid patterns are found by FP-Growth, these
two steps significantly impact the overall performance, as they are
currently executed sequentially on a single CPU core in contrast
to the parallel FP-Growth. This is also the primary reason for the
weaker scaling when the number of neurons increases, which can
lead to a significant increase in found patterns. Concluding, it
can be said that although our implementation scales not as well
as the original, it still scales adequately even when confronted
with long data sets or ones containing several hundred neurons.
Furthermore, due to the overall significantly lower runtime, our
proposed flow is between one and two orders of magnitude faster
than the original.

4. DISCUSSION

Finding spike patterns in parallel spike trains using the FP-
Growth pattern mining algorithm and a custom filter function
is one of the most time-intensive parts of the SPADE method.
In the currently available implementation, pattern mining is
performed using a C-based Python module, while the filtering is
done directly in Python. There are some significant flaws in the
current flow that result in a significantly increased runtime. On
the one hand, all found patterns need to be converted from C to
Python, which takes a long time and consumes a large amount
of memory. On the other hand, performing the pattern filtering
in the Python programming language also negatively affects
the runtime. Therefore, in this work, we developed a multi-
threaded C++-based Python module that, while maintaining
the original flow’s functionality, performed the task between
27 and 200 times faster, while at the same time being 67
to 280 times as energy efficient depending on the executing
hardware. By integrating the pattern filtering function directly
into the FP-Growth implementation developed in this work, we
dramatically reduced the number of produced patterns that need
to be converted to Python. This reduced not only the runtime
but also the memory consumption. Furthermore, we integrated
multi-threading and distributed computing capabilities into our
FP-Growth implementation to fully utilize the CPU of one
or more compute nodes. Additionally, we showed that our
implementation scales reasonably when the number of neurons

or the length of the recording is changed and is able to finish the
processing of a very large data set (1,003 s of neuron activity) in
less than an hour, a task that was not possible using the original
version. As a result, the improvement of the method enables
the analysis of experimental data in a feasible amount of time
together with the statistical evaluation of mined patterns, i.e., in
the case where FP-Growth is applied not only on the original
data set, but also on its surrogates, as explained in section 2.3.
Our optimized flow opens up the possibility to perform more
complex analyses due to the highly reduced amount of time. This
makes it possible to handle large state-of-the-art data sets, such
as data recorded from multiple Utah arrays (Chen et al., 2020),
or Neuropixel probes (Juavinett et al., 2019), and to combine
the results of SPADE with other approaches to investigate the
correlative structure of neuronal dynamics (Diana et al., 2019;
Watanabe et al., 2019; Williams et al., 2020).

4.1. Platform Comparison
Here, we perform a concluding comparison of the results
achieved by our optimized implementation on the different
platforms. The performance, in terms of runtime, memory
consumption, and energy efficiency of our implementation
was evaluated on a workstation system, a Hi1616 microserver
equipped with two HiSilicon Hi1616 CPUs, an ADLINK Express-
BD7 equipped with an Intel Xeon D-1577, an ADLINK Express-
CFR-E equipped with an Intel Xeon E-2276 and three different
embedded computing devices from NVIDIA, namely Xavier NX,
AGX Xavier and Jetson TX2. For an easy comparison, some of
the most distinctive features of each platform focused on the
respective CPU are shown in Table 9. These are, among others,
the architecture, TDP22, and ISA23 of the CPU, as well as the type
of memory installed. Figure 6 shows the performance, in terms
of FP-Growth runtime only, total execution time, and energy
consumption, of the different platforms. The graph is sorted by
total execution time. Total Pattern Mining Flow refers to the
time required for the entire accelerated flow, i.e., FP-Growth-
based pattern mining, pattern filtering, closed detection, and data
conversion to Python, while FP-Growth Only exclusively shows
the time required for the FP-Growth-based pattern mining and
the pattern filtering.

Except for the Hi1616 microserver, FP-Growth consumed the
largest portion of the runtime on all platforms. Thanks to its
64 cores, the Hi1616 microserver achieved the highest parallel
processing performance and overall fastest execution time
(111 s). However, due to the low individual core performance, a
significant amount of time was required for the flow’s sequential
parts, which noticeably increased the full runtime. This, in turn,
affected the power consumption, which resulted in the third-
highest energy consumption (13,780 J). As can be expected, the
longest runtime (1,091 s) and the highest energy consumption
(70,876 J) belong to the single-threaded version’s execution on
the workstation. However, these values are still one order of
magnitude lower than the original implementation, whose results
are 20 times higher in both aspects (22,379 s and 1,450,185 J).

22ThermalDesign Power.
23Instruction Set Architecture.

Frontiers in Neuroinformatics | www.frontiersin.org 15 September 2021 | Volume 15 | Article 723406

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

TABLE 9 | Overview of the different platforms and their distinctive features.

Platform CPU Architecture Memory Cores Threads Clockrate TDP ISA

Workstation E5-1650 v4 Haswell DDR4 6 12 3.6 GHz 140 W x86

Exp.-BD7 D-1577 Broadwell DDR4 16 32 1.3 GHz 45 W x86

Exp.-CFR-E E-2276ME Coffee Lake DDR4 6 12 2.8 GHz 45 W x86

Hi1616 Hi1616 Kunpeng DDR4 32 32 2.4 GHz 85 W A64

Jetson TX2
Cortex-A57 ARMv8-A LPDDR4 4 4 2.0 GHz 7.5 W A64

Denver Denver LPDDR4 2 2 2.0 GHz 7.5 W A64

AGX Xavier Carmel Carmel LPDDR4X 8 8 2.0 GHz 30 W A64

Xavier NX Carmel Carmel LPDDR4X 6 6 1.4 GHz 15 W A64

FIGURE 6 | Runtimes of the optimized flow on all considered platforms (cf. Table 7). MT refers to the multi-threaded, ST to the single-threaded and Original to the

baseline (currently used) version. A detailed overview over the different platforms and their features is presented in Table 9.

For identifying the most suitable platform for the given
application, both runtime, and energy consumption have to
be considered. The lowest energy consumption was obtained
using one Jetson TX2 (5,181 J), while the fastest runtime was
achieved on the Hi1616 microserver (111 s). Comparing the two
in consideration of the respective other value, the TX2 takes
five times longer, while the Hi1616 microserver consumes about
2.7 times more energy. When focusing on only one of these
values, it is straightforward to choose the most suitable platform.
However, when both factors are of equal importance, the decision
becomes significantly more challenging. The most balanced ratio
between runtime and energy consumption was achieved on the

platforms we looked at when two or three Jetson TX2 were used
in parallel.

4.2. Summary and Future Work
We have presented our optimized version of the SPADEmethod’s
pattern mining flow in this work, using a custom-tailored FP-
Growth implementation. Using a data set containing spike trains
from experimental data, we performed our evaluation on a
typical SPADE use case. We showed how our implementation
handles different input settings by varying the parameter
configuration for the minimum size and occurrence number.
Furthermore, using our distributed approach on up to four TX2,

Frontiers in Neuroinformatics | www.frontiersin.org 16 September 2021 | Volume 15 | Article 723406

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

a near-linear scaling for the part computed in parallel, i.e., the
FP-Growth-based pattern mining, was achieved. In this work, our
primary focus was the acceleration of the pattern mining and
result filtering tasks, as they account for between 85 and 90%
of the overall runtime. On the one hand, we showed that our
improved version was, depending on the platform used, between
27 and 200 times faster compared to the original implementation.
On the other hand, all platforms’ energy consumption was up
to two orders of magnitude lower than the original FP-Growth
version currently used in SPADE. The highest energy efficiency
was achieved by the embedded devices, which, when executing
our flow, required only between 41% and 24% of the energy
consumed by the workstation, running the multi-threaded
version of our optimized implementation. Furthermore, the
execution on embedded devices is now possible; previously, this
was prevented by the high memory requirements.

In the future, we intend to further improve our flow by looking
at ways to accelerate the sections currently executed sequentially,
i.e., the closed pattern detection and the data conversion to
Python. Depending on the number of patterns found by FP-
Growth, these parts become the bottleneck, as mentioned in
section 3.5. An example of this can be seen in job 2, where,
depending on the platform, these tasks account for a significant
portion of the job’s and the overall runtime. For this reason,
we will be looking into implementations for parallel closed
pattern detection, e.g., the propositions made by Lucchese et al.
(2007) and Huynh et al. (2017). Besides the acceleration of these
sections, we plan to integrate the filtering even deeper into
our FP-Growth implementation, e.g., by marking all items that
reside in the first bin of their respective windows. This could
enable even faster filtering and, in addition, might also reduce
the number of header table entries to check. Furthermore, we
want to evaluate the usability of GPU-based FP-Growth and
closed pattern detection implementations, like the ones described
in Wang and Yuan (2014), Jiang and Meng (2017), and Wu
et al. (2019). At the same time, it will also be of interest to
analyze the applicability of a heterogeneous CPU and GPU
implementation, i.e., where the workload is shared between the
CPU and the GPU. This is something from which especially the
embedded devices could significantly benefit, as their GPU is
directly connected to the DDR memory allowing for fast data
exchange. We also intend to further improve our distributed
computing setup performance by exploring different strategies
like the ones proposed by Li et al. (2008) and Chen et al. (2009).
Additionally, we suggest to investigate different pattern mining
algorithms, e.g., LCM24 (Uno et al., 2004) or DPT25 (Qu et al.,
2020), and evaluate their performance in the given use case.
Finally, we want to analyze further the SPADE code surrounding
FP-Growth to find more potential improvement points. At the
same time, it might be worthwhile to analyze the SPADE code
as a whole and identify bottlenecks that can be accelerated using
custom C/C++ modules.

24Linear time Closed itemsetMiner.
25Dynamic Prefix Tree.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data, together with the source code for the Python module
presented in this paper can be found at: https://github.com/
fporrmann/FPG. The accelerated version of the SPADE method
presented in this article is included in the Elephant26 GitHub
project at: https://github.com/NeuralEnsemble/elephant and will
be featured starting from the official release 0.11.0. For an
interactive demonstration on how to use the SPADE method,
please refer to the tutorial page of the Elephant documentation
available at: http://tutorials.python-elephant.org.

AUTHOR CONTRIBUTIONS

FP: conceptualization, software implementation and
optimization, testing, evaluation, and writing original draft
preparation. SP and FP: visualization. AS: data preparation. FP,
SP, AS, AK, MD, JH, and UR: writing review and editing. JH and
UR: project administration and funding acquisition. All authors
have read and agreed to the published version of the manuscript.

FUNDING

This publication was supported by the VEDLIoT and LEGaTO
projects, which received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreements Nos. 957197 and 780681. Besides, the work was
supported by the PhD program Design of Flexible Work
Environments–Human-Centric Use of Cyber-Physical Systems
in Industry 4.0, funded by the North Rhine-Westphalian
funding scheme Forschungskolleg and affiliated to the
Research Institute for Cognition and Robotics (CoR-Lab),
Bielefeld University. This project has also received funding
from the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under Specific
Grant Agreement No. 945539 (Human Brain Project SGA3)
and the Helmholtz Association Initiative and Networking Fund
under project number ZT-I-0003 and the VSR computation
grant JINB33, Jülich.

ACKNOWLEDGMENTS

We thank Prof. Dr.-Ing. Mario Porrmann from Osnabrück
University for his comments that greatly improved
the manuscript. We also thank Kevin Mika and René
Griessl from Bielefeld University for their assistance
during the performance and energy efficiency evaluation.
We acknowledge the financial support of the German
Research Foundation (DFG) and the Open Access
Publication Fund of Bielefeld University for the article
processing charge.

26RRID:SCR003833; python-elephant.org.

Frontiers in Neuroinformatics | www.frontiersin.org 17 September 2021 | Volume 15 | Article 723406

https://github.com/fporrmann/FPG
https://github.com/fporrmann/FPG
https://github.com/NeuralEnsemble/elephant
http://tutorials.python-elephant.org
http://python-elephant.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

REFERENCES

Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules

between sets of items in large databases. ACM SIGMOD Rec. 22, 207–216.

doi: 10.1145/170036.170072

Agrawal, R., and Srikant, R. (1994). “Fast algorithms for mining

association rules in large databases,” in Proceedings of the 20th

International Conference on Very Large Data Bases, VLDB

’94 (San Francisco, CA: Morgan Kaufmann Publishers Inc.),

487–499.

Bin, Z., and Li, J. (2008). An improved algorithm based on FP-growth. J.

Pinddingshan 17, 9–12.

Borgelt, C., Braune, C., Loewe, K., and Kruse, R. (2015). “Mining frequent

parallel episodes with selective participation,” in 2015 Conference of the

International Fuzzy Systems Association and the European Society for

Fuzzy Logic and Technology (IFSA-EUSFLAT-15) (Gijón: Atlantis Press).

doi: 10.2991/ifsa-eusflat-15.2015.97

Borgelt, C., and Picado-Muiño, D. (2013). “Finding frequent patterns in parallel

point processes,” in Advances in Intelligent Data Analysis XII, eds A. Tucker,

F. Höppner, A. Siebes, and S. Swift (Berlin; Heidelberg: Springer), 116–126.

doi: 10.1007/978-3-642-41398-8_11

Brochier, T., Zehl, L., Hao, Y., Duret, M., Sprenger, J., Denker, M., et al. (2018).

Massively parallel recordings in macaque motor cortex during an instructed

delayed reach-to-grasp task. Sci. Data 5:180055. doi: 10.1038/sdata.2018.55

Chen, M., Gao, X., and Li, H. (2009). “An efficient parallel FP-growth

algorithm,” in 2009 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (Piscataway, NJ: IEEE).

doi: 10.1109/CYBERC.2009.5342148

Chen, X., Wang, F., Fernandez, E., and Roelfsema, P. R. (2020). Shape perception

via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370,

1191–1196. doi: 10.1126/science.abd7435

Dean, J., and Ghemawat, S. (2004). “Mapreduce: Simplified data processing

on large clusters,” in 6th Symposium on Operating System Design and

Implementation (OSDI 2004), eds E. A. Brewer and P. Chen (San Francisco,

CA).

Denker, M., Yegenoglu, A., and Grün, S. (2018). Collaborative HPC-enabled

workflows on the HBP Collaboratory using the Elephant framework.

Neuroinformatics. doi: 10.12751/incf.ni2018.0019

Diana, G., Sainsbury, T. T., and Meyer, M. P. (2019). Bayesian

inference of neuronal assemblies. PLoS Comput. Biol. 15:e1007481.

doi: 10.1371/journal.pcbi.1007481

Ganter, B., and Wille, R. (1999). Formal Concept Analysis. Berlin; Heidelberg:

Springer. doi: 10.1007/978-3-642-59830-2

Gerstein, G. L., Williams, E. R., Diesmann, M., Grün, S., and Trengove, C. (2012).

Detecting synfire chains in parallel spike data. J. Neurosci. Methods 206, 54–64.

doi: 10.1016/j.jneumeth.2012.02.003

Grahne, G., and Zhu, J. (2003). “Efficiently using prefix-trees in mining frequent

itemsets,” in Proceeding of the ICDM’03 International Workshop on Frequent

Itemset Mining Implementations (FIMI’03) (Melbourne, VIC), 123–132.

Grün, S., Diesmann, M., and Aertsen, A. (2002a). Unitary events in multiple

single-neuron spiking activity: I. Detection and significance. Neural Comput.

14, 43–80. doi: 10.1162/089976602753284455

Grün, S., Diesmann,M., andAertsen, A. (2002b). Unitary events inmultiple single-

neuron spiking activity: II. Nonstationary data. Neural Comput. 14, 81–119.

doi: 10.1162/089976602753284464

Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.

(2018). Reproducible neural network simulations: statistical methods for model

validation on the level of network activity data. Front. Neuroinform. 12:90.

doi: 10.3389/fninf.2018.00090

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate

generation. ACM SIGMOD Rec. 29, 1–12. doi: 10.1145/335191.335372

Harris, K. (2005). Neural signatures of cell assembly organization. Nat. Rev.

Neurosci. 5, 339–407. doi: 10.1038/nrn1669

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory.

New York, NY: John Wiley & Sons.

Huynh, B., Vo, B., and Snasel, V. (2017). An efficient parallel method for

mining frequent closed sequential patterns. IEEE Access 5, 17392–17402.

doi: 10.1109/ACCESS.2017.2739749

Jiang, H., and Meng, H. (2017). “A parallel FP-growth algorithm based on GPU,”

in 2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)

(Piscataway, NJ: IEEE). doi: 10.1109/ICEBE.2017.24

Juavinett, A. L., Bekheet, G., and Churchland, A. K. (2019). Chronically implanted

neuropixels probes enable high-yield recordings in freely moving mice. eLife

8:e47188. doi: 10.14224/1.38304

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., et

al. (2017). Fully integrated silicon probes for high-density recording of neural

activity. Nature 551, 232–236. doi: 10.1038/nature24636

Li, H., Wang, Y., Zhang, D., Zhang, M., and Chang, E. Y. (2008). “Pfp,” in

Proceedings of the 2008 ACM conference on Recommender systems - RecSys 08

(New York, NY: ACM Press). doi: 10.1145/1454008.1454027

Lopes-dos Santos, V., Ribeiro, S., and Tort, A. B. (2013). Detecting cell

assemblies in large neuronal populations. J. Neurosci. Methods 220, 149–166.

doi: 10.1016/j.jneumeth.2013.04.010

Lucchese, C., Orlando, S., and Perego, R. (2007). “Parallel mining of frequent

closed patterns: harnessing modern computer architectures,” in Seventh IEEE

International Conference on Data Mining (ICDM 2007) (Omaha, NE: IEEE).

doi: 10.1109/ICDM.2007.13

Oleksiak, A., Kierzynka, M., Piatek, W., Agosta, G., Barenghi, A.,

Brandolese, C., et al. (2017). M2DC–modular microserver DataCentre

with heterogeneous hardware. Microprocess. Microsyst. 52, 117–130.

doi: 10.1016/j.micpro.2017.05.019

Oleksiak, A., Kierzynka, M., Porrmann, M., Hagemeyer, J., Griessl, R.,

Peykanu, M., et al. (2019). M2DC-A Novel Heterogeneous Hyperscale

Microserver Platform. Cham: Springer International Publishing AG.

doi: 10.1007/978-3-319-92792-3_6

Picado-Muiño, D., Borgelt, C., Berger, D., Gerstein, G. L., and Grün, S. (2013).

Finding neural assemblies with frequent item set mining. Front. Neuroinform.

7:9. doi: 10.3389/fninf.2013.00009

Picado-Muiño, D., Castro León, I., and Borgelt, C. (2012). “Fuzzy frequent pattern

mining in spike trains,” in Advances in Intelligent Data Analysis XI, eds J.

Hollmén, F. Klawonn, and A. Tucker (Berlin; Heidelberg: Springer), 289–300.

doi: 10.1007/978-3-642-34156-4_27

Pipa, G., Wheeler, D. W., Singer, W., and Nikolie, D. (2008). NeuroXidence:

reliable and efficient analysis of an excess or deficiency of joint-spike events.

J. Comput. Neurosci. 25, 64–88. doi: 10.1007/s10827-007-0065-3

Qu, J.-F., Hang, B., Wu, Z., Wu, Z., Gu, Q., and Tang, B. (2020). Efficient

mining of frequent itemsets using only one dynamic prefix tree. IEEE Access

8, 183722–183735. doi: 10.1109/ACCESS.2020.3029302

Quaglio, P., Rostami, V., Torre, E., and Grün, S. (2018). Methods for identification

of spike patterns in massively parallel spike trains. Biological Cybernetics 112(1-

2):57–80. doi: 10.1007/s00422-018-0755-0

Quaglio, P., Yegenoglu, A., Torre, E., Endres, D. M., and Grün, S. (2017).

Detection and evaluation of spatio-temporal spike patterns in massively

parallel spike train data with SPADE. Front. Comput. Neurosci. 11:41.

doi: 10.3389/fncom.2017.00041

Riehle, A., Wirtssohn, S., Grün, S., and Brochier, T. (2013). Mapping the spatio-

temporal structure of motor cortical LFP and spiking activities during reach-

to-grasp movements. Front. Neural Circ. 7:48. doi: 10.3389/fncir.2013.00048

Russo, E., and Durstewitz, D. (2017). Cell assemblies at multiple time scales with

arbitrary lag constellations. eLife 6:19428. doi: 10.7554/eLife.19428

Shi, X., Chen, S., and Yang, H. (2017). “DFPS: distributed FP-growth algorithm

based on spark,” in 2017 IEEE 2nd Advanced Information Technology,

Electronic and Automation Control Conference (IAEAC) (Chongqing: IEEE).

doi: 10.1109/IAEAC.2017.8054308

Steinmetz, N. A., Koch, C., Harris, K. D., and Carandini, M. (2018). Challenges

and opportunities for large-scale electrophysiology with neuropixels

probes. Curr. Opin. Neurobiol. 50, 92–100. doi: 10.1016/j.conb.2018.

01.009

Stella, A., Quaglio, P., Torre, E., and Grün, S. (2019). 3d-SPADE: significance

evaluation of spatio-temporal patterns of various temporal extents. Biosystems

185:104022. doi: 10.1016/j.biosystems.2019.104022

Tektronix (2006). TCP0030 120 MHz, 30 A AC/DC Current Probe Instruction

Manual. Tektronix.

Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., and Grün, S. (2013).

Statistical evaluation of synchronous spike patterns extracted by frequent item

set mining. Front. Comput. Neurosci. 7:132. doi: 10.3389/fncom.2013.00132

Frontiers in Neuroinformatics | www.frontiersin.org 18 September 2021 | Volume 15 | Article 723406

https://doi.org/10.1145/170036.170072
https://doi.org/10.2991/ifsa-eusflat-15.2015.97
https://doi.org/10.1007/978-3-642-41398-8_11
https://doi.org/10.1038/sdata.2018.55
https://doi.org/10.1109/CYBERC.2009.5342148
https://doi.org/10.1126/science.abd7435
https://doi.org/10.12751/incf.ni2018.0019
https://doi.org/10.1371/journal.pcbi.1007481
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1016/j.jneumeth.2012.02.003
https://doi.org/10.1162/089976602753284455
https://doi.org/10.1162/089976602753284464
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.1145/335191.335372
https://doi.org/10.1038/nrn1669
https://doi.org/10.1109/ACCESS.2017.2739749
https://doi.org/10.1109/ICEBE.2017.24
https://doi.org/10.14224/1.38304
https://doi.org/10.1038/nature24636
https://doi.org/10.1145/1454008.1454027
https://doi.org/10.1016/j.jneumeth.2013.04.010
https://doi.org/10.1109/ICDM.2007.13
https://doi.org/10.1016/j.micpro.2017.05.019
https://doi.org/10.1007/978-3-319-92792-3_6
https://doi.org/10.3389/fninf.2013.00009
https://doi.org/10.1007/978-3-642-34156-4_27
https://doi.org/10.1007/s10827-007-0065-3
https://doi.org/10.1109/ACCESS.2020.3029302
https://doi.org/10.1007/s00422-018-0755-0
https://doi.org/10.3389/fncom.2017.00041
https://doi.org/10.3389/fncir.2013.00048
https://doi.org/10.7554/eLife.19428
https://doi.org/10.1109/IAEAC.2017.8054308
https://doi.org/10.1016/j.conb.2018.01.009
https://doi.org/10.1016/j.biosystems.2019.104022
https://doi.org/10.3389/fncom.2013.00132
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

Torre, E., Quaglio, P., Denker, M., Brochier, T., Riehle, A., and Grün, S.

(2016). Synchronous spike patterns in macaque motor cortex during

an instructed-delay reach-to-grasp task. J. Neurosci. 36, 8329–8340.

doi: 10.1523/JNEUROSCI.4375-15.2016

Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (2018).

Rigorous neural network simulations: a model substantiation methodology for

increasing the correctness of simulation results in the absence of experimental

validation data. Front. Neuroinform. 12:81. doi: 10.3389/fninf.2018.

00081

Uno, T., Kiyomi, M., and Arimura, H. (2004). “LCM ver. 2: efficient mining

algorithms for frequent/closed/maximal itemsets,” in FIMI ’04, Proceedings of

the IEEE ICDM Workshop on Frequent Itemset Mining Implementations,

eds B. Goethals and M. J. Zaki (Brighton). doi: 10.1145/1133905.

1133916

Wang, F., and Yuan, B. (2014). “Parallel frequent patternmining without candidate

generation on GPUs,” in 2014 IEEE International Conference on Data Mining

Workshop (Shenzhen: IEEE). doi: 10.1109/ICDMW.2014.71

Watanabe, K., Haga, T., Tatsuno, M., Euston, D. R., and Fukai, T. (2019).

Unsupervised detection of cell-assembly sequences by similarity-based

clustering. Front. Neuroinform. 13:39. doi: 10.3389/fninf.2019.00039

Wicaksono, D., Jambak, M. I., and Saputra, D. M. (2020). “The comparison of

apriori algorithm with preprocessing and FP-growth algorithm for finding

frequent data pattern in association rule,” in Proceedings of the Sriwijaya

International Conference on Information Technology and Its Applications

(SICONIAN 2019) (Palembang: Atlantis Press). doi: 10.2991/aisr.k.200424.047

Williams, A. H., Poole, B., Maheswaranathan, N., Dhawale, A. K., Fisher,

T., Wilson, C. D., et al. (2020). Discovering precise temporal patterns

in large-scale neural recordings through robust and interpretable

time warping. Neuron 105, 246.e8–259.e8. doi: 10.1016/j.neuron.2019.

10.020

Wu, Y.-C., Yeh, M.-Y., and Kuo, T.-W. (2019). “Fast frequent pattern

mining without candidate generations on GPU by low latency memory

allocation,” in 2019 IEEE International Conference on Big Data (Big

Data) (Los Angeles, CA: IEEE). doi: 10.1109/BigData47090.2019.

9006541

Xia, D., Lu, X., Li, H., Wang, W., Li, Y., and Zhang, Z. (2018). A MapReduce-

based parallel frequent pattern growth algorithm for spatiotemporal

association analysis of mobile trajectory big data. Complexity 2018, 1–16.

doi: 10.1155/2018/2818251

Yegenoglu, A., Quaglio, P., Torre, E., Grün, S., and Endres, D. (2016). “Exploring

the usefulness of formal concept analysis for robust detection of spatio-

temporal spike patterns in massively parallel spike trains,” in Graph-Based

Representation and Reasoning, Bd. 9717 (Lecture Notes in Computer Science,

9717), eds O. Haemmerlé, G. Stapleton, and C. F. Zucker (Cham: Springer

International Publishing), 3–16.

Zaiane, O., El-Hajj, M., and Lu, P. (2001). “Fast parallel association

rule mining without candidacy generation,” in Proceedings 2001

IEEE International Conference on Data Mining (San Jose, CA: IEEE).

doi: 10.1109/ICDM.2001.989600

Zaki, M. (2000). Scalable algorithms for association mining. IEEE Trans.

Knowledge Data Eng. 12, 372–390. doi: 10.1109/69.846291

Zhou, L., Zhong, Z., Chang, J., Li, J., Huang, J. Z., and Feng, S. (2010).

“Balanced parallel FP-growth with MapReduce,” in 2010 IEEE Youth

Conference on Information, Computing and Telecommunications (Beijing:

IEEE). doi: 10.1109/YCICT.2010.5713090

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Porrmann, Pilz, Stella, Kleinjohann, Denker, Hagemeyer and

Rückert. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 19 September 2021 | Volume 15 | Article 723406

https://doi.org/10.1523/JNEUROSCI.4375-15.2016
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.1145/1133905.1133916
https://doi.org/10.1109/ICDMW.2014.71
https://doi.org/10.3389/fninf.2019.00039
https://doi.org/10.2991/aisr.k.200424.047
https://doi.org/10.1016/j.neuron.2019.10.020
https://doi.org/10.1109/BigData47090.2019.9006541
https://doi.org/10.1155/2018/2818251
https://doi.org/10.1109/ICDM.2001.989600
https://doi.org/10.1109/69.846291
https://doi.org/10.1109/YCICT.2010.5713090
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Acceleration of the SPADE Method Using a Custom-Tailored FP-Growth Implementation
	1. Introduction
	2. Method
	2.1. Introduction to Frequent Pattern Mining
	2.2. FP-Growth-Based Pattern Mining
	2.3. Spike Activity Analysis Using the SPADE Method
	2.4. Identification of Bottlenecks
	2.5. Optimized Implementation
	2.5.1. Custom FP-Growth Implementation With Result Filtering
	2.5.2. Pattern Collector

	2.6. Parallelization and Distributed Computing

	3. Results
	3.1. Test Setup
	3.2. Evaluation of the Software Baseline on x86 Server
	3.3. Evaluation on RECS|Box for Server Processors
	3.4. Evaluation on RECS|Box for Embedded Processors
	3.4.1. Execution on a Single Device
	3.4.2. Execution on Multiple Devices

	3.5. Scalability

	4. Discussion
	4.1. Platform Comparison
	4.2. Summary and Future Work

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

