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Brain complexity has traditionally fomented the division of neuroscience into somehow

separated compartments; the coexistence of the anatomical, physiological, and

connectomics points of view is just a paradigmatic example of this situation. However,

there are times when it is important to combine some of these standpoints for getting

a global picture, like for fully analyzing the morphological and topological features of

a specific neuronal circuit. Within this framework, this article presents SynCoPa, a

tool designed for bridging gaps among representations by providing techniques that

allow combining detailed morphological neuron representations with the visualization

of neuron interconnections at the synapse level. SynCoPa has been conceived for the

interactive exploration and analysis of the connectivity elements and paths of simple

to medium complexity neuronal circuits at the connectome level. This has been done

by providing visual metaphors for synapses and interconnection paths, in combination

with the representation of detailed neuron morphologies. SynCoPa could be helpful,

for example, for establishing or confirming a hypothesis about the spatial distributions

of synapses, or for answering questions about the way neurons establish connections

or the relationships between connectivity and morphological features. Last, SynCoPa

is easily extendable to include functional data provided, for example, by any of the

morphologically-detailed simulators available nowadays, such as Neuron and Arbor, for

providing a deep insight into the circuits features prior to simulating it, in particular any

analysis where it is important to combine morphology, network topology, and physiology.

Keywords: scientific and data visualization in neuroscience, joint neuron morphology and connectivity

visualization, neuron network connectivity visual analytics, bioinformatics visualization, visual analytics in

neuroscience

1. INTRODUCTION

The last decades have witnessed a renewed interest in neuroscience, fostered by the launching of a
number of multidisciplinary research initiatives of wide base and support (Collins and Prabhakar,
2013; Markram et al., 2015). These initiatives have resulted in continuous growth of the number of
researchers and laboratories working on different aspects of neuroscience. Furthermore, they have
led to an uninterrupted acceleration of the pace at which new findings are being produced. But in
spite of the fact that the last decades have seen remarkable advances, there is still a very long way to
go before the scientific community can claim to be able to fully understand, explain or replicate the
complex mechanisms underlying brain function.

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.753997
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.753997&domain=pdf&date_stamp=2021-12-27
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:oscardavid.robles@urjc.es
https://doi.org/10.3389/fninf.2021.753997
https://www.frontiersin.org/articles/10.3389/fninf.2021.753997/full


Galindo et al. SynCoPa: Visualizing Connectivity Over Morphologies

There are many factors behind this situation, which are
consequences of the enormous complexity of the nervous
system. In order to simplify the problem, researchers have
traditionally focused on narrower areas of interest along three
main lines: constraining the domain of the variables under
study (and therefore, restricting studies to separate fields
such as anatomical, structural, functional, etc.); limiting the
level of abstraction within certain ranges (like to behavioral,
ultrastructural, molecular, etc.), or concentrating on specific
brain areas.

Limiting the scope of a particular study is an effective
and even mandatory approach when complexity is a major
issue. However, its main drawback is that it provides just a
partial view, preventing researchers from developing a cohesive
understanding of the whole system. For example, well-studied
neuronal circuits are reasonably understood today and have led
to valid functional models. But both theorists and experimental
neuroscientists agree on the need to improve hypotheses about
many fundamental aspects, like how the brain store and retrieve
information, which often requires a better understanding of
the components of the brain, the way these components
communicate with each other, and how to relate stimuli with
specific behaviors (Evanko and Pastrana, 2013). Also, a deeper
understanding of synaptic connectivity (that is, connectomics)
will certainly help for that kind of goal (Morgan and Lichtman,
2013), although the decoding of the connectome is one of the
greatest challenges nowadays. For this purpose, it is necessary
to count on tools that allow combining partial results into a
unified framework. The availability of powerful and affordable
computing systems offers nowadays the possibility of designing
and building these tools, something that was out of reach until
not that long ago.

There are many areas and examples in brain research
that can be cited to illustrate this situation, such as the case
of computational neuroscience. For example, simulators are
useful tools for many issues, such as posing and validating
hypotheses (Bruckner et al., 2009; Lin et al., 2011; Beyer
et al., 2013; Garcia-Cantero et al., 2017; Peyser et al., 2017;
Galindo et al., 2020). Again, the complexity of the performed
simulations has been traditionally limited, following the
approaches described above, because of practical, technological,
and economic reasons: large scale, high detail, and brain-
scale simulations are still out of reach. Consequently,
integrative tools are still the best option for getting closer
to holistic views.

To address these issues, we created SynCoPa, a tool designed
to facilitate the performance of global analysis operations
combining data from different domains. SynCoPa nowadays is
able to present users with detailed morphological and structural
information of neuronal circuits at the connectome level. In
addition, SynCoPa is easily extendable to include functional
data provided, for example, by any of the morphologically-
detailed simulators available nowadays, such as Carnevale and
Hines (2006) or Akar et al. (2019). SynCoPa can thus facilitate
performing multimodal analysis of medium complexity circuits
taking into consideration morphological, topological, and
functional data.

The rest of this article is organized as follows: section 2
presents the techniques that have been implemented in SynCoPa,
as well as the application itself; section 3 presents practical
examples of the analysis tasks that can be accomplished using
SynCoPa as well as the solutions we propose; finally, section 4
presents the conclusions and proposals for future work.

1.1. Related Work
The study of connectivity was quite important even when the
field of neuroimaging was not yet mature (Friston, 1994). The
consolidation of this area, as a consequence of the availability of
new technologies, led later on to a remarkable increase in the
number of publications on functional connectivity, making it a
very interesting and challenging topic (Friston, 2011).

Some authors, such as van Dixhoorn et al. (2010), have
pointed out how the problem of visualization of functional
connectivity lies at the confluence of scientific and information
visualization. They consequentially adapted techniques from
visual analytics, such as multiple coupled anatomical and abstract
views to aid with the iterative exploratory selection of relevant
aspects from full data sets.

In this sensex, Ma and Muelder (2013) explain how network
analysts are turning to visualization, not just taken as the
passive process of producing images from numbers, but as a
discipline that creates highly interactive methods that combine
visual representations with network analytics to greatly enhance
the ability to understand and characterize the networks under
consideration. These new methods must address all aspects
of network representation, from the fundamental problem of
laying out a large graph (that is, how to efficiently provide a
node placement or layout that will yield a meaningful graph
visualization) to graph analytics and simplification for dynamic
graphs. They conclude that the convergence of analysis tools,
such as interactive visualization, among others, will lead to
powerful visual analytics solutions.

Then, throughout the state of the art, several works focused
on visualizing neural connectivity can be found, using different
representation techniques and visualization approaches.

One of the most used techniques is based on connectivity
matrices, and several works can be cited. The first one is the
work of Rubinov and Sporns (2010), who present a Matlab
toolbox, which is able to generate a connectivity matrix where
its cells have binary information denoting the presence or
absence of connections, or even weighted information that
represents magnitudes of correlational or causal interactions.
These matrices can also deal with directionality in links, although
the authors point out that the neuroimaging methods they
have access to are unable to directly detect anatomical or
causal directionality.

Another matrix-based work to cite is Nordlie and Plesser
(2010), who present Connectivity Pattern Tables (CPTs), a 2D
compact and schematic representation that tries to show both
the strength of connections as well as their spatial structure.
The main highlights of CPTs are a clutter-free depiction of
connectivity; the ability to represent connectivity at several levels
of aggregation, and the CPT’s rich information content regarding
the spatial structure of connectivity.
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Mijalkov et al. (2017) studied the brain connectivity applying
techniques from graph analysis theory as a way of integrating
visualization mainly based on connectivity matrices. It has to be
noticed that the visualizations they build with this Matlab tool do
not provide any morphology information.

Another tool based on connectivity matrices is Brainography
(LoCastro et al., 2014). It is a tool written in MATLAB that
displays the brain and its connectivity, providing many choices
for customizing the presentation of results and generating
renderings for analysis or publication. This method can display
many parts of an atlas in explicitly chosen colors. Using an
underlying connectivity matrix, the user can determine whether
to include nodes and pipes in the final plot.

Some other works, such as eConnectome and Braincove, deal
with functional information associated with the connectivity
data. On one hand, eConnectome, developed by He et al.
(2011), is a Matlab toolbox intended for mapping and imaging
functional connectivity at both the scalp and cortical levels from
electroencephalograms and elecotrocorticograms. It provides
a platform for imaging brain functional connectivity data
and for visualizing functional connectivity patterns over a
geometrically realistic scalp or cortical surface. The toolbox
shows where, when, and how neuronal assemblies are activated
and coordinated. In addition, it also offers users access to
integrated connectivity results. Regarding connectivity analysis,
they state the importance of estimating the true connectivity
pattern among brain regions of interest. Unfortunately, they
cannot ensure a correct statistical estimation of the functional
connectivity paths between cortical areas. On the other hand,
Braincove, created by van Dixhoorn et al. (2012), is focused on
presenting different coupled visualizations to perform the visual
analysis of voxel-wise fMRI connectivity. Large brain networks
can be visualized in their anatomical context, and it can be said
that it also uses an interactive matrix representation.

Dealing also with functional information, it is worth citing
the interesting alternative suggested by Böttger et al. (2014),
who developed an edge bundling method with the aim of
depicting clear high-resolution pictures of functional brain
connectivity data across functional networks in their native
anatomical space. It can be said that they build a connectivity
matrix as an intermediate representation. It is also relevant to
point out that the authors also stressed the importance of the
correspondence of the functional connectivity information with
the anatomical space.

Some other authors have approached the world of visual
analytics, although from very different perspectives. In this
way, the work of Fujiwara et al. (2017) present here a visual
analytics system designed to enable neuroscientists to compare
networks. Their system provides visual tools for comparison at
both individual and population levels. The main visualization
techniques they use are based on representations of connectivity
and node-linkage matrices (both 2D and 3D). On other hand,
Euán et al. (2019) created HCC-Vis, an R-Shiny application
to explore the results obtained from the development of a
hierarchical cluster coherence (HCC). This application is focused
on the analysis of connectivity in neuronal networks.

Another work related to visual analytics is the one from Conte
et al. (2016), who created a web-based 3D tool with the aim
of allowing the interactive exploration of the intrinsic geometry
of the connectome. This intrinsic geometry is the topological
space defined using derived connectomic metrics rather than
anatomical features. It represents the brain connectome after
the application of non-linear multidimensional data reduction
techniques. The resulting node positions do not correspond to
their anatomical location, being a measure of the strength of
the interaction that each region has with the other ones. This
way, the user can explore the entire connectivity network in
an uncluttered way, in contrast with a typical highly connected
node-link diagram.

It is shown that Mullen et al. (2013) also used 3D in
their work. They focused on showing reconstructed source
networks over a 3D brain model, with its cortical regions
colored according to the labels assigned by an automated
atlas labeling procedure. Their visualizations use BrainMovie3D,
which generates sequences of images showing event-related
information of localized electroencephalogram waveforms.

Finally, certain authors have provided tools to carry on visual
interactive analysis. Al-Awami et al. (2014) created Neurolines,
a multi-scale abstract visualization technique for the interactive
analysis of neurites and their interconnections. Each neurite is
represented as a tree structure, based on its real anatomy (and
its branching pattern). One of the most interesting capabilities of
Neurolines is the possibility of highlighting a selected synapse;
in that case, all other synapses between the same two neurites
will be displayed as visual links for contextual information. This
allows users to quickly see how many synapses are sharing
both neurites as well as to follow synaptic chains throughout
the dataset.

Another interactive web-technology visualization tool is
VIOLA (Senk et al., 2018), which provide different views for the
analysis of the activity of spiking neuronal network simulations.
It shows individual 2D plots for different spike-count rates with
a spatial representation of network activity at the neuron level.
The authors also extended it to a 3D view of spatio-temporal
activity, also at the neuron level. Although in their work they
consider and model different synapse events, they distribute
evenly synaptic currents along the entire length of the dendrite
shaft or on the spherical-shaped soma, not showing synapses
in any of the views. Also, Combrisson et al. (2019) present
Visbrain, an open-source software package that provides a set of
visualization tools for brain electrophysiology and neuroimaging
data analysis. The visualizations it provides range from electrode
localization to project data onto the cortical mesh, to connectivity
among regions of interest. This connectivity is represented by
drawing lines linking nodes (which may be EEG sensors, not
necessarily neurons).

The tool presented in this article allows to analyzing
neural connectivity in combination with detailed
morphologies. To the authors’ knowledge, no other
previous work presents any tool able to accomplish the
same tasks that SynCoPa performs, making it difficult any
direct comparison.
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2. MATERIALS AND METHODS

Understanding the brain is a quite challenging task. Usually, in
order to cope with its complexity, its study has been carried
out by faceting the data and focusing research efforts in one
of these facets or domains (such as morphology, physiology, or
connectomics). This approach reduces the amount and types
of data under analysis, making its processing, analysis and
storage easier, and facilitating the acquisition of domain-specific
knowledge. On the other hand, bridging the gap among domains
and understanding their interrelationships is also essential for
global analysis and understanding of the brain. This seemed to
be unfeasible a few years ago; however, it has already started
to be possible thanks to the remarkable advances in technology
produced during the last years and the computing capabilities
available nowadays.

This article presents a step in this direction, contributing to
bridging this gap by providing techniques and tools that facilitate
performing a combined visual analysis of two of these domains:
morphology and connectivity (with the possibility of including
also physiological information).

More specifically, the work presented in this article focuses on
two analysis tasks. The first one is centered on the interactive
analysis of the relationships among the detailed morphologies
of a neuronal circuit and its synapses’ spatial location and
attributes. This could help to study the combined effect of the
spatial location of synapses and their features in circuit behavior,
facilitating establishing or confirming a hypothesis about the
existence of patterns or correlations between these issues in
specific circuits.

The second analysis task considered here addresses the
study of the multiple paths connecting neurons in low to
medium complexity circuits and their most relevant features
(which includes the morphological features of both the neurites
and synapses involved in each path). This analysis can
provide a deep knowledge of the connectivity of specific
circuits, answering questions about how the connection between
different neurons has been established or the relationships
among morphological features and multiple synapses within
specific circuits.

The approach proposed in this article is based on the
exploitation of interactive visual exploration tools for the analysis
tasks described above, which allows taking advantage of the
analysis capabilities that the human visual system provides.
Adding fluid interactivity (navigation, selection, filtering, etc.) on
top of expressive visualization metaphors permits users to handle
larger and more complex data sets, letting them manage how
much data or detail is being displayed at any given moment.
In this sense, we have followed Shneiderman (1996) mantra
of “Overview first, zoom and filter, details on demand.” To
the authors’ knowledge, there are not any other previous work
that provides this type of combined visual analysis of detailed
morphologies and connectivity information.

In order to show the feasibility and potential of the proposed
approach, all these methods have been implemented in a
functional prototype application: SynCoPa. This tool is also
used to show how the proposed methods can be applied

to the aforementioned analysis tasks and its main functional
requirements can be described as follows:

• FR1. The user should be able to load data (morphologies
and connectivity)

• FR2. The user should be able to visualize the synapses spatially,
tune the visualization parameters (color, opacity, etc.), and
apply filtering operations to perceive meaningful patterns.

• FR3. The user should be able to visualize synapses (pre and
post positions if available on the data) on top of morphologies
and adjust visualization parameters to enhance interpretation.

• FR4. The user should be able to select two sets of neurons and
highlight the paths connecting them.

The rest of this section is organized as follows: section 2.1
describes the type of data used in this work; section 2.2 describes
the morphological visualization used; section 2.3 focuses on
the particle-based rendering technique used for the different
implementations; 2.4 and 2.5 explain the design decisions taken
for both analysis tasks posed before (synapses and connectivity
paths), and last, section 2.6 shows how all these techniques have
been implemented in the SynCoPa application.

2.1. Data Domain
In this section, the type of data used in this work is presented
and described. As the proposed approach aims to help with
tasks combining morphological and connectivity information,
both types of data have to be considered. Each of them has
its own specific features and problems, but for joint analysis,
it becomes mandatory that both types of data (morphological
and connectomical) are coherent and there is a well-established
relationship between them.

On one hand, the morphological data has to provide a detailed
representation of the neurons’ structure. This information could
be obtained from images captured using different microscopy
technologies, and once the images are captured, different manual,
automatic, or semi-automatically tracing algorithms can be used.
For each neuron, the output of this process can either be a
complex polygonal mesh or a simpler cell skeleton, being the
latter the most common one. This skeleton is composed of
tracing nodes and the connections between them, providing a
tree-like representation, where the spatial location of each node
is kept (see Figure 1). Additionally, the radius of the dendrites
and axons can be measured at each tracing node and kept with
them, in order to have a more accurate representation of the
cells. Alternatively, neuron skeletons can be synthesized, even
departing from real (or plausible) data.

On the other hand, the connectivity data has to provide
information about the existing synapses, their location in
space, and the connecting neurons involved, depicted in
Figure 1 with black filled circles. This information is crucial to
enable a combined analysis of the connectivity paths and the
detailed morphologies.

Some data sets represent synapses using pre-synaptic and
post-synaptic information. In this work, we have used this type
of data, as it is more detailed, although the methods could be
simplified to work with just one general synaptic position.
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FIGURE 1 | Schematic drawing depicting the morphological data

components addressed in this work: detailed neuronal morphologies

connected through their shared synapses. The figure shows the different

components, such as the neuronal somas (green circles); axonal and dendritic

tracings (depicted in blue and red, respectively), and synapses, represented as

black filled circles indicating the location of the connection. Axonal and

dendritic tracings are defined through sets of tracing nodes.

In addition, other synapsis features can also be taken into
account and added to the analysis. For instance, in this work,
we use the synapse type (axo-dendritic, axo-somatic, dendro-
dendritic, etc), but the proposed methods could also be easily
applied to other variables, both categorical or numerical.

2.2. Morphological Visualization
As stated before, this article proposes a visual analysis method
for neuronal circuits that combines morphological data and
connectivity information. In order to achieve this goal, it is
necessary to be able to render first the cell morphologies. As
explained in the previous section, these neurons’ morphologies
are usually modeled as skeletons composed of hierarchical
polylines (connected tracing points). These skeletons start at the
soma, which will be the root node of a tree-like structure, see
Figure 1. This data scheme matches the SWC file format, a de
facto standard for storing neuron morphologies in neuroscience
(Cannon et al., 1998).

In order to render these skeletons, our method uses
NeuroLOTs (Garcia-Cantero et al., 2017), an open source
software library with an open API that provides the necessary
components for the realistic rendering of detailed morphologies.
This software library generates on-the-fly meshes with a high
level of detail. Other morphology renderers, such as RTNeuron
(Hernando et al., 2013), or using simple plain cylinder-based
visualization, among other options, could have been applied
here. However, NeuroLOTs has been the selected solution due
to its convenient features, such as the adaptive level of detail it
provides, the simplicity of use, and our previous knowledge of
its API. In any case, the proposed approach could be successfully
applied using any other rendering software.

2.3. Particle Rendering
In this work, we propose representing the synapse positions and
connecting paths using a computer graphics technique called
particle-based rendering. This method is based on displaying a
large number of computationally cheap elements that are treated
independently, but which can be combined and integrated for
creating complex visual effects (Hastings et al., 2009).

Using particle-based rendering allows fine control of every
displayed element, making it possible to use the particles’ visual
properties for encoding the main attributes of the elements being
represented. In this case, the selected visual properties are related
to color and brightness attributes (hue, brightness, saturation,
and transparency), being useful for encoding both categorical and
quantitative attributes. The application of this type of encoding to
synapse visualization is presented in section 2.4.

Particles can be successfully used for representing larger
scale environments by rendering them a such a way that
they are perceived as being part of the same structure (taking
advantage of the laws of proximity and similarity from the
Gestalt principles; Koffka, 2014). Here, we take advantage of this
property when representing a large number of synapses (section
2.4) or connectivity paths (section 2.5.2). In addition, particles are
also suitable for creating complex animation effects, as they are
very efficient from the computational point of view. For instance,
this allows creating the perception of a “flow” along a specific
path. In this work, we propose to use this effect for representing
connectivity paths in a dynamic way, enhancing the perception
of the paths and their direction (see section 2.5.3).

To achieve all these goals, particle rendering has been
implemented here using an improved version of PReFr (Galindo
et al., 2015), a general-purpose framework that provides a high
level abstraction API for controlling how particles behave and
appear. PReFr has been successfully applied to the purpose of
visualizing neuronal circuits’ simulations (Galindo et al., 2016).
Having the capability of rendering up to one million particles
on multi-core CPUs, PReFr serves as a stable base for the
implementation of the methods proposed in this article.

In this work, we combine the visualization of the neurons’
morphologies with the visualization of connectivity (synapses
and paths). For the former, we use mesh-based rendering
(detailed in section 2.2) while for the latter, we propose using
particle-based rendering. The combination of these two types of
rendering techniques can lead to visual artifacts when particles
intersect with the triangles of the rendered morphologies. In
order to alleviate this problem, in SynCoPa we have implemented
“soft particles,” a technique for softening particles’ edges when
crossing geometry (Lorach, 2007).

Another issue that arises when using particles is how to
combine them to achieve the desired effect. This typically means
deciding which colors and transparency will be used. Both
of these parameters interfere with one another, which means
that they are not completely separable and have to be chosen
carefully. Moreover, dealing with transparency (alpha blending)
is highly relevant in particle-based rendering, as it can have a
huge impact on the perception of different particles as groups or
as a whole. Through different operations, alpha blending allows
mixing colors of a large number of semi-transparent elements.

Frontiers in Neuroinformatics | www.frontiersin.org 5 December 2021 | Volume 15 | Article 753997

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Galindo et al. SynCoPa: Visualizing Connectivity Over Morphologies

This composition of hundreds or even thousands of elements
on the screen with alpha blending produces an effect of visual
aggregation. As a result, this effect can be used for understanding
the concentration of elements and for detecting spatial patterns
in complex data, as proposed in section 2.4.

Specifically, regarding alpha blending, there are several ways
of composing the final color of a pixel. In this work, we
propose using two of the most typical methods: “traditional,”
or regular alpha blending (TAB), which composes the image
by weighting the color results from the previous layers; and
“accumulative,” or additive alpha blending (AAB), which adds the
color results until they visually saturate colors to white. On one
hand, TAB preserves color coherence for data representations
and will enhance the perception of depth. On the other
hand, AAB can be used to summarize the concentration of
elements, as the color variations will be brighter and with more
saturated colors.

2.4. Synaptic Visualization
An average neuron has thousands of synapses (Sporns et al.,
2005). The representation and interactive visualization of
detailed morphologies and connectome details of non-
trivial neuronal circuits is therefore a challenge, both from
the computational and the visualization points of view.
Computationally, it is necessary to display a large number of
primitives in a short time for guaranteeing smooth interactivity.
From the visualization point of view, it is also essential to
reduce visual clutter to a minimum for facilitating the operator
analysis tasks.

As commented before, SynCoPa uses particle rendering for
coping with these problems. Following Figure 2, two static
particles are placed at every synapse position, one for the
pre-synaptic position and another for the post-synaptic one.
They are encoded using different colors, so they can be easily
distinguished. The user can adjust the size of the particles. This
size will vary accordingly with the camera position, as the final
2D image is rendered using a typical rasterization approach
based on a perspective projection. In the case of synapses, it
can be tuned to create, produce different visual aggregations,
allowing to help discover visual patterns and understand their
spatial distribution. The use of particle rendering combined with
alpha blending and translucency allows decreasing clutter by
facilitating visual aggregation. In addition, particle rendering
allows using other visual channels (see section 2.3), such as
color, size, and transparency, for encoding different synapse
attributes. This way, other features, such as conductance,
efficiency, synapse type, state, etc., can be mapped to the visual
representation of the synapse. Specifically, SynCoPa provides a
way of mapping a chosen property (quantitative or qualitative)
to a color palette that can be user-defined, producing a variety
of colors ranging from the lowest value to the highest one in the
palette, and making it easier to visually detect the existence of
spatial patterns.

Finally, SynCoPa also depicts a histogram that helps the user
to understand the distribution of the attributes’ values according
to the selected color mapping.

2.5. Connectivity Paths Visualization
Displaying synapse positions in a neuronal circuit is just a first
step, not being particularly useful when the number of synapses
grows beyond an easily reachable limit. However, SynCoPa has
other resources that can help with the analysis of how neurons
interconnect, highlighting connectivity paths so that they can be
clearly distinguished. They will be described in this section.

Let a neurite section be the set of morphological nodes
located between two consecutive neurite bifurcations. Then, a
connectivity path between two neurons is formed by the neurite
sections involved in the connection of these two neurons, from
which one acts as pre-synaptic and the other, as post-synaptic.
In order to create and visualize a path, all possible routes from
one neuron to another have to be computed using their shared
synapses as connecting points. This can be easily extended to the
connectivity path between two groups of neurons, where these
two groups can potentially overlap.

In order to provide mechanisms for the visual analysis
and exploration of connectivity within detailed neuronal
morphologies, we have to also take into account neural tracings.
How to show a large number of synapses, along with their
neurons’ detailed morphologies and their connections, is one of
the main challenges to tackle, and the remarkable complexity
of representing both neuronal morphologies and the way they
interconnect aggravates the creation of a visual codification that
facilitates grasping easily how a neuron connects to others.

In this sense, graph-based and matrix-based visual
representations are typical approaches that can help in the
task of analyzing connectivity paths but would not be enough to
face the combined visual analysis of connectivity and detailed
morphologies that we propose in this article, since they cannot
represent the latter. To cover this gap, SynCoPa proposes a
method to highlight the morphological elements involved in the
connectivity paths between two or more neurons using particle
rendering. The main features of the proposed methods are
presented below.

2.5.1. Path Generation
A neural circuit C can be defined as a set of M neurons Ni and a
set of zero or more synapses Sij for each pair of neurons i and j,
where neuron i acts as pre-synaptic and neuron j as post-synaptic.
The number of shared synapses between a pair of neurons can
differ widely.

Given two neuronsNPRE andNPOST , if the number of synapses
they have in common is greater than 0, there should be a direct
path p composed of neurite sections going from the soma ofNPRE

to the soma of NPOST :

∃ p(NPRE,NPOST) ⇐⇒ |SPRE,POST | > 0 (1)

When the set of synapses involved in the connection has been
identified, the existing paths are computed using the intermediate
neurites sections, including the ones that are closer to the soma.
To do this, the easiest algorithm is to start from each synapse
and trace its path back to the soma, going up through the neural
morphological tree-like hierarchy until reaching the root node.
This works well for both axonal and dendritic sections. All these
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FIGURE 2 | Visual representation scheme for synapses. Two static particles (blue and orange, for the pre- and post-synaptic points) are placed at every synapse

position. The representation of the pre and post-synaptic parts (purple and red, respectively) might present differences in color, size, and transparency. When the

morphology is rendered, synapses appear surrounding the given axon or dendrite mesh.

synapses and sections are stored as the working set (from now on
WS) to be used for performing the highlighting of the paths in
later steps.

In general, the position of synapses does not match the
position of an existing tracing node. In that case, after computing
the paths, the segments of the WS that contain synapses are
trimmed to remove the nodes that should not belong to the path.
This adjustment makes the path representation more faithful to
the actual path. In addition, we avoid recomputing and sampling
preexistent neuritic section paths for all the involved neuron
morphologies in order to reduce the complexity of the processes.

2.5.2. Static Visualization
When the potential paths connecting neurons have been
identified, their neurite sections are classified, so that the ones
involved in the connection between neurons can be highlighted
from the others. SynCoPa uses particle rendering for the creation
of a halo effect surrounding the involved neurite sections by
placing particles all along the connecting path. For that purpose,
particles sizes are set to a default fixed value that fills the
neuritic segments. This value can be changed by the user to
emphasize or diminish the effect of the path highlighting. Thanks
to the transparency composition resulting from the use of alpha
blending (discussed in section 2.3), all these particles will benefit
from the visual aggregation, which allows the user to have
the impression of a continuous filament instead of perceiving
individual elements.

In order to achieve this, and considering that neuritic sections
are stored as polylines, an homogeneous sampling is carried out
to compute the positions of the particles. Linear interpolation
is done based on distance, which generates a plausible visual
effect with a low CPU cost. The sampling distance between
particles is equal to their radius, which makes them located at

the same Euclidean distance throughout the neurites’ polyline.
Depending on the angle of the bifurcations, it is possible to
find particles placed closer to one another due to the shorter
euclidean distance through the polyline. Nevertheless, it does
not alter the highlighting effect while preserving a low sampling
computational cost.

Unlike many other techniques that could be used to perform
this highlighting effect, such as shading effects or image post-
processing, the use of particle rendering allows decoupling this
step from the represented geometry, simplifying the rendering
process. This decoupling would allow using of any other neuronal
geometry renderer.

Figure 3 represents a piece of a neuron with its tracing nodes
(black circles) and an example of how particles are positioned
along the neuritic segments involved in the connection, which
are represented with a blue circle. As it is represented in the
figure, the coordinates of the particles are computed using the
polylines connecting the nodes and applying a displacement
between each particle of a fixed distance (d), which depends on
the size chosen for the particles. In this sense, particles positions
and movements (for dynamic visualization in the next Section)
are always interpolated using the paths, that were previously built
using the morphological nodes of the neurons’ neurites. This
ensures that particles will always be located or move on top of
and along the neurites.

2.5.3. Dynamic Visualization
The effectiveness of the static visualization previously proposed
can be compromised in complex scenarios with a high density of
morphologies, so that occlusions and visual clutter might hinder
the understanding of the scene. As a result, it becomes necessary
to provide mechanisms to emphasize the highlighting of the
connectivity paths even on high density scenarios.
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FIGURE 3 | Static path-visualization scheme. Particles (in green) are placed

along the neurite sections of the WS from the root node (closest to soma) to

the last node just before the last synapse position of each branch. All particles

are separated by a distance of d, creating the effect of continuity across the

highlighted paths. By default, this distance is the radius of the particle,

assuring the overlapping of circles defined in the geometry. This, along with the

alpha blending, creates the perception of a homogeneous path. The process

for both pre and post-synaptic paths is the same.

As the main visual channels are already being used
to represent and identify the paths, a more powerful
characterization of them must be used in order to ease their
visual analysis and avoid mismatches. The use of motion fosters
a “pop-out” effect, that can help to understand the scene as well
as to differentiate elements (Bartram, 1997). Through the use
of the motion visual channel, the perception of the connecting
branches can be reinforced with an animation that stands out the
paths at a glance.

SynCoPa uses particles to create the effect of a moving
impulse between connected neurons. A set of particle emitters
place particles with a short lifetime along a connectivity path,
creating this effect of an impulse that moves along the connected
sections from soma to soma. This technique enhances the
highlighting of the paths and makes it easier to understand the
connectivity direction.

Since neuritic sections are stored as polylines, the emitters
move throughout them taking into account the linear
interpolation of the distance along each polyline. Hence,
the position of each mobile emitter is computed using its
previous position and a given velocity value. Particles are
activated after the displacement of the emitter has been resolved,
using the new position as the source of emission to produce an
animation along with the subsequent frames.

In order to boost the perception of these moving impulses, a
trail effect has been added improving also the comprehension of
the connection directionality. This way, the trail effect enhances
the path highlighting mechanism, with better differentiation
of the highlighted paths from the rest ones. It can be said
that the trail effect is also useful to strengthen the perception
of connection directionality in static images, as it represents
previous positions.

Particles are created with a bounded lifetime to harmonize the
visual effect created by the decay, remaining at the same positions
where they were sampled until they disappear. As the emitter
is being moved, particles are homogeneously placed in between
the previous and new positions to create the trail effect. This is

a way to minimize the impact of either low frame rates or too
high velocity, or both things at the same time, because any of
these situations could lead to a concentration of sampled particles
surrounding the new position instead of producing a uniform
sampling. Figure 4 shows how this movement and the sampling
process are done.

Once the emitter has been moved, the algorithm checks if any
relevant morphological event (i.e., bifurcations, synapses, or path
ends) is present along the traveled path. It can be considered that
these events happen at a determined time whenever an emitter
reaches its position through the polyline. When passing through
one of them, the proposed algorithm will perform one of the
following actions:

• Bifurcations: a mobile pre-synaptic emitter will be created
for each branch contained in WS other than the parent
one. Therefore, the activation of the emitter is modeled
as a hierarchy. This way, every time an emitter reaches a
bifurcation contained in WS, it creates or activates subsequent
emitters following its remaining branches.

• Synapses: an emitter will be created so that it will follow
a path along the post-synaptic neuron from the synapse
to the soma. Following the paths in these directions, there
are no bifurcations, so these emitters will not split when
reaching them. In order to distinguish these impulses from
the pre-synaptic ones, the impulses can be rendered with a
different color.

• Path-ends: emitters are deactivated in order to suspend their
emission and disappear from view. Path-ends affect both
bifurcations and synapse emitters.

Both bifurcation and post-synaptic path emitters are turned off
until they are reactivated when the parent emitter passes through
the correspondingmorphological feature. In case a child emitter’s
path was longer than its parent’s (being therefore not available
for reactivation), a new emitter would be allocated in order to
maintain the cascade effect.

So, the dynamic highlighting of paths creates a cascade effect
from the pre-synaptic soma to the post-synaptic one passing
through all the paths computed and taking into account the
shared synapses. This effect provides a clear perception of the
connectivity directions between related neurons.

2.6. SynCoPa Tool
SynCoPa is a desktop application that we have designed
to highlight the strengths of the methods explained in the
previous sections, with the aim of helping a user to perform a
combined visual analysis of morphology and connectivity. To
do this, SynCoPa’s Graphic User Interface (GUI) is made up
of four widgets. Figure 5 shows these four main widgets: 3D
Visualizer, Selection Control, Visual Aspect Configuration, and
Information Summary.

The first one is the 3D Visualizer (as shown in Figure 5 in
the left hand side area); it displays the morphologies, synapses,
and paths in a three-dimensional interactive scene. This widget
allows to explore the data and interact with it, bymeans of camera
rotation and zooming. This way, the user is able to focus on
specific desired areas at any time.
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FIGURE 4 | Dynamic paths visualization procedure. The initial impulse moves from the neuron’s soma following a certain path along the dendrites, producing other

impulses whenever a synapse or bifurcation is reached. When a bifurcation with both branches included in WS is reached, a pre-synaptic impulse (yellow) is created

from the bifurcation node to the end of the current branch. When a synapse is reached, a new impulse (light blue) is generated following the path from the synapse

position to the post-synaptic neuron’s soma. Pre-Synaptic impulses can generate both derived bifurcation and postsynaptic impulses.

When the set of selected neurons is modified, SynCoPa
automatically adjusts the camera to fit in the screen the whole set
of synapses. This camera adjustment is done with an animated
transition instead of a jump cut so that the user does not lose the
overall context.

The second one is the Selection Control widget (shown
in Figure 5, upper right). It provides controls to manage the
visualization modes and the user’s current selection. There are
two possible modes, according to the two analysis tasks posed
at the beginning of this section 2: synapses and paths, where the
synapses mode is used by default. The selected neurons, both pre
and post-synaptic, can be defined through two neuron identifiers
(GID) lists. When the user selects one or more post-synaptic
neurons, the viewer will display the complete morphologies and
reduce the paths and synapses to only those shared by the selected
neurons. The user will be able to select different neurons acting
as pre-synaptic by simply clicking on their GID.

The third one is the Aspect ConfigurationWidget (that can be
seen in Figure 5, middle right); it provides tools to control how
morphologies are displayed, as to assign colors to the different
elements or to decide to view all the morphologies of the neurons
or only the somas. Then, it also contains the controls to tune the
color, size, and transparency of the particles used for synapses, as
well as the particles used for paths. All these parameters can be
set independently making the visualization highly configurable.
This widget also includes controls to filter synapses based on their
mapped attribute values (see section 2.4).

The user can map an attribute of the synapses to color in
order to analyze the spatial distribution of values. In addition,
the user can define a range of values for that attribute to focus
their attention on a subset by hiding synapses outside that range.
When this operation is performed, a histogram representing the
selected attribute distribution is depicted on top of the color

palette, with a double slider placed below that allows to do the
filtering operation that focuses on specific data.

The flexibility of being able to assign different colors to
the different elements that are displayed is complemented
with the controls placed in the main window to change
the background since its color can affect the visual
perception of the different elements that are displayed in the
3D Visualizer.

The fourth one is the Information Summary Widget (that
appears in Figure 5, bottom right), which provides a summarized
view of the data available for the visualized neurons, such as the
number of synapses present on the scene. This widget could be
easily expanded to display more relevant information about the
scene and its elements.

Finally, it can be said that SynCoPa has been built using
Qt 5 and it requires to have a GPU with at least OpenGL 4.0
compatibility in order to deploy NeuroLOTs’ tessellation (Garcia-
Cantero et al., 2017) and specifically its level of detail control.
Currently, SynCoPa is available for Linux and MacOS operating
systems and binaries can be downloaded from https://vg-lab.es/
apps/syncopa/. It is planned to release Windows binaries and to
make the code open source in the near future. Regarding the data,
SynCoPa currently allows loading data using BlueConfig files,
although we are working on providing data loading using other
file formats, such as SONATA.

3. RESULTS AND DISCUSSION

In this Section, we present practical examples of the analysis
tasks and the solutions proposed in this article. To do so, we
have selected a dataset composed of around 8,000 neurons and
170,407 synapses. This dataset is a subset of a larger one provided
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FIGURE 5 | SynCoPa application Graphic User Interface (GUI). 1) 3D Visualizer displaying synapses distribution of several neurons colored in blue. Due to the visual

aggregation of particles, the application will show areas with different levels of lightness, where the lighter the representation, the higher the concentration of synapses

(in this case, represented in green). 2) Selection Control widget. 3) Aspect configuration widget. 4) Information Summary Widget showing the number of synapses per

neuron.

by The Blue Brain Project (Markram, 2006) which represents 7
columns of the human cortex.

The results presented in this section are split into four
categories and each one describes an example use case. These
examples cover the two main analysis tasks this article focuses
on, as well as the proposed methods to tackle them. The first use
case is based on the visual exploration of the synapses present
in a data-set and how they relate to the morphologies (section
3.1). The second scenario details how to visualize paths statically
between a pre-synaptic neuron and one or more post-synaptic
neurons (section 3.2). The third one describes the synapse and
path filtering process based on the synaptic properties for a
specific simulation time (section 3.3). The last one describes
how the use of dynamic highlighting for path visualization can
enhance the static approach and exemplifies how animation can
benefit path visualization (section 3.4).

Finally, after presenting these four use case scenarios, section
3.5 is devoted to discussing the scope and limitations of both the
method and software application presented in this work.

3.1. Synapses
The following use case describes an example of how our
method can be used for exploring a synapses’ distribution.
This visual exploration can be done both with or without
the context provided by the neuron morphologies. Counting
with neuron morphologies allows posing questions regarding

the relationship between the synapses spatial distribution and
different morphological features. On the other hand, not
counting with neuron morphologies can alleviate visual clutter
problems while still being able to detect spatial patterns in
synapses positions.

An example of a possible workflow for this use case could be
as follows: 1) The user runs the application and loads a circuit,
displaying all the available synapses; 2) Then, the user can adjust
both the size and opacity of the particle-based representations
used for synapses. Fine tuning the opacity will allow the user
to reduce the amount of visual aggregation when the number of
synapses is large, therefore reducing visual clutter and improving
the perception of patterns or clusters; 3) The user can select
one or more neurons from the list. This will update the view,
which will show then only the synapses belonging to the selected
neurons. When the user selects different neurons, SynCoPa will
pan and zoom the camera viewpoint to use the maximum screen
space available. Instead of using a hard cut, we use a camera
animation which will help the user to keep track of the spatial
relationship between the previous and current selection; 4) At
any time, the user can perform the following operations: modify
the visualization parameters, interactively navigate the scene with
the appropriate 3D camera controls, and display the neuron
morphologies along with the synapses representations.

Figure 6 shows an example of the output obtained when
analyzing the spatial positions of synapses. It can be observed
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FIGURE 6 | Synapse renderings of the complete data-set showing synapses of a cortical minicolumn with different levels of opacity. (A) presents more visual

cluttering produced by a high level of opacity. On the other hand, (B) shows a lower opacity level. Also, in (B), different clusters with a higher concentration of

synapses can be observed along the cortical minicolumn at the left-middle, middle, and right parts of the image.

FIGURE 7 | Neuron detailed morphology rendering along with its synapses. The pre-synaptic positions of the synapses are colored in green and the post-synaptic

ones in red. Some outliers can be observed as single green points on the left part of the image, too far from the closest dendrite and without a corresponding

post-synaptic position in red.

that the spatial distribution of these connections shows a
specific morphological organization and represent a neuronal
superstructure like, in this case, a cortical minicolumn. In
addition, by tuning the size and opacity of the particles, the user
can reduce the visual clutter generated when dealing with a large
number of elements, improving thus the chances for detecting
patterns. This can be seen in Figures 6A,B, where the second one
facilitates analyzing more populated regions which could not be
analyzed that easily in the first one.

This visual aggregation effect, produced by the usage of the
particle-rendering approach proposed in this paper, can be also
seen in Figure 5. In this scene, the synapses are represented using
only the pre-synaptic position encoded in green. It can be noticed
that highly populated regions present lighter green colors and are

perceived as larger individual clusters. In this figure, it is also
shown how SynCoPa allows the analysis of the overall spatial
distribution of synapses combining it with the context provided
by the neurons’ detailed morphologies.

This clustering detection process can also be seen in Figure 7,
rendered using two particles per synapse: a green one for the
pre-synaptic and a red one for the post-synaptic position. In this
case, by analyzing synapse positions together with morphologies
it is possible to detect the presence of errors on the positions
of some synapses or morphological transformation mismatches.
For example, there are some outliers on the left-hand side
of the figure, where we can see green particles not having a
corresponding post-synaptic red particle close by. Also, it can be
seen that some particles seem to be wrongly located, as they are
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FIGURE 8 | Example of static path-highlighting. In this example, pre-synaptic and post-synaptic neurons have been selected by the user and they are shown in white

and orange, respectively. The rest of the neurons in the scene are not selected and are shown in purple. This way, they provide context without interfering in the main

features under analysis. The paths between the selected pre-synaptic and post-synaptic neurons are highlighted in green for their pre-synaptic part, axon, and in blue

for their post-synaptic part, dendrites. As shown, highlighting paths statically is even effective when the paths between neurons are large enough to require

long-distance renders. In these cases, a traditional approach would most likely cause morphological details to be missed due to the visual aliasing effect.

also too far from their closest dendrite. This is an example of how
the proposed method can be helpful for detecting possible errors
in the data acquisition or dataset composition stages.

3.2. Static Path-Highlighting
This use case is based on how connectivity paths can be
highlighted to understand the connectivity between neurons.
This is of special relevance in cases with high density of branches
and synapses, where the user’s perception might get overloaded
by visual cluttering.

An example of this use case could be as follows: 1) The user
loads a circuit and selects the path visualization mode using the
selection widget presented in section 2.6. 2) When selecting a
pre-synaptic neuron, the application shows its morphology and
the whole set of paths leading to the shared synapses of the
connecting post-synaptic neurons. 3) The user can tune different
visual parameters, colors, opacity, etc., to highlight the paths so
they can be seen in a clearer way. Then, the user can select
the desired post-synaptic neurons using the selection widget
(Figure 9). 4) Finally, the application displays the synapses and
paths that connect the selected neurons.

Figure 8 shows a pre-synaptic neuron in white and a post-
synaptic neuron in orange. The pre-synaptic part of the path is
depicted in green while the post-synaptic part appears in blue.
All neurons and neurites not involved in the path are shown in
purple. The flexibility of SynCoPa allows the user to change all
these colors, as explained in section 2.6. This figure then shows
how this static visualization strategy allows to perceive a clear
differentiation between the neurites and their sections involved
in the connections and the ones which are not. This represents
an important advantage when visualizing connectivity on top of
realistic morphologies, given the inherent complexity of this kind
of data. Connection paths are clearly highlighted from the rest of
the scene, even at a long range, where visual aliasing problems
interfere directly with the displayed results.

Moreover, this visualization technique allows the user to
interact with the scene, for example by changing the camera
viewpoint. It is widely accepted that interaction is always an
important point when dealing with complex data. Figure 9 shows

FIGURE 9 | Example of static path-highlighting. The selected pre-synaptic

and post-synaptic neurons are shown in white and orange, respectively.

Pre-synaptic paths, axon, are highlighted in green and post-synaptic paths,

dendrites, in blue. In this detailed view, a closer analysis of paths can be done.

Besides, it can be observed that there are post-synaptic parts of paths that

overpass the last synapse. These trimming errors are caused by a mismatch

between the morphological synaptic distance and the synapse positions.

how the user can obtain a clear view of the synapse distribution
along both the pre and post-synaptic highlighted paths. In this
figure, it can also be seen how the pre-synaptic axon, green,
is highlighted from the rest of the dendrites of the neuron,
presented in white. The unused dendrites from the yellow post-
synaptic neuron are clearly differentiated from the highlighted
ones in blue.

3.3. Color Coding and Filtering of Synapse
Attributes
This use case presents some of the analysis procedures that
can be carried out when mapping synapse attributes to colors
in combination with the execution of interactive filtering
operations. This strategy allows users to visually correlate synapse
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attributes with different spatial properties or patterns, such as
synapse location when forming spatial clusters, or their position
along the dendrites, branches, and even neural superstructures.

An example of the workflow associated with this use case
could be as follows: 1) The user loads a circuit and the application
shows the whole set of synapses; 2) The user selects the synapse
mapping option on the widget for controlling their visual
appearance and then selects a synapse attribute. This action
will make SynCoPa coloring the synapses accordingly as well as
displaying the distribution of values as a histogram on top of
the gradient widget containing the color palette in use; 3) The
user can now change the color palette to a more convenient
one according to the distribution of the property values; 4) The
user can also activate the filtering option moving the slider to
select the desired range of values (Figure 10); 5) With the aim of
visually analyzing how the different values are distributed along
the neurites, the user can also select a set of neurons so that
SynCoPa displays their corresponding morphologies. 6) Finally,
the user could also switch to the path highlightingmode, enabling
as well the synapse color mapping option. This option can be
used for filtering synapses based on the different values of their
attributes, allowing users to focus on a specific set of synapses
and modify this set interactively. This can be quite useful to the
user who, by hiding undesired or non-relevant data, can alleviate
visual clutter (Figure 11).

Synapse color-mapping and filtering provide a different way
for analyzing the distribution of the values of an attribute along
with the morphological organization of the synapses. As it can
be observed in Figure 10, the user is able to visually correlate the
concentration of values with the spatial distribution of synapses
by using a color transfer function. When displaying all the
synapses, or a great amount of them, visual clutter can interfere in
the users’ insight gaining process. This can be seen in Figure 10A,
where all synapses are displayed. This is the perfect example to
see how the users can interactively filter undesired or nonrelevant
information allowing them to visualize ranges independently. In
Figure 10B, it can be observed that most synapses are located
around their distribution peak, at the middle of the histogram.
Figures 10B,D show clusters of values outside the concentration
peak which are similar to the ones present in Figure 6B.

Therefore, SynCoPa allows detecting if there are clusters
around specific ranges of attribute values. This can be
achieved thanks to the visual navigation it provides while
combining it with user interaction with the filters features
and histograms.

Figure 11 shows how filtering synapses based on their
attributes values can also be used for filtering out the resulting
paths from each connecting synapse between two or more
neurons. Here, it can be seen how the current synapses are
color-mapped based on their “Synaptic Conductance” attribute
and how paths are filtered when removing the corresponding
synapses. This filtering can be used in order to visually correlate
different values with the distribution of the connecting elements
between neurons. This can be seen in Figure 11B, where
no distant connections are present for the lowest Synaptic
Conductance values. On the contrary, higher values present in
Figures 11C,D show short and long distance connections for the
middle and highest values.

3.4. Dynamic Path-Highlighting
In this section we present a use case and some examples

of the methods proposed in section 2.5.3. In the previous

section, it has been shown that visualizing paths using the
proposed static visualization technique can help understanding

how several neurons connect one another, clearly enhancing

the knowledge extraction process. In any case, analyzing
the interconnection patterns can still be a difficult task in
case where the complexity of the morphologies result in a
strong degree of visual clutter. This use case shows how
animation can help alleviate perception problems in these types
of scenarios.

An example of the workflow associated with this use case
could be as follows: 1) The user loads a circuit enabling the
path-highlighting mode and then selects the pre-synaptic and
post-synaptic neurones. 2) Then, the user can tune different
visual parameters and rotate the camera to understand how both
neurons are interconnected. 3) By activating the dynamic paths-
highlighting, the application displays a motion effect from the
pre-synaptic neuron’s soma to the post-synaptic’s one, branching
on every bifurcation and synapse of WS along the neurites’

FIGURE 10 | Synapse filtering based on synaptic depression values. (A) Shows a full cortical column without filtering, whereas (B–D) display the distribution of

synapses according to their value and the color composition depending on the filtered range of values. Each figure shows its corresponding color mapping, the

histogram, and the selected range on the bottom-left corner.
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FIGURE 11 | Path filtering based on synaptic conductance values. (A) Shows all connecting paths between the pre-synaptic neuron (pink) and the post-synaptic one

(orange), highlighting their connecting paths in green and blue, respectively. (B–D) Show the different distributions for each range. Each figure shows its corresponding

color mapping and the filtering applied at the bottom-left corner.

FIGURE 12 | Example sequence of the dynamic highlighting approach. The blue impulse in (A) highlights the current path from the blue neuron’s soma (top-right).

Through both (B,C) it can be seen that the initial impulse has split into other impulses on every reached bifurcation. This creates a cascade effect across all available

paths (green). Once a synapse has been reached (D) a post-synaptic impulse (shown in orange) is created at the synapse position. This impulse follows the dendrite

path to the post-synaptic neuron’s soma (E).

morphology and changing color when reaching a synapse
(Figure 12).

The process of highlighting paths dynamically clearly
enhances path visualization, even more, when they are complex.
One of the clear advantages of using animated sequences is the
“pop-out” effect this visual channel generates in the human visual
perception system. This motion effect follows the connectivity
direction, as it can be seen in Figure 12. As all neurites, and
therefore the highlighted paths, tend to interlace (Figure 12A),
understanding trajectories and paths gets more difficult with

a static highlighting approach. To help alleviate this issue,
the moving impulses create an animation that highlights the
direction of the paths. This problem is increased when the user is
not able to interact using camera navigation. In this case, the trail
effect created by the proposed approach also helps understanding
the direction of the paths. In Figures 12B,C, it can be observed
how impulses split into several impulses for each bifurcations.
Figures 12D,E show how a post-synaptic impulse is created when
a pre-synaptic impulse reaches a synapse and how the impulses’
trails indicate the connectivity directions in static images.
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3.5. Scope and Limitations
The method effectiveness is determined by several
factors, including limitations from hardware and software
implementation, data issues or visual constraints.

With respect to morphologies, if complex networks are being
considered for analysis, the number of meshes to be rendered
simultaneously can compromise the degree of interactivity that
can be achieved. Specifically, when running the application with a
mono-GPU implementation, as would happenwithmost desktop
or laptop personal computers, the limit might be around 1,000
simultaneous morphologies, but it can really vary depending on
their complexity and the amount of detail used (Garcia-Cantero
et al., 2017). In this sense, improvements in the NeuroLOTs
framework, with the optimization of the method for both single
and multiple GPU configurations, might allow an increment
of the number of morphologies that can be rendered without
compromising interactivity.

Considering synapses and paths, the main limitation comes
from the number of particles that have to be rendered. Since
the sustained interaction with PReFr (Galindo et al., 2015) on
a multi-CPU approach is over 1 million particles, a dataset
of over 10,000 simultaneous neurons’ synapses could worsen
performance. More specifically, static path-highlighting on high
complexity scenarios (complex morphologies, long paths or a
large number of neurons) will require larger numbers of particles.
This can affect performance, and, therefore, significantly
compromise interactivity. Nevertheless, the implementation of
algorithm on GPUs should increase the number of particles that
can be rendered simultaneously to several million. This, along
with a multi-GPU configuration, will allow SynCoPa to cope with
larger datasets.

In order to have a first approximation to the performance
of the prototype presented, we have measured the frames-
per second rate (FPS) of the tool under different scene
configurations. The computer used was a laptop with 4 cores

Intel R© Core
TM

i7-7700HQ CPU (2.80GHz), with 32GB of main
memory and a NVIDIA Geforce GTX 1050 GPU. It has to be
noticed that SynCoPa is currently a prototype that allows proving
the usefulness of the techniques, and has not been optimized
yet. Table 1 shows the data collected, where each row presents
the number of synapses, the number of neurons, and the FPS
achieved when showing the whole set of synapses both with and
without the morphologies (labeled as FPSSyn+Mor and FPSSyn,
respectively). These configurations are extreme in the sense that
the whole dataset is depicted, while in most cases, the analysis
tasks presented will typically focus on a subset of the data.

Errors in the data could also compromise the accuracy and
effectiveness of the method. Positioning errors could be present
in both neurons’ morphologies and synapses, when synaptic
positions are defined independently. Wrong or poor geometrical
transformations could affect neurons’ morphological accuracy
too. These errors might produce visual artifacts like the ones
appearing in Figures 7, 9, as well as other artifacts regarding the
trajectory of the paths. Another possible issue is the existence
of tracing or positioning errors that generate overlaps between
different morphological elements, like neurites and somas. The
proposed method can help detect these errors when visualizing

TABLE 1 | FPS measurement for different scene configurations.

Neurons Synapses FPSSyn FPSSyn+Mor

100 1,849 58 58

200 8,848 47 39

300 18,096 38 27

400 31,752 30 21

500 46,266 24 17

600 71,520 17 14

700 98,388 15 12

800 124,458 11 10

900 143,213 9 9

1,000 182,746 8 8

The columns “Neuron” and “Synapses” show the size of each configuration. The columns

FPSSyn shows the frames-per second (FPS) when rendering the whole set of synapses

without morphologies. The FPS numbers when rendering synapses and morphologies

are shown in the FPSSyn+Mor column.

the data. However, their correction is not within the scope of
this work.

In terms of visualization, there are some limitations regarding
alpha blending and the different background configurations. The
TAB mode is more effective for visualizing the different color
ranges when mapping synapses’ attributes to colors for both light
and dark backgrounds. On the other hand, the AAB reduces
significantly its effectiveness with light backgrounds since the
accumulation of color saturates to white. As the concentration
of elements is key for computing the resulting color, using AAB
challenges the accuracy of the colors or elements concentration.
As a consequence, the path-highlighting method in both its
static and dynamic variations proves to be less effective over
light backgrounds. On the contrary, paths highlighting in both
static and dynamic approaches offer better effectiveness with
both AAB and dark backgrounds. AAB mode results are very
effective for color differentiation in tasks, such as observing
synapses concentration due to the use of light colors over dark
backgrounds where the saturation also indicates concentration,
enhancing the overall understanding of the scene.

4. CONCLUSIONS AND FUTURE WORK

This article presents SynCoPa, a tool that allows users to
interactively explore and analyze detailed morphological and
structural information of neuronal circuits at the connectome
level (fulfilling FR1). More specifically, the work presented here
focuses on two analysis tasks: 1) Interactively analyzing the
relationships between the detailed morphologies of a neuronal
circuit and its synapses spatial location and attributes; 2) Studying
connecting paths between neurons and the relationship of these
paths with morphological features.

The proposed synapse representation using particle-based
rendering has turned out to be very effective. This representation
can be tuned using different visual properties to enhance the
users’ perception. For example, alpha blending can be adjusted
to help understanding the spatial distribution of synapses.
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This is specially useful in cases with a large amount of
elements being displayed at the same time, such as several
hundreds of thousands of synapses being shown simultaneously.
Moreover, the adjustment of visual parameters clearly enhances
the perception of patterns, concentrations of elements, and even
outliers and positioning errors (contributing to the achievement
of functional requirements FR2, FR3).

Furthermore, the proposed method allows mapping
synapse attributes to colors. In addition, and in combination
with interactive user-defined filtering, it also allows to
effectively understand the distribution of values in a
specific region and at different levels of detail, for example
at neuron level or at population level (fulfilling functional
requirement FR3).

Highlighting paths statically provide an effective perception of
neuron connectivity, especially when visualizing a large amount
of neurites, or when their morphologies are very complex. In
these cases, visual clutter muddles the users’ ability to analyze
the data as discussed previously in this article. The proposed
method is also effective for highlighting paths at long camera
distances, where the visual aliasing effect is more remarkable.
On the other hand, highlighting paths dynamically creates
animations that effectively convey the connectivity direction and
enhance the understanding of the scene even without any type
of camera interaction. We have concluded that path highlighting
(either static or dynamic) provides a pop-out effect of tracing
or positioning errors when trajectories do not match paths or
synapses’ positions (fulfilling FR4).

With respect to the limitations found in SynCoPa, we can
conclude that the main ones could be alleviated by improving
the computing performance of the underlying rendering
technologies supporting SynCoPa.

In summary, this article proposes several novel methods for
exploring and analyzing synapse distributions, together with
their attributes and the connectivity paths between neurons.
These methods can help neuroscientists to gain insight into
complex scenarios combining both connectivity and detailed
morphologies. In addition, they can also help with the detection
of tracing and positioning errors.

Regarding the interaction with the applications, at this
moment we only provide a filtering option based on mapping
certain attributes to different colors. However, we are already
working on the development of a few more filtering options
to reduce the amount of neurons, synapses, and paths
shown according to different properties, so that users will
be able to select certain elements, for example using drag
and drop operations, from the dataset to focus on a more
specific WS.

It would also be very interesting to allow SynCoPa to perform
an automatic size adjustment for different sections of the
neurites. This would help make sense of the images presented
to the user, since different neurite sections along interconnection
paths have different sizes. However, the particles deployed are
always presented with the same size.

Expanding the proposed method to perform quantitative
analysis tasks could also be very interesting. This could provide
several instruments for a detailed numeric analysis of the
morphologies and connectivity elements, as well as better

validation mechanisms of the data. These quantitative analysis
tools could be useful to improve the data extraction and
generation processes in previous steps of the brain study.

Finally, the methods proposed could be improved making
it possible to load a broader range of datasets, types, and
formats to show and analyze their morphological details together
with the available neuronal connections. Also, CPU and GPU
optimizations would be beneficial in order to cope with
larger datasets.
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