
TECHNOLOGY AND CODE
published: 28 January 2022

doi: 10.3389/fninf.2021.767936

Frontiers in Neuroinformatics | www.frontiersin.org 1 January 2022 | Volume 15 | Article 767936

Edited by:

Andrew P. Davison,

UMR9197 Institut des Neurosciences

Paris Saclay (Neuro-PSI), France

Reviewed by:

Hua Han,

Institute of Automation, Chinese

Academy of Sciences (CAS), China

John McAllister,

Queen’s University Belfast,

United Kingdom

*Correspondence:

Ting Zhao

zhaot@janelia.hhmi.org

Nenggan Zheng

zng@zju.edu.cn

Received: 31 August 2021

Accepted: 27 December 2021

Published: 28 January 2022

Citation:

Zhang H, Liu C, Yu Y, Dai J, Zhao T

and Zheng N (2022) PyNeval: A

Python Toolbox for Evaluating Neuron

Reconstruction Performance.

Front. Neuroinform. 15:767936.

doi: 10.3389/fninf.2021.767936

PyNeval: A Python Toolbox for
Evaluating Neuron Reconstruction
Performance
Han Zhang 1,2, Chao Liu 1,2, Yifei Yu 3, Jianhua Dai 4, Ting Zhao 5* and Nenggan Zheng 1,3,4*

1Qiushiq Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China, 2College of Computer Science and

Technology, Zhejiang University, Hangzhou, China, 3 Zhejiang Lab, Hangzhou, China, 4Collaborative Innovation Center for

Artificial Intelligence by MOE and Zhejiang Provincial Government (ZJU), Hangzhou, China, 5Howard Hughes Medical

Institute, Janelia Research Campus, Ashburn, VA, United States

Quality assessment of tree-like structures obtained from a neuron reconstruction

algorithm is necessary for evaluating the performance of the algorithm. The lack of

user-friendly software for calculating common metrics motivated us to develop a Python

toolbox called PyNeval, which is the first open-source toolbox designed to evaluate

reconstruction results conveniently as far as we know. The toolbox supports popular

metrics in two major categories, geometrical metrics and topological metrics, with an

easy way to configure custom parameters for each metric. We tested the toolbox on both

synthetic data and real data to show its reliability and robustness. As a demonstration

of the toolbox in real applications, we used the toolbox to improve the performance of a

tracing algorithm successfully by integrating it into an optimization procedure.

Keywords: PyNeval, metric, quantitative analysis, neuron tracing, neuron reconstruction, toolbox

1. INTRODUCTION

Reconstructing tree structures of labeled neurons in light microscope images is a critical step for
neuroscientists to study neural circuits (Parekh and Ascoli, 2013; Peng et al., 2015). Researchers
have longed for automating this process of neuron reconstruction, also called neuron tracing, to
overcome the bottleneck of manual annotation or proofreading (Gillette et al., 2011b; Peng et al.,
2011). Despite decades of efforts (Halavi et al., 2012; Acciai et al., 2016), however, there is still no
computer algorithm that can be as reliable as human labor. Besides being a complex computer
vision problem itself, neuron tracing has baffled developers on how an algorithm should be
evaluated. Unlike many image segmentation problems, neuron tracing has no universally accepted
metric to measure its performance. In fact, it is infeasible to design one metric for all applications,
which have different tolerance to different types of reconstruction errors. The real problem here
is a lack of easy access to evaluation metrics. As a result, researchers have to implement a metric
by themselves or compromise on metric properness for convenience. This has caused two issues
in the literature. First, performance evaluation was often limited to one or two metrics that were
not sufficient to offer comprehensive comparisons. Second, the metrics applied were ambiguous in
general without open implementations, causing potential inconsistency and low reproducibility.

This problem can be addressed by open-source user-friendly software that allows evaluating
neuron reconstruction qualities in various ways. Such software should cover the two major
categories of reconstruction metrics, geometrical metrics and topological metrics. Geometrical
metrics measure how well a reconstructed model overlaps with the underlying gold standard or
ground truth model, while topological metrics measure the topological similarity between the two

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.767936
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.767936&domain=pdf&date_stamp=2022-01-28
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhaot@janelia.hhmi.org
mailto:zng@zju.edu.cn
https://doi.org/10.3389/fninf.2021.767936
https://www.frontiersin.org/articles/10.3389/fninf.2021.767936/full

Zhang et al. PyNeval Toolbox for Reconstruction Assessment

models. Geometrical metrics are often computed by
summarizing spatial matching between the two models,
such as counting the number of matched nodes as done in the
popular substantial spatial distance (SSD) metric (Peng et al.,
2010) or measuring the length of overlapped branches in the
so called length metric (Wang et al., 2011). These metrics are
straightforward for telling where branches are missing or over-
traced in reconstruction, but they are not suitable for evaluating
topological accuracy, which is crucial in some applications
such as electrophysiological simulation. For the latter situation,
topological metrics such as the Digital Reconstruction of Axonal
and Dendritic Morphology (DIADEM) metric (Gillette et al.,
2011a), tree edit distance (Bille, 2005), and critical node (CN)
metric (Feng et al., 2015) are preferred.

Hence, we introduce a Python toolbox called PyNeval, which
is the first open-source toolbox designed to provide multiple
choices for evaluating the qualities of reconstruction results
conveniently. In specific, PyNeval is designed to have the
following features:

• PyNeval has a user-friendly command-line interface for easy
use and a flexible way of configuring parameters for covering
a broad range of user requirements.
• PyNeval provides various evaluation methods for measuring

both geometrical and topological qualities of reconstructions.
• PyNeval provides an interface for optimizing any

reconstruction algorithm that converts an image into an
SWC file with adjustable parameters.

In this paper, we formulate each evaluation method
implemented in PyNeval under a mathematical framework
if it has not been clearly defined in the literature. Our
implementation follows those formulations, which give users
a clear and unambiguous picture of what PyNeval computes.
We apply PyNeval to randomly perturbed data to show that
PyNeval can produce reliable evaluation scores from different
metrics. The difference among the metrics can be seen in their
results of manually-designed special cases. Besides comparing
different tracing algorithms, PyNeval can be used to optimize
any reconstruction algorithm with tunable parameters, as
demonstrated in our experiment on mouse brain data acquired
by fMOST (Gong et al., 2016).

2. METHOD

2.1. SWC Format
The PyNeval toolbox is designed based on the SWC format
(Cannon et al., 1998), the common format of neuron
reconstruction results. The format represents the shape of
a neuron in a tree structure that consists of a set of hierarchically
organized nodes (Feng et al., 2015):

T = {ni = (xi, ri,nj) | i = 1, ...,NT ,nj ∈ T ∪ n0, i 6= j,

xi ∈ R
3, ri ∈ R} (1)

where NT = |T| is the number of nodes of T, the ith node ni is
a sphere centering at xi = (xi, yi, zi) with radius ri, and n0 is a
virtual node. In this definition, nj is called the parent of ni, and

a node with a virtual node as its parent is called a root node. For
convenience, we also define the following functions:

• Parent of a node: ρ :(xi, ri,nj) ∈ T 7→ nj ∈ T ∪ n0
• Position of a node: x :(xi, ri,nj) ∈ T 7→ xi ∈ R

3

• Radius of a node: r :(xi, ri,nj) ∈ T 7→ ri ∈ R

The edge set of the model T is defined as

E(T) = {ei | ei = (ni, ρ(ni)),ni ∈ T} (2)

One important constraint on the SWC model T is that the
graph G = (T ∪ n0,E(T)) has no loop, which means that it is
a tree.

2.2. Software Design
Assuming that the reconstruction results are in the SWC format,
PyNeval takes a gold standard SWC file as well as one or more
testing SWC files and outputs the quality scores for each testing
SWC. Since PyNeval supports multiple metrics, it should also
allow the user to specify metric options. As a consequence, input
SWC files andmetric options form the essential parameters of the
main PyNeval command. While this provides a straightforward
interface for an application, it is not flexible enough to adapt to
more subtle user requirements such as setting specific parameters
for a certain metric or checking evaluation details. Therefore,
PyNeval has a flexible but friendly way of accepting optional
parameters, allowing the user to specify these parameters without
having to check extensive documents. PyNeval can output
carefully formatted results to the screen for easy reading or
save the results with more details to a file for further analysis,
depending on the user’s choice of the output parameters. For
example, the -detail option can be used to produce an SWC
file that labels each node in the test structure with a specific type
to indicate what kind of error is associated with that node. The
overall architecture of PyNeval is shown in Figure 1.

2.3. Metrics
PyNeval supports four commonly used metrics in both
geometrical and topological categories, although it can be easily
extended tomoremetrics. To explain themetrics implemented in
PyNeval unambiguously, we use the notations listed in Table 1.

More specifically, some of the notations can be interpreted
as follows:

• Besides always assuming that eij = (ni,nj) and ei = (ni, ρ(ni)),
we also use n and e to represent a node and an edge,
respectively, when there is no need to index them.
• Node interpolation

I(n, λ) =







((1− λ)x(n) +λx(ρ(n)), (1− λ)r(n)
+λr(ρ(n)), ρ(n))), 0 ≤ λ < 1

ρ(n), λ = 1
(3)

• Interpolation between two nodes, no matter if they
are connected

I(ni,nj, λ) =







((1− λ)xi +λxj, (1− λ)ri
+λrj,nj), 0 ≤ λ < 1

nj, λ = 1
(4)

Frontiers in Neuroinformatics | www.frontiersin.org 2 January 2022 | Volume 15 | Article 767936

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Zhang et al. PyNeval Toolbox for Reconstruction Assessment

FIGURE 1 | The overview of PyNeval, which can take a gold standard model and a test model from the same image as input through a command line interface and

outputs quality scores of the test model, as well as more details about reconstruction errors. Four different metrics, including the length and substantial spatial

distance (SSD) metrics in the geometrical category and the DIADEM and critical node (CN) metrics in the topological category, are available in PyNeval.

TABLE 1 | Mathematical notations used for explaining the metrics.

Symbol Meaning

Tg Gold standard SWC model

Tt SWC model for evaluation

ni A node in a SWC model with an unique index i

E(T) Set of all edges in T

ei Edge from node ni to node ρ(ni)

d(x, y) Distance between two objects, which can be nodes, edges or trees

L Length of an edge or an edge set

M Matched node or edge set

I Interpolation function

• Node distances

d(ni,nj) =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (5)

dxy(ni,nj) =
√

(xi − xj)2 + (yi − yj)2 (6)

dz(ni,nj) = |zi − zj| (7)

d(n, ei) = min
λ

d(n, I(ni, λ)) (8)

d(n,T) = min
e∈E(T)

d(n, e) (9)

• Node length

L(n) =

{

0, n is a root node

d(n, ρ(n)), otherwise
(10)

• Edge lengths

L(eij) = d(ni,nj) (11)

L(E(T)) =
∑

e∈E(T)

L(e) (12)

• Tree length

L(T) = L(E(T)) (13)

2.3.1. Length Metric
It is natural to evaluate the quality of a reconstruction Tt by
measuring how well its branches overlap with the gold standard
model Tg . This can be computed by matching edges between Tt

Frontiers in Neuroinformatics | www.frontiersin.org 3 January 2022 | Volume 15 | Article 767936

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Zhang et al. PyNeval Toolbox for Reconstruction Assessment

and Tg and then summing up the lengths of the matched edges
in Tt and Tg , respectively, to produce the common precision and
recall metrics. Before proceeding to explain the length metric in
detail, we first need to define some more notations

• A segment lying on an edge (n, ρ(n)) is

C(n, λ1, λ2) = {x(I(n, λ))|0 ≤ λ1 ≤ λ ≤ λ2 ≤ 1} (14)

and its length is L(C(n, λ1, λ2)) = (λ2 − λ1)L(n).
• The overlap ratio between two segments C1, C2 with respect to

the edge (n, ρ(n)) is defined as O(C1,C2). Suppose that C1 =

(ni,α1,α2), C2 = C(nj,β1,β2), the overlap ratioO(C1,C2) is

O(C1,C2) =











max(0,min(α2 − α1,

β2 − β1,α2 − β1,β2 − α1)), i = j

0, i 6= j

(15)

• A simple path between two points on a tree is

P((ns, λs), (nt , λt)) =

{

{C(ns, min(λs, λt), max(λs, λt))}, s = t

{C(nik ,αk,βk)|k = 1 · · ·K}, s 6= t

(16)
where i1 = s, iK = t, nik−1 = ρ(nik) ornik = ρ(nik−1), K is the
number of edges on the path and

(αk,βk) =































(0, λs), k = 1 and ns = ρ(ni2)

(λs, 1), k = 1 and ρ(ns) = ni2
(0, λt), k = K and nt = ρ(niK−1)

(λt , 1), k = K and ρ(nt) = niK−1
(0, 1), otherwise

(17)

In our implementation, we construct the matched edge set
between Tt and Tg as demonstrated in Algorithm 1.

2.3.2. SSD Metric
The SSD metric (Peng et al., 2010) can be viewed as a variant of
the length metric in terms of what it tries to measure. Instead of
matching edges directly, however, SSD counts how many nodes
are matched without excluding duplicated matches. Besides, SSD
provides an additional metric to measure how far the unmatched
nodes are away from the counterpart model. One extra step of
SSD metric is resampling each branch of Tt and Tg uniformly to
reach a sufficient density εsp

R(T) = {n
(i)
k
|ni ∈ T, k = 0, 1, . . . ,Ki} (18)

where n
(i)
k
= I(ni,n

(i)
k+1

, k
k+1

), n
(i)
Ki
= n

(j)
0 , ρ(ni) = nj, Kiεsp ≤

L(eij), and (Ki + 1)εsp > L(eij).
After that, like computing the length metric, the SSD metric

can be obtained by constructing the matched node set Mn

between two SWCmodels Tg and Tt shown in Algorithm 2.

2.3.3. CN Metric
The CN metric measures how many CNs are reconstructed
correctly. A critical node is either a branching or terminal

Algorithm 1: Length metric.

Input: Tg ,Tt , ǫl ∈ R
+, ǫo ∈ R

+, ǫd ∈ R
+

Output: precision, recall
1: Mt ← ∅,Mg ← ∅

2: for eij in E(Tt) do
3: I(n′g1 , λ1)← argminn′∈∪n∈Tg {I(n,λ)|0≤λ≤1} d(ni,n

′)

4: I(n′g2 , λ2)← argminn′∈∪n∈Tg {I(n,λ)|0≤λ≤1} d(nj,n
′)

5: ifmax(d(ni, I(n
′
g1
, λ1)), d(nj, I(n

′
g2
, λ2))) < ǫd then

6: P((n′g1 , λ1), (n
′
g2
, λ2)) is the simple path between

I(n′g1 , λ1) and I(n′g2 , λ2)

7: if
|L(eij)−L(P((n′g1 ,λ1),(n

′
g2
,λ2))|

L(eij)
< εl and

max
C1∈P((n′g1 ,λ1),(n

′
g2
,λ2)),C2∈Mg

O(C1,C2) < εo then

8: Mt ← Mt ∪ {eij}

9: Mg ← Mg ∪ P((n′g1 , λ1), (n
′
g2
, λ2))

10: end if

11: end if

12: end for

13: precision← L(Mt)
L(Tt)

14: recall←
L(Mg)

L(Tg)

15: return precision, recall

Algorithm 2: SSD metric.

Input: R(Tg),R(Tt), ǫsp ∈ R
+, ǫssd ∈ R

+

Output: precision, recall, SSD cost
1: Mn(Tg ,Tt)← ∅,Mn(Tt ,Tg)← ∅
2: for ni inR(Tg) do
3: if min

nj∈R(Tt)
d(ni,nj) < εssd then

4: Mn(Tg ,Tt)← Mn(Tg ,Tt) ∪ {ni}
5: end if

6: end for

7:

8: for ni inR(Tt) do
9: if min

nj∈R(Tg)
d(ni,nj) < εssd then

10: Mn(Tt ,Tg)← Mn(Tt ,Tg) ∪ {ni}
11: end if

12: end for

13:

14: precision←
|Mn(R(Tt),R(Tg))|

|R(Tt)|

15: recall←
|Mn(R(Tg),R(Tt))|

|R(Tg)|

16: SSD cost←
SSD(R(Tt),R(Tg))+SSD(R(Tg),R(Tt))

2
17: return precision, recall, SSD cost

node, which determines the topology of an SWC model.
Mathematically, the set of the CNs of an SWC model T is
defined as

K(T) = {n|n ∈ T,DT(n) 6= 2} (19)

where DT(n) is the degree of node n in the tree T.

Frontiers in Neuroinformatics | www.frontiersin.org 4 January 2022 | Volume 15 | Article 767936

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Zhang et al. PyNeval Toolbox for Reconstruction Assessment

Algorithm 3: Critical node metric.

Input: K(Tg),K(Tt), ǫbr ∈ R
+

Output: precision, recall
1: Vb ← K(Tt) ∪K(Tg)

2: Eb ← {(n
(t),n(g))|n(t) ∈ K(Tt),n

(g) ∈ K(Tg), d(n
(t),n(g)) <

εbr}

3: Gb ← (Vb,Eb)
4: M∗

b
← argmaxMb

|Mb| #Mb is a matching in Gb, i.e., Mb

is a subgraph of Gb and all of its nodes
5: have degree 1.

6: precision←
|M∗

b
|

|K(Tt)|

7: recall←
|M∗

b
|

|K(Tg)|

8: return precision, recall

Algorithm 4: Diadem metric.

Input: K(Tg),K(Tt), ǫxy ∈ R
+, ǫz ∈ R

+, , ǫld ∈ R
+

Output: DIADEM score
1: for ni ∈ K(Tg) do
2: for nj ∈ K(Tt) do
3: if dxy(ni,nj) < ǫxy and dz(ni,nj) < ǫz then

4: # search for α(n), the ancestor of n on the path between
n and its root n0.

5: # n
(g)
0 , n

(t)
0 are the roots of gold and test trees

respectively.

6: for α(ni) in P((ni, 0), (n
(g)
0 , 0)) do

7: for α(nj) in P((nj, 0), (n
(t)
0 , 0)) do

8: if α(ni) matches α(nj) and
|L(P(ni ,α(ni)))−L(P(nj,α(nj)))|

L(P(ni ,α(ni)))
< ǫld then

9: Md ← Md ∪ {ni}

10: end if

11: end for

12: end for

13: end if

14: end for

15: end for

16: DIADEM score =

∑

n∈Md

DTg (n)

∑

n∈K(Tg)

DTg (n)

17: return DIADEM score

With the CNs, we can compute the CN metric with
Algorithm 3.

2.3.4. DIADEM Metric
Introduced by Gillette et al. (2011a) for the DIADEM challenge
(Gillette et al., 2011b), the DIADEM metric evaluates the
similarity between two models by comparing their branching
structures. Like the CNmetric, the DIADEMmetric is also based
on matching CNs in K(Tg) and K(Tt), here K(T) is defined in
equation (19). But its matching criteria are more complicated
than simply checking the distances. A brief description of the
DIADEMmetric is proposed as Algorithm 4.

TABLE 2 | Summary of neuron reconstructions from six image stacks.

ID Number of nodes Number of roots Source

BN1 4,966 7 BigNeuron

BN2 852 7 BigNeuron

BN3 432 2 BigNeuron

BN4 4,251 4 BigNeuron

FM1 5,160 63 fMOST

FM2 674 9 fMOST

There are also several rounds of scanning to deal with the
problem that nj ∈ K(Tt) is not the only node that meets the
conditions, and labels every unmatched CN in Tg as a match if it
is on a matched path. More details can be found in the reference
(Gillette et al., 2011a).

2.4. Implementation
PyNeval is implemented in Python 3 (Oliphant, 2007) using
several powerful open-source packages, including Numpy (Van
Der Walt et al., 2011) for numerical computation, Anytree
(Anytree., 2020) for handling the SWC data structure, and kdtree
as well as Rtree (KDtree., 2017; Rtree., 2020) for fast search of
closest edges and nodes.

3. RESULTS

3.1. Robustness Test
We applied PyNeval to randomly perturbed gold standard
reconstructions to characterize each metric and evaluate the
robustness of our program. The perturbed dataset is constructed
by randomly moving a portion of nodes in the original
reconstructions, which are gold standard SWC models from the
standard BigNeuron dataset (Peng et al., 2015) as well as our
custom dataset acquired from fMOST (Gong et al., 2016). As
listed in Table 2, a total of six reconstructions with a large variety
of sizes were used for the test.

A reasonable metric should produce decreasing quality
scores as the perturbation ratio increases. This can be seen
in the experimental results plotted in Figure 2, in which each
curve shows the trend of a metric score along the increasing
perturbation ratio. Each metric score at a perturbation ratio
was averaged from 10 trials for a sequence of 11 perturbation
ratios increasing by the step of 0.1 from 0 to 1. As expected, the
curves are consistently similar among different models, in spite
of their different morphologies. They all follow the right trend
that more perturbation results in a worse score. We can also see
that, topological metrics have higher variance than geometrical
metrics, which is not surprising because how a perturbation
affects the topology highly depends on the positions of the
perturbed nodes. This suggests that when we use a topological
metric to evaluate an algorithm, more samples or trials might be
needed to draw a reliable conclusion.

Frontiers in Neuroinformatics | www.frontiersin.org 5 January 2022 | Volume 15 | Article 767936

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Zhang et al. PyNeval Toolbox for Reconstruction Assessment

FIGURE 2 | Result of robustness test. Each row represents a metric and each column represents an swc model. In each chart, the x-axis is the perturbed proportion

and the y-axis is the corresponding metric value.

3.2. Special Case Analysis
In addition to the perturbation experiment, we also tested the
behaviors of the metrics on some special cases to show their
differences more clearly. We constructed four special cases for
geometrical metrics and the other four for topological metrics,
including Figure 3:

• Test cases for geometrical metrics

1. Both ends of an edge in Tg have matched nodes in Tt , but
Tt has an extra node that deviates the path from the edge
segment in Tg .

2. Tg manages to find a match path in Tt , but its nodes
do not match those on the same path in Tg due to the
sampling rate.

3. A straight path in Tg is reconstructed as a bifurcation in Tt

by mistake.
4. Tt distorts a relatively straight path in Tg into a zigzag path.

• Test cases for topological metrics

1. The nodes are matched but a wrong connection in Tt

changes the root to a non-CN.
2. Tt has wrong connections, but all the CNs are still matched

between Tt and Tg .
3. The reconstruction moves a node and all its descendants to

a different location.
4. Connection mistakes in Tt break the original model into

several isolated graphs.

Table 3 shows different results on the same special cases
produced by the SSD and length metrics. The SSD metric tends
to output higher F1 scores than the length metric does, but it is
not necessarily better or worse. In some cases (Figures 3A,B), the
SSD scores look more reasonable because their more granulated
matching can capture partial matching of a path. In other cases
(Figures 3C,D), where the errors aremore complicated, however,
the SSD metric can overestimate reconstruction qualities by
counting duplicated matches.

The difference between the two topological metrics can be
seen in Figure 4 and Table 4. The CN metric fails to detect
reconstruction errors in Figures 4A,D because the errors do not
add or remove a critical node. The DIADEM metric can avoid
such a problem by including path comparison. In this sense, the
DIADEM metric is more comprehensive than the other three
metrics in PyNeval as it actually considers both topological and
geometrical features. Nevertheless, we should note that it may
not correlate well with the amount of editing work needed to fix
errors. For example, the test model in case 2 can be more readily
fixed than case 3, despite that it has a lower DIADEM score. In
other words, the DIADEM metric can be misleading when we
expect an automatic method to minimize manual work.

3.3. Reconstruction Parameter
Optimization Using PyNeval
Besides comparing different reconstruction algorithms, another
important application of PyNeval is to optimize parameters of

Frontiers in Neuroinformatics | www.frontiersin.org 6 January 2022 | Volume 15 | Article 767936

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Zhang et al. PyNeval Toolbox for Reconstruction Assessment

FIGURE 3 | (A–D) Four manually constructed cases for testing geometrical metrics.

TABLE 3 | PyNeval results of the SSD and length metrics for the geometrical

cases are shown in Figures 3A–D.

Method Index File name

A B C D

SSD metric SSD score 1.66 1.60 0.51 1.49

Recall 0.33 0.86 1.00 0.27

Precision 0.36 0.83 0.95 0.18

F1 score 0.35 0.85 0.98 0.21

Length metric Recall 0.00 0.47 1.00 0.00

Precision 0.00 0.50 0.54 0.00

F1 score 0.00 0.48 0.70 0.00

the same tracing algorithm. We can treat this as a numerical
optimization problem. For any tunable reconstruction program
P(I|θ), in which image I and parameteres θ are inputs and SWC
model is the output, we define the optimization problem as

min
textbf θ

E(L(P(I|θ),Tg(I))|I) (20)

where L is the loss function that can be computed from
reconstruction metrics.

In real applications, we expect parameters optimized on a
training dataset can be generalized to other images from the same
imaging protocol. Therefore, we carried out a cross-validation
experiment on four image blocks (Figure 5) from a whole mouse

brain sample acquired by fMOST (Gong et al., 2016). The cross-
validation searched for the best parameters for each block and
used these optimized parameters to trace other blocks. In our
experiment, we used the F1 score of the SSD metric as the
loss function to optimize the automatic neuron tracing method
used in neuTube (Zhao et al., 2011), which has two numerical
parameters for adjusting the sensitivity of branch detection.
The optimization process was performed by simulated annealing
(Van Laarhoven and Aarts, 1987), which searches the parameters
iteratively. A new parameter θ (k+1) at the kth iteration was
calculated by

θ (k+1) = θ (k) + 20
u

|u|
∗ tk ∗ ((1+

1

tk
)|u| − 1) (21)

where u was drawn randomly from [−1, 1]\0 and tk was the
temperature at the kth iteration. Starting from t1 = 0.01, the
temperature was decreased every 25 iterations at the rate of 0.96.
The stop criterion was that the temperature was below 10−5 or
the optimal value had not been improved for 20 iterations.

The results show that the optimized parameters outperformed
the default parameters consistently, no matter which image
block was used in parameter searching (Figure 6), presenting
a successful example of using PyNeval in improving automatic
neuron tracing.

Frontiers in Neuroinformatics | www.frontiersin.org 7 January 2022 | Volume 15 | Article 767936

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Zhang et al. PyNeval Toolbox for Reconstruction Assessment

FIGURE 4 | (A–D) Four manually constructed cases for testing topological metrics.

TABLE 4 | PyNeval results of the DIADEM and length metrics for the topological

cases are shown in Figures 4A–D.

Method Index file name

A B C D

Diadem metric Score 0.625 0.56 0.69 0.72

Critical node metric Recall 0.80 1.00 0.70 1.00

Precision 1.00 1.00 0.70 1.00

F1 score 0.89 1.00 0.70 1.00

4. CONCLUSION AND FUTURE WORK

Motivated by the difficulties of evaluating automatic neuron
tracing methods, we have developed PyNeval, a user-friendly
Python toolbox to help method developers focus on algorithm
development and method users choose a proper method for
their own applications. PyNeval has made four popular metrics
that cover both the geometrical and topological categories
easily accessible to the community. A user can easily install
PyNeval through common Python packagemanagers and run the

Frontiers in Neuroinformatics | www.frontiersin.org 8 January 2022 | Volume 15 | Article 767936

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Zhang et al. PyNeval Toolbox for Reconstruction Assessment

FIGURE 5 | Four 3D neuron images used in the optimization experiment. Each image and its gold standard reconstruction is rendered side by side in each panel

labeled by the corresponding dataset ID. (A) FM3, (B) FM4, (C) FM5, and (D) FM6.

FIGURE 6 | Cross-validation results of parameter optimization for neuron reconstruction. The scores of the optimized parameters are consistently better than those of

the default parameters for all the test images.

Frontiers in Neuroinformatics | www.frontiersin.org 9 January 2022 | Volume 15 | Article 767936

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Zhang et al. PyNeval Toolbox for Reconstruction Assessment

program as a command line with a straightforward but flexible
interface. We have also shared the source code of PyNeval on
https://github.com/CSDLLab/PyNeval to show how the metrics
were implemented exactly as well as inspire further development.

To facilitate further development, PyNeval has a well-
modularized architecture for maximizing its extensibility. It is
straightforward to add more metrics such as the NetMets metric
(Mayerich et al., 2012) in the future while keeping backward
compatibility. Another important plan for further development
is to make PyNeval an easy-to-use Python library as well, so that,
other users can easily call functions in PyNeval from Python code
directly, or even contribute their own metrics to PyNeval.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Zhejiang
University.

AUTHOR CONTRIBUTIONS

TZ and NZ designed and supervised the project.
HZ wrote most part of the software with help
from YY and TZ. HZ, CL, and JD performed data
analysis. HZ, TZ, and NZ wrote the manuscript. All
authors contributed to the article and approved the
submitted version.

FUNDING

This work is supported by the National Key R&D Program
of China (2020YFB1313501), Zhejiang Provincial Natural
Science Foundation (LR19F020005), National Natural
Science Foundation of China (61972347, 61976089), and
Hunan Provincial Science & Technology Project Foundation
(2018RS3065, 2018TP1018).

ACKNOWLEDGMENTS

We thank Wenzhi Sun and Wei Wu for providing fMOST data.

REFERENCES

Acciai, L., Soda, P., and Iannello, G. (2016). Automated neuron

tracing methods: an updated account. Neuroinformatics 14, 353–367.

doi: 10.1007/s12021-016-9310-0

Anytree. (2020). https://pypi.org/project/anytree/ (accessed Auguest 31, 2021).

Bille, P. (2005). A survey on tree edit distance and related problems. Theor.

Comput. Sci. 337, 217–239. doi: 10.1016/j.tcs.2004.12.030

Cannon, R. C., Turner, D. A., Pyapali, G. K., and Wheal, H. V. (1998). An on-line

archive of reconstructed hippocampal neurons. J. Neurosci Methods 84, 49–54.

doi: 10.1016/S0165-0270(98)00091-0

Feng, L., Zhao, T., and Kim, J. (2015). neutube 1.0: a new design for efficient neuron

reconstruction software based on the swc format. eNeuro 2:ENEURO.0049-

14.2014. doi: 10.1523/ENEURO.0049-14.2014

Gillette, T. A., Brown, K. M., and Ascoli, G. A. (2011a). The diadem metric:

comparing multiple reconstructions of the same neuron. Neuroinformatics 9,

233–245. doi: 10.1007/s12021-011-9117-y

Gillette, T. A., Brown, K. M., Svoboda, K., Liu, Y., and Ascoli, G. A. (2011b).

Diademchallenge. org: a compendium of resources fostering the continuous

development of automated neuronal reconstruction. Neuroinformatics 9,

303–304. doi: 10.1007/s12021-011-9104-3

Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., et al. (2016). High-

throughput dual-colour precision imaging for brain-wide connectome with

cytoarchitectonic landmarks at the cellular level. Nat. Commun. 7:12142.

doi: 10.1038/ncomms12142

Halavi, M., Hamilton, K. A., Parekh, R., and Ascoli, G. (2012).

Digital reconstructions of neuronal morphology: three decades

of research trends. Front. Neurosci. 6:49. doi: 10.3389/fnins.2012.

00049

KDtree. (2017). https://pypi.org/project/kdtree/ (accessed Auguest 31, 2021).

Mayerich, D., Bjornsson, C., Taylor, J., and Roysam, B. (2012). Netmets: software

for quantifying and visualizing errors in biological network segmentation. BMC

Bioinformatics 13, S7. doi: 10.1186/1471-2105-13-S8-S7

Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10–20.

doi: 10.1109/MCSE.2007.58

Parekh, R., and Ascoli, G. A. (2013). Neuronal morphology goes digital: a

research hub for cellular and system neuroscience. Neuron 77, 1017–1038.

doi: 10.1016/j.neuron.2013.03.008

Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering,

E., et al. (2015). Bigneuron: large-scale 3d neuron reconstruction from

optical microscopy images. Neuron 87, 252–256. doi: 10.1016/j.neuron.201

5.06.036

Peng, H., Long, F., Zhao, T., and Myers, E. (2011). Proof-editing is the bottleneck

of 3d neuron reconstruction: the problem and solutions. Neuroinformatics 9,

103–105. doi: 10.1007/s12021-010-9090-x

Peng, H., Ruan, Z., Long, F., Simpson, J. H., and Myers, E. W. (2010). V3d enables

real-time 3d visualization and quantitative analysis of large-scale biological

image data sets. Nat. Biotechnol. 28, 348–353. doi: 10.1038/nbt.1612

Rtree. (2020). https://pypi.org/project/rtree/ (accessed Auguest 31, 2021).

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The numpy array:

a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30.

doi: 10.1109/MCSE.2011.37

Van Laarhoven, P. J., and Aarts, E. H. (1987). “Simulated annealing,” in Simulated

annealing: Theory and applications (Berlin: Springer), 7–15.

Wang, Y., Narayanaswamy, A., Tsai, C.-L., and Roysam, B. (2011). A

broadly applicable 3-d neuron tracing method based on open-curve snake.

Neuroinformatics 9, 193–217. doi: 10.1007/s12021-011-9110-5

Zhao, T., Xie, J., Amat, F., Clack, N., Ahammad, P., Peng, H., et al.

(2011). Automated reconstruction of neuronal morphology based on local

geometrical and global structural models. Neuroinformatics 9, 247–261.

doi: 10.1007/s12021-011-9120-3

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhang, Liu, Yu, Dai, Zhao and Zheng. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 10 January 2022 | Volume 15 | Article 767936

https://github.com/CSDLLab/PyNeval
https://doi.org/10.1007/s12021-016-9310-0
https://pypi.org/project/anytree/
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1016/S0165-0270(98)00091-0
https://doi.org/10.1523/ENEURO.0049-14.2014
https://doi.org/10.1007/s12021-011-9117-y
https://doi.org/10.1007/s12021-011-9104-3
https://doi.org/10.1038/ncomms12142
https://doi.org/10.3389/fnins.2012.00049
https://pypi.org/project/kdtree/
https://doi.org/10.1186/1471-2105-13-S8-S7
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1016/j.neuron.2013.03.008
https://doi.org/10.1016/j.neuron.2015.06.036
https://doi.org/10.1007/s12021-010-9090-x
https://doi.org/10.1038/nbt.1612
https://pypi.org/project/rtree/
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1007/s12021-011-9110-5
https://doi.org/10.1007/s12021-011-9120-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	PyNeval: A Python Toolbox for Evaluating Neuron Reconstruction Performance
	1. Introduction
	2. Method
	2.1. SWC Format
	2.2. Software Design
	2.3. Metrics
	2.3.1. Length Metric
	2.3.2. SSD Metric
	2.3.3. CN Metric
	2.3.4. DIADEM Metric

	2.4. Implementation

	3. Results
	3.1. Robustness Test
	3.2. Special Case Analysis
	3.3. Reconstruction Parameter Optimization Using PyNeval

	4. Conclusion and Future Work
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

