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Cerebral microbleeds (CMBs) appear as small, circular, well defined hypointense lesions

of a fewmm in size on T2*-weighted gradient recalled echo (T2*-GRE) images and appear

enhanced on susceptibility weighted images (SWI). Due to their small size, contrast

variations and other mimics (e.g., blood vessels), CMBs are highly challenging to detect

automatically. In large datasets (e.g., the UK Biobank dataset), exhaustively labelling

CMBs manually is difficult and time consuming. Hence it would be useful to preselect

candidate CMB subjects in order to focus on those for manual labelling, which is essential

for training and testing automated CMB detection tools on these datasets. In this work,

we aim to detect CMB candidate subjects from a larger dataset, UK Biobank, using

a machine learning-based, computationally light pipeline. For our evaluation, we used 3

different datasets, with different intensity characteristics, acquired with different scanners.

They include the UK Biobank dataset and two clinical datasets with different pathological

conditions. We developed and evaluated our pipelines on different types of images,

consisting of SWI or GRE images. We also used the UK Biobank dataset to compare

our approach with alternative CMB preselection methods using non-imaging factors

and/or imaging data. Finally, we evaluated the pipeline’s generalisability across datasets.

Our method provided subject-level detection accuracy > 80% on all the datasets

(within-dataset results), and showed good generalisability across datasets, providing a

consistent accuracy of over 80%, even when evaluated across different modalities.

Keywords: cerebral microbleeds, machine learning, susceptibility weighted image (SWI), UK Biobank, subject-

level detection, T2*-weighted MRI, structural MRI
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1. INTRODUCTION

Cerebral microbleeds (CMBs) represent focal haemosiderin
depositions consisting of macrophages in microhaemorraghes
(Shoamanesh et al., 2011), and are sometimes surrounded by
ischemic areas and gliosis (Gouw et al., 2011). CMBs appear
as small focal dark circular lesions on T2*-weighted gradient
recalled echo (T2*-GRE) sequences. They usually range from 2
to 10 mm in size, although further subdivision into microbleeds
(2–5 mm) and macrobleeds (>5 mm) has been used (Greenberg
et al., 2009a). While some of the CMBs might not be visible at
all on T2*-GRE images, susceptibility weighted images (SWI)
shows more CMBs and they appear more prominently on SWI
due to the blooming effect (Greenberg et al., 2009b; Charidimou

and Werring, 2011). CMBs can be the early sign of intracerebral
haemorrhage (ICH) (Gouw et al., 2011), vascular dementia
(Ayaz et al., 2010) and Alzheimer’s disease (Gouw et al., 2011;
Shoamanesh et al., 2011; Wardlaw et al., 2013). They have been
associated with cognitive decline (Werring et al., 2004; Won Seo
et al., 2007) and several vascular diseases (Nishikawa et al., 2009;
Yates et al., 2014), including lacunar stroke and small vessel
diseases (Nannoni et al., 2021). Moreover, CMBs often occur with
vascular damage related to cerebral amyloid angiopathy (Gouw
et al., 2011). Strong associations have been established between
CMBs and risk factors such as age (Roob et al., 2000; Horita et al.,
2003; Jeerakathil et al., 2004; Vernooij et al., 2008; Poels et al.,
2010; Takashima et al., 2011), hypertension (Roob et al., 2000;
Tsushima et al., 2002; Horita et al., 2003; Vernooij et al., 2008;
Poels et al., 2010) and white matter damage (Roob et al., 2000).

Recent studies on the predictive value of CMBs for long-term

cognitive outcome have shown inconsistent results, therefore
the specific role of CMBs in cognitive impairment and
neurodegeneration remains unclear (Wardlaw et al., 2013).
Hence, it would be useful to observe the prevalence and
clinical/demographic associations of CMBs in larger populations.

However, exhaustive manual labelling of CMBs is difficult and
time consuming, especially in large datasets (e.g., the UK Biobank
dataset). Consequently, semi-automated methods (Barnes et al.,
2011; Seghier et al., 2011; Kuijf et al., 2012, 2013; De Bresser et al.,
2013; van den Heuvel et al., 2016; Morrison et al., 2018) were
proposed as a possible solution to reduce false positives. Even
though the manual revising step removes the spurious detections
effectively, it typically takes at least a few minutes per subject
(Kuijf et al., 2013; van den Heuvel et al., 2016; Morrison et al.,
2018) and it is not an efficient solution for CMB detection in very
large datasets. Hence, it would be highly useful and efficient to
develop a fully automated CMB candidate subject preselection
method (without involving manual intervention in any stage of
the detection pipeline) in the large datasets, and focus on those
subjects for manual labelling to facilitate further semi-automated
or fully-automated methods with more accurate CMB detection,
analysis and characterisation (based on size, shape, location and
multiplicity, clustering).

The detection of CMBs, however, even at subject-level, is
highly challenging since CMBs occur sparsely, are difficult to
detect due to their size, contrast variations and the fact that
they are often accompanied by other signs (e.g., haemorrhages).

The SWI modality has been shown to aid in identifying more
CMBs (at least >67% Nandigam et al., 2009) compared to
T2*-GRE images, since SWI improves CMB contrast. However,
the presence of other paramagnetic substances, apart from
haemosiderin, causes enhanced appearance of dark structures
that resemble CMBs, known as CMB “mimics” (Greenberg et al.,
2009b; Charidimou and Werring, 2011). The mimics could be
haemorrhagic/paramagnetic such as cavernous malformations,
haemorrhagic micrometastases, diffusion axonal injury, small
haemorrhages nearer to the infarcts and ICH areas, or non-
haemorrhagic such as flow voids, calcifications, motion artefacts,
Gibb’s ringing artefact and partial volume artefacts at air-bone
interfaces (Greenberg et al., 2009b). For description and features
of CMB mimics refer to Supplementary Table 1.

So far, the proposed automated methods for lesion-level
CMB detection used shape descriptors (Bian et al., 2013;
Fazlollahi et al., 2014, 2015), intensity and geometric information
(Ghafaryasl et al., 2012), and location-based features (Dou
et al., 2015). The use of comprehensive features, integrating
the geometry, intensity, scale and local image structures from
multiple modalities have been shown to improve CMB detection
(Ghafaryasl et al., 2012; Dou et al., 2015). Over recent years,
with the advent of deep learning, methods using convolution
neural networks (CNNs) (Dou et al., 2016; Chen et al., 2018; Liu
et al., 2019) and hybrid methods using a combination of CNNs
and intensity information (Chen et al., 2015; Dou et al., 2015)
have been proposed, occasionally with additional postprocessing
steps (Liu et al., 2019). While CNN-based methods provide
more accurate CMB detection when compared to conventional
methods, they require a large amount of labelled training
data. Alternatively, techniques such as semi-supervised and
omni-supervised learning (Huang et al., 2018) require more
representative labelled CMB instances that would not bias the
method towards CMB mimics. While the occurrence of CMBs
could be high in disease groups (e.g., small vessel disease), in
general, the prevalence of CMBs is low in population-based
cohorts (e.g., UK Biobank). In datasets from populations with
low prevalence of CMBs, it would be extremely time consuming
to look at all subjects manually. A way to automatically preselect
a subset that was enriched for CMBs would allow better use of
the available manual identification time and lead to better and
clinically relevant training datasets for further CMB analyses.

In this work, our aim is to develop a subject-level preselection
method that is computationally light, easy to train and scalable to
large datasets. Towards this aim, we propose a fully automated
method using intensity, shape and location-based features for
detecting CMB candidate subjects from large datasets such as
the UK Biobank. We evaluated the method on datasets with
different image modalities (GRE and SWI) and in the presence
of other pathological signs. We then applied the method to the
UK Biobank dataset for CMB candidate subject preselection,
and compared our method with various alternative methods
using non-imaging factors and/or imaging data (CMB count).
We finally evaluated the ability of our proposed pipeline to adapt
to differences in image characteristics and demographics of the
datasets, by training our pipeline on one dataset and testing it on
a different one.
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2. DATASET DETAILS

In this work we used the following datasets to develop and
evaluate the preselection pipeline. The datasets are diverse in
their intensity characteristics and are acquired using different
protocols. A brief overview of the datasets is provided below.

The Oxford Vascular Study (OXVASC) dataset: The dataset
consists of T2*-GRE images from 40 participants from the
OXVASC study (Rothwell et al., 2004), who had recently
experienced a minor non-disabling stroke or transient ischemic
attack. The age range was 35.6–94.8 years, mean age 68.7 ± 15.5
years, median age 67.4 years, and female to male ratio F:M =

15:25. The 2D single-echo T2*-GRE images were acquired using
a 3T Siemens Verio scanner with GRAPPA factor = 2, TR/TE
= 504/15 ms, flip angle 20o, voxel resolution of 0.9 × 0.8 × 5
mm, with image dimensions of 640× 640× 25 voxels. Out of 40
subjects, 20 subjects have CMBs and the corresponding manual
segmentations, labelled on T2*-GRE images, are available. The
total number of CMBs is 267, mean: 13.3 ± 1.13 CMBs/subject.
Figure 1 shows the histogram of volumes of individual CMBs in
the OXVASC dataset.

The Tranexamic acid for IntraCerebral Haemorrhage 2

(TICH2) trial MRI substudy dataset: This is a subset of the
MRI dataset used in Dineen et al. (2018) obtained as part of the
TICH2 trial (Dineen et al., 2018; Sprigg et al., 2018). The age
range was 29–88 years, mean age 64.76 ± 15.5 years, median
age 66.5 years, and female to male ratio F:M = 24:26. The
dataset consists of images acquired at multiple centres and on
multiple MRI platforms with variations in image dimensions and
voxel resolutions. MR acquisition parameters for the TICH2MRI
substudy dataset can be found in Dineen et al. (2018). The dataset
used in this work consists of 50 SWI images from subjects with
spontaneous intracerebral haemorrhage. Out of 50 subjects, 25
subjects have CMBs and manual segmentations for CMBs are
available for all 25 subjects. The manual segmentations were
labelled on SWI images as either definite or possible according
to the microbleed anatomical rating scale (MARS) (Gregoire
et al., 2009). Total number of CMBs: 505, mean: 20 ± 32.6
CMBs/subject (the histogram of volumes of individual CMBs is
shown in Figure 1).

UK Biobank (UKBB) dataset: Out of ≈ 20,000 subjects
from the January 2018 release of UKBB, 14,521 had the required
data fields (e.g., availability of SWI images and the factors
specified below). From these subjects, we randomly selected 180
subjects with age range 46.8–76.8 years, mean age 58.9 ± 9.1
years, median age 58.8 years, and female to male ratio F:M
= 86:94. We used SWI images from the selected subjects for
our experiments, which were constructed from 3D multi-echo
GRE images acquired using a 3T Siemens Magnetom Skyra
syngo MR D13 scanner with TR/TE1/TE2 = 27/9.4/20 ms,
flip angle 15o, voxel resolution of 0.8 × 0.8 × 3 mm, with
image dimensions of 256 × 288 × 48 voxels. Subject-level
manual labels were available for the selected subjects, indicating
whether each subject was a CMB or a non-CMB subject (only
including those graded as definite CMB based on MARS scale).
However, lesion-level manual segmentations of CMBs were not
available for the dataset. On the UKBB dataset, we also used

several non-imaging factors that are known to be associated with
CMBs (given these data were collected as a part of the study),
including demographic factors such as age (Greenberg et al.,
2009b; Charidimou and Werring, 2011), blood pressure (BP)
(Roob et al., 2000; Tsushima et al., 2002; Vernooij et al., 2008;
Poels et al., 2010), risk factors such as smoking (Tsushima et al.,
2002; Poels et al., 2010), clinical conditions such as white matter
damage (Roob et al., 2000) and cognitive decline (Werring et al.,
2004; Won Seo et al., 2007). We used the non-imaging factors for
a comparison experiment on the dataset (for more details, refer
to section 3.4.3). Summary statistics for the shortlisted factors
for 180 subjects are: age (range provided above), BP (102/50–
202/118 mmHg, mean: 134.7/80.7 ± 42.4/25.3 mmHg, median:
147.5/90.5 mmHg), smoking (smoking:non-smoking = 70:110),
white matter hyperintensity (WMH) volume (535–45,186 mm3,
mean: 5,465 ± 4,349 mm3, median: 2,929 mm3) and mean
reaction time (MRT, as an indicator of cognitive ability) (397–896
ms, mean: 563± 96.5 ms, median: 546 ms).

2.1. Data Preprocessing
We reoriented the T2*-GRE and SWI images to match only the
axis labels of the standard MNI template by swapping axes as
necessary using the fslreorient2std tool (similar to performing 0o,
90o or 180o rotations, but keeping all the original voxel intensities
unchanged; e.g., a voxel size of 1 × 2 × 1mm, with a matrix
size of 192 × 256 × 192, and axes of LR, IS, AP would become
1 × 1 × 2mm, with 192 × 192 × 256 matrix size and LR,
PA, IS axes), in order to aid in further processing. We do not
apply any rigid/affine/non-affine transformation of the images to
register them to standard space, given the small size of CMBs.We
skull stripped the images (T2*-GRE/SWI) using FSL BET (Smith,
2002), followed by bias field correction using FSL FAST (Zhang
et al., 2001).

3. PIPELINE FOR DETECTION OF CMB
CANDIDATE SUBJECTS

The automated pipeline for CMB candidate subject preselection
takes T2*-GRE images or SWI as input and provides a subject-
level decision on whether the subject has CMBs or not. The
pipeline consists of three steps: 1. removal of blood vessels
and sulci, 2. voxel-wise detection of initial CMB candidates, 3.
filtering of initial candidates using shape-based attributes.

3.1. Removal of Blood Vessels and Sulci
In the first step, we removed the blood vessels, sulci and
other elongated dark structures in the input image to reduce
the prevalence of CMB mimics. Figure 2 shows the extracted
features and a few samples of images with blood vessels
and sulci removed. We exploited the elongated tubular
structure of vessels/sulci to extract the following edge and
orientation-based features:

1. Frangi filters: Frangi filters (Frangi et al., 1998) use the
multiscale second order local structure of the image and
denote the degree of vessel-like/edge characteristics at each
voxel. We extracted voxel-wise intensity values of Frangi
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FIGURE 1 | Histograms of volumes of individual CMBs (in mm3 ) in (A) the TICH2 and (B) the OXVASC datasets.

filter outputs as features (Figure 2B). While applying Frangi
filters, we adjusted the parameters β1 and β2 (controlling
the discrimination of lines from blob-like structures and
the elimination of background noise, respectively) to avoid
detection of CMBs during vessel detection. Based on the
results on the training data, we empirically set the values of
β1 and β2 to 0.9 and 20, respectively.

2. The eigenvalues of the structure tensor: The structure tensor
is the covariance matrix, at each voxel, consisting of partial
derivatives of the gradients (Förstner, 1994). The eigenvalues
λ1 and λ2 of this matrix indicate the edge strength. We
considered the combination of the principal eigenvalue λ1
and the linearity measure l = |λ1 − −λ2|/2 (Figure 2C) as
voxel-wise features.

We used K-means clustering, an unsupervised learning
algorithm, with the above features to classify voxels into 2 classes
(vessel vs. background). The detected voxels with vessel-like
structures and sulci are used as masks for inpainting. We filled
the masked regions with intensity values similar to those in the
non-masked neighbourhood (mean of the nearest 3 voxels) to
remove linear dark structures from the input image.

3.2. Voxel-Wise Detection of Initial CMB
Candidates
In the second step, as shown in Figure 3, we extracted the
following 7 features at each voxel on the vessel-removed image
for the initial CMB candidate detection:

1. Intensity transformations (3 features): At each voxel, we
extracted the intensity value (Figure 3A). Additionally, to
obtain contrast enhanced intensity features, we normalised the
intensity values using standardisation (subtracting the mean
intensity within the brain mask and dividing by the standard
deviation), extracted the exponential of the intensity (exp(p
× intensity), where p = 1) (Figure 3B) and applied “contrast
limited adaptive histogram equalisation” (CLAHE, Zuiderveld

(1994), using equalize_adapthist in scikit-image package) with
a clip limit of 0.01 on the input image to obtain the CLAHE
output at each voxel (Figure 3C).

2. Fast radial symmetry transform (FRST): We performed
FRST (Loy and Zelinsky, 2002). In FRST, at each voxel, the
orientation (pointing towards or away from the voxel) and
magnitude maps of gradients are calculated at a certain radius.
These maps are then used to obtain a voxel-wise symmetry
information within the radius. We used 4 different radii: 2, 3,
4 and 6 voxels, and calculated the mean value of all 4 outputs
at each voxel as a feature (Figure 3D).

3. The eigenvalues of structure tensor: We considered the
principal eigenvalue λ1 (since this reduced the noise in
background voxels) of the structure tensor at each voxel as a
feature (Figure 3E).

4. Gaussian filter: We smoothed the vessel removed image I
with a Gaussian filter with σ = 1.5 voxels (empirically
determined to roughly match the size of CMBs) to get a
smoothed image IS. The difference Iδ = I − IS removes the
background and highlights the sharper objects and blobs, and
hence can be interpreted as a “blobness” measure (Figure 3F).

5. Laplacian of Gaussian filter (LoG): Since CMBs have well-
defined edges, we applied LoG (with σ = 1.5 voxels), a
second order derivative filter for edge detection, on the vessel
removed image and obtained the filtered output (Figure 3G)
at each voxel.

We normalised the above features individually by dividing
by their maximum value across the current image and use
the normalised features for training a support vector machine
(SVM) classifier at the voxel-level, using voxel-wise manual
segmentations available for the OXVASC and TICH2 datasets,
to obtain a probability map PCMB. We then thresholded it at a
global threshold thprob of 0.8. The threshold value was determined
empirically (using the training data from the OXVASC and
TICH2 datasets), based on the cluster-wise performance metrics
with respect to lesion-level manual segmentations, by varying
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FIGURE 2 | Features used for the vessel/sulci removal, along with a few samples of images with vessel/sulci removed. Top panel: (A) Input image, (B) Frangi filter

output, (C) Structure tensor linearity measure output and (D) image with vessel/sulci removed. Note that the edges of the haemorrhages have also been smoothed

out, aiding in false positive reduction. Bottom panel: A few instances of images shown in (E), along with their vessel removed results in (F). The arrows indicate the

areas of noticeable vessel/sulci removal.

thprob within a range [0, 1], increasing in steps of 0.1. For
this experiment, we trained the SVM model on the OXVASC
dataset and evaluated it on the TICH2 data and vice versa, since
evaluating across datasets would provide a more robust threshold
value. For each threshold value, we determined the cluster-
wise evaluation metrics (specified below in section 3.5), and
selected the threshold that provided the best set of cluster-wise
performance metrics as the final thprob value.

3.3. Filtering of Initial Candidates Using
Shape-Based Attributes
The small dark structures in the image other than CMBs
(including noise and stray fragments of blood vessels) are
detected as false positives (FPs) in the voxel-level classification.
In this step, we used the following shape- and location-based
object-level attributes for reducing FP as shown in Figure 4:

1. Volume Vc of the candidate in mm3. Candidates with 5 mm3

< Vc <120 mm3 were selected as CMBs.
2. Ellipticity εc: A measure of elongated nature of an object.

The value ranges between [0,1] and a sphere has a value of 0.
Candidates having εc < 0.2 were selected as CMBs.

3. Solidity Sc: The ratio between volume of the candidate and its
convex volume. The value ranges within [0,1] and an object
with its volume equal to that of its convex hull has a value of 1;
this criterion removes the curved fragments of blood vessels
and intersection of vessels that survived the vessel removal
step, since they would have low solidity. A lower threshold
value of 0.6 was applied on Sc of candidates to be selected
as CMBs.

4. Diameter Dc of the candidate in mm. Here, diameter is the
distance between the endpoints of the longest line that can
be drawn through the candidate. Candidates with diameters
2 mm < Dc < 10 mm were selected as CMBs.
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FIGURE 3 | Features extracted for the voxel-wise CMB candidate detection, along with detected CMB candidates. Images showing (A) Input intensity, (B)

exponential transformed intensity, (C) CLAHE output, (D) fast radial symmetry transform (FRST) output, (E) structure tensor output, (F) Gaussian filtered output, (G)

Laplacian of Gaussian (LoG) output, and (H) Binary CMB candidates obtained by thresholding the voxel-wise probability map at 0.8. Inset figures show the magnified

versions of the regions indicated in the boxes.

We considered a candidate as a CMB if all the above criteria
were satisfied. The values for the above criteria were chosen
empirically by a trial-and-errormethod based on the best subject-
level performance on the training data from the OXVASC
and TICH2 datasets using the metrics specified in section 3.5.
The final cluster-wise performance values (providing lesion-level
CMB detection performance) after the filtering step are provided
in Section 4.1.

Preselection criterion: Finally, a subject is classified as having
CMBs if the count of the detected CMB candidates (after
the filtering stage) exceeds an empirically set threshold value
ThNCMB. For each dataset, we determined the ThNCMB value
by measuring the subject-level performance values (specified
in section 3.5) at various thresholds within a pre-specified
range, and choosing the threshold that provided the best set of
performance values as ThNCMB (refer to section 4.2.1). The range
of threshold values was set to be slightly higher than the average
number of CMBs in the OXVASC and TICH2 datasets since

we had to allow for the presence of false positives (e.g., vessel
fragments and sulci missed in the vessel removal stage).

3.4. Evaluation of the CMB Candidate
Preselection Pipeline
We evaluated the proposed pipeline by training and testing it
using different datasets (with different modalities and acquisition
characteristics) to study the effect of dataset characteristics on its
performance. We performed the following experiments:

3.4.1. Initial Evaluation of the Proposed Preselection

Pipeline Within Datasets
We performed leave-one-out validation separately on the
OXVASC and TICH2 datasets. We used T2*-GRE images from
40 subjects from the OXVASC dataset and, separately, SWI from
50 subjects from the TICH2 dataset. For the UKBB dataset,
we performed 5-fold cross-validation on SWI images from 180
subjects with training/validation/test split of 70/10/20%. Note
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FIGURE 4 | An instance of the shape-based filtering of initial candidates. (A) Input image with green boxes indicating manually segmented CMBs, (B) vessel removed

image and (C) result of the shape-based filtering. In the output (C), blue boxes indicate initial candidates that were then rejected by the filtering stage and yellow boxes

indicate the final CMB candidates that survived the filtering stage.

that, for the cross-validation on the UKBB dataset, we used
the SVM model trained on the TICH2 dataset for the initial
candidate detection (since voxel-wise manual segmentations
were not available for the UKBB dataset). We determined the
performance metric values (specified in section 3.5) at different
settings of the threshold ThNCMB in order to plot the ROC curve.

3.4.2. Evaluation of the Generalisability of Our

Method Across Datasets
We trained our pipeline (SVM classifier in the candidate
detection step) on T2*-GRE images from 40 subjects of the
OXVASC dataset. We performed hyper-parameter optimisation,
as specified in Section 4.1, on the held-out data from the
OXVASC dataset (in addition to 40 subjects used for evaluation).
We later evaluated it on the SWI from 50 subjects of the TICH2
dataset. Similarly, we trained the pipeline on SWI from the
TICH2 dataset and evaluated it on T2*-GRE images of the
OXVASC dataset. Finally, we applied both OXVASC-trained and
TICH2-trained pipelines on SWI from 180 subjects of the UKBB
dataset. We could not train the SVMmodel on the UKBB dataset
due to non-availability of voxel-wise manual labels and hence
all training/testing combinations were not possible. For these
experiments, we determined the performance of the preselection
pipeline using the evaluation measures specified in section 3.5.

3.4.3. Comparison of the Proposed Pipeline With

Algorithms Using Imaging/Non-Imaging Factors on

the UKBB Dataset
In addition to the CMB lesion count extracted from imaging data,
various non-imaging demographic/clinical factors have been
associated with the incidence of CMBs, with age and BP being
the common ones (Roob et al., 2000; Horita et al., 2003; Vernooij
et al., 2008; Poels et al., 2010). Therefore, in this experiment, our
objectives are (i) to compare the following category of methods
(including the proposed method) using imaging and/or non-
imaging information (refer to methods 1–3) and (2) to verify

if using clinical factors alongside the automated pipeline would
increase the performance of CMB candidate subject preselection
(refer to method 4):

1. Method 1: demographic/clinical factors: We considered
factors such as age, diastolic BP and systolic BP separately by
applying a range of thresholds to each factor to determine the
baseline performance of each factor.

2. Method 2: other non-imaging factors:While age and BP are
the most common factors, several other factors have also been
associated with CMBs. Therefore, we considered other non-
imaging factors such as smoking, white matter hyperintensity
(WMH) volume and mean reaction time (MRT, linked with
cognitive ability) in addition to age and BP. We used these
6 factors as features to train a SVM classifier (SVMNI) and a
random forest classifier (RFNI). For SVMNI , we used a radial
basis function kernel, with tolerance value of 1 × 10−3 and
ǫ of 0.1 (used fitrsvm in Matlab, 2016b). For RFNI , we used
150 trees, samples at leaf node = 5, mean squared error
(MSE) as criteria for splitting and out-of-bag error score set
to True in TreeBagger command in Matlab (for getting feature
importance, see below). The above training hyperparameters
were chosen using trial-and-error method on the validation
data. We performed 5-fold cross-validation with the same
training-validation-test split used in section 3.4.1. We also
performed feature ranking to determine the importance of
individual features using the out-of-bag (OOB) prediction1

error metric in RFNI .
3. Method 3: determining CMB lesion count using imaging-

based methods: Similar to our proposed pipeline, we used

1In RF, OOB predictions are those obtained on the samples that were left out

while randomly choosing the training subsets for individual trees during bootstrap

aggregating (bagging). We considered the increase in MSE while permuting the

OOB observations across each feature, averaged over all trees in the ensemble and

divided by the standard deviation obtained over the trees. Hence, larger increase

in MSE indicates more important features.
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imaging data (T2*-GRE from OXVASC and SWI from
TICH2) and applied another baseline method, where we
replaced the SVM-based CMB candidate detection step with
a thresholding method to detect initial CMB candidates. We
used the same preprocessing steps used in our pipeline (refer
to section 2.1) and applied a threshold value at the lower 5th
percentile of the intensity value (determined empirically from
the intensity histograms) and considered the voxels within the
brain mask below the threshold as initial CMB candidates. We
compared the 5-fold cross-validation results of our proposed
method with the thresholding method.

4. Method 4: non-imaging factors + CMB lesion count

determined from imaging data:We used a total of 7 features
including the 6 factors used in method 2 and the CMB lesion
count (determined using the proposed pipeline). Similar to
method 2, we trained a SVM (SVMNI+I) and RF (RFNI+I)
classifiers and evaluated them using 5-fold cross-validation.
In addition, we determined the feature importance from OOB
prediction error using RFNI+I . For training the RF and SVM
classifiers, we used the same parameters used in method 2.

From all the above methods we determined the performance
values (specified in section 3.5) at different thresholds for plotting
the ROC curves.

3.5. Performance Evaluation Metrics for
CMB Candidate Subject Preselection
Pipeline
For the CMB candidate subject preselection pipeline, we used the
following measures for evaluation:

• Subject-level true positive rate (TPR): For a given dataset
D, the subject-level TPR is the number of predicted TP CMB
subjects (STP) divided by the number of true CMB subjects, as
given by,

subject-level TPR =
STP

(STP + SFN)
(1)

where SFN is the number of false negative subjects.
• Subject-level specificity: For a given dataset D, the subject-

level specificity is the number of predicted true negative
subjects (STN) divided by the number of non-CMB subjects,
as given by,

subject-level specificity =
STN

(STN + SFP)
(2)

where SFP is the number of false positive subjects.
• Subject-level accuracy: For a given dataset D consisting of

SN subjects, the subject-level accuracy is given by the number
of correctly predicted CMB and non-CMB subjects (STP and
STN) divided by the total number of subjects,

subject-level accuracy =
STP + STN

SN
× 100 (%) (3)

We plotted subject-level ROC curves using subject-level TPR
and subject-level false positive rate (subject-level FPR = 1 −

subject-level specificity) values.

Additionally, although the main focus of this work was the
detection of subjects with CMBs rather than the delineation
of single lesions, we used the following cluster-wise measures
for obtaining an indicative evaluation of the lesion-level
performance at the CMB initial candidate detection step.

• Cluster-level TPR: The number of true positive CMBs divided
by the total number of true CMBs as given by,

Cluster-wise TPR =
TPclus

(TPclus + FNclus)
(4)

where TPclus and FNclus are true positive and false negative
CMBs, respectively.

• Average number of false positive clusters per subject

(FPavg): For a given dataset D, FPavg is defined as the ratio
of the total number of detected FPs to the number of subjects
(or images) in the dataset, as given by,

FPavg =
Total number of FPs

Number of subjects in D
(5)

We used 26-connectivity to determine the clusters for obtaining
the above metrics. We considered a cluster as a true positive
if it overlaps with a ground truth cluster by at least one voxel,
while false positive clusters are the ones that have no overlap with
any ground truth cluster. We used cluster-wise TPR and FPavg
values for plotting a free-response ROC (FROC) curve, which is a
plot of cluster-wise TPR vs. the average number of false positives
per image/subject.

4. RESULTS

4.1. Effect of Threshold Value on Obtaining
CMB Candidates
Figures 5A,B show FROC curves for the TICH2 and OXVASC
datasets used to determine the threshold value thprob for the
voxel-wise initial CMB candidate detection of the OXVASC-
trained and TICH2-trained pipelines, respectively. Since we will
be applying, at a later stage, the shape-based filtering step (step
3) to further reduce false positives, we prioritised achieving high
cluster-wise TPR in this initial CMB candidate detection step
(step 2). For both datasets, we achieved the best performance
at thprob value of 0.8 with FPavg values close to or less than
200 CMBs/subject. The SVM classifier trained on the OXVASC
dataset achieved a cluster-wise TPR of 0.906 with FPavg of 210.6
on the TICH2 dataset, while the SVM trained on the TICH2
dataset achieved cluster-wise TPR of 0.86 with FPavg of 178.7 on
the OXVASC dataset.

Cluster-wise results after filtering initial CMB candidates:

For the pipeline trained on the OXVASC data and evaluated
on the TICH2 data, the pipeline achieved a cluster-wise TPR
of 0.88 with FPavg of 20.4 after the final candidate filtering
stage. Similarly for the pipeline trained on the TICH2 data and
evaluated on the OXVASC data, the pipeline achieved a cluster-
wise TPR of 0.85 with FPavg of 12.8 after the final candidate
filtering stage.
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FIGURE 5 | Free-response ROC (FROC) curves for initial CMB candidate detection for (A) OXVASC-trained pipeline evaluated on the TICH2 dataset and (B)

TICH2-trained pipeline evaluated on the OXVASC dataset. The circular markers indicate the points at which we achieve the best compromise between TPR and FPs

(the point that corresponded to the highest TPR having FPavg ≈ 200 FPs/subject.

4.2. Evaluation of the CMB Candidate
Preselection Pipeline
Figures 6, 7 show the ROC curves for leave-one-out validation
and our experiments to analyse model generalisability,
respectively. Figure 10 shows the ROC curves for comparison
of various methods on the UKBB dataset. The overall results are
reported in Table 1. Alternatively, subject-level specificity and
accuracy values for a specific subject-level TPR value of 95% are
reported in Supplementary Table 3.

4.2.1. Initial Evaluation of the Proposed Preselection

Pipeline Within Datasets
Figure 6 shows the separate leave-one-out validation results
for the OXVASC and the TICH2 datasets. The best set of
performance values for each dataset was determined from the
knee point on the ROC. From the ROC curves it can be seen
that, on the OXVASC dataset, the pipeline achieves the best
subject-level performance metric values: TPR = 0.96, specificity
= 0.83 and accuracy = 0.90 at the threshold ThNCMB = 30
CMBs (and TPR = 0.81, specificity = 0.87 and accuracy =

0.84 at the threshold ThNCMB = 35 CMBs). Similarly, on
the TICH2 dataset, the pipeline achieves the best subject-level
performance values: TPR = 0.91, specificity = 0.81 and accuracy
= 0.86 at the threshold ThNCMB = 35 CMBs. On performing
the 5-fold cross-validation on the UKBB dataset (ROC curve
shown by black solid line in Figure 10), the proposed pipeline
achieved the best subject-level performance with a TPR =

0.91, specificity = 0.86 and accuracy = 0.89 at ThNCMB =

35 CMBs.

4.2.2. Evaluation of the Generalisability of the

Proposed Pipeline Across Datasets
Pipeline trained on OXVASC and evaluated on the TICH2

data: Figure 7A shows the ROC curve for the prediction of
CMB subjects at various values of the threshold ThNCMB on the
number of detected CMBs for individual subjects. We achieved
the best performance with ThNCMB set to 35 CMBs. 50 subjects).
Despite the presence of haemorrhagic lesions in all subjects, the

pipeline gave a sensitivity of 0.90 and an accuracy of 0.81, with
a subject-level specificity of 0.70. Figure 8 shows a few example
cases of correct and incorrect subject-level detections on the
TICH2 dataset (manually segmented CMBs are indicated with
green boxes). From the Figure, it can be seen that our algorithm
correctly predicted the subjects with a high number of CMBs
(Figures 8A,B). Typically these subjects with high number of
CMBs or no CMBs were detected better than subjects with very
low number of CMBs (well under ThNCMB value of 30 CMBs,
as shown in Figure 8E) or subjects having small haemorrhages
(Figures 8C,D).

Pipeline trained on TICH2 and evaluated on the OXVASC

data: Figure 7A shows the ROC curve for CMB candidate
subject preselection with the TICH2-trained model on the
OXVASC dataset. As in the previous case, the model achieved
the best performance for a threshold value ThNCMB of 35 CMBs.
The model provided a subject-level TPR of 0.83, a subject-
level specificity of 0.84 and a subject-level accuracy of 0.83. The
number of subjects with high CMB counts (> 50 CMBs) in the
training dataset (TICH2) is higher than that in OXVASC. Hence,
the TICH2-trained model was more specific in detecting CMB
subjects on the OXVASC dataset, achieving a higher specificity of
0.84.We have shown a few examples of subject-level detections in
Figure 9. As in the previous case, subjects with high CMB counts
(Figures 9A,B) were correctly predicted as CMB subjects.

OXVASC-trained and TICH2-trained pipelines on the

UKBB dataset: We applied both the OXVASC-trained and
the TICH2-trained models to the UKBB dataset. As shown in
Figure 7B, the model trained on the TICH2 dataset provided
better performance when compared to the OXVASC-trained
model. For the OXVASC-trained model, the pipeline achieved
subject-level TPR = 0.80, specificity = 0.80 and accuracy = 0.80
using a threshold of 30 CMBs. For the TICH2-trained model, the
pipeline achieved the subject-level TPR= 0.85, specificity= 0.86
and accuracy = 0.85 using a threshold of 35 CMBs. We could
not perform the lesion-level analysis on the UKBB dataset (as
we did for the OXVASC and TICH2 datasets), since we had only
subject-level manual labels.
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FIGURE 6 | ROC curves for leave-one-out validations of the full preselection pipeline shown for the OXVASC (dark blue solid N) and the TICH2 (orange solid •)

datasets plotted at threshold values from 10 to 80 CMBs in steps of 5 CMBs (AUC: area under the curve). The points on curves for the threshold value of 30 and 35

CMBs are indicated by hollow and filled black circular markers, respectively. The performance values at the “knee point” of curves were chosen as the best

performance values for each dataset.

FIGURE 7 | Results of the evaluation of model generalisability by training the pipeline on different dataset from the one it is evaluated on. ROC curves shown for (A)

OXVASC-trained pipeline evaluated on the TICH2 dataset (orange) and TICH2-trained pipeline evaluated on the OXVASC dataset (dark blue), (B) OXVASC-trained and

TICH2-trained pipelines evaluated on the UKBB dataset (orange and dark blue curves, respectively) (AUC: area under the curve).

4.2.3. Comparison of the Proposed Pipeline With

Algorithms Using Imaging/Non-Imaging Factors on

the UKBB Dataset
Figure 10 shows the ROC curves for comparison of various
methods used for preselecting CMB candidates from the UKBB

dataset. For the best performance metrics from ROC curves
for each method, refer to Supplementary Section 2. Out of
all the categories, using individual demographic/clinical factors
(method 1) provided the worst performance. Among the
individual factors, age provided the worst performance while the

Frontiers in Neuroinformatics | www.frontiersin.org 10 January 2022 | Volume 15 | Article 777828

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Sundaresan et al. Automated Detection of Cerebral Microbleeds

TABLE 1 | Performance of the proposed method during the initial evaluation within datasets and during the generalisability experiments across datasets.

Testing datasets

T
ra
in
in
g
d
a
ta
s
e
ts

OXVASC TICH2 UKBB

OXVASC

Initial leave-one-out evaluation within

datasets: (Sec: 3.4.1, results: 4.2.1)

Sensitivity = 0.81

Specificity = 0.87

Accuracy = 0.84

Evaluation of method generalisability

across datasets: (Sec: 3.4.2,

results: 4.2.2)

Sensitivity = 0.90

Specificity = 0.70

Accuracy = 0.81

Evaluation of method generalisability

across datasets: (Sec: 3.4.2,

results: 4.2.2)

Sensitivity = 0.70

Specificity = 0.91

Accuracy = 0.81

TICH2

Evaluation of method generalisability

across datasets: (Sec: 3.4.2,

results: 4.2.2)

Sensitivity = 0.83

Specificity = 0.84

Accuracy = 0.83

Initial leave-one-out evaluation within

datasets: (Sec: 3.4.1, results: 4.2.1)

Sensitivity = 0.91

Specificity = 0.81

Accuracy = 0.86

Evaluation of method generalisability

across datasets: (Sec: 3.4.2,

results: 4.2.2)

Sensitivity = 0.85

Specificity = 0.86

Accuracy = 0.85

The sensitivity, specificity and accuracy values are reported at subject-level for a threshold value of THNCMB = 35 CMBs.

diastolic BP provided better performance, with subject-level TPR
= 0.37, specificity = 0.72 and accuracy = 0.54 at a threshold
of 93.4 mmHg. For classification based on non-imaging factors
(method 2), the RF classifier provided better results compared to
the SVM classifier. Using the RF classifier, we obtained subject-
level TPR = 0.73, specificity = 0.74, accuracy = 0.74 at a
threshold of 0.6. Among imaging-based methods (method 3)
used to determine CMB lesion count, the proposed pipeline
provided better results (subject-level TPR = 0.91, specificity
= 0.86 and accuracy = 0.89) compared to the thresholding
method, detecting more CMB lesions in the CMB subjects
when compared to the non-CMB subjects, and hence better
at identifying subjects containing CMBs. Of all the methods,
classification using both non-imaging factors and CMB lesion
count (method 4) provided the best performance, especially using
the RF classifier, achieving subject-level TPR, specificity and
accuracy of 0.95 at a threshold of 0.6.

Figure 11 shows the OOB feature importance of various
features used in the RFNI and RFNI+I classifiers. For RFNI , WMH
volume had the highest importance (imp = 2.1) followed by
the BP values (diastolic BP imp = 0.41 and systolic BP imp =

0.42). For RFNI+I , CMB lesion count had the highest feature
importance (imp= 2.8) followed by WMH volume (imp= 1.25)
and diastolic BP (imp = 0.35). The higher feature importance
of diastolic BP compared to age (imp = 0.25) also aligns well
with our earlier comparison where diastolic BP provided the best
performance among the individual factors. For both RFNI and
RFNI+I , smoking was the least important feature with imp =

–0.08 and 0.01, respectively.

5. DISCUSSION AND CONCLUSIONS

In this work, we proposed a fully automated pipeline, which
is computationally light and takes into account various
intensity, shape and anatomy-based characteristics of CMBs, for
preselecting CMB candidate subjects from large datasets.
We compared various methods involving non-imaging

demographic/clinical factors and CMB lesion count from
the imaging data, including our proposed pipeline, on a subset
of the UKBB dataset for which we had subject-level manual
labels regarding the presence of CMBs. We finally applied our
pipeline on different datasets for training and evaluation to
validate its generalisability with respect to variations in intensity,
acquisition protocols and pathological conditions. Our pipeline
provided subject-level accuracy >85% during initial validation
on each individual dataset. On applying our pipeline on various
datasets, we observed good generalisability across datasets with
subject-level accuracy >85% when trained on SWI and applied
to SWI/T2*-GRE images, and >80% when trained on T2*-GRE
images and applied to SWI.

During the initial within-dataset evaluation, the pipeline
provided better subject-level results on the OXVASC and UKBB
datasets when compared with the results from the TICH2 dataset.
This could be due to the fact that the pipeline detected more false
positive lesions along the edges of intracerebral haemorrhages in
the TICH2 dataset. In addition to the presence of haemorrhages,
the increased amount of FPs could be related to the use of
SWI. In fact, the best threshold on the CMB lesion count
(corresponding to the ‘knee point’ on the ROC curve) for
subject-level preselection is higher for datasets with SWI (the
threshold is 35 CMBs for both the UKBB and TICH2 datasets)
when compared to the OXVASC dataset with T2*-GRE images
(where the threshold is 30 CMBs). This might be because SWI
improves not only the contrast of CMBs but also the mimics

that could lead to more spurious CMB detections and hence a

higher threshold is needed on the CMB lesion count. However,
while we chose thresholds that gave the best performance on
the datasets, we cannot exclude the possibility of subjects with
low number of true CMBs (with low number of false positives)
being incorrectly classified as non-CMB subjects. It is worth
noting that the threshold (ThNCMB) value of 35 CMBs might not
be an optimal threshold value on any unseen dataset. Hence,
careful checking and potential experimentation to determine the
optimal threshold is recommended when using this method on a
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FIGURE 8 | Example results from the CMB subject preselection pipeline trained on OXVASC data. (A,B) are true positive CMB subjects, (C,D) are true negative

non-CMB subjects, (E) is a false positive prediction of non-CMB subject and (F) is a false negative prediction of a CMB subject. The green and orange boxes indicate

the manually segmented CMBs and false positives, respectively. The true CMB count NCMB are provided, along with the number of true positives (NTP ) and the false

positives (NFP ).
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FIGURE 9 | Example results from the CMB subject preselection pipeline trained on TICH2 data. (A,B) are true positive CMB subjects, (C,D) are true negative

non-CMB subjects, (E) is a false positive prediction of non-CMB subject and (F) is a false negative prediction of CMB subject. The green and orange boxes indicate

the manually segmented CMBs and false positives, respectively. The trueCMB count NCMB are provided, along with the number of true positives (NTP ) and the false

positives (NFP ).
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FIGURE 10 | Results of the comparison of various methods for CMB candidate subject preselection on the UKBB dataset. ROC curves shown for thresholding on

individual factors - age (yellow solid N, threshold range: 46.9– 76.9 yrs, steps of 1.5 yrs), diastolic BP (yellow dashed N, threshold range: 50.9–118 mmHg, steps of

3.1 mmHg), systolic BP (yellow dotted △, threshold range: 106.4–202 mmHg, steps of 5.3 mmHg), classification based on non-imaging factors (NI) using an SVM

classifier (red dashed �, threshold range: 0–1, steps of 0.05) and a RF classifier (red solid �, threshold range: 0–1, steps of 0.05), based on only the CMB lesion

count obtained from the proposed pipeline (black solid •, threshold range: 0–90, steps of 5) and the thresholding method (black dashed ◦, threshold range: 0–75,

steps of 3), classification based on both non-imaging factors and CMB lesion count (NI+I) obtained from the proposed pipeline using an SVM classifier (blue dashed

♦, threshold range: 0– 0.9, steps of 0.05) and a RF classifier (blue solid �, threshold range: 0–0.9, steps of 0.05) (AUC: area under the curve). The performance values

at the ‘knee point’ of curves were chosen as the best performance values for each curve (for corresponding threshold values, refer to Supplementary Table 2).

FIGURE 11 | Out-of-bag feature importance values for (A) non-imaging features and (B) non-imaging features + CMB lesion count (obtained from the proposed

pipeline) as used in the classification for CMB subject preselection.

dataset that has different characteristics (e.g., different modalities,
population demographics and scanning characteristics).

On evaluating the generalisability of the proposed pipeline,
the performance when the training and testing datasets were
acquired with different modalities was slightly lower than the
initial cross-validation performance values. Our preselection

pipeline provided results with similar accuracy for different
training data, with a slightly better specificity on the OXVASC
dataset using TICH2-trained model when compared to the
TICH2 dataset using OXVASC-trained model, while providing
a lower subject-level TPR. The prediction of CMB candidate
subjects was more precise in the OXVASC dataset likely due to
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the fact that the pipeline was trained using features extracted
from SWI that is highly sensitive to CMBs and susceptibility
artefacts. At this point, it is worth noting that there are pros
and cons with using T2*-weighted GRE or SWI sequences. In
the case of T2*-GRE images (the OXVASC dataset), the contrast
between CMBs and background is lower than in SWI (and some
CMBs might not be visible at all on T2*-GRE images) and hence
the number of detected false positives was low, providing high
specificity (85%, when compared to the specificity of 70% in
the TICH2 dataset) but low cluster-wise TPR (83% compared
to the TPR of 90% in the TICH2 dataset). This shows that SWI
sequences (the TICH2 dataset) are highly sensitive to CMBs and
hence result in detection of more CMBs, albeit with increased
FPs as well. Therefore, choosing training datasets containing a
similar modality (especially those having single modalities) to
train the pipeline could help in achievingmore accurate detection
when applied to the large datasets. In fact, on applying OXVASC-
trained and TICH2-trained pipelines to the UKBB dataset, the
TICH2-trained pipeline provided better results since it was
trained on SWI, themodality used in theUKBB dataset. However,
it is worth noting that, despite the difference in population
and CMB prevalence across the datasets used in this study, our
pipeline showed comparable performance, even when trained on
a dataset with very different prevalence (e.g., OXVASC, a stroke
population, and UKBB, a prospective epidemiological study).

Regarding the factors that could lead to true CMBs being
missed, in addition to the effect of various modalities, the
preprocessing steps (e.g., brain extraction) and the blood
vessel/sulci removal step might also affect CMB detection. For
instance, we performed the brain extraction directly on SWI/T2*-
GRE images depending on their availability.While this worked in
the vast majority of cases, we observed some loss of tissue in the
top slices of the brain in very rare cases, which in turn might lead
to true CMBs being missed. Improvement in the brain extraction
(e.g., by registration of a brainmask obtained from a T1-weighted
brain to SWI/T2*-GRE images) could overcome this problem. As
for the vessel removal step, a few CMBs were misclassified as a
blood vessel or sulci or other elongated hypointense structure
and hence was completely or partially painted over with the
mean value of neighbouring voxels. While the partially painted
over CMBs (thus with reduced contrast, similar to the left-most
CMB shown in Figure 4) could still be detected, the completely
removed CMBs could not, resulting in true CMBs being missed.
Another reason for potentially missing true CMBs could be
the failure of CMB candidates to pass the criteria on shape-
based attributes (section 3.3); for example, if they are so close
together that they would be detected as a single cluster. While
the chance of two CMBs being very close to each other is very
slim, given their size and sparse distribution, we cannot exclude
that possibility.

On comparing various methods involving non-imaging and
CMB lesion counts from the imaging data, we observed that
applying thresholds on the individual demographic factors
provided the worst results. This shows that even though
factors such as age and hypertension are commonly associated
with CMBs, they are not sufficient by themselves to preselect
CMB candidate subjects in a given population. This further

supports the need for pipelines such as ours that can also
use the imaging data for subject-level preselection, especially
in large datasets. Interestingly, among age and BP, the latter
provides better preselection (and also has higher feature
importance in the RF classifier), despite age being reported
as the most commonly used factor (Vernooij et al., 2008;
Poels et al., 2010; Takashima et al., 2011). Similarly, among
the features used in the RF classifiers (both RFNI and
RFNI+I), smoking is the least important feature, even though
it has been reported as one of the risk factors for CMBs
in various population-level studies (Tsushima et al., 2002;
Poels et al., 2010). However, more experimentation would
be required on a larger sample size to further establish the
relationship between age/smoking status and occurrence of
CMBs. Also, higher correlations of non-imaging features (e.g.,
age/blood pressure) with CMBs might be present in other
datasets and hence the reported results might not represent
all possibilities.

The proposed method provided better results than the
thresholding method, highlighting the utility of shape-based
features, in addition to intensity. The best results were obtained
for the classifiers using a combination of non-imaging factors and
CMB lesion counts, however, with CMB lesion count being the
most important feature. The high feature importance of CMB
lesion count shows that the proposed pipeline determines a lesion
count that is highly useful, despite the number of false positive
lesions. Also, the best performance of the combination of features
and lesion counts shows that the non-imaging features could be
used to improve the results of our proposed pipeline for CMB
candidate subject preselection in large datasets, when manual
segmentation is unavailable. While the preselected subjects could
be used for manual labelling for research purposes, from a clinical
point of view the pipeline could be used to flag images as likely
to contain CMBs. This could be further used in determining a
preliminary CMB or small vessel disease (SVD) score as done in
Staals et al. (2014).

Concluding, we proposed a learning-based method for
subject-level preselection of CMB candidate subjects in large
datasets. The preselected subjects could then be manually
segmented and used for further analysis and characterisation
of CMBs. Our method provided accurate preselection of CMB
candidate subjects on various datasets consisting of T2*-GRE
and SWI images with subject-level TPR, specificity and accuracy
values >90, >80, and >85%, respectively. Also, our method
is computationally efficient, and provided greater performance
when compared to other methods using non-imaging factors and
thresholding methods for obtaining CMB lesion counts from the
imaging data. Our pipeline shows good generalisability across
across various datasets providing subject-level accuracy >80%,
and even>85% when applied to datasets with the samemodality.
The future direction of this work would be to improve the
detection of CMBs at the lesion-level using deep learning and
increase the model generalisability across different modalities.
Also, another potential avenue of research would be to provide
automated ratings of CMBs using their size and count to provide
information that is consistent with clinical rating scales such as
MARS scale.
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