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Schizophrenia (SZ) is a mental disorder whereby due to the secretion of specific

chemicals in the brain, the function of some brain regions is out of balance, leading to

the lack of coordination between thoughts, actions, and emotions. This study provides

various intelligent deep learning (DL)-based methods for automated SZ diagnosis via

electroencephalography (EEG) signals. The obtained results are compared with those

of conventional intelligent methods. To implement the proposed methods, the dataset

of the Institute of Psychiatry and Neurology in Warsaw, Poland, has been used. First,

EEG signals were divided into 25 s time frames and then were normalized by z-score

or norm L2. In the classification step, two different approaches were considered for SZ

diagnosis via EEG signals. In this step, the classification of EEG signals was first carried

out by conventional machine learning methods, e.g., support vector machine, k-nearest

neighbors, decision tree, naïve Bayes, random forest, extremely randomized trees, and

bagging. Various proposed DL models, namely, long short-term memories (LSTMs),

one-dimensional convolutional networks (1D-CNNs), and 1D-CNN-LSTMs, were used in

the following. In this step, the DL models were implemented and compared with different

activation functions. Among the proposed DL models, the CNN-LSTM architecture has

had the best performance. In this architecture, the ReLU activation function with the

z-score and L2-combined normalization was used. The proposed CNN-LSTM model

has achieved an accuracy percentage of 99.25%, better than the results of most former

studies in this field. It is worth mentioning that to perform all simulations, the k-fold

cross-validation method with k = 5 has been used.

Keywords: schizophrenia, neuroimaging, EEG signals, diagnosis, deep learning

INTRODUCTION

Schizophrenia (SZ) is one of the most important mental disorders, leading to disruption in brain
growth (Lewis and Levitt, 2002; Schmitt et al., 2011). This disorder seriously damages thoughts,
expression of emotions, and also individuals’ perception of reality (Elvevag and Goldberg, 2000).
The reason for SZ is not fully understood, though most research has demonstrated that the
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structural and functional abnormalities of the brain play a role in
its creation (Qureshi et al., 2019). According to theWorld Health
Organization reports, nearly 21 million individuals suffer from
such a brain disorder worldwide. The average age starting to get
affected by this disorder is in youth age; in men 18 years old,
and women 25 years old, and it is more prevalent among males
(Sadeghi et al., 2021).

Numerous methods have been provided for automated
SZ diagnosis; among these techniques, neuroimaging-based
methods have a special potential for specialist physicians (Li et al.,
2021; Yan et al., 2021). Generally, neuroimaging methods include
various structural or functional modalities (Steardo et al., 2020;
Hu et al., 2021). Structural MRI and diffusion tensor imaging-
MRI are among the most important modalities of structural
neuroimaging, providing important information regarding brain
structure to specialist physicians (Sui et al., 2013; Lee et al.,
2018; Oh et al., 2020). Contrarily, electroencephalography (EEG)
(Boutros et al., 2008), magnetoencephalography (Fernández
et al., 2011), functional MRI (Sartipi et al., 2020), and
functional near-infrared spectroscopy (Chen et al., 2020) are
the most important functional modalities of the brain. These
modalities provide vital information on brain function to
specialist physicians.

EEG is one of the most practical and inexpensive functional
neuroimaging modalities, specifically capturing the interests of
specialist physicians. In this modality, the electrical activities
of the brain are recorded from the head surface with a high
temporal resolution and an appropriate spatial resolution, which
is influential in SZ diagnosis (Murashko and Shmukler, 2019).
In addition to the mentioned merits, EEG signals regularly
have various channels recorded in the long term (Murashko
and Shmukler, 2019). In some cases, these reasons make
specialist physicians face serious challenges in SZ diagnosis via
EEG signals.

In recent years, various investigations have provided
automated SZ diagnosis via EEG signals using artificial
intelligence (AI) methods (Prasad et al., 2013; Shim et al., 2016;
Chu et al., 2017; Alimardani et al., 2018; Devia et al., 2019;
Jahmunah et al., 2019; Li et al., 2019; Naira and Alamo, 2019;
Oh et al., 2019; Phang et al., 2019a,b; Aristizabal et al., 2020; Luo
et al., 2020; Prabhakar et al., 2020; Shalbaf et al., 2020; Siuly et al.,
2020; Sharma et al., 2021; Singh et al., 2021; Sun et al., 2021).
The AI investigations in this field include conventional machine
learning (ML) and deep learning (DL) methods (Khodatars
et al., 2020; Shoeibi et al., 2020, 2021,a,b). The AI-based SZ
diagnosis algorithm includes preprocessing sections, features
extraction and selection, and in the end, classification. Feature
extraction is the most important part of SZ diagnosis via EEG
signals. In conventional ML, the extracted features from EEG
signals are mainly categorized into four groups: time (Diykh
et al., 2016), frequency (Faust et al., 2010), time-frequency
(Madhavan et al., 2019), and non-linear (Gajic et al., 2015;
Shoeibi et al., 2021a) fields. Siuly et al. (2020) used empirical
mode decomposition (EMD) in preprocessing step. In the
following, various statistical features were extracted from EMD
subbands, and the ensemble bagged tree method was used for

classification. In another study, Jahmunah et al. (2019) used non-
linear features and support vector machine (SVM) with radial
basis function kernel in the feature extraction and classification
steps, respectively. Devia et al. (2019) have provided an event-
related field features-based SZ diagnosis method via EEG signals.
Extremely randomized trees (ERT) features were extracted from
EEG signals in this effort, and then linear discriminant analysis
was used in the classification step. In Prabhakar et al. (2020),
statistical features of steady-state visual evoked potentials were
extracted, and in the end, classification has been executed by
the k-nearest neighbors (KNN) method. Li et al. (2019) used
solitary pulmonary nodule features and SVM classification for
SZ diagnosis via EEG signals. In another study, Shim et al.
provided a new method of SZ diagnosis via EEG signals (Shim
et al., 2016). This investigation used sensor-level and source-level
features in the feature extraction step and then employed
the Fisher’s score for feature selection. Ultimately, the SVM
method was used in the classification step, and they achieved
promising results.

In conventional ML, selecting proper feature extraction
algorithms for SZ diagnosis is a relatively demanding task,
requiring a great deal of knowledge in signal processing and
the AI field. To overcome this problem, DL-based methods have
been provided in recent years for SZ diagnosis via EEG signals,
where feature extraction operations are carried out without
surveillance by deep layers (Shoeibi et al., 2021a). Shalbaf et al.
(2020) define a transfer learning model for SZ diagnosis via
EEG signals. In this study, the ResNet-18 model has been used
for feature extraction from EEG signals. Besides, SVM has been
used in the classification step. Some researchers have studied
other convolutional network (CNN) models utilization in SZ
diagnosis via EEG signals. CNN models have been used in
Naira and Alamo (2019) and Oh et al. (2019) for SZ diagnosis,
resulting in satisfactory achievements. CNN-recurrent neural
network (RNN) models are an important group of DL networks
and are significantly popular for their capability of various brain
diseases diagnoses via EEG signals. In Aristizabal et al. (2020),
Sharma et al. (2021), Singh et al. (2021), Sun et al. (2021),
CNN-long short-term memory (LSTM) models have been used
for SZ diagnosis, and the researchers have been able to achieve
promising results.

In this paper, SZ diagnosis via EEG signals will be
investigated by using various proposed DL and conventionalML-
based methods. A summary of proposed methods is depicted
in Figure 1.

In this study, the dataset of the Institute of Psychiatry
and Neurology in Warsaw, Poland, is used (Olejarczyk and
Jernajczyk, 2017). In the preprocessing step, the z-score and L2
normalization techniques will be applied to EEG signals. Next,
to classify EEG signals, various conventional ML methods and
DL-based proposed models will be used. The conventional ML
methods employed, include various classification, SVM (Cortes
and Vapnik, 1995), KNN (Cover and Hart, 1967), decision
tree (DT) (Rokach and Maimon, 2007), naïve Bayes (Zhang,
2004), random forest (RF) (Breiman, 2001), ERT (Geurts et al.,
2006), and bagging (Friedman, 2001) methods. Besides, the
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FIGURE 1 | The block diagram of proposed methods.

FIGURE 2 | A sample frame of the EEG signals of a person with SZ. EEG, electroencephalograph; SZ, schizophrenia.

proposed DL networks include various one-dimensional (1D)-
CNN, LSTM, and ID-CNN-LSTM models for executing the
steps from feature extraction to classification. Generally, nine
LSTM-, 1D-CNN-, and ID-CNN-LSTM-based DL methods will
be investigated in this step.

In section Materials and Methods, we described our method
in detail. In addition, we outline several baseline methods for
comparison purposes in the same section. The statistical metrics
to analyze and validate the proposed model are described in
section Experiment Results. Experiment results are provided in
section Limitation of Study, and some limitations of the proposed
method are provided in section Conclusion, Discussion, and
Future Works. Finally, a discussion, the conclusion, and future
works are represented.

MATERIALS AND METHODS

This section will discuss the proposed methods for SZ diagnosis
via EEG signals and various conventional ML and DL models.
First, the proposed dataset will be examined. Then, the
preprocessing method of EEG signals will be explained. In the
end, conventional ML and DL models will be introduced for SZ
diagnosis via EEG signals.

Dataset
This dataset includes recorded EEG signals from 14 females and
males with ages between 27.9 and 28.3 years. Besides, 14 normal
individuals matched with the patients in terms of age and gender
were employed in this institution, and the data recording was
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FIGURE 3 | A sample frame of the EEG signals of a normal person. EEG, electroencephalograph.

carried out (Olejarczyk and Jernajczyk, 2017). A signal recording
was performed with the eyes closed in 15min for each case.
Recording EEG signals was performed by using standard 10–20
with a sampling frequency of 250Hz (Olejarczyk and Jernajczyk,
2017). In this study, the used electrodes include Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2.
An example of EEG signals of SZ and normal cases is depicted in
Figures 2, 3.

Preprocessing
To preprocess the EEG signals of the mentioned dataset,
several steps are used. First, each 19 recorded EEG signal
has been divided into overlap-free 25 s frames, each of
which includes 6,250 temporal samples. Accordingly, each
frame of EEG signals has 6,250 × 19 dimensions. In the
following, each EEG frame has been normalized by z-score
and L2 methods. The normalization of EEG signals helps the
accuracy and performance enhancement in conventional ML and
DL models.

Conventional Machine Learning Methods
The proposed conventional ML methods are introduced in this
section as a baseline for comparison purposes. The proposed
algorithms include SVM (Cortes and Vapnik, 1995), KNN (Cover
and Hart, 1967), DT (Rokach and Maimon, 2007), naïve Bayes
(Zhang, 2004), RF (Breiman, 2001), ERT (Geurts et al., 2006), and
bagging (Friedman, 2001). Each of these methods will be briefly
introduced in the following.

Support Vector Machine
Support vector machine (SVM) (Cortes and Vapnik, 1995) is
an algorithm that constructs a hyperplane or set of hyperplanes
in a high- or infinite-dimensional space, which can be used
for classification, regression, or other tasks. Intuitively, a good
separation is achieved by the hyperplane that has the largest
distance to the nearest training data points of any class (so-called
functional margin), since in general the larger the margin the
lower the generalization error of the classifier.

k-Nearest Neighbors
k-nearest neighbor (KNN) (Cover and Hart, 1967) is a
classification algorithm where some fixed and small number
(k) of nearest neighbors (based on a notion of distance) from
the training set are located and used together to determine
the class of the test instance through a simple majority voting;
that is, the class of the test instance is assigned the data
class which has the most representatives within the KNN of
that point.

Decision Tress
Decision trees (DTs) (Rokach andMaimon, 2007) is an algorithm
that creates a model that predicts the class of an instance by
learning simple decision rules inferred from the data features.
The representation of a DT model is a binary tree wherein each
node represents a single input variable (X) and a split point on
that variable, assuming the variable is numeric. The leaf nodes
(also called terminal nodes) of the tree contain an output variable
(y) which is used to make a prediction.
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Naïve Bayes
Naive Bayes (Zhang, 2004) is a supervised learning algorithm
based on applying Bayes’ theorem with the “naive” assumption
of conditional independence between every pair of features given
the value of the class variable. This means that we calculate
P(data|class) for each input variable separately and multiple
the results together, for example: P(class | X1, X2, . . . , Xn)
= P(X1|class) × P(X2|class) × . . . × P(Xn|class) × P(class) /
P(data); where P(A | B) represents the probability of A given B.

Random Forest
Random forest (RF) (Breiman, 2001) is an extension of the
bagging algorithm where several DT classifiers are fit on various
subsamples of the dataset and uses averaging to improve the
predictive accuracy and control over-fitting. Unlike bagging, RF
also involves selecting a subset of input features (columns or
variables) at each split point in the construction of trees. By
reducing the features to a random subset that may be considered
at each split point, it forces each DT in the ensemble to be
more different.

Extremely Randomized Trees
Extremely randomized trees (ERT) (Geurts et al., 2006), like RF, is
an ensemble of several DT models. However, the ERT algorithm
fits each DT on the whole training dataset instead of using a
bootstrap sample. Like the RF algorithm, the ERT algorithm will
randomly sample the features at each split point of a DT; but
instead of using a greedy algorithm to select an optimal split
point, the ERT selects a split point at random.

Bagging
Bagging (Friedman, 2001) is an ensemble classifier that fits base
classifiers on random subsets of the original dataset and then
aggregates their individual predictions (either by voting or by
averaging) to form a final prediction. To be more concrete, in
bagging, several classifiers are created where each classifier is
created from a different bootstrap sample of the training dataset.
A bootstrap sample is a sample of the training dataset where a
sample may appear more than once in the sample, referred to as
sampling with replacement.

TABLE 1 | The details of the first proposed 1D-CNN model.

Layers Details Layers Filters Kernel size Stride Activation

1 Input Data – – – –

2 Conv1D 64 3 1 ReLU

3 Conv1D 64 3 1 ReLU

4 Dropout – – Rate = 0.5 –

5 Max Pooling – 2 1 –

6 Flatten – – – –

7 Dense 100 – – –

8 Dropout – – Rate = 0.25 –

9 Dense 1 – – Sigmoid

1D-CNN, one-dimensional convolutional network.

Deep Learning Models
This section provides various types of 1D-CNN, LSTM, and 1D-
CNN-LSTM models for SZ diagnosis via EEG signals. Various
types of the suggested 1D-CNN, LSTM, and 1D-CNN-LSTM
models will be examined in the following.

ID-CNN Models
The higher performance of CNN models in machine vision
has led them to be used in time series processing, such as
medical signals, leading to successful results (Chen et al.,
2019; Mahmud et al., 2021). The CNN models have important
convolutional, pooling, and fully connected (FC) layers (Niepert
et al., 2016; Zhang et al., 2019). In 1D-CNN models, signal
time can be considered a spatial dimension, e.g., height
or width of a 2D image (Goodfellow et al., 2016). 1D-
CNN models are considered the important rivals of RNN
architectures in time series processing. Compared to RNN
models, 1D-CNN architectures have lower computational costs
(Goodfellow et al., 2016). In this section, the three proposed

TABLE 2 | The details of the second proposed 1D-CNN model.

Layers Details Layers Filters Kernel Size Stride Activation

1 Input Data – – – –

2 Conv1D 64 3 1 ReLU

3 Dropout – – Rate = 0.5 –

4 Conv1D 64 3 1 ReLU

5 Dropout – – Rate = 0.5 –

6 Conv1D 64 3 1 ReLU

7 Dropout – – Rate = 0.5 –

8 Max Pooling – 2 1 –

9 Flatten – – – –

10 Dense 100 – – ReLU

11 Dropout – – Rate = 0.25 –

12 Dense 1 – – Sigmoid

1D-CNN, one-dimensional convolutional network.

TABLE 3 | The details of the third proposed 1D-CNN model.

Layers Details Layers Filters Kernel Size Stride Activation

1 Input Data – – – –

2 Conv1D 64 3 1 ReLU

3 Conv1D 64 3 1 ReLU

4 Dropout – – Rate = 0.5 –

5 Max Pooling – 2 1 –

6 Flatten – – – –

7 Dense 100 – – ReLU

8 Dropout – – Rate = 0.25 –

9 Dense 50 – – ReLU

10 Dropout – – Rate = 0.25 –

11 Dense 1 – – Sigmoid

1D-CNN, one-dimensional convolutional network.
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1D-CNN-based models are provided for SZ diagnosis via
EEG signals.

(A) The first version of 1D-CNNmodel

The details of the first proposed 1D-CNNmodel are provided
in Table 1. Concerning Table 1, this model includes nine
different layers. The convolutional layers have 64 filters with 3
× 3 dimensions. In addition, various activation functions, e.g.,
ReLU, Leaky ReLU, and seLU, have been used in convolutional
layers, and the related results will be compared in the Experiment
Results section. Besides, a max-pooling layer has been used for
decreasing dimensions, dropout layers with different rates for the
prevention of overfitting, flatten layer for converting a matrix
to vector, and in the end, dense layers for classification. The
activation function of the final dense layer is of sigmoid type, used
for binary classification.

(B) The second version of 1D-CNNmodel

The architecture of the second proposed 1D-CNN model has
three convolutional layers, and their filters’ number, kernel size,
and activation function have been indicated in Table 2. In this
model, a convolutional layer with a kernel size of 2 has been used.
Moreover, this model has four dropout layers with different rates,
one flatten layer and two dense layers. The activation function of
the first dense layer is of ReLU type, and the activation function
of the final dense layer is for sigmoid classification.

(C) The third version of 1D-CNNmodel

According to Table 3, the third proposed 1D-CNN model
consists of two convolutional layers with a similar number
of filters, kernel size, and activation functions to the previous
networks. This model has a max pooling layer with a kernel size

TABLE 4 | The details of the first proposed LSTM model.

Layers Details Layers Filters Kernel Size Stride Activation

1 Input Data – – – –

2 LSTM 1 100 – –

3 Dropout – – Rate = 0.5 –

4 Dense 100 – – ReLU

5 Dropout – – Rate = 0.25 –

6 Dense 1 – – Sigmoid

LSTM, long short-term memory.

TABLE 5 | The details of the second proposed LSTM model.

Layers Details Layers Filters Kernel Size Stride Activation

1 Input Data – – – –

2 LSTM 1 100 – –

3 LSTM 1 50 – –

4 Dropout – – Rate = 0.5 –

5 Dense 100 – – ReLU

6 Dropout – – Rate = 0.25 –

7 Dense 1 – – Sigmoid

LSTM, long short-term memory.

of 2. In addition, it takes advantage of dropout with different
rates. Similar to previous models, a flatten layer is also used in
this model. This model consists of two dense layers, in which the
activation functions of the first and second layers are of ReLU and
sigmoid type, respectively.

LSTM Models
Recurrent neural networks (RNNs) are a group of DL models
employed in speech recognition (Ogunfunmi et al., 2019), natural
language processing (Deng and Liu, 2018), and biomedical signal
processing (Vicnesh et al., 2020; Baygin et al., 2021). CNNmodels
are of Feed-Forward types. However, the RNNs have a FeedBack
layer, in which the network output returns to the network along
with the next input. Because of having internal memory, RNNs
memorize their previous input and use it to process a sequence of
inputs. Simple RNN, LSTM, and gated recurrent unit networks
are three important groups of RNNs (Goodfellow et al., 2016).

TABLE 6 | The details of the first proposed CNN-LSTM model.

Layers Details Layers Filters Kernel Size Stride Activation

1 Input Data – – – –

2 Conv1D 64 3 1 ReLU

3 Conv1D 64 3 1 ReLU

4 Dropout – – Rate = 0.5 –

5 Max Pooling – 2 1 –

6 Flatten – – – –

7 LSTM 1 100 – –

8 Dropout – – Rate = 0.5 –

9 Dense 100 – – ReLU

10 Dropout – – Rate = 0.25 –

11 Dense 1 – – Sigmoid

CNN, convolutional network; LSTM, long short-term memory.

TABLE 7 | The details of the second proposed CNN-LSTM model.

Layers Details Layers Filters Kernel Size Stride Activation

1 Input Data – – – –

2 Conv1D 64 3 1 ReLU

3 Conv1D 64 3 1 ReLU

4 Dropout – – Rate = 0.5 –

5 Max Pooling – 2 1 –

6 Flatten – – – –

7 LSTM 1 100 – –

8 Dropout – – Rate = 0.5 –

9 Dense 100 – – ReLU

10 Dropout – – Rate = 0.25 –

11 Dense 50 – – ReLU

12 Dropout – – Rate = 0.25 –

13 Dense 1 – – Sigmoid

CNN, convolutional network; LSTM, long short-term memory.
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FIGURE 4 | The second version of the proposed CNN-LSTM model for diagnosis of SZ. CNN, convolutional network; LSTM, long short-term memory; SZ,

schizophrenia.

In this section, various LSTM models of SZ diagnosis via EEG
signals will be proposed.

(A) The first version of LSTMmodel

In Table 4, the details of the first proposed LSTM model
consisting of six layers are presented. In this model, an LSTM
layer with a kernel size of 100 is employed. Another section of
the proposed LSTM architecture consists of two different layers
of dropout and rate and two dense layers. In the first and second
dense layers, the ReLU and sigmoid activation functions are used.

(B) The second version of LSTMmodel

In Table 5, the details of the second proposed LSTM model
consisting of seven layers are presented. In this architecture, an
LSTM layer with a kernel size of 50 is added to the previous
model. The reason behind this is to examine the effect of adding
LSTM layers on SZ diagnosis accuracy via EEG signals.

CNN-LSTM Models
In CNN-RNN models, the convolutional layers are used in the
first layers of the model to extract the features and find the local
patterns (Goodfellow et al., 2016). Then, their outputs are applied
to RNN layers. Experimentally, the convolutional layers extract

the local and spatial patterns of EEG signals better compared
to RNNs. Besides, adding convolutional layers to RNN allows
a more accurate examination of data. In this section, various
CNN-LSTMmodels for SZ diagnosis will be proposed.

(A) The first version of CNN-LSTMmodel

The first proposed CNN-LSTM model consists of 11 max,
dropout, CNN, LSTM, flatten, pooling, and dense layers. The
details of the proposed model are presented in Table 6. This
architecture includes two convolutional layers; three dropout
layers with different rates, one Max-Pooling layer, and one flatten
layer, one LSTM layer, and finally, two dense layers with ReLU
and sigmoid activation functions.

(B) The second version of CNN-LSTMmodel

In this section, the second proposed CNN-LSTM model will
be introduced. This network includes 13 layers, and similar to
the previous model, it consists of CNN and LSTM layers whose
details are demonstrated in Table 7 and Figure 4. As can be seen
in Table 7 and Figure 4, the first 10 layers of this proposed model
are identical to those of the previous CNN-LSTM model. The
dense layer with 50 neurons and the ReLU activation function
is used in the 11th layer of this architecture. The 12th layer
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TABLE 8 | Performance criteria of conventional ML classifiers.

Methods Raw EEG z-Score Normalized EEG

Acc Prec Rec AUC Acc Prec Rec AUC

KNN 57.03 ± 2.21 52.12 ± 2.66 99.80 ± 0.38 59.58 ± 0.56 55.10 ± 1.77 49.32 ± 1.42 99.80 ± 0.39 60.13 ± 1.28

DT 64.19 ± 3.08 62.49 ± 5.15 59.52 ± 5.40 63.94 ± 3.12 64.71 ± 4.12 59.28 ± 5.00 61.16 ± 5.14 64.31 ± 4.21

SVM 54.14 ± 3.97 20.77 ± 25.50 32.57 ± 39.96 54.10 ± 5.16 62.09 ± 2.75 54.72 ± 2.92 77.81 ± 2.01 63.89 ± 2.42

Bayes 62.62 ± 2.52 56.08 ± 2.76 93.21 ± 4.60 64.35 ± 2.30 59.12 ± 3.26 51.78 ± 2.38 94.81 ± 2.61 63.15 ± 2.97

Bagging 77.37 ± 3.23 81.80 ± 2.56 66.93 ± 6.13 76.91 ± 2.96 81.22 ± 1.74 82.90 ± 3.76 72.02 ± 1.95 80.21 ± 1.65

RF 75.19 ± 2.19 83.60 ± 4.22 59.00 ± 3.62 74.20 ± 1.43 78.77 ± 1.55 81.23 ± 2.31 66.80 ± 2.94 77.44 ± 1.74

ERT 76.24 ± 1.84 80.64 ± 3.37 64.96 ± 2.10 75.57 ± 1.52 76.94 ± 1.81 76.29 ± 2.27 68.35 ± 3.90 75.96 ± 2.05

AUC, area under the curve; DT, decision tree; EEG, electroencephalograph; KNN, k-nearest neighbor; ML, machine learning; RF, random forest; SVM, support vector machine. The

bold values provide the highest accuracy the method compared other methods.

FIGURE 5 | ROC curves of conventional ML classifiers. ML, machine language; ROC, receiver operating characteristic.

comprises a dropout with a rate = 0.25. Ultimately, in the 13th
layer, the dense layer with a sigmoid activation function for
classification is employed.

EXPERIMENT RESULTS

The results of the proposedmethods are presented in this section.
First, the simulation results obtained from conventional ML
techniques for SZ diagnosis via EEG signals are presented and
discussed. The original dataset was flattened to have only a vector
per sample, and then we used the flattened dataset to train
several classification algorithms using the scikit-learn library
(Pedregosa et al., 2011). Namely, we studied the performance
of KNNs, DTs, SVMs, and naive Bayes; and three ensemble
algorithms (bagging, extremely randomized trees, and RF). The
algorithms were trained using the by-default hyperparameters
provided by the implementation of the scikit-learn library.
Moreover, we studied the impact of z-score normalization

(Cheadle et al., 2003) on the performance of the models.
All the experiments were conducted in an Intel (R) Core
(TM) i7-4810MQ CPU at 2.80 GHz. In Table 8, the results
obtained from conventional classification algorithms for raw
input EEG signals or normalized by z-score normalization
are indicated.

According to Table 8, the bagging conventional classification
algorithms for EEG signals normalized using z-score
normalization resulted in the maximum accuracy. Figure 5

shows the ROC curves for ML classification algorithms with
different normalizations of EEG signals. The figure on the
left shows the results of ML classification methods with z-score
normalization; additionally, the ROC curves forML classification
algorithms with z-score + L2 normalization is presented in the
figure on the right.

We also employed several DL architectures based on CNNs
and LSTMs (Goodfellow et al., 2016), and the combination
of both convolutions and LSTM layers. Namely, three CNNs,
two LSTMs, and two CNN-LSTM networks (see Tables 1–7 for
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the concrete architecture of these networks) were studied. We
also analyzed the relevance of using three different activation
functions (ReLU, Leaky ReLU, and seLU), and the impact of
z-score normalization. To avoid overfitting, we applied two
regularization techniques that are Dropout (Goodfellow et al.,
2016) and weight regularization (Goodfellow et al., 2016). In
particular, dropout was applied after each convolutional and
LSTM layer using a dropout value of 0.5, and after dense
layers using a dropout value of 0.25. Weight regularization was
employed in all the convolutional, LSTM, and dense layers of

TABLE 9 | The final selected values for batch size and hyperparameters of the

proposed DL networks.

Networks Epochs Batch size Learning rate

CNN-1 32 10 0.01

CNN-2 32 10 0.01

CNN-3 32 10 0.01

LSTM-1 30 16 0.01

LSTM-2 30 16 0.01

CNN-LSTM 1 50 128 0.01

CNN-LSTM 2 50 128 0.01

CNN, convolutional network; DL, deep learning; LSTM, long short-term memory.

our architectures using L2 regularization with a value 0.01. The
final selected values for batch size and hyperparameters of our
networks are all available in Table 9. All the experiments were
conducted using the Keras library (Gulli and Pal, 2017) and using
a GPU NVidia RTX2080 Ti.

In the following, the results obtained from the DL proposed
methods for different activation functions are demonstrated in
Tables 10–12. First, the results obtained from the proposed
DL method with the Leaky ReLU activation function are
demonstrated in Table 10.

As indicated in Table 10, the second proposed CNN-LSTM
model with the Leaky ReLU activation function and combined
normalization of z-score with L2 could obtain the maximum
accuracy. Table 11 presents the results obtained from the
proposed DL method with the seLU activation function.

Table 11 indicated that the second proposed LSTM method
could result in maximum accuracy. The results of all proposed
DLmodels with the ReLU activation function and z-score and L2
normalizations are presented in Table 12.

According to Table 12, it can be seen that compared to
all classification methods with different activation functions,
the second proposed CNN-LSTM model with ReLU activation
function and combined normalization technique of z-score and
L2 could lead to the maximum accuracy. In the following,
the ROC diagrams for the DL models with ReLU activation

TABLE 10 | Performance criteria of the proposed DL methods with Leaky ReLU activation function.

Methods Leaky ReLU + z-Score Leaky ReLU + z-Score + L2

Acc Prec Rec AUC Acc Prec Rec AUC

CNN-1 70.83 ± 8.76 58.12 ± 8.23 98.86 ± 1.24 80.95 ± 8.72 64.10 ± 6.68 52.17 ± 4.72 99.31 ± 0.90 86.73 ± 9.86

CNN-2 38.42 ± 0.00 38.42 ± 0.00 100.00 ± 0.00 50.00 ± 0.00 40.00 ± 1.76 39.03 ± 0.67 99.77 ± 0.45 52.21 ± 3.22

CNN-3 56.85 ± 4.17 47.24 ± 2.57 99.54 ± 0.55 67.19 ± 5.60 58.07 ± 3.77 47.93 ± 2.24 100.00 ± 0.00 82.73 ± 9.98

LSTM-1 83.32 ± 2.55 73.64 ± 3.41 88.63 ± 6.66 91.03 ± 2.02 72.31 ± 8.37 56.03 ± 29.3 51.59 ± 29.76 74.52 ± 12.28

LSTM-2 79.91 ± 9.00 72.12 ± 11.82 85.68 ± 5.90 86.90 ± 8.10 76.68 ± 6.51 70.79 ± 9.95 76.82 ± 23.80 80.30 ± 9.38

CNN-LSTM 1 74.06 ± 19.9 65.83 ± 27.45 58.40 ± 32.91 78.32 ± 20.99 94.76 ± 5.94 90.95 ± 10.6 98.86 ± 1.24 99.73 ± 0.21

CNN-LSTM 2 79.04 ± 12.2 71.51 ± 25.93 58.40 ± 36.37 85.79 ± 16.62 97.73 ± 1.39 96.35 ± 3.55 97.95 ± 1.32 99.71 ± 0.15

AUC, area under the curve; CNN, convolutional network; DL, deep learning; LSTM, long short-term memory.

The bold values provide the highest accuracy the method compared other methods.

TABLE 11 | Performance criteria of the proposed DL methods with seLU activation function.

Methods seLU + z-Score seLU + z-Score + L2

Acc Prec Rec AUC Acc Prec Rec AUC

CNN-1 61.65 ± 4.89 50.49 ± 3.98 95.90 ± 4.22 69.50 ± 4.06 65.67 ± 5.95 53.71 ± 5.05 94.31 ± 6.14 75.12 ± 5.90

CNN-2 57.90 ± 2.48 32.43 ± 19.4 59.77 ± 46.99 56.51 ± 11.79 58.42 ± 5.43 38.38 ± 19.4 51.36 ± 44.52 58.17 ± 8.82

CNN-3 62.09 ± 4.43 50.71 ± 3.11 93.18 ± 11.94 69.17 ± 3.67 66.46 ± 4.20 54.76 ± 4.37 88.18 ± 12.48 76.09 ± 4.23

LSTM-1 74.84 ± 5.05 64.48 ± 5.57 77.50 ± 9.15 82.90 ± 5.55 70.13 ± 8.80 57.07 ± 16.6 58.86 ± 29.15 72.11 ± 13.72

LSTM-2 83.58 ± 0.81 74.99 ± 1.81 86.13 ± 3.16 91.06 ± 0.52 79.65 ± 6.27 72.75 ± 10.1 79.31 ± 8.36 86.43 ± 5.56

CNN-LSTM 1 59.73 ± 1.47 41.14 ± 6.92 8.40 ± 3.18 50.95 ± 2.38 58.42 ± 3.39 48.12 ± 2.10 99.73 ± 0.45 89.44 ± 1.57

CNN-LSTM 2 59.65 ± 3.02 43.78 ± 8.60 10.90 ± 3.26 61.16 ± 5.17 57.64 ± 1.68 47.59 ± 1.00 100.00 ± 0.00 87.08 ± 3.84

AUC, area under the curve; CNN, convolutional network; DL, deep learning; LSTM, long short-term memory.
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TABLE 12 | Performance criteria of the proposed DL methods with ReLU activation function.

Methods ReLU + z-Score ReLU + z-Score + L2

Acc Prec Rec AUC Acc Prec Rec AUC

CNN-1 93.27 ± 1.31 90.15 ± 4.60 93.18 ± 5.18 97.80 ± 0.35 92.66 ± 1.39 92.01 ± 2.57 88.86 ± 6.15 97.40 ± 0.60

CNN-2 84.80 ± 11.7 65.18 ± 32.79 78.63 ± 39.34 88.80 ± 19.40 84.80 ± 11.7 89.25 ± 2.55 85.84 ± 9.18 88.63 ± 8.71

CNN-3 93.97 ± 2.33 89.16 ± 5.34 96.59 ± 2.87 97.74 ± 0.85 93.18 ± 1.25 89.33 ± 5.17 94.09 ± 4.21 98.04 ± 0.23

LSTM-1 79.03 ± 3.92 69.71 ± 6.01 82.95 ± 4.711 87.76 ± 3.26 71.79 ± 7.83 67.12 ± 10.3 57.72 ± 28.8 73.71 ± 11.48

LSTM-2 71.79 ± 8.72 50.58 ± 26.85 70.45 ± 35.26 77.31 ± 14.52 71.0 ± 12.16 69.48 ± 14.5 68.18 ± 31.3 76.37 ± 12.46

CNN-LSTM 1 93.71 ± 0.71 89.09 ± 2.505 95.45 ± 1.901 96.37 ± 0.62 98.07 ± 1.47 96.01 ± 3.91 99.31 ± 0.55 99.88 ± 0.11

CNN-LSTM 2 94.76 ± 1.23 90.79 ± 1.914 96.14 ± 1.541 97.29 ± 0.50 99.25 ± 0.25 98.33 ± 3.33 98.86 ± 1.24 99.73 ± 0.35

AUC, area under the curve; CNN, convolutional network; DL, deep learning; LSTM, long short-term memory.

The bold values provide the highest accuracy the method compared other methods.

FIGURE 6 | ROC curves of DL methods with ReLU activation function and z-score + L2 normalization. DL, deep learning; ROC, receiver operating characteristic.

FIGURE 7 | Learning curves of CNN-LSTM method with ReLU activation function and z-score normalization. CNN, convolutional network; LSTM, long short-term

memory.
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FIGURE 8 | Learning curves of CNN-LSTM method with ReLU activation function and z-score + L2 normalization. CNN, convolutional network; LSTM, long

short-term memory.

FIGURE 9 | Results for different proposed DL methods with different activation functions and z-score normalization. DL, deep learning.

functions and z-score and z-score + L2 normalization methods
are drawn in Figure 6. Firstly, on the left of Figure 6, the

results of the DL algorithms with z-score + L2 normalization
are presented. Also, the ROC curves for DL algorithms
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FIGURE 10 | Results for different proposed DL methods with different activation functions and z-score with L2 normalization. DL, deep learning.

with the z-score normalization for EEG signals is shown
in the right of Figure 6. Furthermore, learning curves of
the CNN-LSTM method with ReLU activation and z-score
normalization and also with z-score + L2 normalization are
shown in Figures 7, 8, respectively.

The simulation results of the proposed models for SZ
diagnosis via EEG signals were investigated in this section.
Compared to all DL and conventional ML methods, the
CNN-LSTM models with 13 layers have higher accuracy and
efficiency among the proposed methods. Selecting the number
of layers in this model and the type of the activation functions
are presented in this research for the first time, which is
the novelty of the article. Besides, simultaneously using z-
score and L2 normalizations along with the proposed CNN-
LSTM model is another novelty of this article. Figure 9

shows the DL models with different activation functions
and z-score normalization. Also, Figure 10 displayed the DL
architectures with different activation functions and z-score and
L2 normalization. According to Figures 9, 10, the second version

of CNN-LSTM with z-score and L2 normalization has the best
performance compared to other methods.

LIMITATION OF STUDY

The limitations of the study are investigated in this section.
The available EEG datasets for SZ diagnosis consist of a limited
number of cases which has made access to the tools of SZ
diagnosis via EEG signals and DL models challenging. The
dataset in this research was not used to determine the severity
of the disorder but to diagnose the disorder. This dataset is
unsuitable for prognosis or early diagnosis, and other appropriate
datasets must be gathered for these purposes. Another limitation
of this study is that the classifiers are not separately designed and
compared for different age and gender groups, and other suitable
datasets must be gathered for this purpose. Classifiers are of the
two-class type and can becomemulticlass by adding the classes of
brain disorders with similar symptoms to SZ.
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TABLE 13 | The proposed method compared with related works in diagnosis of schizophrenia.

Work Dataset Number of cases Preprocessing Feature extraction and

selection

Classifier Accuracy (%)

Siuly et al. (2020) Kaggle SZ:49, HC:32 EMD Statistical Features + KW Test EBT 89.59

Jahmunah et al. (2019) Clinical SZ:14, HC:14 Filtering Non-linear Features + t-Test SVM-RBF 92.90

Devia et al. (2019) Clinical SZ:11, HC:9 Filtering ERP Features LDA 71.00

Prabhakar et al. (2020) Clinical SZ:14, HC:14 ICA Isomap + Optimization Methods Adaboost Methods 98.77

Alimardani et al. (2018) Clinical SZ:23, HC:23 NA Statistical features of SSVEPs +

Fisher’s Score

KNN 91.30

Li et al. (2019) Clinical SZ:19, HC:23 Filtering SPN features SVM 90.48

Prasad et al. (2013) Clinical SZ:5, HC:5 NA Different Methods Logistic Regression

Luo et al. (2020) Clinical Different Cases Interpolation algorithmsMicrostate Features RF NA

Shim et al. (2016) Clinical SZ:34, HC:34 Filtering Sensor-level and source-level

features + Fisher’s Score

SVM 88.24

Shalbaf et al. (2020) Public Dataset SZ:14, HC:14 Filtering ResNet-18 SVM 98.60

Aristizabal et al. (2020) Clinical Sz:65/HC;40

SZ:65/HC:45

SZ:65/ HC:57

NA CNN+LSTM Sigmoid 72.54

Sun et al. (2021) Clinical SZ:54, HC:55 Filtering CNN-LSTM Softmax 99.22

Phang et al. (2019a) Public Data SZ:45, HC:39 NA MDC-CNN Softmax 93.06

Chu et al. (2017) Clinical SZ:40, HC:40 Ocular correction

algorithm-filtering

CNN RF 99.20

Oh et al. (2019) Clinical SZ:14, HC:14 z-score Normalization CNN Softmax 89.59

Naira and Alamo (2019)NNCI SZ:45, HC:39 Pearson Correlation

Coefficient (PCC)

CNN Softmax 90.00

Sharma et al. (2021) Clinical SZ:21, HC:24 Filtering CNN-LSTM Sigmoid 99.10

Singh et al. (2021) NNCI SZ:45, HC:39 Filtering CNN-LSTM Sigmoid 98.56

Phang et al. (2019b) NNCI SZ:45, HC:39 NA DBN Softmax 95.00

Proposed Method Public Dataset SZ:14, HC:14 Filtering, Normalization 1D CNN-LSTM Sigmoid 99.25

CNN, convolutional network; EBT, ensemble bagged tree; EMD, empirical mode decomposition; KNN, k-nearest neighbor; LDA, linear discriminant analysis; LSTM, long short-term

memory; RBF, radial basis function; SPN, solitary pulmonary nodules; SSVEPs, steady-state visual evoked potentials; SVM, support vector machine; ERP, Event-related potentials;

ICA, Independent component analysis; MDC-CNN, Multi-domain connectome CNN; DBN, Deep belief network. The bold values provide the highest accuracy the method compared

other methods.

CONCLUSION, DISCUSSION, AND
FUTURE WORKS

SZ is a mental disorder that negatively affects brain function,
causing various problems for the patient. Different screening
methods have been introduced for SZ mental disorder diagnosis,
among which the EEG functional imaging modality has captured
the interest of neurologists and specialist physicians. SZ diagnosis
via EEG signals has always been challenging. In recent years,
various investigations into using AI techniques for SZ diagnosis
and interpretation via EEG signals have been conducted to tackle
this challenge. These methods are proposed to help physicians
and neurologists with a quick and accurate diagnosis of SZ
disorder via EEG signals.

Various AI approaches are presented for the diagnosis of SZ
mental disorder via EEG signals. These approaches include using
different conventional ML (Alizadehsani et al., 2021) techniques
and also DL models (Martinez-Murcia et al., 2019; Górriz et al.,
2020; Gorriz et al., 2021; Jiménez-Mesa et al., 2021). The AI
models for SZ diagnosis via EEG signals consist of the following
steps: dataset selection, preprocessing, feature extraction and
selection, and classification.

In this study, the dataset consisted of EEG data of 14 normal

individuals and patients with SZ (Olejarczyk and Jernajczyk,
2017). The EEG signals of this dataset are of a 10-channel

type and have a sampling frequency of 250Hz (Olejarczyk and
Jernajczyk, 2017). In the preprocessing step, first, the EEG signals

were divided into 25 s frames. Afterward, z-score and z-score-
L2 were used for the normalization of EEG signals. In this
section, each frame of EEG signals had a dimension of 19
× 6,250. It should be noted that the preprocessing of EEG
signals for the DL models included two z-score and z-score-L2
normalization techniques.

Different conventional ML-based classification algorithms
were used for SZ diagnosis via EEG signals. In this section,
the normalized EEG signals were considered as features to be
applied in classification algorithms. The employed classification
algorithms included the following methods: SVM (Cortes and
Vapnik, 1995), KNN (Cover and Hart, 1967), DT (Rokach and
Maimon, 2007), naïve Bayes (Zhang, 2004), RF (Breiman, 2001),
ERT (Geurts et al., 2006), and bagging (Friedman, 2001). The
bagging classification via EEG signals normalized using z-score
could obtain an accuracy of %81.22 ± 1.74, which is the highest
accuracy compared to other classification methods.
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In the following, different DL methods of SZ diagnosis
via EEG signals were employed. The proposed DL methods
in this section included three 1D-CNN architectures, two
LSTM models, and ultimately two 1D-CNN-LSTM networks.
Different activation functions, namely, Leaky ReLU, seLU, and
ReLU were used to implement the proposed DL models.
Besides, in all models, the sigmoid activation function was
used for classification. The results of DL models for different
normalization methods and activation functions were indicated
in Tables 10–12. Among the proposed DL models, the 1D-
CNN-LSTM architecture consisting of 13 layers with the ReLU
activation function and z-score+ L2 normalization could obtain
an accuracy of %99.25 ± 0.25. This model is presented for the
first time in this research, as this article’s novelty. The comparison
between the proposed 1D-CNN-LSTM model with the proposed
models of the previous studies conducted on SZ diagnosis via
EEG signals is indicated in Table 13.

As shown in Table 13, the model proposed in this research
could obtain higher accuracy compared to a vast majority of
conducted studies. The proposed model can be implemented on
special software and hardware platforms for quick SZ diagnosis
via EEG signals and may be employed as an assistant diagnosis
method in hospitals.

In the following, some future investigations into SZ diagnosis
via EEG signals are presented. The CNN-AE models can be
employed for SZ diagnosis via EEG signals as the first future
work. Several researchers indicate that CNN-AE models are
highly efficient in neural disorders via EEG signals (Shoeibi
et al., 2021a). As mentioned in the section of limitation of the
study, the dataset used in this study is for SZ disorder diagnosis.
However, providing EEG datasets for SZ disorder diagnosis can
be of paramount importance for future investigations. One of the
future works is to provide classification models based on DL for
different age and gender groups, which requires researchers to
have access to relevant data.

Another future work is using a combination of conventional
ML and DL models for SZ diagnosis such that different non-
linear features are extracted from EEG signals first. Afterward,
the features are extracted from raw EEG signals by DL models.
Ultimately, manual and DL features are combined, and the
classification is carried out. Graph models based on DL are one
of the new fields in diagnosing brain disorders. Accordingly, in
future works, using graph models based on DL can be suitable
for SZ diagnosis via EEG signals (Cao et al., 2016).
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