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Convolutional neural networks (CNNs) have brought hope for the medical image auxiliary

diagnosis. However, the shortfall of labeled medical image data is the bottleneck that

limits the performance improvement of supervised CNNmethods. In addition, annotating

a large number of labeled medical image data is often expensive and time-consuming.

In this study, we propose a co-optimization learning network (COL-Net) for Magnetic

Resonance Imaging (MRI) segmentation of ischemic penumbra tissues. COL-Net base

on the limited labeled samples and consists of an unsupervised reconstruction network

(R), a supervised segmentation network (S), and a transfer block (T). The reconstruction

network extracts the robust features from reconstructing pseudo unlabeled samples,

which is the auxiliary branch of the segmentation network. The segmentation network is

used to segment the target lesions under the limited labeled samples and the auxiliary

of the reconstruction network. The transfer block is used to co-optimization the feature

maps between the bottlenecks of the reconstruction network and segmentation network.

We propose a mix loss function to optimize COL-Net. COL-Net is verified on the public

ischemic penumbra segmentation challenge (SPES) with two dozen labeled samples.

Results demonstrate that COL-Net has high predictive accuracy and generalization with

the Dice coefficient of 0.79. The extended experiment also shows COL-Net outperforms

most supervised segmentation methods. COL-Net is a meaningful attempt to alleviate

the limited labeled sample problem in medical image segmentation.

Keywords: co-optimization learning network, ischemic penumbra tissues, segmentation network, reconstruction

network, transfer block

1. INTRODUCTION

1.1. Clinical Motivation and Challenges
Labeling target tissue from medical images is of great significance for disease diagnosis and
treatment. Recently, the application of computer technology in brain image tissue segmentation
has become a hot field of medical imaging analysis (Lutnick et al., 2019; Huseyn, 2020; Zhao
et al., 2020). Brain penumbra is a common affliction of ischemic stroke diseases in men. Ischemic
penumbra segmentation on magnetic resonance image (MRI) is important for stroke diagnosis
and pre-operative planning (Dora et al., 2017; Maier et al., 2017; Liu et al., 2020b). In medical
physiology, the penumbra tissue is introduced to designate regions of brain tissue with “almost
ischemia" (Lassen et al., 1991). The infarct region of stroke has been necrotic, while the penumbra
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tissues can be saved. Accurate annotation of penumbra tissues
will help clinicians to locate the penumbra tissues and make
an effective individualized therapy. As shown in Figure 1A, the
dark area is the infarct tissue of stroke, it is surrounded by
penumbra and normal tissues. The treatment of stroke disease
is mainly based on vascular recanalization in an effective time
window. In other words, it is to save the penumbra tissues
and restore the penumbra tissues to normal tissue through
intravenous thrombosis and intravascular treatment. As shown in
Figure 1B, the penumbra tissues are usually distributed around
the infarct tissues. Accurate annotation of penumbra tissues
plays a key role in taking active measures to save penumbra
tissues or transform them into normal tissues. Unfortunately,
consistent and correct labeling of penumbra tissues based onMRI
is challenging for experienced doctors, due to 1) unclear tissue
boundaries, 2) differences in subjective experience 3) boring and
time-consuming work.

Computer technology (image processing, machine learning,
deep learning, etc.) has been applied to brain image analysis.
Especially the supervised segmentation convolutional neural
networks (CNNs) can provide the possibility for medical image
lesion segmentation. Some supervised deep learning methods
have shown advantages in many segmentation tasks. However,
a fine segmentation model still faces some challenges: 1) The lack
of the massive labeled sample is difficult to meet the demand
of a supervised deep learning method to train a fine model.
Supervised segmentation models are hard to achieve the feature
representation on the limited labeled data set. 2) Rough and
non-uniform manual labels impair the ability of the pedication
model to mine the key hidden features of the target tissues. 3)
The accuracy of semi-supervised and unsupervised segmentation
methods is not satisfactory. In the case of limited labeled samples,
how to develop a segmentation method to improve the efficiency
of delineation of unlabeled samples is our concern.

1.2. Related Work
Deep learning is the most representative technology in computer
vision (Hu et al., 2018, 2019; Zhang et al., 2021; Zhou et al., 2021).
Many deep learning-based studies have been applied in medical
image segmentation tasks in past decades (Dora et al., 2017; Liu
et al., 2020b; Hu et al., 2021). These studies are mainly divided
into two types: themethods based on supervised learning strategy
and the methods based on semi-supervised learning strategy.

The supervised learning strategy trains models automatically
to improve the learning performance by using labeled samples
(Knudsen, 1994). The supervised CNNs are representative of
this kind of strategy. In the training process, CNNs learn the
highly representative hidden features under the guidance of the
labeled samples. To a certain extent, these methods promote
the development of medical image segmentation (Moeskops
et al., 2018; Liu et al., 2019, 2020a; Nakarmi et al., 2020). For
example, the Ischemic Stroke Lesion Segmentation (ISLES) 2015
challenge showed that the supervised segmentation methods
could obtain good segmentation results on stroke MRI images
(Maier et al., 2017). Kamnitsas et al. Kamnitsas et al. (2016)
proposed a dual pathway 3D supervised CNN for brain tumor
segmentation in BraTS 2015 challenge. In 2017, Esteva et al.

developed a supervised deep neural network for analyzing skin
cancer, which greatly inspired the research in skin cancer analysis
(Andre et al., 2019). In addition, supervised learning strategies
are used to improve the performance of image analysis models,
including: spine cancer (Esteva et al., 2017), optic disc (Fu et al.,
2018), liver and prostate (Litjens et al., 2014; Li et al., 2018), etc.
The supervised learning strategy improves the accuracy of the
model, however, the limited sample in the medical image analysis
task is an unavoidable challenge to the supervised segmentation
models. These models can not utilize the extra information from
unlabeled samples.

The semi-supervised learning strategy trains models
automatically to improve the learning performance by using
labeled samples and unlabeled samples (Van Engelen and
Hoos, 2020). Semi-supervised learning aims to improve the
performance of the prediction model by learning from a limited
number of labeled data and an arbitrary amount of unlabeled
data. This strategy is more suitable for medical image analysis
with limited samples and assists clinicians to delineate unlabeled
samples (Weston et al., 2012; He et al., 2020; Li et al., 2020a).
For example, Li et al. proposed a semi-supervised model for
medical image segmentation (Li et al., 2020b), they optimized
the model by using two loss functions: public supervision loss
from labeled samples and regularization loss from unlabeled
samples. They introduced a transformation-consistent strategy
to enhance the regularization effect for pixel-level predictions
in the semi-supervised segmentation tasks. The proposed model
showed superior performance on the 3 challenging 2D/3D
medical image data sets. Liu et al. provided a relation-driven
semi-supervised framework for medical image classification (Liu
et al., 2020e). The framework is a consistency-based method.
Firstly, this method used unlabeled samples by encouraging
the prediction consistency of a given input under disturbance
and then used self-scrambling model to generate high-quality
consistency targets for unlabeled samples. This method
outperformed many state-of-the-arts semi-supervised learning
methods on ISIC 2018 challenge and thorax disease classification
with Chest X-ray images. Kumar et al. integrated the idea of
semi-supervised learning into the model for retinopathy and
cancer anomaly detection (Kumar and Awate, 2020). This model
achieved high-quality outlier labeling by a small amount of
expert calibration data. Kumar et al. adopted the maximum
semi-supervised robust hybrid model strategy to improve the
detection performance of the model. In addition, as a special case
of semi-supervised learning, few-shooting learning is proposed
to solve the problem of the limited labeled samples (Fei-Fei
et al., 2006; Vinyals et al., 2016). Shaban et al. (2017) proposed a
conditioning branch and segmentation branch network to solve
the semantic segmentation problem on limited samples. The
whole network could predict the type of a test image at the pixel
level. Rakelly et al. proposed a train of guided and conditional
networks with few labeled samples and sparse annotations
(Rakelly et al., 2018). This approach was evaluated on the
PASCAL VOC computer vision benchmark. These methods
usually used unlabeled samples to assist models to make a
prediction. However, these methods are easily affected by pixel
values with large differences in the medical image. Especially
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FIGURE 1 | Examples of the infarct core and penumbra tissues on DWI image (A). The red and green area denote infarct core and penumbra tissues (B), respectively.

in low contrast brain images, semi-supervised based methods
usually mistakenly regard the infarct area as the optimization
target in stroke imaging segmentation task, which will result in
the interference of the training process and the degradation of
model performance.

1.3. Contributions
In this study, we present a semi-supervised learning network
(COL-Net) based on co-optimization learning for brain image
segmentation. COL-Net can be trained by jointly using the
limited labeled and unlabeled MRI images. The whole network
is co-optimized by combining the supervised and unsupervised
sub-networks (loses). To leverage the unlabeled samples, we
assume each labeled sample also has a pseudo unlabeled
state. We take the advantage of co-optimization learning
works into delineating penumbra tissues. Based on the limited
number of labeled and pseudo unlabeled samples, we leverage

pseudo unlabeled samples as additional information for the
segmentation model and optimize the model. Our contributions

include:
(1) We propose a co-optimization learning network for

ischemic penumbra tissues segmentation which is an attempt to

assist clinicians to delineate penumbra tissues under the limited

labeled samples.
(2) COL-Net consists of 3 parts: segmentation network (S),

reconstruction network (R), and transfer block (T). R is used as

the auxiliary branch of S with the pseudo unlabeled samples, S is
used to predict the results with the limited labeled samples and
the supervise of R, and T is used to co-optimize the feature maps
between the bottlenecks of R and S.

(3) We use a mix loss function (segmentation loss and
reconstruction loss) to co-optimize COL-Net.

(4) Extensive experiments and ablation study demonstrates
that COL-Net substantially outperforms well-tuned state-of-the-
art methods.
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Algorithm 1 COL-Net Algorithm pseudocode.

Input: xi ∈ L, yi ∈ L, x′i ∈ UL
Output: X̃k

1: R(xi | x
′
i)← unsupervised reconstruction network

2: S(xi)← supervised segmentation network
3: featrureR←middle layer in R(xi, x

′
i)

4: featrureS← bottleneck layer in S(xi)
5: T(R, S)← add(featrureR, featrureS)
6: for i = 1 to numepochs do
7: randomly update R(xi | x

′
i), S(xi)

8: lossr(xi | x
′
i)← update loss (R(xi | x

′
i))

9: losss(xi)← update loss (S(xi))
10: lossmix ← min(lossr +3losss)
11: end for

12: return lossmix

The rest of this paper is organized as follows. The
methodology of the proposed network is introduced in section
2. Section 3 introduces the materials and provides the evaluation
metrics of our segmentation network. We introduce the
experimental setup and analyze the experimental results in detail.
Section 5 conducts and discusses the contributions of individual
components in COL-Net. Finally, wemake the conclusions of this
study in section 6.

2. METHODOLOGY

2.1. The Architecture of COL-Net
The architecture of COL-Net is shown in Figure 2 and Algorithm
1 summarizes the pseudocode. COL-Net mainly consists of 3
parts: an unsupervised reconstruction network (R), a supervised
segmentation network (S), and a transfer block (T).

2.2. Network Architecture
2.2.1. The Encoder-Decoder Framework
The encoder-decoder architecture is a common framework in
deep learning (Long et al., 2015; Ronneberger et al., 2015; Liu
et al., 2020b,d). It can be used to analyze any text, voice, image,
and video data. The encoder-decoder architecture is an end-
to-end learning algorithm and usually is used as the backbone
of CNN, RNN, BiRNN, LSTM, GRU, and so on. The encoder
converts the input sequence into a fixed-length vector. The
decoder converts the previously generated fixed vector into the
output sequence. In medical image analysis tasks, residual or
dense mechanisms, and skip connection operation are usually
embedded into the encoder-decoder framework to improve the
model performance (Ronneberger et al., 2015; He et al., 2016;
Zhang et al., 2018).

In our study, the unsupervised network (R) and supervised
network (S) are the main parts of COL-Net, both of them
adopt the encoder-decoder architecture as the backbone. COL-
Net is trained in a co-optimization manner: 1) We train R by
using the pseudo unlabeled samples to obtain representative
features. 2) We joint the feature maps of R and S as the input of

up-sampling by transfer block and further use the labeled samples
to fine-tune the S.

2.2.2. Reconstruction Network (R)
The reconstruction network (R) is trained in the unsupervised
strategy. R is illustrated in Figure 2, the encoder part of R
comprises followed that in ResNet network (He et al., 2016). The
decoder part of R adopts 4 continuous Conv-BN-Relu (Conv:
convolution, BN: batch normalization, and ReLU: rectified linear
unit) blocks to reconstruct the featuremap. Finally, a convolution
layer and Tanh function are used to reconstruct the image. We
also use a discriminator network (D) to distinguish the input
image from the generated image by the reconstruction network.
The architecture of D is illustrated in Figure 3, which contains 4
convolutional layers with a 3 × 3 kernel, a fully connected (FC)
layer with 512 neurons, and an FC layer followed by the softmax
activation function.

We aim at improving the segmentation performance for
the COL-Net, reconstruction network plays as an auxiliary and
correction network of the segmentation network in COL-Net.
Reconstruction network is trained under the pseudo unlabeled
samples in an unsupervised way. Given the i − th input sample
Xi, i ∈ [1, I], the loss function of R is defined as follow:

lossr(Xi) = lossmse(R(Xi),Xi)−

[lossce(D(Xi), 0)+ lossce(D(Xi), 1)],
(1)

where lossmse() is the mean square error (MSE) loss (Masci
et al., 2011), which measures the discrepancy between the
original image and the reconstructed image. The lossce() is
the cross-entropy adversarial loss for D, which measures the
discrepancy between the distributions of an input image and the
reconstructed one. We use the Adam optimizer to fine optimize
the lossr() loss function.

2.2.3. Segmentation Network (S)
As illustrated in Figure 2, the segmentation network is inspired
by the encoder-decoder architecture and is trained under the
supervised strategy. The encoder-decoder architecture has been
proved to perform well in medical image segmentation tasks
(Long et al., 2015; Ronneberger et al., 2015). We construct the
backbone of the segmentation network (S) based on ResNet (He
et al., 2016). The encoder in S is the same as that in R. In addition,
the skip connections make the feature mapping and fuse the
feature mappings between the encoder layer and decoder layer,
and the continuous up-samplings are used to recognize feature
and gradually recover the location of each pixel. Finally, we
use the softmax activation function to predict the segmentation
result. The detail of the residual block is shown in the subgraph
of Figure 2, it consists of 3 convolution layers (1× 1, 3× 3, 1× 1)
and a fusion layer (Concat()).

We use the labeled samples to train the segmentation network.
The loss function (losss) of the segmentation network bases on the
Dice coefficient (DC) (Milletari et al., 2016). In the medical image
analysis task, DC is usually based on the pixel level, it is calculated
the similar proportion between the prediction result and the label
image. The larger the DC value, the better the segmentation
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FIGURE 2 | The architecture of COL-Net. “UL”: unlabeled image; “L”: labeled image; “R”: reconstruction network; “S”: segmentation network; “T”: transfer block.

FIGURE 3 | Detailed architecture of discriminator block.
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result. Given the j− th labeled sample Xj and corresponding label
Yj, where j ∈ [1, J], the losss comes from DC, which is defined as
follows:

losss = 1− DC(Xj,Yj) = 1−
2
∣∣Yj

⋂
Xj

∣∣
∣∣Yj

∣∣+
∣∣Xj

∣∣ , (2)

where DC is a measure of similarity between image Xj and
label Yj.

In our study, we hope the reconstruction network can
supervise the segmentation network to achieve the aim of using
the features of the unlabeled sample to assist segmentation. In
our model, we use a mixed loss function to train and co-optimize
COL-Net. The mixed loss function is based on the segmentation
network and the reconstruction network. The proposed COL-
Net is co-optimized during the training process, the optimizing
strategy compose of two parts: lossr and losss. The lossr is trained
on the pseudo unlabeled samples in an unsupervised manner.
The losss is trained on the labeled samples in a supervised
manner. We use a mix loss function to train COL-Net by
reducing to the minimum of the following function:

lossmix = min(ls + λlr)

= min(1−
2
∣∣Yj

⋂
Xj

∣∣
∣∣Yj

∣∣+
∣∣Xj

∣∣
− λlmse(R(Xi),Xi)− [lce(D(Xi), 0)+ lce(D(Xi), 1)])

(3)

where λ is employed to weight the importance of the
reconstruction network. It should be noted that when ls is set to 0,
the parameter λ should be set to 0 to ensure the training process
of the model.

2.2.4. Transfer Block (T)
The transfer block is used as a bridge between R and S, which
transfers the features maps by the convolution, BN, and ReLU
operations. We transfer the output of the middle layer in R and
fuse it with the output of the bottleneck layer in S. The transfer
block is illustrated in Figure 4, the T block is a 1×1 convolutional
layer with a stride of 1 followed by BN and ReLU activation.

We use add() method to fuse two feature maps that come
from two bottleneck layers (the reconstruction network and the
segmentation network). add() superimposes pixel values. It is a
pixel information overlay method, which increases the amount
of information describing the features of an image, the channel
information in the image does not increase. Each feature map is
fused according to channels. Let ∗ be the convolution operation
and f i be the i-th feature map. f i consists of channels Ai

1, A
i
2, ...,

Ai
c. There has n feature maps. The equation of the output feature

map with add() can be expressed as:

Oadd =

c∑

j = 1

(A1
j ∗ K

1
j + ...+ An

j ∗ K
n
j )

=

c∑

j = 1

A1
j ∗ K

1
j + ...+

c∑

j = 1

An
j ∗ K

n
j ,

(4)

where K is the convolution kernel, c is the number of channels.

FIGURE 4 | Detailed pipeline of transter block.

3. EVALUATION DATASET

3.1. SPES Image Data
The Ischemic Stroke Lesion Segmentation (ISLES) launched a
challenge to estimate the regions of the penumbra in acute stroke
in 2015 (SPES). SPES challenge provides 50 acute ischemic stroke
participants (30 for training and 20 for testing). All participants
had been diagnosed and collected by the University Hospital of
Bern between 2005 and 2013. All participants are older than 18.
There are 7 MRI modalities for each participant: T1 contrast-
enhanced (T1c), T2, DWI, cerebral blood flow (CBF), cerebral
blood volume (CBV), time-to-peak (TTP), and time-to-max
(Tmax). All MRIs were performed on either a 1.5T Siemens
Magnetom Avanto or a 3T MRI system Siemens Magnetom
Trio. All MRI modalities were skull-stripped, re-sampled to an
isotropic spacing of 23mm, and co-registered to the T1w contrast
modality.

The ground truth of training samples are manually labeled
in DWI images by a medicine doctor who obeyed the following
steps: First, medicine doctor obtained the fusion restriction
label region through a semi-manual segmentation method
based on the Tmax modality. Then, he obtained the diffusion
restriction label region through the currently accepted ADC
threshold (600 × 10−6mm2/sec). Finally, the penumbra region
was obtained by the mismatch of these two labels which were
defined as follows: (perfusion − restrictionlabel) − (diffusion −
restrictionlabel). The ground truth of training samples are
provided on the challenge web page1. The ground truths of
testing samples are not available on the challenge web page.

1www.isles-challenge.org
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3.2. Evaluation Metrics
To demonstrate the advantage of COL-Net, we inherit the
evaluation metrics of the SPES challenge and compare it with
the supervised methods in the challenge and other supervised
\ semi-supervised methods. SPES challenge offers 3 evaluation
metrics: DC,Hausdorff distance (HD) (Huttenlocher et al., 1993),
and Average Symmetric Surface Distance (ASSD). The DC is
used to assess the similar proportion of overlap between the
predicted image and the ground truth, DC is defined in Equation
(3). (0 ≤ DC ≤ 1, the higher the DC value, the better the
segmentation result). The HD is used to quantify the maximum
distance between two surface pixels between the predicted image
and ground truth. It is defined as follows:

HD(X,Y) = max

{
max
x∈X

min
y∈Y

d(x, y), max
y∈Y

min
x∈X

d(y, x)

}
, (5)

where X and Y are predicting image and ground truth,
respectively. x and y are the pixels in X and Y , and d(.) is the
Euclidean distance between points x and y. The HD values are
expressed in millimeters (mm).

The ASSD is used to evaluate the average distance between
predict image and ground truth on pixel level, which is defined as:

ASSD(X,Y) =
1

2
(

∑
x∈X miny∈Yd(x, y)

|X|

+

∑
y∈Y minx∈Xd(y, x)

|Y|
),

(6)

where the ASSD values are expressed in millimeters (mm). For
HD and ASSD evaluation measures, the smaller the value is, the
better is the segmentation results.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup
The SPES dataset provides 30 labeled training samples and 20
unlabeled testing samples. The reconstruction network is trained
in an unsupervised manner and the segmentation network is
trained in a supervisedmanner. In the training process, according
to two different scenarios, we assume that each training sample
has two label states: labeled and pseudo unlabeled samples. The
labeled samples are used to train the segmentation network, the
pseudo unlabeled samples are used to train the reconstruction
network, the testing samples are just used to test the model.
In the details, we use all pseudo unlabeled samples to train the
reconstruction network and use 5 different percentages of labeled
samples to train the segmentation network: 10% labeled samples
(3 labeled training samples), 20% labeled samples (6 labeled
training samples), 50% labeled samples (15 labeled training
samples), 80% labeled samples (24 labeled training samples),
100% labeled samples (30 labeled training samples).

Under the unsupervised manner, the reconstruction network
is optimized by the Adam optimizer, the mini-batch is 3, the
epoch is 300, the learning rate is 10−5, the drop-out rate is
10−2, and the random weight initialization. We use the early stop
strategy to train COL-Net and save the best weight of the model.

TABLE 1 | The results of different strategies on the SPES dataset.

Method DC ASSD HD

COL-Net1 (10%) (Semi) 37.00 (±12.00) 9.86 (±7.53) 76.57 (±43.17)

COL-Net2 (20%) (Semi) 53.00 (±9.00) 7.23 (±5.40) 62.61 (±32.40)

COL-Net3 (50%) (Semi) 68.00 (±12.00) 4.00 (±4.01) 59.30 (±25.91)

COL-Net4 (80%) (Semi) 79.00 (±8.00) 2.41 (±2.19) 34.20 (±24.05)

COL-Net5 (100%) (Supe) 79.00 (±9.00) 1.83 (±0.52) 39.20 (±25.38)

DC:%, ASSD:mm, HD:mm. Semi, Semi-supervised training strategy; Supe, Supervised

training strategy. The bold values mean the best results.

In the segmentation network, the labeled training samples are
randomly split into two parts: training part and validation part. In
our study, all experiments are work on the sample level. We use
the validation split method to divide the training and validation
samples. The value of split parameter is set of 0.2. The training
samples are used to train the models, the validation samples are
used to fine-tune the trained models. Although segmentation
and reconstruction networks have the same architecture, the
initialization parameters of segmentation network are different
from that of the reconstruction network. The segmentation
network uses Adam function as an optimizer, the mini-batch size
is 3, the epoch is 80, the learning rate is 10−4, the drop-out rate is
10−2, and the random weight initialization. Both networks work
on the same computer server with an NVIDIA GeForce Titan
X Pascal CUDA GPU with 16 GB memory. We save the best
weight parameters of the segmentation model by maximizing the
performance of the training process. And then we use the best
model weight parameters to predict the segmentation results on
the 20 testing samples.

4.2. Result and Analysis
In order to obtain the best semi-supervised segmentation model,
we evaluate 5 training strategies respectively. In these 5 models,
the last model (COL-Net5: using 100% labeled samples in the
training process) is the only one under the supervised training
strategy, others are under the semi-supervised training strategy.
For each model, we test the best weight parameters on the
20 testing samples and submit the predicted results to the
SPES challenge web page. These 5 predicated scores of testing
samples are shown in Table 1. From COL-Net1 to COL-Net5,
the results of the proposed COL-Net achieve relatively consistent
improvements on 3 metrics. When the proportion of labeled
samples used for training is less than 50%, the segmentation
result is not satisfactory. When the number of labeled samples
for training reaches 80% (COL-Net4), the DC value of COL-Net4
can achieve 79% which is the same as the DC value of using
100% labeled samples model (COL-Net5), which demonstrates
that the reconstruction network provides the useful information
for the segmentation network. It denotes that our proposed the
co-optimization learning strategy has the effectiveness on limited
labeled samples.

4.3. Ranking in the Challenge
All the top ranking methods are supervised methods in the
SPES challenge web page. We use the COL-Net model which
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TABLE 2 | The results of the participants on the SPES dataset.

Methods DC ASSD HD

CH-Insel (Supe) 82.00 (±8.00) 1.65 (±1.40) 29.02 (±12.60)

DE-UzL (Supe) 81.00 (±9.00) 1.36 (±0.74) 23.62 (±12.99)

COL-Net (Semi) 79.00 (±8.00) 2.41 (±2.19) 34.20 (±24.05)

BE-Kul2 (Supe) 78.00 (±9.00) 2.77 (±3.27) 40.27 (±25.10)

CN-Neu (Supe) 76.00 (±9.00) 2.29 (±1.76) 30.65 (±16.49)

DE-Ukf (Supe) 73.00 (±13.00) 2.44 (±1.93) 33.92 (±20.88)

BE-Kul1 (Supe) 67.00 (±24.00) 4.00 (±3.39) 57.95 (±28.77)

CA-USher (Supe) 54.00 (±26.00) 5.53 (±7.59) 59.89 (±30.18)

DC:%, ASSD:mm, HD:mm. Semi, Semi-supervised training strategy; Supe, Supervised

training strategy. The bold values mean the best results.

TABLE 3 | The results of the state-of-the-arts methods on the 2D SPES images.

Methods DC ASSD HD

U-Net (Liang et al., 2017) 68.00 (±16.00) 3.49 (±2.77) 51.86 (±24.93)

FCN (Long et al., 2015) 70.00 (±12.00) 3.54 (±2.04) 60.42 (±28.56)

Res-FCN (Liu et al., 2018) 71.00 (±12.00) 3.43 (±1.94) 61.05 (±23.75)

Res-UNet (He et al., 2016) 76.00 (±9.00) 2.10 (±0.57) 42.54 (±21.14)

COL-Net 79.00 (±8.00) 2.41 (±2.19) 34.20 (±24.05)

RA-UNet (Jin et al., 2018) 80.00 (±3.00) 2.03 (±0.86) 39.43 (±27.07)

DRANet (Liu et al., 2020c) 80.00 (±7.00) 1.91 (±1.02) 30.13 (±20.32)

DC:%, ASSD:mm, HD:mm. The bold value mean the best results.

is obtained by the third training strategy to verify the testing
samples (the only 80% of the labeled training samples are used
in the segmentation network). We compare COL-Net with other
top 7 participate teams in the SPES challenge. The rankings
of these 7 teams are frozen by the ISLES workshop2. The top
7 predicated results of the test dataset on SPES are shown in
Table 2. Compared with these supervised methods, COL-Net
ranks the third. COL-Net obtains DC score is 79.00%, the ASSD
is 2.41 mm, and the HD is 34.20 mm. CH-Insel obtains the best
DC score (82.00%) which is higher than that of COL-Net 3.00%.
DE-UzL obtains the best ASSD (1.36 mm) and HD (23.62 mm)
scores which are only 1.05mm and 10.58mm lower (better) than
that of COL-Net. Although our model does not achieve the best
ranking, as a semi-supervised segmentation method, the result of
COL-Net is a very competitive in all supervised methods.

4.4. Comparison With the State-of-the-Art
Methods
In addition, we also compare COL-Net with the state-of-the-
art methods: U-Net (Ronneberger et al., 2015), FCN (Long
et al., 2015), Res-UNet (He et al., 2016), Res-FCN (Liu et al.,
2018), RA-UNet (Jin et al., 2018), and DRANet (Liu et al.,
2020c). These methods are all supervised methods. We either
use the code released by the authors or re-implement them
exactly as described by the authors. To ensure the fairness

2www.isles-challenge.org

of the comparison, we adopt multi-modalities MRI as input
including DWI, CBV, Tmax, CBF, T2, and TTP as the inputs of all
comparison methods. The training samples and testing samples
of all supervised methods follow the SPES challenge and the
evaluation scores come from the official challenge web page.

Table 3 shows the comparison results of the DC, ASSD, and
HD scores of these 7 methods. Among all the methods, U-
Net, FCN, Res-FCN, Res-UNet, RA-UNet, and DRANet are
supervised methods. These methods use the residual mechanism
or attention mechanism as the key to improve the segmentation
performance of the methods. U-Net and FCN only use the end-
to-end structure as the main backbone of the framework. Based
on U-shape structure, the residual mechanism is added to Res-
FCN and Res-UNet. RA-UNet and DRANet embed residual
mechanism and attention mechanism into the encoder-decoder
structure. These methods are under the supervised training
strategy, they obtain the context information mainly come from
the labeled samples, without the help of external auxiliary
unlabeled samples. In these methods, RA-UNet and DRANet
obtain the best results on 3 metrics: DC scores of 80.00–80.00%,
ASSD value of 2.03–1.91 mm, and HD value of 39.43–30.13 mm.
Both methods obtain more supplementary semantic information
from attentionmechanisms. The attentionmechanisms help both
methods extract the spatial features and focus on spatial semantic
information. Compared with these supervised methods, COL-
Net obtains a DC score is 79.00%, the ASSD is 2.41 mm, and the
HD is 34.20mm. Although the segmentation results of COL-Net
are not great as that of RA-UNet and DRANet, however, under
the co-optimization learning strategy and using limited samples
to obtain competitive results is a meaningful attempt to assist
medical image labeling.

5. DISCUSSION

The good performance of supervised deep learning mainly
depends on the training of a large number of labeled data. In
this study, we are committed to developing a semi-supervised
co-optimization learning network for brain image segmentation,
which uses unlabeled data to improve the performance of the
segmentation model and reduce the labeling workload.

5.1. Reconstruction Network
In this study, we propose a co-optimization learning framework
COL-Net for penumbra tissues segmentation. COL-Net
consists of an encoder-decoder segmentation framework (S),
reconstruction network (R), and transferblock (T). It takes the
advantages of the limited labeled samples. In segmentation
framework, we use the residual mechanism to extract high-
quality features from the input images and skip operation to
improve the processing of the features between the encoder and
decoder parts of the network. We present the reconstruction
network for reconstructing feature generation in a unsupervised
training strategy. The transfer block is used to co-optimization
lean the features maps between segmentation framework and
reconstruction network. We learn the reconstruction features
with that of segmentation network, we embed them into the
segmentation network to optimize the model with the mix loss
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FIGURE 5 | The lossmix curves of training samples for different λ values.

FIGURE 6 | The lossmix curves of verification samples for different λ values.

function. COL-Net is trained under the guidance of the mix
loss function. As shown in Table 3, the reconstruction network
demonstrates its efficacy for improving the segmentation
results in the limited labeled stroke medical images. Our

study proves useful in mitigating the shortage of labeled
samples of penumbra targets, with two dozens of labeled
samples proving sufficient to auxiliary train a highly efficient
segmentation model.
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TABLE 4 | Ablation study about performance of 4 networks with DC, ASSD and

HD metrics.

Methods DC ASSD HD

U-net (Ronneberger et al.,

2015)

75.00 (±12.00) 3.34 (±2.18) 64.11 (±29.14)

Res-UNet (He et al., 2016) 76.00 (±9.00) 2.10 (±0.57) 42.54 (±21.14)

COL-Net 79.00 (±8.00) 2.41 (±2.19) 34.20 (±24.05)

RA-UNet (Jin et al., 2018) 80.00 (±3.00) 2.03 (±0.86) 39.43 (±27.07)

DC:%, ASSD:mm, HD:mm.

5.2. Loss Functions
Loss function is used to optimize the model by estimating the
inconsistency between the predicted value and the real value
of the model. There have two sub-loss functions in COL-Net
(lossr and losss). The lossr is used to optimize the reconstruction
network, which is based on cross-entropy loss (Equation 1). The
losss is used to optimize the segmentation network, which is
based on DC loss (Equation 2). In order to optimize the COL-
Net model as a whole, we combine these two loss functions and
propose the mix loss function (lossmix) Equation 3. We use λ to
weigh the weight of the two-loss functions. We use 5 experiments
to get the optimal λ value by setting λ to 0.0, 0.2, 0.4, 0.6, 0.8,
and 1.0, respectively. These experiments use the same training
and verification samples, which use 80% labeled samples in the
training process. The initialization parameters of the model are
in section 4.1.

In the training and verification processes, we use the lossmix

curves corresponding to lossmix to measure the quality of λ

values. The lossmix curves of training and verification samples are
shown in Figures 5, 6, respectively. In these two coordinates, the
horizontal axis corresponds to each epoch value in the training
and verification processes respectively, the vertical axis represents
the lossmix score of each epoch. As shown in Figure 5, when λ =

0.0 denotes the reconstruction network (lossr) does not work, we
only use the supervised segmentation network (losss) to training
COL-Net. When λ = 1.0 means that the reconstruction network
(lossr) and the segmentation network (losss) have the same weight
and influence on COL-Net (lossmix). In general, with the increase
of epoch value in the training process, the lossmix scores of all
λ are gradually increasing. In the verification process, with the
increase of epoch value, the lossmix scores of all λ are gradually
increasing, except when λ = 1.0. The value of λ is opposite to
that of lossmix. When the value of λ increases from 0 to 1.0, the
negative effect on lossmix increases gradually. In the training and
verification process, the lossmix curves corresponding to λ = 0.0
and λ = 0.2 get the best lossmix score, the coincidence degree
is very high, which indicates that the COL-Net method can also
achieve the supervised segmentation effect where λ = 0.2. It
demonstrates that our proposed method could effective work on
the limited labeled samples medical image segmentation task.

5.3. Ablation Experiments
To investigate the contributions of the reconstruction network in
our proposed method, we conduct several ablation experiments

based on COL-Net. In all ablation experiments, we use the
training and testing samples as designed in section 4.1. The
results of ablation experiments are shown in Table 4. We use the
representative U-Net as the baseline. We compare the improved
Res-UNet based on U-Net. Res-UNet integrates the residual
mechanism into the U-Net network. Consequently, the mean
DC, ASSD, and HD values are improved by 1.00%, 1.24 mm,
and 21.57 mm for penumbra tissues segmentation. Compared
with the baseline U-Net, the Res-UNet increases the depth of
the network and uses a residual mechanism to alleviates the
vanishing gradient problem of the deep network. Furthermore,
we compare the improved RA-UNet based on the attention
mechanism. RA-UNet integrates attention mechanism into skip
connection paths of Res-UNet. The main measure means the DC
value of RA-UNet is improved by 4.00% than that of the Res-
UNet. Compared with the Res-UNet, the attentionmechanism in
RA-UNet extract higher quality features from the input images,
which is more conducive to improve the model’s performance.
Compared with other supervised models, our proposed COL-
Net obtains the top-level DC and ASSD values for penumbra
segmentation. The mean DC value of the COL-Net is only 1.0%
lower (worse) than that of RA-UNet, the mean ASSD value of the
COL-Net is only 0.38 mm higher (worse) than that of RA-UNet,
the HD value of the COL-Net is 0.74 mm lower (better) than
that of RA-UNet. Other supervisedmodels use all labeled training
samples to fine-tune the models, while our COL-Net model only
uses 24 labeled training samples. Although the segmentation
performance of the COL-Net model is not the best, it has
great advantages to solve the segmentation task with the limited
labeled samples.

5.4. Visualization of the Prediction Results
In order to further analyze the performance of the COL-Net, we
conduct several extended experiments to visualize the predicted
result of a training sample in SPES. There are 30 training samples
in the SPES data set, we use 29 samples to train and adjust the
models (U-net, Res-UNet, RA-UNet, and COL-Net), the last one
is used as a test sample (The 1 − th sample). U-net, Res-UNet
and RA-UNet are supervised segmentation methods, COL-Net
is a semi-supervised segmentation method. We use the optimal
weight of COL-Net trained by 80% labeled samples to test the
sample. Figure 7 shows the ground truth against the predicted
results produced by these 4 models. There are 3 scenarios in
Figure 7. The first row in Figure 7 is an example that has small
and trivial size penumbra tissues. The second row in Figure 7 is
an example that has medium size penumbra tissues. The third
row in Figure 7 is an example that has big size penumbra tissues.
In the first row, the ground truth image shows the minuteness
and triviality of the annotation label. The supervised U-net and
Res-UNet methods are not sensitive to the small lesions, which
lead to the fact that the predicted size of the segmentation
lesion are much smaller than the ground truth. The prediction
result of supervised RA-UNet is the closest to the ground truth.
Our semi-supervised COL-Net method is not as good as RA-
UNet in predicting small lesions. This is mainly because the
attention mechanism in RA-UNet can capture more sensitive
feature information under the guidance of a supervised training
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FIGURE 7 | The visualization of the prediction resluts (green regions are the labeled lesions and predicted lesions, respectively).

strategy. In the second and third rows, the green lesion regions
are bigger than those in the first row. The prediction results of U-
net and Res-UNet methods are still significantly smaller than that
in the ground truth. The prediction results of RA-UNet and COL-
Net are the closest to ground truth. This shows that the proposed
COL-Net model is comparable to the advanced supervised
deep learning model in capturing the features of relatively
large lesions.

5.5. Robustness on SISS Challenge Dataset
In order to further verify the performance of COL-Net,
we verify it on SISS challenge. We retain the parameters
trained on the SPES dataset, and use the reshape method
to scale the size of the SISS dataset image to be consistent
with the size of the SPES dataset image. The SISS challenge
is a subtask of the ISLES 2015 challenge, which contains
64 samples, including 28 labeled training samples and 36
unlabeled testing samples. We perform the experiment on
this data set: we use the pseudo unlabeled samples to train
reconstruction network. We use the 80% labeled samples to

TABLE 5 | The results of the participants of the SISS dataset.

Methods DC ASSD HD Manner

UK-Imp2 59.00 (±31.00) 5.96 (±9.38) 37.88 (±30.06) Supe

Lianl1 57.00 (±29.00) 8.22 (±16.25) 43.02 (±30.48) Supe

COL-Net 56.00 (±28.00) 9.432 (±17.05) 44.02 (±45.10) Semi

Fengc1 55.00 (±30.00) 8.13 (±15.15) 25.02 (±22.02) Supe

Martc2 50.00 (±32.00) 14.69 (±17.82) 80.06 (±22.00) Supe

Abdua1 43.00 (±31.00) 16.85 (±15.71) 74.66 (±25.10) Supe

DC:%, ASSD:mm, HD:mm. Semi, Semi-supervised training strategy; Supe, Supervised

training strategy.

train segmentation network and all test unlabeled samples
on the fine-trained segmentation network. Finally, we upload
the prediction results of the testing samples to the challenge
web page. The obtained DC, ASSD, and HD are given in
Table 5. It shows that, in all methods, COL-Net adopts a
semi-supervised training strategy and achieves the average DC,
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ASSD, and HD to 56.00%, 9.432 mm, and 44.02 mm. The
performance of the proposed COL-Net is second only to the best
two supervised segmentation methods (UK-Imp2 and Lianl1),
ranking third. This not only shows that COL-Net can approach
the performance of the supervised method in the case of a
limited labeled samples but also proves that our model has strong
generalization ability.

6. CONCLUSIONS

We propose a novel co-optimization learning network (COL-
Net). The COL-Net method tries to use a co-optimization
learning strategy to train the segmentation model on the
basis of the limited labeled samples and the unlabeled
samples. It consists of 3 parts: segmentation network (S),
reconstruction network (R), and transfer block (T). The mix
loss function is proposed to co-optimization COL-Net. It
is verified to segment penumbra tissues from brain MRIs
on the SPES challenge and an extended SISS challenge.
The results demonstrate that COL-Net achieves the state-
of-the-art segmentation performance. Extensive experiments
show that COL-Net outperforms most supervised segmentation
methods and reaches the advanced level on the limited
labeled samples. However, the segmentation accuracy of this
method on small lesions needs to be improved. In the face
of a limited labeled samples, it is a meaningful attempt to
use a co-optimization learning semi-supervised method to
make segmentation and prediction. In future work, we will
explore semi-supervised segmentation methods with better
generalization performance.
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