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Purpose: The aim of this study was to compare two radiomic models in predicting the
progression of white matter hyperintensity (WMH) and the speed of progression from
conventional magnetic resonance images.

Methods: In this study, 232 people were retrospectively analyzed at Medical Center A
(training and testing groups) and Medical Center B (external validation group). A visual
rating scale was used to divide all patients into WMH progression and non-progression
groups. Two regions of interest (ROIs)—ROI whole-brain white matter (WBWM) and ROI
WMH penumbra (WMHp)—were segmented from the baseline image. For predicting
WMH progression, logistic regression was applied to create radiomic models in the two
ROIs. Then, age, sex, clinical course, vascular risk factors, and imaging factors were
incorporated into a stepwise regression analysis to construct the combined diagnosis
model. Finally, the presence of a correlation between radiomic findings and the speed
of progression was analyzed.

Results: The area under the curve (AUC) was higher for the WMHp-based radiomic
model than the WBWM-based radiomic model in training, testing, and validation groups
(0.791, 0.768, and 0.767 vs. 0.725, 0.693, and 0.691, respectively). The WBWM-based
combined model was established by combining age, hypertension, and rad-score of the
ROI WBWM. Also, the WMHp-based combined model is built by combining the age and
rad-score of the ROI WMHp. Compared with the WBWM-based model (AUC = 0.779,
0.716, 0.673 in training, testing, and validation groups, respectively), the WMHp-
based combined model has higher diagnostic efficiency and better generalization ability
(AUC = 0.793, 0.774, 0.777 in training, testing, and validation groups, respectively). The
speed of WMH progression was related to the rad-score from ROI WMHp (r = 0.49) but
not from ROI WBWM.

Conclusion: The heterogeneity of the penumbra could help identify the individuals
at high risk of WMH progression and the rad-score of it was correlated with the
speed of progression.

Keywords: white matter, penumbra, radiomics, magnetic resonance imaging, texture analysis

Frontiers in Neuroinformatics | www.frontiersin.org 1 December 2021 | Volume 15 | Article 789295

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.789295
http://creativecommons.org/licenses/by/4.0/
mailto:15888815645@163.com
https://doi.org/10.3389/fninf.2021.789295
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.789295&domain=pdf&date_stamp=2021-12-01
https://www.frontiersin.org/articles/10.3389/fninf.2021.789295/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-789295 November 25, 2021 Time: 15:55 # 2

Shao et al. White Matter Hyperintensities

INTRODUCTION

White matter hyperintensity (WMH) is a common feature
found in the periventricular and deep white matter of
the elderly (Longstreth et al., 2005). Maillard et al. (2014)
reported that the abnormal regions are perceived as larger
on diffusion tensor imaging (DTI) than on fluid-attenuated
inversion recovery (FLAIR) images and proposed the
concept of “structural penumbra.” A prospective study
reported that 80% of WMH progression appears as direct
extensions of preexisting lesions rather than new, scattered
lesions (de Groot et al., 2013). Also, this study revealed the
pattern of WMH progression, which was found to extend
from the focus to the penumbra. Our study was aimed at
comparing the performance of two radiomic models to
predict the progression and progression speed of white matter
hyperintensities.

Previous studies have suggested that the FLAIR intensity of
a single voxel assists DTI in predicting WMH progression,
indicating that the intensity of an individual voxel in
conventional Magnetic resonance imaging (MRI) possibly
contains influential information regarding the integrity of the
white matter (Maillard et al., 2013). Radiomics is a relatively
new field that could reveal changes in the microstructure
and its regularity by extracting the intensity value of a single
voxel and analyzing its relationship with the intensity value
of neighboring voxels and its position within the brain
(Yip and Aerts, 2016). Our previous research also found
that radiomic findings could reflect the heterogeneity and
complexity of the white matter, which may result from less
uniform MRI signal intensities caused by reduced myelin
content or increased water content (Shao et al., 2018; Shu
Z. et al., 2020; Shu Z. Y. et al., 2020). Tozer et al. (2018)
showed that the texture of the whole-brain white matter
(WBWM) was moderately correlated with global cognition
and executive dysfunction, and they may be less sensitive
than DTI parameters in predicting cognitive decline (Tozer
et al., 2018). We thought that considering the WBWM
as the region of interest (ROI) may reduce the predictive
power as it would contain more normal tissues. However,
the heterogeneity and complexity of the penumbra may be
more representative of the lesions. To our knowledge, there
have been no studies comparing the predictive power of the
WBWM and penumbra.

This study was aimed at investigating whether the
heterogeneity of the penumbra was more obvious than that
of WBWM in identifying high-risk patients. Furthermore, we
want to explore whether a correlation exists between radiomic
findings and the speed of progression.

Abbreviations: WMH, white matter hyperintensity; WBWM, whole-brain white
matter; WMHp, white matter hyperintensity penumbra; ANOVA, analysis
of variance; AUC, area under the curve; DTI, diffusion tensor imaging;
FLAIR, fluid-attenuated inversion recovery; GLCM, gray-level co-occurrence
matrix; GLSZM, Gray Level Size Zone Matrix; RLM, run-length matrix;
ROC, receiver operating characteristic; ROI, regions of interest; FOV, field
of view.

MATERIALS AND METHODS

Subjects
This research was approved by the ethics committee, and the need
of obtaining informed consent of patients was waived owing to
the retrospective design of the study.

Magnetic resonance imaging data of 152 patients from
Medical Center A (ZPP hospital) and 80 patients from Medical
Center B (LSP hospital) were collected in this study. The labeled
names of all patients of the Medical Center A dataset were listed
in alphabetical order and divided into two sets: the division
formed a training set (n = 105) and a testing set (n = 47) in the
ratio of 7:3. The database of Medical Center B patients was used
as an external validation dataset. Prins et al. (2004) proposed a
visual rating scale in 2004; based on this scale, all patients were
divided into WMH progression group (n = 57 in A and n = 31
in B) and non-progression group (n = 95 in A and n = 49 in B).
Periventricular WMH (PWMH) and deep WMH (DWMH) were
compared independently. PWMH was defined as WMH within
10 mm from the ventricle surface. WMH away from the ventricle
surface 10 mm is defined as DWMH. Scores of −3 to +3 were
given according to the progression or decrease in PWMH in the
former horn, body, and posterior horn, as shown in Figure 1.
Scores of −4 to +4 were given according to the progression or
decrease in DWMH in different brain regions. WMH progression
was defined when the total score was ≥1. WMHs were graded,
and their volume was quantified using FLAIR images. Clinical
information on various aspects, such as vascular risk factors,
clinical course, age, and sex, was obtained from the medical
records of the picture archiving and communications system.

We included patients who (1) had a clinical diagnosis of
minor strokes or transient ischemic attacks, (2) underwent more
than two MRI examinations on the same machine within an
interval of 2–3 years, (3) were older than 60 years at the
first examination, and (4) had visible WMH at baseline. We
excluded patients who (1) had acute vascular lesions, such as
ischemic stroke (except for lacunar infarction) or intracranial
hemorrhage; (2) had non-vascular white matter lesions, such
as immunologic demyelination, metabolic encephalopathy,
poisoning, and infection; (3) had other intracranial lesions,
including Alzheimer’s disease, Parkinson’s disease, craniocerebral
trauma, or tumor; (4) had incomplete clinical data; (5)
had incomplete imaging data; and (6) had imaging data
with motion or machine artifacts. Figures 2, 3 show the
flowchart summarizing participant recruitment and building
radiomic models.

Magnetic Resonance Imaging
Acquisition
Brain MRI scans in medical centers A and B were performed
using a 3.0 T MRI scanner with an eight-channel head coil
(Discovery MR 750, GE Healthcare, Chicago, IL, United States).
The routine sequences were as follows: axial T1WI, T2WI,
FLAIR, and DWI. We used axial FLAIR to observe and
segment the identified WMH based on the following
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FIGURE 1 | Take the periventricular score as an example. These images were obtained from a 73-year-old woman with a history of hypertension and diabetes.
Panels (A,B) are baseline images, and (C,D) are follow-up images. These images show enlargement of white matter hyperintensity (WMH) in frontal caps, lateral
bands, and occipital caps. So, the periventricular score for this patient is +3.

FIGURE 2 | Flowchart of this study.

parameters: TR = 9,000 ms, TE = 120 ms, field of view
(FOV) = 220 mm × 220 mm, matrix = 256 × 256, and section
thickness = 5 mm, and inter-slice gap = 1.5 mm. We used T1WI
for segmenting the white matter with TR = 1,750 ms, TE = 24 ms,
FOV = 220 mm × 220 mm, section thickness = 5 mm, and

inter-slice gap = 1.5 mm. T2WI: TR = 9,823 ms, TE = 101 ms,
FOV = 220 mm × 220 mm, section thickness = 5 mm, and
inter-slice gap = 1.5 mm. DWI: TR = 3,071 ms, TE = minimum,
b = 0, 1,000 s/mm2, FOV = 220 mm × 220 mm, inter-slice
gap = 1.5 mm, and section thickness = 5 mm.
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Image Preprocessing
All MRI scan sequences were converted to NIfTI files (.nii.gz)
and preprocessed for normalization. Different imaging sequences
were co-registered to the same anatomical template; then, they
were interpolated to the same resolution (1 mm× 1 mm× 1 mm)
and skull-stripped (Rohlfing et al., 2010; Bakas et al., 2017).
The noise in the images was reduced using Gaussian filtering;
then, for reducing external interference factors, magnetic field
migration correction was performed. Then, by downsampling
each image into 32 bins, the image grayscale intensity
level was discretized and normalized for noise reduction.

Given these fixed bins values and numbers, the grayscale
range of the image is divided into equally spaced intervals.
Thus, the grayscale values reflected the size and intensity
resolution of the discretized bins (i.e., there are four sized bins
per grayscale).

Segmentation of Region of Interests
Region of Interest Whole-Brain White Matter
After spatially normalizing the MRI images to a universal
coordinate system, the gray matter, white matter, and
cerebrospinal fluid (GM/WM/CSF) of the whole brain were

FIGURE 3 | The overall outline of the radiomic procedure used in the current work, including image selection, region of interest (ROI) segmentation, model fitting, and
clinical application.

TABLE 1 | The demographic characteristics and imaging features of the participants in medical centers A and B.

Progression of WMH in A center n = 152 Progression of WMH in B center n = 80 A vs. B

No (n = 95) Yes (n = 57) P No (n = 49) Yes (n = 31) P P

Age (years) 68 (64–75) 74 (68–80) 0.004* 71.65 ± 8.92 73.52 ± 7.00 0.327 0.367*

Sex (male) 49 (51.58%) 26 (45.61%) 0.476 25 (51.02%) 15 (48.39%) 0.818 0.819

Hypertension 48 (50.53%) 37 (64.91%) 0.084 24 (48.98%) 13 (41.94%) 0.538 0.569

Diabetes 39 (41.05%) 20 (35.09%) 0.465 17 (34.69%) 13 (41.94%) 0.515 0.552

Hyperlipidemia 37 (38.95%) 25 (43.86%) 0.551 24 (48.98%) 15 (48.39%) 0.959 0.387

CHD 33 (34.74%) 23 (40.35%) 0.487 19 (38.78%) 9 (29.03%) 0.373 0.674

Smoking 38 (40.00%) 19 (33.33%) 0.411 22 (44.90%) 12 (38.71%) 0.585 0.360

Drinking 51 (53.68%) 28 (49.12%) 0.586 30 (61.22%) 17 (54.84%) 0.572 0.274

The Fazekas score of DWMH 0.414 0.736 0.771

1 17 (17.89%) 19 (33.33%) 15 (30.61%) 6 (19.35%)

2 59 (62.11%) 23 (40.35%) 22 (44.90%) 23 (74.19%)

3 19 (20.00%) 15 (26.32%) 12 (24.49%) 2 (6.45%)

The Fazekas score of PWMH 0.629 0.952 0.779

1 18 (18.95%) 18 (31.58%) 13 (26.53%) 6 (19.35%)

2 55 (57.89%) 22 (38.60%) 24 (48.98%) 20 (64.52%)

3 22 (23.16%) 17 (29.82%) 12 (24.49%) 5 (16.13%)

Volume of WMH at baseline (cm3) 16.40 ± 13.68 20.79 ± 17.87 0.114 16.59 ± 11.85 21.19 ± 11.54 0.091 0.389

Volume of WMH progress (cm3) 1.52 ± 4.70 3.51 ± 5.80 0.023 1.18 ± 2.68 2.90 ± 3.70 0.018 0.107

Interval time (d) 862.57 ± 106.80 881.98 ± 100.48 0.269 863.37 ± 89.99 860.48 ± 109.09 0.898 0.766

Speed of progress (mm3/d) 1.74 ± 5.43 4.00 ± 6.68 0.024 1.39 ± 3.23 3.56 ± 4.73 0.017 0.118

CHD, coronary heart disease; DWMH, deep white matter hyperintensity; PWMH, periventricular white matter hyperintensity. *Mann–Whitney U-test, Median, 25–75%.
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automatically segmented in T1WI using the Statistical Parametric
Maps 12 (SPM12) toolbox.1 The automatically segmented WM
was treated as the ROI WBWM.

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12

Region of Interest White Matter Hyperintensity
Penumbra
The WMH was segmented automatically using FLAIR and T1WI.
Maillard et al. (2014) defined the WMH penumbra as the
5 mm area surrounding the WMH. We used the AGK software
(Artificial-Intelligent Radio-Genomics Kits; GE Healthcare,

FIGURE 4 | Comparison of diagnostic performance of five machine learning approaches and selection of the best machine learning approach to build models.
(A) The region of interest (ROC) curves of the five machine learning methods in the training group of the ROI whole-brain white matter (WBWM). (B) A heatmap of
P-values comparing diagnostic performance for five machine learning approaches in the ROI WBWM. (C) The ROC curves of the five machine learning methods in
the training group of the ROI WMH penumbra (WMHp). (D) A heatmap of P-values comparing diagnostic performance for five machine learning approaches in ROI
WMHp.

TABLE 2 | Diagnostic accuracy of the rad-score in the training group, testing group, and external validation group.

WBWM WMHp

Training group Testing group External validation Training group Testing group External validation

Rad-score of progression group −0.91 ± 0.82 −0.94 ± 0.75 −0.80 ± 0.83 −1.08 ± 1.22 −1.13 ± 1.34 −1.41 ± 1.60

Rad-score of no-progression group −0.07 ± 1.03 −1.25 ± 1.12 −0.27 ± 0.83 −0.01 ± 0.88 0.07 ± 1.33 0.04 ± 1.15

P <0.001 0.046 0.006 <0.001 0.004 <0.001

AUC 0.725 0.693 0.691 0.791 0.768 0.767

Sensitivity 48.7% 72.2% 71.0% 64.1% 72.2% 80.6%

Specificity 89.5% 63.1% 67.3% 84.8% 86.2% 63.3%
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FIGURE 5 | The diagnostic accuracy of radiomic models in different groups of two regions of interests (ROIs). (A–C) The ROC curves of the radiomic models of the
ROI whole-brain white matter (WBWM) in the training group, testing group, and external validation group, respectively. (D–F) The ROC curves of the radiomic models
of the ROI WMH penumbra (WMHp) in the training group, testing group, and external validation group, respectively.

FIGURE 6 | The calibration curve was used to describe the goodness-of-fit of radiomic models in different groups of two regions of interests (ROIs). (A–C) The
radiomic models of the ROI whole-brain white matter (WBWM) in the training group, testing group, and external validation group, respectively. (D–F) The radiomic
models of the ROI WMH penumbra (WMHp) in the training group, testing group, and external validation group, respectively. The Hosmer–Lemeshow test revealed
good goodness-of-fit of all models (all P > 0.05).
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Chicago, IL, United States) to automatically expand the WMH
region by 5 mm. Then, the sulcus and gyrus were manually
removed by two experienced neuroradiologists using the ITK-
SNAP software.2 Supplementary Figure 1 shows a diagram
describing this ROI segmentation approach. All segmentations
were visually checked for segmentation errors and artifacts.

Extraction of Radiomic Features
All MRI images and ROIs were imported into the AGK
software to extract radiomic features. The radiomic features
were calculated, including histogram, texture, form factor, gray-
level co-occurrence matrix (GLCM), run-length matrix (RLM),
and gray-level size zone matrix (GLSZM). The extracted texture
features were standardized, which removed the unit limits of
the data of each feature and converted it into a dimensionless
pure value. This allowed the indexes of different units or orders
to be compared and weighted. For details, see Supplementary
Materials.

Construction and Assessment of the
Radiomic Models
Based on the training set, we performed analysis of variance
(ANOVA) of the extracted features. For feature dimensionality
reduction, the analysis of ANOVA + Mann–Whitney U-test,
correlation analysis, and gradient boosting decision tree were

2http://www.itksnap.org/pmwiki/pmwiki.php

sequentially performed. See Supplementary Materials for details.
The five machine learning methods, namely Bayes, the random
forest, the logistic regression, the support vector machine
classifiers (SVM), and the k-nearest neighbor (KNN), were
used to build models, and the best modeling method was
selected through comparison. The test set, the training set,
and the external verification set were used to verify the
predictive efficiency, including calibration efficiency, net value,
and diagnostic accuracy, which were estimated using the
calibration curve, the decision curve analysis (DCA), and receiver
operating characteristic (ROC) curve.

Interobserver and Intra-Observer
Reproducibility
For eliminating the sulcus and gyrus, the ROI WMHp was first
manually adjusted by the physician XDH. One month later, the
physicians XDH and YS manually eliminated these again on
30 randomly selected subjects. The intra-observer correlation
coefficient was calculated based on the first measurement of the
physicians XDH and YS. The interobserver correlation coefficient
was calculated based on the two measurements acquired by
the physician XDH.

Statistical Analysis
We performed our statistical analyses using SPSS 20.0 (IBM,
Chicago, IL, United States). Comparisons of clinical and imaging

FIGURE 7 | The decision curve analysis (DCA) curve was used to describe the net value of radiomic models in different groups of two regions of interests (ROIs). The
Y-axis represents the net benefit. The pink line represents the radiomic model. The solid black line represents the hypothesis that all patients have white matter
hyperintensity (WMH) progression. The black dotted line represents the hypothesis that no patients have WMH progression. The X-axis represents the threshold
probability. The threshold probability is where the expected benefit of a treatment is equal to the expected benefit of avoiding the treatment. (A–C) The DCA of the
radiomic models of the ROI whole-brain white matter (WBWM) in the training group, testing group, and external validation group, respectively. (D–F) The DCA of the
radiomic models of the ROI WMH penumbra (WMHp) in the training group, testing group, and external validation group, respectively.
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characteristics were performed using a T-test, Mann–Whitney
U-test, or chi-square test. Moreover, we performed univariate
logistic regression analyses on each potential predictor variable
associated with WMH progression, including age, sex, imaging
factors, and vascular risk factors. Thereafter, to construct
combined prediction models, factors with marginal significance
(P < 0.1) in univariate logistic regression were included in
multivariable logistic regression. The pairwise correlation among
clinical features, the radiomic score (rad-score), and the speed
of WMH progression were calculated using the Spearman’s
analysis. The values of P ≤ 0.05 were considered to indicate
statistical significance.

RESULTS

Demographic and Clinical
Characteristics
Table 1 shows the imaging features and demographic
characteristics of the participants. In Medical Center A, the
median age of patients with WMH progression was significantly
higher than for those without WMH progression (74 years vs.
68 years, P = 0.004). In Medical Center B, the average age of
patients was higher in the WMH progression group than in
the non-progression group; however, the difference was not
statistically significant (73.52 years vs. 71.65 years, P = 0.327).
In both medical centers, the difference in the volume and speed
of WMH progression was statistically significant between the
two groups (all P < 0.05). We found no significant difference
in imaging features and demographic characteristics between
medical centers A and B (all P > 0.05).

Building Radiomic Models to Predict
White Matter Hyperintensity Progression
For constructing radiomic models after feature dimensionality
reduction, the optimal features were selected, including 12
features in the ROI WMHp and 7 features in the ROI WBWM.
The area under the curve (AUC) value was higher for the
logistic regression model than for other machine learning
methods. In line with this finding, the models were built
using the logistic regression classifier (Figure 4). The rad-
score was calculated using the formula for the features. The
rad-score was found to be significantly different between the
progression and non-progression groups in two ROIs (all
P < 0.05; Table 2). Additional information about the formulas is
shown in the Supplementary Material. The predictive efficacies
(represented as the AUC) of the ROI WBWM were 0.725,
0.693, and 0.691 for the training group, testing group, and
external validation group, respectively. Similarly, the predictive
efficacies of the ROI WMHp were 0.791, 0.768, and 0.767
for the training group, testing group, and external validation
group, respectively. Figures 5–7 show the diagnostic accuracy,
the calibration efficiency, and the net value of models, which
were evaluated using the ROC, the Hosmer–Lemeshow test, and
DCA, respectively.

Building Combined Models to Predict
White Matter Hyperintensity Progression
After stepwise logistic regression analysis, age, hypertension,
and the rad-score of the ROI WBWM were the independent
factors of WMH progression (Table 3). We used these factors
to construct the combined model in WBWM. The AUCs were
0.779, 0.716, and 0.673 in the training group, testing group, and

TABLE 3 | Stepwise logistic regression analysis was performed to construct combined clinical and imaging models for predicting WMH progression.

Univariate logistic regression Multivariate logistic regression

WMHp-based combined model WBWM-based combined model

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Age (years) 1.063 (1.016, 1.112) 0.008 1.077 (1.023, 1.133) 0.004 1.069 (1.015, 1.125) 0.011

Sex (male) 0.787 (0.408, 1.521) 0.477 / / / /

Hypertension 1.811 (0.921, 3.563) 0.085 2.248 (1.029, 4.910) 0.042 1.647 (0.758, 3.581) 0.208

Diabetes 0.776 (0.393, 1.533) 0.465 / / / /

Hyperlipidemia 1.225 (0.629, 2.384) 0.551 / / / /

CHD 1.271 (0.646, 2.501) 0.488 / / / /

Smoking 0.750 (0.377, 1.491) 0.412 / / / /

Drinking 0.833 (0.432, 1.608) 0.586 / / / /

Interval time 1.001 (0.998, 1.004) 0.655 / / / /

Volume of WMH at baseline 1.018 (0.997, 1.04) 0.094 1.020 (0.999, 1.045) 0.103 1.013 (0.989, 1.038) 0.301

DWMH 0.82 (0.504, 1.333) 0.423 / / / /

PWMH 0.886 (0.555, 1.415) 0.612 / / / /

Rads-WBWM 2.251 (1.493, 3.395) <0.001 2.779 (1.765, 4.376) <0.001 / /

Rads-WMHp 1.987 (1.51, 2.614) <0.001 / / 2.473 (1.639, 3.732) <0.001

Univariate logistic regression analysis was performed on each potential predictor of WMH progression, including age, sex, vascular risk factors, and imaging
factors. Factors with marginal significance (P < 0.1) in the univariate logistic regression were included in the multivariate logistic regression to construct combined
prediction models. Rads, rad-score.
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external validation group, respectively (Table 4). In addition, the
combined model in WBWM was constructed using the age and
the rad-score of the ROI WMHp (Table 3). The AUCs were 0.793,
0.774, and 0.777 in the training group, testing group, and external
validation group, respectively (Table 4).

The Pairwise Correlation Among Clinical
Risk Factors, Rad-Score, and Speed of
Progression
The speed of WMH progression was positively correlated with
the rad-score from the ROI WMHp and age (r = 0.49 and r = 0.15,
respectively). In addition, in our sample, we found a weak
correlation between hypertension and coronary heart disease,
hypertension and diabetes, and hyperlipidemia and smoking
(r = 0.14, r = 0.16, and r = 0.18, respectively). Women were more
likely to develop diabetes than men (r = −0.16), as shown in
Figure 8.

Interobserver and Intra-Observer
Reproducibility
The intra- and interobserver correlation coefficients of
segmenting the ROI WMHp were 0.846 and 0.885, respectively.

DISCUSSION

Our results revealed that the predictive efficiency was higher
for the ROI WMHp-based radiomic model than the ROI
WBWM-based radiomic model. Compared with the WBWM-
based combined model, the WMHp-based combined model has
higher diagnostic efficiency and better generalization ability.
Another noteworthy result was that the speed of progression
was related to the rad-score of the ROI WMHp but not to that
of the ROI WBWM.

The efficiency of the WMHp-based radiomic model was
higher than that of the WBWM-based radiomic model in

TABLE 4 | The predictive efficacy of two joint models in training group, testing group, and validation group.

AUC Sensitivity Specificity Positive prediction Negative prediction

WBWM-based combined model

Training group 0.779 74.4% 77.3% 65.9% 83.6%

Testing group 0.716 72.2% 75.9% 65.0% 81.5%

Validation group 0.673 83.9% 55.1% 54.2% 84.4%

WMHp-based combined model

Training group 0.793 56.4% 90.9% 78.6% 77.9%

Testing group 0.774 72.2% 75.9% 65.0% 81.5%

Validation group 0.777 90.3% 59.2% 58.3% 90.6%

FIGURE 8 | (A) The pairwise correlation heatmap among clinical risk factors, the rad-score, and the speed of white matter hyperintensity (WMH) progression. The
color bar on the right represents the size of the correlation coefficient. The larger the circle in the figure, the higher the correlation. Asterisk indicates P < 0.05. CHD,
coronary heart disease. (B) Scatter diagrams show the correlation between the speed of progress and the rad-score of WMH penumbra (WMHp) and age.
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predicting the WMH progression. This finding may be attributed
to the fact that the evolutionary mechanism of WMH
predominantly affects the foci and moves toward the periphery
gradually (Maniega et al., 2015; Reginold et al., 2018; van Leijsen
et al., 2018; Vangberg et al., 2019). The microstructure of the
WMHp region has been suggested to be more heterogeneous and
complex and more predictive of WMH progression. However,
the predictive power of WBWM was reduced by the inclusion of
more extensive normal tissues (Shu Z. et al., 2020). This result
also suggests that in particular for clinical studies, the selection of
ROIs by medical principles may be more important than the size
of ROIs for diagnostic accuracy.

Moreover, we also found that the ROI WMHp-based
combined model has higher better generalization ability in
predicting the WMH progression. This model has been validated
in an external cohort with good diagnostic efficiency, and age
was the independent clinical factor that survived in the predictive
model. The WMH is the main radiological feature of small
vessel disease, with age as a confirmed risk factor (Grueter and
Schulz, 2012; Sabisz et al., 2019). Besides, our findings suggested
that hypertension could also be an established risk factor for
the WMH progression in the ROI WBWM-based combined
model. Hypertension would damage small blood vessel walls and
increase blood–brain barrier permeability, thus aggravating white
matter progression (Chen et al., 2019; Sabisz et al., 2019).

Previous studies using radiomics on the WMH progression
ignored the effect of the interval time between examinations (Shu
Z. et al., 2020; Shu Z. Y. et al., 2020). To avoid this lapse, we
further studied the correlation between the speed of progression
and the rad-score. Consequently, we found that the speed of the
WMH progression to be related to the rad-score of only ROI
WMHp and not of the ROI WBWM. The WMH progression
follows the pattern of extending from the lesion to the adjacent
regions, the heterogeneity, and the complexity of the penumbra
was more representative of and correlated more strongly to the
progression of the lesion (Maillard et al., 2014). However, the
heterogeneity of WBWM was diluted by relatively more normal
tissues, and it was not correlated with the speed of progression.
We also found a mild correlation between age and the speed of
progress, which corroborated previous reports (Schmidt et al.,
2003; Grueter and Schulz, 2012).

This study has some limitations. First, the sample size was not
large enough, so more cases need to be collected to verify the
model. Second, semiautomatic segmentation of ROI WMHp was
time-consuming than automatic delineation, which would reduce
its clinical usefulness in future.

CONCLUSION

Radiomic findings revealed that the damage of WMH extended
further from the high-intensity area observed on conventional
MRI sequences. The heterogeneity of the penumbra could
identify the individuals at high risk of WMH progression
and the rad-score of it was correlated with the speed of
progression.
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