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Resting-state functional MRI (rs-fMRI) has been widely used for the early diagnosis

of autism spectrum disorder (ASD). With rs-fMRI, the functional connectivity networks

(FCNs) are usually constructed for representing each subject, with each element

representing the pairwise relationship between brain region-of-interests (ROIs). Previous

studies often first extract handcrafted network features (such as node degree and

clustering coefficient) from FCNs and then construct a prediction model for ASD

diagnosis, which largely requires expert knowledge. Graph convolutional networks

(GCNs) have recently been employed to jointly perform FCNs feature extraction and ASD

identification in a data-driven manner. However, existing studies tend to focus on the

single-scale topology of FCNs by using one single atlas for ROI partition, thus ignoring

potential complementary topology information of FCNs at different spatial scales. In

this paper, we develop a multi-scale graph representation learning (MGRL) framework

for rs-fMRI based ASD diagnosis. The MGRL consists of three major components: (1)

multi-scale FCNs construction using multiple brain atlases for ROI partition, (2) FCNs

representation learning via multi-scale GCNs, and (3) multi-scale feature fusion and

classification for ASD diagnosis. The proposed MGRL is evaluated on 184 subjects from

the public Autism Brain Imaging Data Exchange (ABIDE) database with rs-fMRI scans.

Experimental results suggest the efficacy of our MGRL in FCN feature extraction and

ASD identification, compared with several state-of-the-art methods.

Keywords: functional connectivity, graph convolutional networks, autism, resting-state functional MRI,

classification

1. INTRODUCTION

Autism spectrum disorder (ASD) is a developmental disorder that can cause major social,
communication, and behavioral challenges (Simonoff et al., 2008). In 2014, the overall prevalence
of autism was estimated at 16.8 per 1, 000 8-year-old children, and the prevalence of ASD reached
nearly 3% in some communities (Baio et al., 2018). In recent years, people have been worried about
the increased prevalence of ASD in children (Hodges et al., 2020; Ahammed et al., 2021). However,
the current diagnosis of autism is highly dependent on traditional behavioral symptoms, which
are usually subjective and can easily lead to neglect early symptoms and misdiagnosis (American
Psychiatric Association, 2013; Lord et al., 2018). Therefore, seeking an objective biomarker for early
diagnosis and timely intervention in the treatment of autism has attracted increasing attention in
the field of psychiatry and neuroscience.
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Resting-state functional MRI (rs-fMRI) is a technique
to measure a subject’s blood-oxygen-level-dependent (BOLD)
signals without performing any specific task and has been
widely used in neuroimaging analysis (Buckner et al., 2013; Li
et al., 2020). With rs-fMRI, the functional connectivity networks
(FCNs) are usually constructed for representing each subject,
with each element representing the pairwise relationship between
brain region-of-interests (ROIs) (Dvornek et al., 2017; Xing
et al., 2019). Therefore, FCNs tend to capture the dependencies
between BOLD signals of paired region-of-interests (ROIs) of
the brain and have been used to identify potential neuroimaging
biomarkers for the diagnosis of neurological diseases (El Gazzar
et al., 2019; Wang et al., 2019a). It can help us understand brain
organization patterns and diagnose neurological diseases such
as ASD (Bijsterbosch and Beckmann, 2017; Kazi et al., 2019),
Alzheimer’s disease and its prodromal stage (i.e., mild cognitive
impairment) (Amini et al., 2021), Parkinson’s disease (Vivar-
Estudillo et al., 2021). However, previous studies often first
extract handcrafted network features (such as node degree and
clustering coefficient) from FCNs and then conduct prediction
models for ASD diagnosis (Wang et al., 2019b), where these two
steps are treated separately and highly rely on expert knowledge.

With the development of deep learning, especially graph
neural networks (GNNs) have been developed to identify
potential fMRI biomarkers in brain FCNs for disease
diagnosis (Li et al., 2019; Wu et al., 2020). In general, each brain
network can be viewed as a complex graph structure composed
of irregular data (Zhang et al., 2018a), containing not only node
features but also topology information among different nodes.
Graph convolutional networks (GCNs) provide an end-to-end
deep learning framework to automatically learn node features
and topology information between nodes. Current studies have
shown that the application of GCNs in fMRI analysis helps
automatically capture the high-level topological information
of brain networks through operations, such as convolution
and graph pooling, thus significantly improving the diagnosis
performance of brain diseases (Yu et al., 2020). To facilitate
functional connectivity (FC) analysis and computational
modeling of human brain functions, existing studies generally
partition each brain into multiple ROIs (Dvornek et al., 2017;
Xing et al., 2019), followed by GCN models for FCNs feature
learning and disease diagnosis. However, previous studies usually
focus on single-scale topology of FCNs by using one single atlas
for brain ROIs partition (Chen et al., 2017; Wang et al., 2018),
thus ignoring the potential complementary topology information
of FCNs at different spatial scales.

To this end, we develop a multi-scale graph representation
learning (MGRL) framework for rs-fMRI based ASD diagnosis.
As shown in Figure 1, we first construct multi-scale graphs (with
each graph corresponding to a specific FCN) for each subject, by
partitioning the brain into multiple ROIs using two atlases, i.e.,
Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al.,
2002) atlas with 116 ROIs and Craddock200 (CC200) (Craddock
et al., 2012) atlas with 200 ROIs. Then, we propose to learn multi-
scale graph representations via GCNs for each subject, followed
by multi-scale features fusion. The fused features are finally fed
into three fully-connected layers and a classification layer (via
Softmax) for disease diagnosis. The proposed MGRL allows the

automated integration of fine-grained topology information of
FCNs at different spatial scales. Experiments on 184 subjects with
rs-fMRI data from the Autism Brain Imaging Data Exchange
(ABIDE) database suggest that the MGRL helps improve the
performance of ASD diagnosis, compared with several state-of-
the-art methods.

The rest of this paper is organized as follows. In section
Related Work, we review the most relevant studies. In section
Materials and Methods, we describe the data set used in this
study and the proposed method. We then present experimental
settings, competing methods, and results of ASD diagnosis
achieved by different methods in section Experiments. In
section Discussion, we investigate the influence of several
major components of the proposed MGRL method and discuss
the limitations of the current work and several possible
future research directions. Finally, this paper is concluded in
section Conclusion.

2. RELATED WORK

In this section, we first briefly introduce the most relevant
studies on features extraction of FCNs based on rs-fMRI and
then introduce existing GCN based methods for computer-aided
disease diagnosis.

2.1. Feature Extraction of Functional
Connectivity Networks (FCNs)
FunctionalMRI has been widely used to establish brain FCNs (Yu
et al., 2019; Xue et al., 2020) by focusing on measuring the
FC between two network nodes. Identifying distinguishable
and explainable features from FCNs is essential for subsequent
classification/regression tasks and helps us understand the
pathological mechanisms of related brain disorders. Previous
studies usually extract node statistics or edge weights from
functional brain networks to represent each subject and mine the
correlation of temporal and spatial information between brain
regions. For example, Chen et al. used Pearson’s correlation (PC)
coefficient to compute edge weights for FCNs construction (Chen
et al., 2020). Hhimilon et al. extracted both global and node-
level statistics (such as local clustering coefficients) as FCN
attributes (Hamilton, 2020). Jie et al. extracted local clustering
coefficients from hyperconnected FCNs to represent each FCN
for disease diagnosis (Jie et al., 2016). Recently, Zhang et al.
proposed amodularity-based feature selectionmethod to identify
discriminative and interpretable features from functional brain
networks for the diagnosis of Alzheimer’s disease (AD) and
related disorders (Zhang et al., 2021).

Although previous studies have yielded promising results,
topological measures involved in these methods require manual
design (i.e., manual definition of FCNs features), which is
usually subjective and largely relies on expert knowledge. Besides,
Mangor et al. found that handcrafted features (e.g.„ median
centrality) of individuals with focal epilepsy did not differ
significantly between patients and healthy controls and could
not be discriminative for disease classification (Pedersen et al.,
2015). This implies that the handcrafted FCNs features could be
suboptimal for diagnosis, due to the fact that these features are
extracted independently from subsequent classification models.
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FIGURE 1 | Illustration of the proposed multi-scale graph representation learning (MGRL) framework for autism spectrum disorder (ASD) identification, consisting of

three components. (A) Multi-scale graph construction. Let’s say there are N subjects in the classification task. First, think of the brain (region of interests, ROIs) as

nodes on a graph. Based on the Automated Anatomical Labeling (AAL) atlas and Craddock200 (CC200) atlas, 2N functional connectivity networks (FCNs) are

constructed by Pearson’s correlation (PC). PC coefficient matrix can represent the paired similarity relation between brain regions, so as to construct weighted edge

connection of brain graphs and establish a multi-scale graph of each subject. (G116, Y ) and (G200, Y ). Subscripts 116, 200 represent different brain atlases, and

Y ∈ {0, 1} represents the label of the subject (with 0 indicating NC and 1 representing ASD). (B) MRGL. The graph structure and node content information of different

scales from the same subject are used as input of Graph convolutional networks (GCN) to train independent GCN models. Convolution operation and readout

operation are used to automatically learn graph representation vectors of different scales. (C) Multi-scale feature fusion and classification. Read higher-order graph

representation vectors are spliced together to integrate complementary information at the multi-scale graph. The final classification results are obtained through three

fully-connected layers and a softmax layer for classification.

2.2. GCN for fMRI Analysis
With the development of deep learning techniques, GCNs have
been increasingly employed to model topological information
of brain FCNs (Anirudh and Thiagarajan, 2019). Significant
progress has been made in early intervention of neurological
diseases. Song et al. extracted the mean rs-fMRI time series of
a set of 90 ROIs based on the AAL atlas, and then proposed
similarity-aware adaptive calibrated GCN to predict significant
memory concern and MCI (Song et al., 2021). Wang et al.
constructed FCNs based on the Power atlas (Power et al., 2011)
and utilized a GCN model to extract the spatial characteristics
of linogroups from rs-fMRI data for ASD classification (Wang
et al., 2021). Ktena et al. extracted brain time series based on
Harvard Oxford (HO) (Craddock et al., 2012) atlas and proposed
to use Siamese GCN (SGCN) to analyze the brain FCNs of autism
classification (Ktena et al., 2018).

These deep learning methods show excellent performance
in automated FCNs features extraction, and some of them
have realized that fine-grained and coarse-grained topological
properties of FCNs at different spatial scales may affect
the final performance. However, existing GCN-based studies
tend to extract single-scale representations of FCNs by using
one single atlas for brain ROIs partition. This will ignore
the potential complementary topological information conveyed
by multi-scale brain atlases, thereby reducing the learning
performance of the prediction/diagnostic model. Intuitively,
it is interesting to model multi-scale representations of
brain FCNs to improve the performance of ASD diagnosis.
In this work, we will develop an MGRL framework to
capture multi-scale topological features of FCNs for automated
ASD identification.

3. MATERIALS AND METHODS

In this section, we will first introduce the data set and image
preprocessing steps used in this study. Then, we will introduce
the proposed MGRL framework and the implementation details.

3.1. Subjects and Image Processing
The ABIDE (Di Martino et al., 2014) includes baseline resting-
state fMRI data from patients with ASD and normal controls
(NC). In this work, we use rs-fMRI data from the New York
University (NYU) site with the largest sample size collected in
this database. Specifically, the NYU site includes 184 subjects,
79 of whom were from ASD and 105 NC cases. We report
the phenotype information of the studied subjects in Table 1.
All fMRI data involved are provided by the Preprocessed
Connectome Project initiative. The 3.0 Tesla Allegra scanner is
used to collect data, and the imaging parameters are set as follows:
the number of slices is 33, and TR/TE is 2, 000/15 ms with 180
volumes. Then, the remaining volumes are processed by a well-
accepted pipeline with the Data Processing Assistant for Resting-
State fMRI toolbox (DPARSF) (Yan et al., 2016). Specifically, the
preprocessed pipeline primarily includes the following: (1) head
motion correction, (2) nuisance signals regression (ventricle,
cerebrospinal fluid (CSF), white matter signals and the high-
order effect of head motion described by Friston 24-parameters
model), (3) spatial standardization of the Montreal Neurological
Institute (MNI) template (Tzourio-Mazoyer et al., 2002), 3× 3×
3mm3 resolution, and (4) time-high pass filtering (0.01–0.10Hz)
based on a linear downtrend and fast Fourier transform. Then,
each brain is partitioned into 116 and 200 ROIs based on multi-
scale atlases, i.e., AAL atlas and CC200 atlas, respectively. Finally,
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TABLE 1 | Demographic information of the subjects in New York University (NYU)

site and the University of Michigan (UM) site of the Autism Brain Imaging Data

Exchange (ABIDE) dataset.

Dataset Category Gender (M/F) Age FIQ

NYU ASD (N = 79) 68/11 14.51± 6.23 107.92± 3.15

NC (N = 105) 79/26 15.80± 3.23 113.15± 2.45

UM ASD (N = 68) 58/10 13.13± 2.41 105.46± 17.28

NC (N = 77) 59/18 14.79± 3.57 108.12± 9.80

Values are reported asmean±SD.M/F,Male/Female; FIQ, Full-scale intelligence quotient;

ASD, Autism spectrum disorder; NC, Normal control; ABIDE, Autism brain imaging data

exchange.

the extracted mean time series from all these ROIs are put into
the data matrix S ∈ R(175×n) (n = 116 or n = 200).

3.2. Proposed Method
We attempt to solve two challenging problems in fMRI-
based FCNs analysis: (1) how to model multi-scale topological
information of brain FCNs, and (2) how to integrate these multi-
scale FCNs features for ASD diagnosis. To this end, we develop
a multi-scale graph representation learning (MGRL) framework
to first extract brain FCNs features at multiple scales and
then fuse them for automated brain disease identification. The
MGRL framework consists of three main components: (1) multi-
scale graph construction; (2) multi-scale graph representation
learning; and (3) multi-scale feature fusion and classification.

3.2.1. Multi-Scale Graph Construction
Let G = {V ,E,A} denotes an undirected graph with n
nodes/ROIs, where V (‖V‖ = n) is a set of nodes and E ∈ R

n×n

is a set of edges, and A ∈ R
n×n represents an adjacency matrix

corresponding to a specific FCN. The adjacency matrix defines
the interconnections between nodes/ROIs.

Craddock et al. found that when the brain is divided into about
200 brain regions, the ROI obtained is appropriately large, which
can adapt to individual anatomical variation (Craddock et al.,
2012). Wang et al. also proposed that aMCI and NC can be better
distinguished when the number of segmented brain regions is
appropriate (Wang et al., 2013). In this study, we use AAL atlas
and CC200 atlas, which are widely used to locate brain active
regions in functional neuroimaging studies, to obtain ROIs time
series at different spatial scales. Thus, for each subject, we have
two FC matrices established on two different scales. For each FC
matrix, each connectivity represents the PC of the mean time
series signals between a pair of ROIs. The edge weight eij ∈

[−1, 1] between the i-th and j-th ROIs is defined as follows:

eij =
(si − s̄i)

T(sj − s̄j)√
(si − s̄i)

T(si − s̄i)
√
(sj − s̄j)

T(sj − s̄j)

(1)

Where, si ∈ R
t represents the time series of BOLD signals

extracted from the i-th ROI. t represents the number of time
points in the average time series of each ROI, s̄i is the mean vector
corresponding to si.

We describe the features of each node/region in the brain
network through the correlation coefficient (i.e., the edge weight

eij). All subjects are divided into 116 ROIs by AAL atlas and
200 ROIs by CC200 atlas. Therefore, the similarity between
the i-th brain region and other brain regions constitutes the n-
dimensional feature vector (ei1, ei2, · · · , ein), n = 116 or n = 200.
Then, for the same subject, we will get two feature matrices
X(116) ∈ R116×116, X(200) ∈ R200×200. At the same time, we define

X ∈

{
X(116),X(200)

}
.

We use the connection strength between the current ROI and
other ROIs to measure the edge of the FCNs. The assumption
that the edge weight is non-negative conforms to the structural
equilibrium theory (Heider, 1946; Cartwright and Harary, 1956).
That is, if and only if the edge weights of all edges are
positive, the estimated network structure is balanced. In addition,
this assumption can simplify subsequent FCNs analysis and
convolution operations, and many FC indicators, such as mutual
information (Salvador et al., 2007), are also non-negative. Here,
we assume that the strength of marginal connections between
brain regions, whether the positive correlation of promotion or
negative correlation of inhibition, is measured by the value of
marginal weight (eij). Then, the connection strength between
the i-th brain region and other brain regions will form the n-
dimensional vector (|ei1| , |ei2| , · · · , |ein|), n = 116 or n = 200.
Therefore, for the same subject, the adjacency matrices A(116) ∈

R116×116 and A(200) ∈ R200×200 for two spatial scales will be

defined. At the same time, we define A ∈

{
A(116),A(200)

}
.

Finally, two graphs [i.e., G116 = G(X(116),A(116)) and G200 =

G(X(200),A(200))] are constructed for each subject based on two
spatial scales.

3.2.2. Multi-Scale Graph Representation Learning
Brain FCNs can be regarded as an irregular graph, internal
structure and hence, we resort to spectral GCN (Zhang
et al., 2018b) to analyze brain FCNs and learn new graph
representations for ASD diagnosis in this work. Spectral GCN
uses Fourier transform and inverse Fourier transform to realize
the aggregation of information between nodes in the spectral
space (Bruna et al., 2013; Kawahara et al., 2017).

The Fourier transform on the graph depends on the
eigenvector of the Laplacian matrix. The Laplacian matrix (i.e.,
L) can be defined as (Bruna et al., 2013):

L = D− A (2)

where D is a diagonal matrix and its diagonal element Dii

represents the degree of the i-th node and Dii = 6jAij.
A more common form of Laplacian matrix is the symmetric

normalized Laplacian matrix:

L = D− 1
2 LD− 1

2 = In − D− 1
2AD− 1

2 (3)

where In is an identity matrix.
The L can be eigen-decomposed to U3UT . U = {ui}

n
i=1

represents orthogonal eigenvectors, 3 = diag({λi}
n
i=1) is a

diagonal matrix, and λi represents the eigenvalues of ui. Where,
U can transform variables into spectral space for convolution
operation on the graph.

The Fourier transform of signal convolution is equivalent to
the product of signal Fourier transform (Shuman et al., 2013).
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Let x, y represent the signal (variable) of the node domain. The
graph convolution can be defined as:

x ∗ y = U(UTy)(UTx) (4)

where ∗ represents the convolution operation.
Based on the above graph convolution definition (Equation 4),

ChebyNet (Defferrard et al., 2016) is proposed for reducing
computational complexity. Then, Kipf et al. further deduced the
1-order approximation of the l+1 layer network of ChebyNet for
artificial convenience (Kipf and Welling, 2016):

H(l+1) = σ (D̃− 1
2 ÃD̃− 1

2H(l)W(l)) (5)

where H represents the features of nodes on the graph, W is the
network parameter to be learned, Ã = A + In, D̃ii = 6jÃij, and
σ (·) is a non-linear activation function.

In this paper, we construct a GCN model with two-layer
convolution for each scale graph, and the activation function
of each layer convolution is ReLU. Then, the overall forward
propagation formula is:

f (X,A) = ReLU[ÃReLU(ÃXW(0))W(1)] (6)

where, f (X,A) ∈ Rn×d, X ∈

{
X(116),X(200)

}
, A ∈

{
A(116),A(200)

}
, d represents the output feature dimension.W(0)

is the weight parameter matrix of the 1-th convolution layer, and
W(1) is the weight parametermatrix of the 2-th convolution layer.

We use graph structure and node content information of
different scales from the same subject as inputs to independently
train GCNmodels of different scales so as to predict the category
labels of the whole graph. The convolution layer is responsible for
strict higher-order graph representation. After the convolution
layer, the graph classification task usually needs to use the readout
layer to read the graph level representation of the whole graph.
Inspired by Lee et al., we use both maximum pool and average
pool operations to aggregate node features and readout fixed-
size graph representation vectors of two scales from the same
subject (Lee et al., 2019). The readout layer is defined as:

F =
1

n

n∑

i=1

fi(X,A)‖maxn
i=1

fi(X,A) (7)

where fi(X,A) is the feature vector of the i-th ROI obtained by the
convolution operation and ‖ denotes concatenation operation as
illustrated in Figure 2.

As illustrated in Figure 1, finally, we extract the 64-
dimensional graph representation vectors of different scale

graphs: F1 = [F11
(64), F21

(64), · · · , FN1
(64)]

T
and F2 =

[F12
(64), F22

(64), · · · , FN2
(64)]

T
, where, Fm1, Fm2 represent the

graph representation vector of different scales of them-th subject
andm = 1, 2, 3, · · · ,N.

3.2.3. Multi-Scale Feature Fusion and Classification
Here, we treat equally (through concatenation) the graph-
level representation vector obtained through the above readout
operation for subsequent multi-scale feature fusion. Then, the
128-dimensional new graph representation vector for each

subject (F1 ‖F2 = [F1
(128), F2

(128), · · · , FN
(128)]

T
) is connected

to three fully-connected layers and the feature information on
the graph is further learned. The final output is sent to a Softmax
layer for classification.

In the experiment, we will further study the influence of the
combination of these two scale features in different proportions.
Therefore, our model can automatically learn the topology
information of the brain network through the convolution
operation and make full use of the complementary information
from the multi-scale FCNs of the same subject for classification.

3.3. Implementation Details
The proposed MGRL is implemented on Pytorch, with a GPU
(NVIDIA GeForce RTX with 8 GB memory). The MGRL
framework includes two GCN modules layers, three fully-
connected layers, and a Softmax layer for prediction. Each GCN
module is composed of two convolutional layers and a readout
layer. Moreover, these two GCNs are independent of each other.
Both the convolutional layers and the fully-connected layers are
activated non-linearly by ReLU. The number of neurons in the
two graph convolution layers is set as 32 and 32, respectively.
The number of neurons in the three fully-connected layers are set
as 128, 32, 16, respectively. The dropout for the fully-connected
layers is 0.5. The Adaptive Moment Estimation (Adam) (Kingma
and Ba, 2014) optimizer is used to optimize the model. The
learning rate is 0.01, the regularization parameter is 0.00001, and
the training epoch is 50.

4. EXPERIMENTS

4.1. Experimental Settings
Considering the small amount of subjects, we randomly select
80% of all the samples as training data, 10% of all samples as
validation data, and the remaining 10% as test data.We repeat the
random partition process 100 times and record the mean and SD
results of each method. For a fair comparison, we use the same
data partitioning and model training strategies to evaluate our
MGRL and the competing methods.

In order to evaluate the effectiveness of different methods, five
metrics including accuracy, recall, precision, F1-score, and area
under ROC curve (AUC) are used to evaluate the performance
of the model. TP, TN, FP, and FN are denoted as True Positive,
True Negative, False Positive, and False Negative, respectively.
The first four metrics are defined as follows: Accuracy =

TP+TN
TP+FN+FP+TN , Precision = TP

TP+FP , Recall =
TP

TP+FN , and F1-Score

= 2×Precision×Recall
Precision+Recall

. For these metrics, a higher value denotes
that the corresponding model can achieve better classification
performance. Besides, the Receiver Operating Characteristics
(ROC) curve is composed of true positive rate (TPR, y-axis) and
false positive rate (FPR, x-axis). The area under the ROC curve
(AUC) is equal to the probability that the classifier will rank
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FIGURE 2 | Illustration of the readout operation. Each graph convolution layer updates the features of the central node (green) by aggregating the information of

connected nodes and non-linear activation of ReLU to obtain the feature matrix [f (X,A)] of each subject. Then, the graph-level vector representation (F ) of each subject

is summarized by maximum pool and average pool readout operations.

randomly selected positive cases higher than randomly selected
negative cases, and the AUC value close to 1 is better.

4.2. Methods for Comparison
We compare the proposed MGRL approaches with three
conventional networks representation methods and two GCNs
based methods: (1) multi-scale feature fusion based on degree
centrality (DCF), (2) multi-scale feature fusion based on local
clustering coefficients (LCCF), (3) multi-scale feature fusion
based on closeness centrality (CCF), (4) GCN with AAL atlas
(GCNA), and (5) GCN with CC200 atlas (GCNC).

1) Degree centrality: This method uses DC to measure the node
centrality that represents the FCN of each brain. That is, the
greater the degree of the node, the higher the DC of the node,
indicating that the node is more important in describing the
network. Similar to MGRL, in this method, we first construct
two fixed FC matrices (based on AAL and CC200 atlases) for
each subject by calculating the PC coefficient between any
pair of ROI time series (size: 116 × 116 and 200 × 200). We
extract the DC value of each node for each specific FC matrix
and then represent each FC network as a 116-dimensional (or
200-dimensional) feature vector based on a specific atlas. The
two feature vectors are concatenated into a 316-dimensional
feature vector to represent each subject, followed by 3 fully-
connected layers for feature abstraction and a softmax layer
for classification.

2) Local clustering coefficients: This method uses the local
clustering coefficient (LCC) of the nodes to measure the
degree of aggregation of each node on the FCNs with other
nodes. That is, the larger the local clustering of a node, the
stronger the correlation between the node and other nodes
in the network. First, we use the PC coefficient of the BOLD
signals in the same ROI to measure the pairwise correlation
of the average time series of two ROIs and construct two FC
matrices (based on AAL and CC200 atlases) for each subject
(size: 116 × 116 and 200 × 200). We extract the LCC value
of each node in each specific FC matrix and then represent
each FCN as a 116-dimensional (or 200-dimensional) feature
vector based on a specific atlas. Similar to the DCF method, a

316-dimensional feature vector is generated to represent each
subject, followed by three fully-connected layers for feature
abstraction and a softmax layer for classification.

3) Closeness centrality: This method uses closeness centrality
(CC), which reflects the distance between an absolute node
and other nodes in FC. First, we also use the PC coefficient to
construct two FC matrices (size: 116 × 116 and 200 × 200)
for each subject. Then, we calculate the shortest path distance
from one node to all other nodes based on the calculations
on these two FC matrices, respectively, and calculate the
closeness centrality of each ROI. For a node/ROI, the closer
it is to other nodes/ROIs, the greater its CC, and the greater
the influence of this node/ROI on other nodes/ROIs in the
network. Finally, the 116-dimensional and 200-dimensional
feature vectors are obtained for each subject to represent each
FCN, which are further concatenated into a 316-dimensional
feature vector to represent each FCN/subject. The feature
vector is further input to three fully-connected layers for
feature extraction and a softmax layer for ASD diagnosis.

4) GCN with AAL atlas: The method uses the AAL atlas
for ROI partitioning. Using AAL, the brain is divided into
116 interpretable ROIs and the average time series of the
BOLD signals of the ROIs are extracted. We use the PC
to calculate the pairwise correlation between brain signals
and construct a FC matrix (size: 116 × 116) for each
subject. In order to be comparable with the MGRL method,
we use similar graph construction, graph convolution, and
graph readout operations. The absolute value of the FC
matrix is used as the adjacency matrix of the graph. The
constructed graph is used as the input of the GCNA model
to perform classification. The above models all include
two graph convolutional layers, a readout layer and three
fully-connected layers.

5) GCN with CC200 atlas: The method uses the CC200 atlas
for ROI partitioning. Using the CC200 atlas, the brain is
divided into 200 ROIs and the average time series of the
BOLD signals of the ROIs are extracted. We also use PC
to calculate construct an FC (size: 200 × 200) for each
subject. Similar to GCNA, the GCNC method inputs each FC
network to two graph convolutional layers, a readout layer,
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and three fully-connected layers for feature extraction and
fusion, followed by a softmax layer for classification.

For three handcrafted FCN feature based methods (i.e., DCF,
LCCF and CCF), the ReLU activation and 0.2 dropout are used
after each fully-connected layer. The numbers of neurons in the
three fully-connected layers are 316, 32, and 16, respectively.
For two GCN-based methods (i.e., GCNA and GCNC), the
number of neurons in the convolutional layers are set to 32 and
32, the number of neurons in three fully-connected layers are
64, 16, 8, respectively. Also, the classification is performed by
the final layer (with two neurons) via Softmax. Note that the
proposed MGRL and three handcrafted feature based methods
(i.e., DCF, LCCF, and CCF) share the same multi-scale atlases
(i.e., AAL and CC200) for ROIs partition, as well as the same
multi-scale feature fusion strategy (i.e., multi-scale concatenation
followed by three fully-connected layers). Besides, two GCN-
based methods (i.e., GCNA and GCNC) use a single atlas
and share the same network architecture as MGRL. For a fair
comparison, five competing methods use the Adam optimizer
and cross-entropy loss for network training. The learning rate
is set to 0.01, the regularization parameter is 0.00001, while the
training epoch is 50.

4.3. Classification Results
The quantitative results of our MGRL and five competing
methods in ASD vs. NC classification are reported in Table 2,
while the ROC curves of these methods are shown in Figure 3.
From Table 2 and Figure 3, one can have the following
interesting observations. First, the proposed MGRL achieves the
overall best results in ASD vs. NC classification in terms of
five metrics and ROC curve, compared with five competing
methods. Second, compared with two single-scale GCN methods
(i.e., GCNA and GCNC), the MGRL improved the classification
performance by at least 3% in terms of accuracy, F1-score, recall,
precision, and AUC. These results suggest that using multi-scale
brain atlases helps boost the classification performance, when
compared with that using a single atlas. The underlying reason is
that FCNs features learned at different spatial scales may contain
complementary information that can be collaboratively used to
improve the classification results. Besides, among four multi-scale
methods, the proposedMGRLmethod generally outperforms the
other three methods (i.e., DCF, LCCF, and CCF) in terms of five
evaluation metrics. This further demonstrates the advantage of

deep learning models in ASD diagnosis by jointly performing
FCNs feature learning and classification.

To further test the robustness of the MGRL model, we also
perform ASD vs. NC classification on the University of Michigan
(UM) site from ABIDE. The phenotype information of UM site is
inTable 1, and the experimental results are inTable 3. The results
in Table 3 suggest that our MGRL outperforms five competing
methods (GCNA, GCNC, DCF, LCCF, and CCF) on the UM
site, in terms of accuracy, F1-score, and recall. The underlying
reason is that FCN features learned at different spatial scales may
contain complementary information, which can be used together
to improve the classification results.

4.4. Visualization of Network Features
To investigate the distributions of FCNs features learned by
different methods, we use the t-SNE (Van der Maaten and
Hinton, 2008) algorithm to reduce the dimensionality of FCN
features of six methods (i.e., DCF, LCCF, CCF, GCNA, GCNC,
and MGRL) to two dimensions, with results shown in Figure 4.
Note that the FCN features of three GCN-based methods
(i.e., GCNA, GCNC, and MGRL) are generated by graph
representation learning, while three conventional methods (i.e.,
DCF, LCCF, and CCF) use the concatenation of two-atlas
features (i.e., degree centrality, local clustering coefficient, or
closeness centrality features). As can be seen from Figure 4,
with three GCN-based methods (i.e., GCNA, GCNC, and our
MGRL), samples of different categories tend to be as far as
possible, while those of the same category tend to be as close
as possible. But this trend is not obvious for three conventional
methods (i.e., DCF, LCCF, and CCF). This implies that graph
convolution operation used in GCN-based methods help extract
more discriminative features for ASD detection, compared with
three conventional methods.

5. DISCUSSION

5.1. Influence of FCN Construction
In the experiments, we use Pearson’s correlation (PC) for
FCNs construction. To investigate the influence of different
FCN construction strategies, we compare our MGRL with two
additional methods: (1)MGRL_Li uses the method proposed by
Li et al. for FCNs construction Li et al. (2017), (2) MGRL_SR

employs the sparse representation (SR) method Qiao et al. (2016)
for FCNs construction. For clarity, we denote our MGRL with

TABLE 2 | Performance (mean ± SD) of different models in autism spectrum disorder (ASD) vs. normal control (NC) classification based on resting-state functional MRI

(rs-fMRI) data in NYU site of the ABIDE dataset.

Model Accuracy Recall Precision F1-score AUC

DCF 0.624± 0.060 0.703± 0.197 0.676± 0.142 0.652± 0.076 0.711± 0.071

LCCF 0.705± 0.085 0.676± 0.196 0.819± 0.171 0.698± 0.102 0.812± 0.033

CCF 0.672± 0.111 0.781± 0.153 0.724± 0.173 0.719± 0.060 0.792± 0.039

GCNA 0.758± 0.075 0.761± 0.146 0.789± 0.089 0.763± 0.087 0.854± 0.058

GCNC 0.753± 0.080 0.773± 0.171 0.759± 0.100 0.757± 0.120 0.808± 0.074

MGRL (Ours) 0.795 ± 0.068 0.809 ± 0.146 0.823 ± 0.103 0.802 ± 0.075 0.886 ± 0.062

The bold values mean to highlight the experiment results.
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FIGURE 3 | ROC curves achieved by six different methods in ASD vs. normal controls (NC) classification.

TABLE 3 | Performance (mean ± SD) of different models in ASD vs. NC classification based on rs-fMRI data in UM site of the ABIDE dataset.

Model Accuracy Recall Precision F1-score AUC

DCF 0.645± 0.089 0.733± 0.187 0.691± 0.046 0.702± 0.103 0.633± 0.039

LCCF 0.620± 0.077 0.720± 0.200 0.670± 0.059 0.681± 0.116 0.573± 0.045

CCF 0.634± 0.105 0.761± 0.190 0.662± 0.076 0.702± 0.131 0.542± 0.049

GCNA 0.739± 0.098 0.710± 0.159 0.927 ± 0.067 0.790± 0.102 0.875 ± 0.065

GCNC 0.725± 0.082 0.651± 0.186 0.751± 0.108 0.677± 0.121 0.824± 0.057

MGRL (Ours) 0.762 ± 0.078 0.843 ± 0.070 0.794± 0.100 0.812 ± 0.054 0.867± 0.049

The bold values mean to highlight the experiment results.

PC asMGRL_PC here. For fair comparison, these three methods
share the same network architecture and parameter settings, and
they differ only in FC construction strategies. In Figure 5, we
report the results of three methods in ASD vs. NC classification.
This figure suggests that three methods achieve comparable
results, while MGRL_SR is superior to MGRL_PC andMGRL_Li
in terms of accuracy, recall, and F1-score. The underlying reason
is that the SR algorithm can generate much sparser and less noisy
brain FCNs, compared with the other two methods.

At the same time, in Figure 6, we visualize FCNs constructed
via three models based on both the AAL (Figure 6a) and
CC200 (Figure 6b) atlases. From this figure, we can see that
compared with the other two methods, MGRL_SR can generate
brain FCNs where functional connections among different ROIs
tend to be sparser.

In addition, we select the threshold corresponding to the
different sparsity in the set [60, 70, 80, 90, 100%] for multi-
scale FCNs of MGRL_PC, where the percentage indicates the
proportion of the edges that are retained. Then, we perform
ASD vs. NC classification on the NYU site. The experimental
results are reported in Figure 7. As shown in Figure 7, the
MGRL_PC model with 80% brain FC achieves the best
performance in terms of accuracy, recall, F1-score, and AUC.
This implies that brain FCN may contain some noisy/redundant
connections that may negatively affect the performance
of the model.

5.2. Influence of Atlas Fusion
In the proposed MGRL, two brain atlases (i.e., AAL and CC200)
are used for ROI partition, and the generated FCN features are
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FIGURE 4 | Manifold visualization of ASD and NC training subjects in the New York University (NYU) site, where t-SNE (Van der Maaten and Hinton, 2008) is used to

project the multi-scale graph representations of FCNs learned by six different models. Note that the original features of three GCN-based methods (i.e., GCN with AAL

atlas, GCNA; GCN with CC200 atlas, GCNC; and multi-scale graph representation learning, MGRL) are generated by graph representation learning, while three

conventional methods (i.e., DCF, LCCF, and CCF) use the concatenation of two-atlas features (i.e., degree centrality, local clustering coefficient, or closeness centrality

features), respectively.

FIGURE 5 | Results of three methods (with different network construction strategies) based on NYU site for identifying ASD from NC.

equally treated and fused for classification. We now investigate
the influence of these two spatial scales when performing multi-
scale feature fusion by varying the ratio of AAL to CC200 within
the range of { 0.10.9 ,

0.2
0.8 ,

0.3
0.7 , · · · ,

0.9
0.1 }, with experimental results

reported in Figure 8.
It can be seen from Figure 8 that the fusion ratio has a

significant impact on the classification accuracy of the proposed
MGRL in ASD diagnosis. As the ratio increases, the accuracy
value gradually rises, and the best accuracy is obtained when
the fusion ratio of AAL to CC200 is 0.8

0.2 . This may be because
the AAL atlas is a functional template divided according to the
data of brain structure items, which is more consistent with our
cognition and more beneficial to ASD diagnosis. In addition,
these results also suggest that the fusion of multi-scale FCNs
features does improve the learning performance compared to
using only a single atlas for ROI partition.

Besides, we also study the influence of the number of atlases
and report the ASD diagnosis results of our MGRL method
with two (i.e., AAL and CC200), three (i.e., AAL, CC200,
and HO), and four (i.e., AAL, CC200, HO and Dosenbach)
atlases in Figure 9. This figure suggests that MGRL with two
atlases achieves the best results and adding more atlases does
not boost the performance. The possible reason is that high-
dimensional node features obtained from multiple atlases may
contain redundant or noisy information, thus reducing the
classification performance.

5.3. Comparison With State-Of-The-Art
We further compared the results of the MGRL experiment
with several state-of-the-art methods for fMRI-based ASD
diagnosis based on the ABIDE database. Specifically, Sun et al.
proposed an FCNs estimation model (without hyperparameters)
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FIGURE 6 | Visualization of FCNs for the same subject (NYU_50952) constructed by MGRL_PC (1st row), MGRL_Li (2nd row), and MGRL_SR (3rd row) based on the

AAL atlas (a) and the CC200 atlas (b).

FIGURE 7 | Results of MGRL_PC in ASD vs. NC classification when retaining 100%, 90%, 80%, 70% and 60% functional connections of original brain FC networks

on the NYU site.

to avoid the parameter selection problem and used the traditional
support vector machine (SVM) (Cortes and Vapnik, 1995) for
classification (Sun et al., 2021). Wang et al. proposed a multi-
site domain adaptation framework with low-rank representation
and used traditional SVM classifier to identify ASD (Wang
et al., 2019b). The AAL atlas with 116 brain regions was
used for the above-mentioned two methods. Parisot et al. and
Cao et al. employed fMRI data and phenotypic information of
ROIs based on the HO atlas and constructed a GCN model to
identify ASD from NC (Parisot et al., 2018; Cao et al., 2021).
Shrivastava et al. used the Craddock 400 (CC400) (Desikan et al.,
2006) atlas for ROI partition and developed a convolutional

neural network (CNN) for ASD diagnosis (Shrivastava et al.,
2020). Niu et al. proposed to take advantage of complementary
information provided by different brain atlases and designed
a multi-channel Deep Attention Neural Network (DANN)
model for automated ASD diagnosis (Niu et al., 2020).
The classification results of our MGRL and these state-
of-the-art methods are given in the Table 4. Note that
the results in this table are not fully comparable, since
different studies use different subsets of ABIDE. The rough
comparison inTable 4 demonstrates the superiority of theMGRL
method in mining and fusing multi-scale FCNs features for
ASD diagnosis.
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FIGURE 8 | The results of the influence of different proportions of AAL and CC200 brain atlas on the classification accuracy of our MGRL model based on the NYU

site during feature information fusion. The horizontal axis represents the proportion of AAL atlas and CC200 atlas features in fusion. The ordinate represents model

classification accuracy.

FIGURE 9 | Results of the proposed MGRL method based on NYU site using multi-scale atlases for ROI partition in the task of ASD vs. NC classification. HO,

Harvard Oxford atlas with 112 ROIs; DOH, Dosenbach atlas with 160 ROIs (Dosenbach et al., 2010).

5.4. Limitations and Future Work
To further improve the performance of the proposed method,
several technical issues need to be considered. On the one hand,
to avoid significant inter-site heterogeneity, we mainly used

rs-fMRI data from the NYU site. While ABIDE contains data
from 21 sites, as a future work, we will evaluate the proposed
method on all sites in ABIDE and design smart techniques
to reduce inter-site data heterogeneity. On the other hand,
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TABLE 4 | Performance comparison between the proposed MGRL and several state-of-the-art methods for ASD vs. NC classification with fMRI data from ABIDE.

Method Algorithm Accuracy Recall Precision AUC Sample # Brain Atlas

Sun et al., 2021 SVM 0.656 0.598 0.606 0.720 184 AAL

Wang et al., 2019b SVM 0.718 0.667 − 0.808 111,2 AAL

Parisot et al., 2018 GCN 0.704 − − 0.750 871 HO

Cao et al., 2021 GCN 0.737 0.665 0.746 0.752 871 HO

Shrivastava et al., 2020 CNN 0.760 0.700 0.786 − 1,112 CC400

Niu et al., 2020 Multichannel DANN 0.684 0.636 0.730 − 809 AAL, HO

Niu et al., 2020 Multichannel DANN 0.695 0.683 0.706 − 809 AAL, CC200

Niu et al., 2020 Multichannel DANN 0.732 0.745 0.730 − 809 AAL, HO, CC200

MGRL (Ours) GCN 0.795 0.809 0.823 0.886 184 AAL, CC200

The results of multi-scale graph representation learning (MGRL) are based on the NYU site. #represents the number of samples. The bold values mean to highlight the experiment

results.

the direct fusion of multi-scale FCN features may introduce
redundant or even noise information, thus degrading the
learning performance. Interestingly, incorporating the high-level
attention mechanism into the current framework can avoid the
negative impact of redundant/noisy information, which is also
our next consideration.

6. CONCLUSION

In this paper, we develop a multi-scale graph representation
learning (MGRL) framework for the automatic diagnosis
of ASD based on rs-fMRI. In MGRL, for each subject,
we first use multiple brain atlases for ROI partition to
construct multi-scale FCNs. Then, we employ multi-scale
GCNs for FCNs feature learning, followed by feature fusion
and classification. We evaluate the MGRL on 184 subjects
from ABIDE database with rs-fMRI scans, with results
demonstrating its effectiveness in FCNs feature learning and
ASD diagnosis.
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