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Deep neural networks (DNNs) can accurately decode task-related information from brain

activations. However, because of the non-linearity of DNNs, it is generally difficult to

explain how and why they assign certain behavioral tasks to given brain activations,

either correctly or incorrectly. One of the promising approaches for explaining such

a black-box system is counterfactual explanation. In this framework, the behavior

of a black-box system is explained by comparing real data and realistic synthetic

data that are specifically generated such that the black-box system outputs an

unreal outcome. The explanation of the system’s decision can be explained by

directly comparing the real and synthetic data. Recently, by taking advantage of

advances in DNN-based image-to-image translation, several studies successfully applied

counterfactual explanation to image domains. In principle, the same approach could

be used in functional magnetic resonance imaging (fMRI) data. Because fMRI datasets

often contain multiple classes (e.g., multiple behavioral tasks), the image-to-image

transformation applicable to counterfactual explanation needs to learn mapping

among multiple classes simultaneously. Recently, a new generative neural network

(StarGAN) that enables image-to-image transformation among multiple classes has

been developed. By adapting StarGAN with some modifications, here, we introduce

a novel generative DNN (counterfactual activation generator, CAG) that can provide

counterfactual explanations for DNN-based classifiers of brain activations. Importantly,

CAG can simultaneously handle image transformation among all the seven classes

in a publicly available fMRI dataset. Thus, CAG could provide a counterfactual

explanation of DNN-based multiclass classifiers of brain activations. Furthermore,

iterative applications of CAGwere able to enhance and extract subtle spatial brain activity

patterns that affected the classifier’s decisions. Together, these results demonstrate

that the counterfactual explanation based on image-to-image transformation would be

a promising approach to understand and extend the current application of DNNs in

fMRI analyses.
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INTRODUCTION

Recent studies demonstrated promising results of the deep neural
network (DNN) (LeCun et al., 2015) for decoding cognitive or
behavioral information from brain activity images as observed
with functional magnetic resonance imaging (fMRI) (Wang et al.,
2020; Tsumura et al., 2021). However, despite these promising
results, further applications of DNN to fMRI data could be
limited due to its poor interpretability. Because of its highly non-
linear and complex processing, it is often difficult to interpret
what features of a given input led to the DNN’s decision (Dong
et al., 2019). For example, in the case of brain activity decoding,
even though the DNN can accurately assign brain activations
to a particular task, it is difficult to pinpoint which patterns of
brain activations were important for the DNN’s decisions. Such
interpretability would be even more important when the DNN’s
decoding is incorrect. Gradient-based visualization methods,
such as Grad-CAM (Selvaraju et al., 2020), are frequently
used to highlight image regions potentially relevant for the

FIGURE 1 | Applications of counterfactual explanation in fMRI. The example illustrates an application of counterfactual explanation to a misclassification by a DNN

classifier. (A) In this example, a DNN classifier incorrectly assigned EMOTION to a map of brain activation obtained in a MOTOR task. Because of the black-box nature

of the DNN classifier, it is difficult to explain why the misclassification occurred. (B) A generative neural network for counterfactual brain activation (CAG) minimally

transforms the real brain activation in (A) so that the DNN classifier now assigns MOTOR to the morphed activation (counterfactual activation). (C) Counterfactual

explanation of misclassification in (A) can be obtained by taking the difference between the real activation and the counterfactual activation. In this example, the real

brain activation would have been classified (correctly) as MOTOR if red (blue) brain regions in the counterfactual explanation had been more (less) active.

DNN’s decision [see Tsumura et al. (2021) for an application
in neuroimaging]. However, several limitations of the gradient-
based methods, such as high numbers of false positives (Eitel and
Ritter, 2019), have been reported. Thus, alongside improving the
gradient-based methods (Chattopadhay et al., 2018), it would be
beneficial to explore alternative approaches for interpreting the
inner workings of DNNs (Adadi and Berrada, 2018).

Counterfactual explanation is one of the major approaches
for explaining DNN’s inner working (Goyal et al., 2019; Wang
and Vasconcelos, 2020). To explain how the decision on a given
data was made, counterfactual explanation uses artificial data
(“counterfactuals”) that are generated from the real data but
targeted to an unreal outcome (decision). By comparing the
DNN’s decision on the real data and the counterfactual, one
can deduce explanations of the decisions made by the DNN.
For example, we consider a case in which a brain activity
classifier incorrectly assigns a gambling task to a brain activation
produced in a motor task (Figure 1A). We consider a minimal
transformation of the original brain activation to a counterfactual
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activation that is classified (correctly) as a motor task activation
by the DNN classifier (Figure 1B). By directly comparing the
original brain activation and the counterfactual activation, one
can explain the classifier’s decision by making a statement such as
“This brain activation map would have been correctly classified
to the gambling task if brain areas X and Y had been activated.”
(Figure 1C). As in this example, counterfactual explanation can
provide intuitive explanations of a black-box decision system
without opening the black-box, which is a critical aspect of
the technique.

Although the generation of counterfactuals for high-
dimensional data such as natural images and medical images
had been difficult, recent advancement in DNN-based image
generation has made counterfactual explanation applicable
to these domains. For natural images, several studies have
successfully used counterfactual explanation to explain the
behavior of DNN-based image classifiers (Chang et al., 2019;
Liu et al., 2019; Singla et al., 2020; Zhao, 2020). In medical
image analyses, counterfactual explanation has also been applied
to DNN-based classifiers of X-ray and structural MR images
(Mertes et al., 2020; Pawlowski et al., 2020). However, to the
best of our knowledge, counterfactual explanation has not
been utilized for DNN-based classifiers of fMRI data. The
lack of application to fMRI data may be due to the fact that
commonly used fMRI dataset [such as data distributed by
the Human Connectome Project (Van Essen et al., 2013)]
usually contains data for multiple tasks. Because of this
characteristic of fMRI dataset, unlike commonly used image
generator that performs image-to-image transformation only
between two classes, a generator of counterfactual brain
activations needs to be able to transform the inputs to more than
three classes.

Recently, the StarGAN (Choi et al., 2018) has enabled
image-to-image transfer among multiple classes, thus opening
the possibility to extend the application of counterfactual
explanation to the multiclass fMRI dataset. In this study, based
on the StarGAN model, we developed a generative neural
network named counterfactual activation generator (CAG),
which provides counterfactual explanations for a DNN-based
classifier of brain activations observed with fMRI. This study
aims to provide a proof of principle that counterfactual
explanation can be applied to fMRI data and the DNN-based
classifiers of brain activations. We demonstrated several
applications of CAG. First, CAG could provide counterfactual
explanations of correct classifications of the brain activations
by DNN-based classifiers. Specifically, the counterfactual
explanation highlighted the patterns of brain activations
that were critical for the DNN classifier to assign the brain
activations to particular tasks. Similarly, CAG could provide
counterfactual explanations of incorrect classifications by
DNN-based classifiers. Moreover, iterative application of CAG
accentuated and extracted subtle image patterns in brain
activations that could strongly affect the classifier’s decisions.
These results suggest that the image transfer-based methods,
such as CAG, would be a powerful approach for interpreting and
extending DNN-based fMRI analyses.

MATERIALS AND METHODS

Datasets
Training data were single-subject second-level z-maps obtained
during the performance of seven behavioral tasks from the S1200
release of the Human Connectome Project (N = 992; HCP;
http://www.humanconnectomeproject.org/) (Barch et al., 2013;
Van Essen et al., 2013; Glasser et al., 2016). From each participant,
statistical z-maps were obtained for activation contrasts for
the emotional processing task (face vs. shape), the gambling
task (reward vs. loss), the language processing task (story vs.
math), the motor task (average of all motions), the relational
processing task (relational processing vs. matching), the social
cognition task (mental vs. random), and the N-back working
memory task (2-back vs. 0-back). For brevity, the seven tasks
are denoted as follows: (1) EMOTION, (2) GAMBLING, (3)
LANGUAGE, (4) MOTOR, (5) RELATIONAL, (6) SOCIAL, and
(7) WORKING MEMORY (WM). We used gray-scaled flat 2D
cortical maps (Glasser et al., 2016) provided from HCP for
dimensional compatibility of images between VGG16-ImageNet
and activation maps. The flattened maps were created using
the Connectome Workbench (https://www.humanconnectome.
org/software/connectome-workbench/) following a procedure
described in (Tsumura et al., 2021) (Figure 2A).

DNN Classifier of Brain Activations
The DNN classifier of brain activations used in this study
was adapted from our previous study (Tsumura et al.,
2021) (Figure 2B). Briefly, the DNN classifier was based
on VGG16 (Simonyan and Zisserman, 2015), with five
convolution layers for extracting image features and two
fully connected layers for classification of the seven tasks.
Initial parameters of convolution layers were set to parameters
pretrained with concrete object images provided from ImageNet
(Simonyan and Zisserman, 2015) (http://www.image-net.org/).
The VGG16/ImageNet model is capable of classifying concrete
object images into 1,000 item categories. Importantly, it
has been demonstrated that the pretrained model can learn
novel image sets more efficiently than the non-trained model
by tuning convolution and fully connected layers and fully
connected layers only (Pan and Yang, 2010). Thus, the current
analysis retrained the pretrained VGG16-ImageNet model
to classify brain activation maps. To enable processing by
generative neural networks described below, activation maps
were spatially downsampled from 570 by 1,320 pixels to 50
by 140 pixels. Data were split into training data (N = 4,730)
and validation data (N = 518) (note that some participants
in the dataset did not complete all seven tasks). Training was
conducted using the training data with ten-fold crossvalidation.
Hyperparameters for the training were as follows: batch size,
10; epoch, 50; learning rate, 0.0001; optimizer, stochastic
gradient descent (SGD); loss function, categorical crossentropy.
Pixels outside of the brain were set to zero. Model training
and testing were implemented using Keras (https://keras.io/)
under a Tensorflow backend (https://www.tensorflow.org/). Five
instances of the DNN classifier were trained for replication. All
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FIGURE 2 | DNN classifier for brain activity decoding. (A) Following the standard procedure developed by HCP (Glasser et al., 2016), neocortex in the two

hemispheres was mapped to two cortical sheets. Each neocortical activity image was mapped to the two sheets, which was then input to the DNN classifier (for

details, see Tsumura et al., 2021). (B) Model architecture of the DNN classifier. The input was a picture containing two sheets of cortical activations. The picture was

downsampled for later processing by the generative neural network. The DNN classifier was a deep convolutional network similar to the one described in our previous

study (Tsumura et al., 2021). The output of the DNN classifier was one-hot vectors representing seven behavioral tasks in the HCP dataset. (C) Training history of the

transfer learning. Test accuracy (blue) and validation accuracy (magenta) are shown for five replicates. Note that the chance level is 14.3% (1/7). (D) Profile of the

classifier’s decision (confusion matrix) in the validation set.

parameters, including the training data, were the same for all
the replicates.

Counterfactual Activation Generator (CAG)
We adopted the architecture of StarGAN (Choi et al., 2018),
consisting of discriminator and generator, with a modification
to add a new loss term for the DNN classifier (Figure 3A;

see also Supplementary Figure 1 for an illustration of our
overall approach). Except for this addition of the new loss term
(CAG loss), other parameters were the same as in the original
StarGAN model. Briefly, the goal was to train a single generator
that learns mapping among multiple classes (in this case, the
seven HCP tasks). We regarded this generator as CAG. To
achieve this, we trained CAG to transform a brain activation
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FIGURE 3 | Counterfactual activation generator (CAG). (A) Generator and discriminator architectures, see Methods for details. Networks were modified from

StarGAN. Generator, once trained, served as CAG. Generator takes a combination of an image of brain activation and a one-hot label indicating the target class as an

input. Generator outputs a counterfactual brain activation that is a minimal transform of the input brain activation toward the target class. Discriminator takes an

activation map output by generator and outputs a one-hot label. Discriminator was cotrained with generator, as in StarGAN. (B) Time courses of the generator loss.

Different colors indicate different replicates (n = 5). (C) Representative counterfactual activations generated by CAG. All counterfactual activations were generated

from the source activation. See Supplementary Figure 3 for transformation to all categories. (D) Confusion matrix showing the classifier’s decision profile on

counterfactual activations.

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2022 | Volume 15 | Article 802938

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Matsui et al. Counterfactual Explanation for fMRI

x with class-label y (source class) to a perturbation toward yc

(target class), such that CAG
(

x , yc
)

→ xc. An auxiliary
discriminator was introduced to allow a single discriminator to
control multiple classes. Thus, the discriminator produced the
probability distributions over both the source and the target
classes, D : x → {Dsrc (x) , Dcls (x)}.

The loss terms were described as follows. Wasserstein loss
(Lwass) and gradient penalty loss (Lgp) were included to make the
generated brain activations indistinguishable from the real brain
activations. Lwass between the real and counterfactual activations
and Lgp were defined as follows:

Lwass = Ex [Dsrc (x)]− Ex,c [Dsrc (CAG (x, c))]

Lgp = Ex̂

[

(

‖ ∇x̂ Dsrc

(

x̂
)

‖2 − 1
)2

]

where x̂ was sampled uniformly along a straight line between a
pair of a real and a generated activation.

Domain classification loss was included to ensure that the
transformed activation was properly classified as the target
class. We considered two types of objectives. The first one is a
domain classification loss of real activations used to optimize
discriminator (Lr

cls
= Ex,c

′ [− log Dsrc

(

c′|x
)

]). The second one
is a domain classification loss of fake activations used to optimize

CAG (L
f

cls
= Ex,c[− log Dsrc

(

c|CAG(x, c)
)

]). This loss term
forced CAG to generate activations that could be classified as the
target classes.

Reconstruction loss (Lrec) was defined using the cycle
consistency loss (Kim et al., 2017; Zhu et al., 2017) as follows,

Lrec = Ex,c,c
′

[(

‖ x− CAG(CAG (x, c) , c′)‖1
)]

where CAG tried to reconstruct the original activation from the
transformed activation.

Additionally, we included a loss term for the DNN classifier
(Lcnn) to force the mappings learned by CAG to be aligned
with the classifier’s decisions. This loss term was calculated using
categorical crossentropy over the fake activations.

The total losses for discriminator (LD) and the CAG loss (LG)
were defined using the loss terms as follows:

LD = L
r
wass + L

f
wass + λgpLgp + λclsL

r
cls

LG = Lwass + λclsL
f

cls
+ λrecLrec + λcnnLcnn

whereLr
wass andL

f
wass stand forWasserstein loss for real and fake

activations, respectively. We used the same hyperparameters and
procedures used in the original StarGAN model, except for λcnn
which was newly introduced in CAG. Instance normalization
was used for the generator, but no normalization was used
for the discriminator. The generator network consisted of
three convolutional layers for downsampling, followed by two
convolutional layers (replacing two residual blocks in the
original StarGAN model), which was intern followed by four
convolutional layers for up sampling.We used λgp = 10, λcls = 1,
λrec = 10, and λcnn = 1 for all experiments. All models were
trained using Adam (Kingma and Ba, 2014), with β1 = 0.5 and

β2 = 0.999. Training was done using the training data with ten-
fold crossvalidation for 10,000 epochs. Batch size and learning
rate were set to 16 and 0.0001, respectively, in all experiments.
The code for CAG is available upon reasonable request to the
corresponding author.

Counterfactual Explanation of Correctly
and Incorrectly Classified Images
Counterfactual explanation of correctly classified images was
performed on the correctly classified brain activations (N =

478 out of 518 that were not used in the classifier training).
Each counterfactual explanation was set to explain “Why this
activation was correctly classified as class (task) A instead of class
B?” To do this, the original brain activation was transformed by
CAG toward class B. Counterfactual explanation was obtained
by pixel-by-pixel subtraction of the original activation from the
counterfactual activation. As for counterfactual explanation of
correct classifications, counterfactual activations were obtained
by transforming the correctly classified activations to one of the
randomly chosen incorrect classes.

To quantitatively evaluate the effectiveness of counterfactual
explanations, we conducted two analyses. In the first analysis,
we perturbed image transformation by CAG at various levels
and examined its effect on the classifier’s decisions. For the
perturbation, pixels in each counterfactual explanation whose
values were below a chosen percentile threshold (α) were set
to zero (CEα). Then, the perturbed counterfactual explanation
was added back to the original activation (Activationoriginal)
as follows:

Activationnew = Activationoriginal + CEα

The resulting activation (Activationnew) was normalized to have
minimum and maximum values of zero and one, respectively,
and then input to the DNN classifier. The percentile threshold
(α) took values ranging from 0 to 100% with a 20% step. Note
that Activationnew is equal to the counterfactual activation and
Activationoriginal when α equals to 0 and 100%, respectively.
In the second analysis, each counterfactual explanation was
compared with a “control explanation,” which was calculated
as the difference between the true class’s average activations
and the target class used for the transformation (1Ave).
The control explanation was added to the original activation
(Activationoriginal) as follows,

Activationnew = Activationoriginal +1Ave× κ

The resulting activation (Activationnew) was normalized to have
minimum and maximum values of zero and one, respectively,
and then input to the DNN classifier. The parameter for mixing
(κ) took values ranging from 0 to 5 at with a 0.1 step and was
adjusted individually for each control explanation to maximize
the total number of cases classified to the target class used
for transformation.

Counterfactual explanation of incorrectly classified images
was performed similarly on each incorrectly classified brain
activation (N = 40). Each counterfactual explanation was set

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2022 | Volume 15 | Article 802938

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Matsui et al. Counterfactual Explanation for fMRI

to explain “Why this activation was incorrectly classified as
class (task) B instead of class A?” To do this, the original
brain activation was transformed by CAG toward the true class
A. Counterfactual explanation was obtained by pixel-by-pixel
subtraction of the original activation from the counterfactual
activation. The two quantitative analyses for the counterfactual
explanation of correct classifications were similarly applied to the
counterfactual explanation of incorrect classifications. In these
analyses, the target class for the image transformation by CAG
was set to the correct classes (instead of randomly chosen classes
in the case of correct classification).

Counterfactual Exaggeration and Feature
Extraction
Counterfactual exaggeration (Singla et al., 2020) was performed
by iteratively transforming a real brain activation toward one
class.We performed up to eight iterations. Feature extraction was
done by subtracting the third iteration from the eighth iteration.
To quantitatively evaluate the extracted feature, the feature
was added to each activation in the validation set (N = 518),
and then, the summed image was input to the DNN classifier.
For 12 extracted features from randomly chosen activations,
the percent of activations assigned to the added feature’s class
were calculated.

RESULTS

DNN Classifier Decoded Task Information
From Brain Activity With High Accuracy
We first trained a DNN classifier that was used as the
target for counterfactual explanation. Brain activations were
converted to flattened maps, which were then input to the
DNN classifier (Figure 2A). The DNN classifier was based
on VGG16 pretrained on the ImageNet dataset (Tsumura
et al., 2021) (Figure 2B). The pretrained DNN classifier was
trained to classify brain activation maps using transfer learning
(Pan and Yang, 2010). After 50 epochs of training, the
DNN classifier reached ∼92% of classification accuracy for
the held-out validation data. Similar results were obtained
for a total of five replicates, suggesting high reproducibility
(Figure 2C). Figure 2D shows the confusion matrix showing
the classifier’s decision profile (see also Supplementary Table 1

for exact values). Similar confusion matrices were obtained for
all the replicates (data not shown). These results suggest that
DNN classifiers could accurately decode task information from
individual brain activations.

CAG Generated Counterfactual Activations
Were Realistic and Fooled the Classifiers
We next trained a generative neural network (CAG) for
counterfactual explanations of the DNN classifier’s decisions.
For this, we adopted, with modifications, the architecture
of StarGAN (Choi et al., 2018) that can perform image-to-
image transformation among multiple classes. Two DNNs,
generator (CAG) and discriminator, were simultaneously
trained (Figure 3A; Supplementary Figure 1). By including
the classification loss by the DNN classifier, CAG was trained
to simultaneously fool both the discriminator and the DNN
classifier (Supplementary Figure 1; see Methods for details).
Throughout the training, the generator loss, which is a good
indicator of the quality of the generated image (Arjovsky et al.,
2017), consistently decreased toward zero and plateaued around
10,000 epochs of training (data for five replicates are shown in
Figure 3B; see also Supplementary Figure 2 for time courses of
all the loss terms). After the training, CAG could transform a real
brain activation into a counterfactual brain activation that was
visually indistinguishable from the real activations (Figure 3C;
Supplementary Figure 3). The training of the CAG was also
designed such that the CAG transformed an input activation
map to any of the seven classes and fool the DNN classifier. Thus,
the trained DNN assigned the targeted class to the counterfactual
activations at almost 100% accuracy (Figure 3D; Table 1).
These results suggest that CAG fulfilled the goal of generating
counterfactual brain activations that were not only visually
realistic but also fooled the DNN classifier.

Counterfactual Explanation of
Misclassification by DNN Classifiers
Using CAG, we first conducted counterfactual explanation of the
classifier’s correct decisions. Specifically, we tried to visualize the
pattern of brain activation that led the classifier to assign the
correct class but not another (incorrect) class (Figure 4A). In the
first example, brain activations correctly classified as MOTOR
by the DNN classifier were examined (Figure 4B). We asked
why these activations were not classified as EMOTION. To see
this, a counterfactual activation was created by transforming each
original activation toward EMOTION using CAG (Figure 4C).
Then, the counterfactual explanation was obtained by taking
the difference between the original and the counterfactual
activations (Figure 4D). The positive and negative regions in the
counterfactual explanation were the regions that had positive
and negative influence, respectively, on the classifier’s decision
of assigning EMOTION but not MOTION to the counterfactual
activation. In other words, the DNN classifier would have

TABLE 1 | Decision profile of DNN classifier on counterfactual activations.

CLASS EMOTION GAMBLING LANGUAGE MOTOR RELATIONAL SOCIAL WM

Ncorrect (%) 518

(100%)

518

(100%)

518

(100%)

512

(98.8%)

518

(100%)

518

(100%)

518

(100%)

Each image in the validation set (N = 518) was morphed toward one of the seven classes and then input to the DNN classifier.
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classified the original activation as EMOTION if the positive
regions in the counterfactual explanation had been more active
(and the opposite for the negative regions).

To quantitatively evaluate the counterfactual explanation,
we compared it against a difference between the population-
averaged activations of EMOTION and MOTOR (average of
74 and 75 activations, respectively) (Figure 4E). Whereas the
difference of average maps highlighted a small portion of
brain areas in the occipital cortex, counterfactual explanation
additionally found lateral temporal areas to be relevant. Because
lateral temporal areas are known to be activated by emotional
and facial processing (White et al., 2014; Glasser et al., 2016), it
is reasonable to find these areas highlighted in the counterfactual
explanation. The reason that only the occipital cortex was
highlighted in the difference in average maps is most likely
due to very high activation in this area in the average map of
EMOTION compared to the average map of MOTOR. These
differences between the counterfactual explanation and the
explanation by the difference of averages can be understood as the
difference between univariate and multivariate analyses (Jimura
and Poldrack, 2012). The average map that is derived from the
univariate analysis (pixel-based GLM) is affected by the choice
of particular control conditions, and thus, the explanation by the
difference of the averages would be affected by difference in the
control conditions. In contrast, the counterfactual explanation
can robustly detect relevant activations using spatial patterns
of multiple pixels. Consistent with this idea, the counterfactual
explanation, but not the difference of average maps, successfully
highlighted the orbitofrontal areas implicated for emotional
processing (Figure 4D) (Goodkind et al., 2012; Rolls et al., 2020).

The second example shows counterfactual explanation
of why WM activations were not classified as LANGUAGE
(Supplementary Figure 4). In this case, unlike the previous
example, the difference of averages of WM and LANGUAGE
highlighted large portions of the brain (red regions in
Supplementary Figure 4; average of 75 and 73 maps,
respectively, for WM and LANGUAGE). With such large
and distributed areas being highlighted, it is difficult to pinpoint
particular areas without arbitrary thresholding. In contrast, the
counterfactual explanation highlighted distributed but much
more localized brain areas (Supplementary Figure 4C). It is
evident from the counterfactual explanation that activations in
frontal and temporal brain areas would have been necessary to
shift the DNN classifier’s decision fromWM to LANGUAGE.

Out of 478 correctly classified validation data, 476
counterfactual activations were classified as the targeted
class. To test the robustness of the result against image
corruption, we isolated the image components added by CAG
(i.e., the difference between the counterfactual activation and
the raw activation). Then, we perturbed the image components
at different levels of percentile thresholds (α in Table 2. see
methods) that were in turn added back to the raw activation.
The effect of thresholding did not change the classification
results when the bottom 20% of the image components were
perturbed. The classification results were still above 25%,
even when the bottom 60% of the image components were
perturbed. The classification results were markedly degraded

when the bottom 80% of the image components were perturbed.
Thus, these results suggest that image modifications imposed
by CAG were robust to perturbation in a large margin. To
further assess the effectiveness of counterfactual explanation, we
compared the classifier’s response to counterfactual activations
and control maps obtained by adding the original activation
and the difference of average activations (“Control” in Table 2).
Only four of the control maps were classified as the targeted
class. Together, these results demonstrated that counterfactual
explanations provided interpretable activation patterns that
could not only explain the classifier’s decisions but also robustly
manipulate the classifier’s decisions.

Note that the aim of the discussion here is not to infer
cognitive tasks associated with the brain activation, a type of
discussion considered as reverse inference (Poldrack, 2006).
In this case, the cognitive tasks (i.e., classes) associated with
the brain activations were entirely determined by the DNN
classifier. The purpose of the discussion here is to interpret the
counterfactual explanation in relation to existing knowledges
about the brain activity. In the future, this type of discussion may
be automated using applications such as Neurosynth (Yarkoni
et al., 2011).

Counterfactual Explanation of
Misclassification by DNN Classifiers
An important feature of counterfactual explanation is its ability
to provide explanations to single cases of misclassification.
We next demonstrated this in misclassifications by the DNN
classifier (Figure 5A). For each case of misclassifications, the
misclassified activation map was transformed toward the correct
class by CAG. Then, the difference between the counterfactual
activation and the real (misclassified) activation was calculated
for the counterfactual explanation. In the first example,
a brain activation in the EMOTION task was incorrectly
classified as SOCIAL (Figure 5B). A counterfactual activation
was obtained by transforming the real activation toward
the correct class (EMOTION) (Figure 5C). Interestingly, the
counterfactual explanation suggested that activations in the
occipital regions were critically lacking for the DNN classifier
to classify the original activation as EMOTION (Figure 5D).
Because the occipital area is considered to process low-level
visual information (Yamins et al., 2014), this occipital activation
likely indicates bias in the dataset that used visual stimulus in
the EMOTION task (Barch et al., 2013) rather than a brain
activation related to emotional processing. Thus, counterfactual
explanation revealed that this misclassification was likely due to
the bias in the dataset, which was unintentionally learned by the
DNN classifier.

As for a control analysis that can be compared with
the counterfactual explanation, we calculated the difference
between the misclassified (real) activation and the average
activation of EMOTION (Figure 5E). Despite the similar global
trend with the counterfactual explanation, the difference with
the average showed a noisy pattern whose local peaks were
difficult to find. Importantly, a peak in the occipital area
was difficult to discern in the difference with the average. In
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FIGURE 4 | Counterfactual explanation of correct classification. (A) Schematics of the question asked in this analysis. In this example, the DNN classifier correctly

assigned a “MOTOR” label to a real brain activation in the MOTOR task. Here, we want to interrogate this correct decision. Specifically, we ask a question “why did the

classifier assign MOTOR instead of EMOTION?” (B–E) Examples of counterfactual explanation. (B) A population average map of real brain activation in the MOTOR

task. (C) A population average map of counterfactual activation obtained by transforming the map in (A) to EMOTION. Transformation was conducted for each

activation map and then averaged across the population. (D) Pixel-by-pixel subtraction of maps in (B) and (A) that serves as counterfactual explanation. This map

explains why the map was classified as MOTOR but not EMOTION. (E) Simple difference between the average of real activations in the EMOTION and MOTOR tasks.

the second example, we examined an activation in WM that
was misclassified as GAMBLING (Supplementary Figure 5A).
A counterfactual activation was obtained by transforming the
real activation toward WM (Supplementary Figure 5B). As
in the first example, the counterfactual explanation showed
a pattern of brain activation with multiple identifiable peaks
(Supplementary Figure 5C). In contrast, the difference with
the average provided a noisier pattern whose local peaks
were difficult to identify (Supplementary Figure 5D). These

results demonstrated that counterfactual explanation can provide
interpretable patterns of brain activations related to individual
cases of misclassifications by the DNN classifier.

Next, we quantitatively assessed the counterfactual
explanation of misclassifications. The DNN classifier assigned
the correct classes to all the counterfactual activations that are
equivalent to additions of the real (misclassified) activations and
the counterfactual explanations (40 of 40misclassified activations
in the validation set). To assess the robustness of the results to
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image perturbation, we conducted the same analysis that we
used for the correct classification. In the case of misclassification,
the DNN classifier assigned the correct classes in 80% of cases,
even when the bottom 80% of the image components modified
by CAG were perturbed (Table 3). This result suggests that only
a small modification to the misclassified activation was necessary
to shift the classifier’s decision to the correct class.

As for the control analysis, for each misclassified activation,
we calculated the control activation that is the sum of
the misclassified activation and the difference of averages
of the true class and the incorrectly assigned class. In
contrast to counterfactual activations, only two of the control
activations were classified as the true classes (Table 3). These
results suggest that counterfactual explanation, but not the
addition of the difference of average activations, captured the
image transformation needed to correct the decisions of the
DNN classifier.

Counterfactual Exaggeration Revealed
Subtle Image Features Important for the
Classifications by DNN
In addition to counterfactual explanations of correct and
incorrect classifications, the deep image generator can perform
“counterfactual exaggeration” to enhance and detect subtle
image features exploited by DNNs (Singla et al., 2020). In
counterfactual exaggeration, an image is iteratively transformed
by the generator toward one class. This iterative image
transformation enhances subtle image features exploited by
DNNs. In a previous work, exaggerated images were used
to discover a novel symptom of diabetic macular edema
(Narayanaswamy et al., 2020). Inspired by these previous works,
we next used CAG in counterfactual exaggeration to detect
subtle features of brain activations exploited by the DNN

classifier (Figure 6A). Interestingly, in some cases, iterative
application of CAG revealed a texture-like feature in the
image (Figures 6B–D). Such a texture-like feature was difficult
to discern in the original activation (Figure 6B) but became
evident as the counterfactual exaggeration was repeatedly applied
(Figures 6C,D). The texture-like feature could be extracted by
taking the difference in counterfactual activations with different
numbers of iterations (Figure 6E).

Although the texture-like pattern did not appear in the same
way as a real brain activation, it could nevertheless influence the
classifier decisions. In fact, it has been suggested that DNNs are
biased toward using textures for image classification (Geirhos
et al., 2018). To quantitatively examine this point, we added
the extracted features to randomly chosen real activations and
then examined the resulting activations by the DNN classifier.
Figure 6F and Supplementary Figure 6 show examples of the
extracted features and the real activations before and after the
addition of the features. Note that differences between the
appearance of activations before and after the addition of the
features were subtle because the amplitudes of the extracted
features were relatively small. Nevertheless, the addition of the
extracted features caused the DNN classifier to (mis-)assign the

activations the classes to which the exaggerations were targeted

(Figure 6G). Misclassification to the targeted class occurred in
55.0 ± 26.1% of cases (mean ± standard deviation; N=12
extracted features; p < 0.001, sign rank test; see Methods for

details). These results suggest that counterfactual exaggeration

assisted by CAG was able to enhance and discover subtle image
features that are exploited by the DNN classifier. The texture-
like features likely represent image features relevant to adversarial
vulnerability of the DNN classifier (Geirhos et al., 2018). Being
able to detect and protect against such attacks is critical for future
reliable applications of DNN-based brain decoders.

TABLE 2 | Decision of DNN classifier on counterfactual activations obtained from correctly classified brain activations.

Correct

cases

Counterfactual activations Control

α = 0 α = 20 α = 40 α = 60 α = 80 α = 100

Ncorrect

(%)

476

(99.6%)

470

(98.0%)

327

(68.4%)

125

(26.2%)

9

(1.9%)

0

(0.0%)

4

(0.8%)

Counterfactual activations were obtained from images correctly classified by the DNN classifier (N= 478). Each image was transformed to one of a number of randomly chosen incorrect

classes. All counterfactual activations were classified as the targeted class by the DNN classifier (middle column). As for the control analysis, the difference of the average maps for

targeted vs. original classes was added to each image. None of the control images were classified as the targeted class (right column).

TABLE 3 | Decision of the DNN classifier on counterfactual activations obtained from misclassified brain activations.

Incorrect

cases

Counterfactual activations Control

α = 0 α = 20 α = 40 α = 60 α = 80 α = 100

Ncorrect

(%)

40

(100%)

40

(100%)

39

(97.5%)

38

(95.0%)

24

(60.0%)

0

(0.0%)

2

(0.5%)

Counterfactual activations were obtained from images originally misclassified by the DNN classifier (N = 40). All of the counterfactual activations were correctly classified by the DNN

classifier after transformation by CAG (middle column). As for the control analysis, the difference of the average maps for incorrect and correct classes was added to each misclassified

image. None of the control images were classified as the targeted class (right column).
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FIGURE 5 | Counterfactual explanation of incorrect classification. (A) Schematics of the question asked in this analysis. In this example, the DNN classifier incorrectly

assigned a “SOCIAL” label to a real brain activation in the EMOTION task. Here, we want to interrogate this incorrect decision. Specifically, we ask a question “why did

the classifier (incorrectly) assign EMOTION instead of SOCIAL?” (B–E) Example of counterfactual explanation. (B) A single brain activation map for EMOTION that was

incorrectly classified as SOCIAL by the DNN classifier. (C) A map of counterfactual activation obtained by transforming the map in (A) to SOCIAL. (D) Pixel-by-pixel

subtraction of maps in (B) and (A) that serves as counterfactual explanation. This map explains why the map was incorrectly classified as SOCIAL but not EMOTION.

(E) Simple difference between the average of real activations in the EMOTION and the single activation map for SOCIAL shown in (A).

DISCUSSION

In this study, we provided a proof-of-principle of application

of counterfactual explanations from a generative model to
understand the decisions of a DNN trained to decode task

information from brain activation data. In the field of computer
vision, such explanation is often conducted with saliency maps

that highlight regions in the input that were important for
the decisions of the DNN (Selvaraju et al., 2020). A recent
neuroimaging study also used saliency maps to interpret
decisions made by DNNs (Tsumura et al., 2021). A limitation

of this approach is that the regions highlighted in saliency maps
are not necessarily causally related to the decisions of the DNN
(Eitel and Ritter, 2019). Hence, user of saliency maps needs
to perform an additional interpretation of why the highlighted
areas are important for the DNN’s decisions (Mertes et al.,
2020). In contrast to saliency maps, counterfactual explanation
explains why the actual decision was made instead of another
one. By creating a slightly modified version of the input that
leads another decision by the DNN, counterfactual explanation
provides a different kind of explanatory information which helps
to interpret saliency maps. Thus, future neuroimaging studies
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FIGURE 6 | Counterfactual exaggeration of brain activation. (A) Schematic of counterfactual exaggeration. A brain activation (MOTOR task in this example) was

iteratively transformed toward MOTOR by CAG. This iterative transformation accentuates (exaggerates) image features that biases the classifier decision toward

MOTOR. (B–D) Example of counterfactual exaggeration. A brain activation in the EMOTION task (B) was iteratively transformed toward EMOTION eight times.

(Continued)
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FIGURE 6 | Images after third (C) and eighth (D) transformations are shown. (E) Subtle image feature enhanced by counterfactual exaggeration was isolated by

taking the difference of exaggerated images. In this example, differences between exaggerated images in (C) and (D) were calculated. The resulting difference image

showed a texture-like pattern. (F) Example of texture-like feature extracted by counterfactual exaggeration (top). Bottom panel shows the texture-like patterns added

to randomly chosen raw brain activations (middle). See also Supplementary Figure 6 for another example. (G) Decisions of the DNN classifier to brain activations

with texture-like patterns added. Each dot represents one example texture (N = 12. Methods for details). Bar graph shows the mean and the standard deviation. The

classifier was significantly biased toward the class of texture-like patterns (*, p < 0.001, Wilcoxon’s sign rank test). Chance level was one of seven.

and also brain machine interface studies using DNNs [e.g.,
Willett et al. (2021)] can combine counterfactual explanation
with saliency maps to better interpret how the patterns of brain
activations are causally related to DNN decisions.

There are several limitations in this study. The training and
testing of the DNN classifier and CAG were performed using
only the HCP dataset. As more and more neuroimaging datasets
become available to the public, researchers are starting to develop
DNN classifiers trained onmultiple datasets. Though it is beyond
the scope of this study, explaining the DNN classifiers trained on
multiple datasets would be an important future research topic.
Another limitation is that this study used spatial downsampling
to enable efficient learning by CAG. This was partly due to
limitations in both the computational power and the dataset
size. The limitation in the dataset size may be alleviated using
techniques for data augmentation (Shorten and Khoshgoftaar,
2019).

It should also be emphasized that the aim of CAG is
not to improve the accuracy of the DNN classifier but
to provide visual explanations for the classifier’s decisions.
Because CAG can simultaneously take into account information
from the entire brain, counterfactual explanation is different
from conventional analyses of local activation patterns such
as GLM and search light-based multivariate pattern analyses
(Kriegeskorte et al., 2006; Jimura and Poldrack, 2012; Chikazoe
et al., 2014). This characteristic of CAG is most pronounced
in counterfactual exaggerations, where it discovered global
texture-like patterns that could effectively bias the classifier’s
decisions. At present, these patterns are unlikely to reflect
biologically important activity patterns. Further development
of CAG and related techniques would enable the discovery
of global activity patterns with biological significance beyond
conventional analyses.

Conclusions
In this study, we developed CAG, a generative neural network
for counterfactual brain activation that can be used to explain
individual decision behaviors of DNN-based classifiers. A single
CAG could handle multiple classes at the same time and
learn mapping between all the pairs of classes. CAG could
provide visually intuitive counterfactual explanations for a
classifier’s correct and incorrect decisions. These counterfactual
explanations were quantitatively more effective in explaining the
classifier’s decision than the controls and were robust against
image perturbations. Finally, beyond explaining the decision
behaviors, CAG could extract subtle image features in the
brain activation that were invisible to the eyes but that were

exploited by the DNN classifiers. Together, these results suggest
that counterfactual explanation with CAG provides a novel
approach to examine and extend current neuroimaging studies
using DNNs.
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