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Identification of alcoholism is clinically important because of the way it affects the
operation of the brain. Alcoholics are more vulnerable to health issues, such as immune
disorders, high blood pressure, brain anomalies, and heart problems. These health
issues are also a significant cost to national health systems. To help health professionals
to diagnose the disease with a high rate of accuracy, there is an urgent need to create
accurate and automated diagnosis systems capable of classifying human bio-signals.
In this study, an automatic system, denoted as (CT-BS- Cov-Eig based FOA-F-SVM),
has been proposed to detect the prevalence and health effects of alcoholism from
multichannel electroencephalogram (EEG) signals. The EEG signals are segmented into
small intervals, with each segment passed to a clustering technique-based bootstrap
(CT-BS) for the selection of modeling samples. A covariance matrix method with its
eigenvalues (Cov-Eig) is integrated with the CT-BS system and applied for useful feature
extraction related to alcoholism. To select the most relevant features, a nonparametric
approach is adopted, and to classify the extracted features, a radius-margin-based
support vector machine (F-SVM) with a fruit fly optimization algorithm (FOA), (i.e., FOA-
F-SVM) is utilized. To assess the performance of the proposed CT-BS model, different
types of evaluation methods are employed, and the proposed model is compared
with the state-of-the-art models to benchmark the overall effectiveness of the newly
designed system for EEG signals. The results in this study show that the proposed
CT-BS model is more effective than the other commonly used methods and yields a
high accuracy rate of 99%. In comparison with the state-of-the-art algorithms tested
on identical databases describing the capability of the newly proposed FOA-F-SVM
method, the study ascertains the proposed model as a promising medical diagnostic
tool with potential implementation in automated alcoholism detection systems used by
clinicians and other health practitioners. The proposed model, adopted as an expert
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system where EEG data could be classified through advanced pattern recognition
techniques, can assist neurologists and other health professionals in the accurate and
reliable diagnosis and treatment decisions related to alcoholism.

Keywords: alcoholism, electroencephalogram, covariance matrix, support vector machine (SVM), eigenvalues
and fruit fly optimization

INTRODUCTION

The human brain, as an integral part of the central nervous
system (CNS), operates normally by receiving signals from
the body’s organs and providing information to the muscles
(Pelvig et al., 2008). The effects of alcohol on the CNS
can lead to long- and short-term issues such as impaired
vision, impaired hearing, dementia, and depression (Deiner
and Silverstein, 2009). Alcoholism is a common neurological
disorder caused by excessive and repetitive drinking of alcoholic
beverages; the harmful effects of alcoholic beverages could be
physical and mental as well as social, legal, and economic
(Lieber, 1995; Volkow et al., 2017). The heavy consumption
of alcohol disturbs the functioning of the entire nervous
system, especially the brain. It not only weakens the brain
neurons but also leads to cognitive and mobility weakness
(Knight and Longmore, 1994; Oscar-Berman et al., 1997). Based
on the latest reports issued by the WHO https://www.who.
int/health-topics/alcohol#tab=tab_1, three million deaths every
year are caused by the harmful use of alcohol. In addition,
more than 200 disease- and injury-related conditions are
caused by the excessive use of alcohol. An effective method
of recognizing alcoholics from nonalcoholics could decrease
unnecessary economic losses and social problems as well as
expedite diagnosis in clinical settings.

Electroencephalogram (EEG) technology is becoming
increasingly important in the identification, diagnosis, and
treatment of mental and neurodegenerative diseases and
abnormalities (Isaksson et al., 1981). The function of the EEG
assists physicians in establishing an accurate diagnosis. Thus, it
can be utilized as a diagnostic tool to discern alcoholics from
nonalcoholic subjects based on the variation in the signals.

Much effort has been expended in deducing the preferred
classification method in analyzing EEG signals for alcoholism.
For instance, Faust et al. (2008) analyzed normal, epileptic, and
alcoholic EEG signals utilizing fast Fourier transform (FFT) and
autoregressive (AR) model and their techniques. Their results
showed that the power spectral density (PSD) of these signals
was varied. Patidar et al. (2017) applied tunable Q-wavelet
transform (TQWT) to decompose EEG rhythms into different
bands. The principal component analysis (PCA) was utilized for
feature extraction and then fed to a least squares-support-vector
machine (LS-SVM). Cao et al. (2017) utilized a synchronization
likelihood to measure synchronization variations among 28
alcoholics and 28 control subjects. The study showed that the
synchronization for the control group reflected the complexity
levels of the cognitive tasks, while the alcoholics only displayed
erratic changes. Lin et al. (2009) analyzed the clinical alcoholic
and normal control FP1 EEG signals based on a Hilbert-Huang

Transformation. The PCA and WT were also applied to analyze
EEG data by Sun et al. (2006), and other studies have used the
power spectrum of Haar mother wavelet, approximate entropy,
sample entropy, and empirical mode decomposition. Kousarrizi
et al. (2009) applied the power spectrum of the Haar mother
wavelet to extract the features with PCA. The extracted features
were fed to a support vector machine (SVM) and neural
networks. The simulation results showed that their method
achieved a higher rate of classification accuracy than other
methods. Shooshtari and Setarehdan (2010) proposed a reduction
method to select an optimum subset of EEG channels based on
spectral analysis and correlation matrices: their technique was
successful in selecting an optimal number of channels. Kumar
et al. (2012) employed an approximate entropy and sample
entropy to extract entropy features from EEG time series: they
illustrated that the average value of ApEn and SampEn for
an epileptic time series was less than that of a nonepileptic
time series. The study of Priya et al. (2018) has used mode
decomposition (EMD) for features extraction.

Time-frequency (T–F) image information, high-pass infinite
impulse response (IIR) filter with zero phase distortion,
Separability and Correlation analysis (SEPCOR), computer-aided
diagnosis, and EEG rhythms-based features were utilized in many
studies that follow. Bajaj et al. (2017) proposed a new hybrid
method to classify automatically an alcoholic and a control EEG
signal based on T–F image information and found it useful
in conveying key characteristics in EEG signals. The results
of this study were promising. Fattah et al. (2015) proposed a
new method based on a high-pass IIR filter with zero phase
distortion, which aimed to preserve the Gamma band and all
higher frequencies with K-nearest neighbor (KNN) classifier
and leave-one-out cross-validation technique. Their proposed
scheme also classified alcoholic and nonalcoholic subjects with
a higher rate of accuracy than did existing methods. To
select an optimal feature subset automatically and to obtain a
minimum correlation between selected channels and maximum
class separation, a statistical feature selection technique based
on SEPCOR was proposed by Shri and Sriraam (2016); a
significant improvement in the classification accuracy based on
the SEPCOR method was noted in that study compared with
feature selection methods used in previous studies. The study of
Acharya et al. (2014) presented a review of the known features
of EEGs gained from people with alcoholism. EEG-rhythms-
based features for automatic identification of alcohol EEG signals
were also proposed by the study of Taran and Bajaj (2017);
in that study, an extreme learning machine (ELM) and a least
squares SVM classifiers were used to detect nonalcoholic and
alcoholic EEG signals, with the investigators’ techniques showing
an accuracy of 97.92%.
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Recently, there is a trend of using deep learning models
for BP estimation; for example, Gao et al. (2021) designed an
approach that combined recurrence plots and convolutional
neural network to recognize fatigue driving. They showed that
that complex network based on a deep learning model gave a
high recognition rate. Tao et al. (2020) developed an attention-
based convolutional recurrent neural network mode to classify
emotion EEG signals. In that study, the convolutional recurrent
neural network was used to extract spatial characteristics of EEG
signals. Singhal et al. (2021) integrated FFT, a convolution neural
network, and long short-term memory to classify EEG recordings
into an alcoholic or control. Buriro et al. (2021) utilized wavelet
scattering transform with a convolutional neural network and
SVM to classify alcoholism from EEG signals. They found that
wavelet scattering transform-based features with a conventional
neural network had a high potential to detect alcoholic subjects.

As demonstrated in previous studies, finding new techniques
for the detection of alcoholism can help in further clinical
applications and research. The present study provides a new
mechanism for the classification of alcoholism from multichannel
EEG signals. This study has developed a new machine learning
model for the reduction of data prior to the classification
process by integrating the clustering and bootstrapping clustering
technique-based bootstrap (CT-BS) technique in one phase of
model design. To detect and further analyze the abnormalities
in the EEG signal, the eigenvalues of the covariance matrix,
determined from EEG signals, are investigated using a statistical
method by extracting ten statistical features from the eigenvalues
of the covariance matrix. These features are represented by the
mean, median, maximum, minimum, mode, range, SD, variation,
skewness, and kurtosis commonly used in EEG classification
problems. To improve the automated detection system, a
combination-based approach using the F-SVM and fruit fly
optimization algorithm (FOA), i.e., FOA-F-SVM, has been
proposed to correctly classify alcoholism from multichannel EEG
signals. Based on an extensive literature search, the CT-BS-
covariance matrix method with its eigenvalues (Cov-Eig)-based
FOA-F-SVM model is proposed in this study for the first time to
analyze and detect alcoholism from EEG signals. In respect to the
results, compared with the other algorithms, the proposed model,
CT-BS-Cov-Eig-based FOA-F-SVM, has promising performance,
and can, therefore, be adopted as a classification technique for
alcoholism-detection in EEG signals.

This research article is divided into several sections: Section
2 presents the methodology; Section 3 contains a description
and explanation of the datasets, segmentation, sampling, feature
extraction, and feature selection; Section 4 contains performance
evaluation methods; Section 5 includes radius-margin-based
SVM (F-SVM), fruit fly optimization algorithm (FOR), and the
proposed classification model FOR-F-SVM; Section 6 includes
experimental results, evaluation of the performance of the
proposed FOA-F-SVM model, channels selection based on
classification accuracy, comparison of classification accuracy
of the proposed model FOA-F-SVM with KNN, k-means,
and SVM, and comparison the proposed model, FOA-F-SVM,
with previous studies and discussion; and Section 7 presents
the conclusions.

MATERIALS AND METHODS

Experimental Effects of Alcoholism From
Multichannel Electroencephalogram
Dataset
In the work described in this study, we have utilized a
public database known as the machine learning repository
(UCI) Knowledge Discovery in Databases (KDD) Archive
www.kdd.ics.usi.edu from Irvine, CA: the University of
California, Department of Information and Computer
Science (Hettich and Bay, 1999). Data were collected from
122 participants; for each participant, there were 120 trials with
three kinds of stimuli (Zhang et al., 1997). The EEG signals
were recorded from 64 channels, two electrooculography (EOG)
channels, and one reference electrode. The duration of each trial
was one second and the sampling rate of all channel data was
256 Hz. UCI KDD contains three types of datasets, which are
SMNI CMI TEST, SMNI CMI TRAIN, and FULL, respectively.
FULL datasets contain a few all-zero recordings (Zhu et al.,
2011); therefore, the first two databases were utilized. There are
600 recorded files in SMNI CMI TEST and the same number in
the SMNI CMI TRAIN, which equals 1,200 recorded files, and
for each recording, there are signals from 64 electrode caps.

Methodology
This article describes the design of a new technique trained to
classify alcoholism from multichannel EEG signals. A hybrid
method called (CT-BS) by integrating clustering technique (CT)
and bootstrapping (BS) has been developed to reduce the
dimensions of the EEG data. Then, the covariance matrix with
its eigenvalues, coupled with the FOA-F-SVM, is proposed to
predict alcoholism in patients’ recordings. KDD recorded at
the University of California, Department of Information and
Computer Science (Gao et al., 2021) is used for the evaluation
of the proposed model. Figure 1 demonstrates the proposed
model. The EEG signals are divided into four segments; after
that, each segment is sent into the CT-BS method for the
sampling phase. To extract EEG features, the covariance matrix
with its eigenvalues is applied. Following this, to detect and
analyze abnormalities in the EEG signal, the eigenvalues of the
covariance matrix are investigated and ten statistical features
were extracted from eigenvalues of each covariance matrix. These
features are mean, median, maximum, minimum, mode, range,
SD, variation, skewness, and kurtosis. In this study, we used a
nonparametric method, named the Kolmogorov–Smirnov test
(KST), for selecting the most relevant features. The selected
features are fed to the FOA-F-SVM to classify EEG signals.
To estimate the performance of the proposed model, different
types of assessment metrics, such as accuracy, sensitivity, and
specificity, are used in the performance evaluation.

Segmentation
Based on our previous work (Diykh et al., 2018, 2019a,b, 2020,
2021), this project has applied the sliding window technique
to split the EEG signals into their respective periods. It was
found that the proposed method generated highly satisfactory
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FIGURE 1 | A flow diagram representation of the algorithm developed for detection and classification of alcoholism-based EEG signals.

classification accuracy. Mathematically, let an EEG signal be
denoted as: X = x1,x2, .....,xn with n being the data points. In
this study, the EEG signal X was segmented into m segments,
with each segment containing k datapoints (Diykh et al., 2020,
2021). Figure 2 shows an example of an EEG signal being
partitioned into segments.

Clustering Technique Coupled With-Based Bootstrap
To design a powerful sampling technique, a hybrid method that
integrates the CT and BS, (CT-BS), is proposed in this study for
reducing the dimensionality of EEG signals. This also prevents
problems such as bias and variation that may occur when
applying a CT. Not only is BS a method that depends on random
sampling with replacement, but it also estimates the properties
of an estimator. Adapting standard errors for clustering can be
a very important part of any statistical analysis (Hennig, 2007);
further, in terms of statistical modeling, validation is extremely
important in cluster analysis because CTs resort to generate
clustering even for completely homogeneous data groups. Most
CTs suppose a certain paradigm for clusters, and this could be
adequate for some portions of data, but not for others. The issue
of stability in cluster analysis is complex, but it is considered

an important part of cluster validity (Alonso et al., 2007). We
propose to use the bootstrap method to reduce the error rate,
which leads to reducing the bias and variation. The main concept
behind utilizing the nonparametric bootstrap for the estimation
of cluster constancy or stability is the following:

Suppose that there is a mixture distribution K =
∑z

i=1 εiKi
where i = 1, 2, 3, . . ., z, are the distributions generating z “true”
clusters, and εi is the probability that a point from Ki is drawn
(Hira and Gillies, 2015). For a given dataset with n points, the
“true” clustering would then be composed of z clusters, each of
which includes precisely the points generated by Ki, i = 1, 2, 3,...,
z. The dataset, when generated from K, is clustered; the generated
clusters vary from the “true”’ clusters because the clustering
approach introduces an assured bias and variation.

The concept of bias and variation can be expressed via the
maximum Jaccard coefficient. It is a measure of similarity for the
two sets of data, with a range from 0 to 100%. A high percentage
refers that two populations are similar among all the points
created via Ki and the two sets belong to an identical cluster.
The bootstrap is habitually utilized to grant an idea of bias and
variation caused via a certain statistical approach because no true
clustering is known and there is no true underlying distribution.

Frontiers in Neuroinformatics | www.frontiersin.org 4 February 2022 | Volume 15 | Article 808339

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-808339 January 29, 2022 Time: 15:21 # 5

Al-Hadeethi et al. An Eigenvalues Model for EEG Signals Analysis

FIGURE 2 | An example of EEG being partitioned into segments.

To simulate K, the empirical distribution of the observed dataset
is taken. The originally found clusters can be treated as the “true”
ones, and the points can be drawn from the dataset. The mean
maximal Jaccard coefficient can be explained as denoting the
stability of the authentic clusters. Given a number b of bootstrap
replications and a cluster C from the original clustering En(y), the
schema works as below:

Reiterate for i = 1, 2, 3, . . ., b:

• For n points, draw a bootstrap sample yi
n with replacement

from the original dataset yn.
• Calculate the clustering En

(
yi

n
)
.

• Suppose yi
∗ = yn∩yi

n be the points of the original dataset
that are also in the bootstrap sample. Suppose Ci

∗ = C∩yi
n,

4 = En
(
yi

n
)
∩yi
∗.

• If Ci
∗ 6=∅, calculate the maximum Jaccard similarity between

the induced cluster Ci
∗ and the induced new clustering 4

on yi
∗:τC,i = maxD∈4τ

(
Ci
∗, D

)
(i.e., D is the maximizer of

τ
(
Ci
∗, D

)
; else τ C,i = 0).

where Jaccard coefficient (Jaccard, 1901): τ (C, D) =
|C∩D|
|C∪D| , C, D ⊆ yn.

This generates a sequence τ(C,i), i = 1, 2, 3, . . .,b. Based on
(Cameron et al., 2008; Diykh et al., 2019b) they suggested the
mean: τC =

1
b∗
∑b

i=1 τ(C,i) as stability measure (b∗ being the
number of bootstrap replications for which Ci

∗ 6=∅ and is utilised
here because in all other cases τ(C,i) = 0).

Features Extraction
In machine learning, with huge dimensions of data, the necessity
to provide a reliable analysis grows exponentially (Alonso et al.,
2007; Hira and Gillies, 2015). There are diverse types of mental
and neurological conditions where the EEG data size is huge
and requires observation by the clinician over an extended
period. Alcoholism EEG signals may contain valuable and useful
information about the different states of the brain. Since the
biological signal is highly random in both the time and frequency
domain, computerized analysis is indispensable. Due to the
signals being nonstationary, appropriate analysis is fundamental
for EEG to differentiate the alcoholic/control EEG signals.
A covariance matrix method that was used in previous work
(Al-Hadeethi et al., 2020) is proposed to reduce the EEG signal

(and data) dimensionality while extracting the most important
features for better classification accuracy.

The time series (EEG signals) can be defined as a vector of
length X = {x1, x2, .....,xn}. Feature nominees can be integrated
into a feature vector for a point in time series. Let Pi the
number of features. The feature vector for the Nth point of the
subsequence can be manifested as (Ergezer and Leblebicioǧlu,
2016, 2018):

hN =
[
PN1, PN2, ..., PNQ

]
(4.1)

After combining the feature vectors for all points, this study gets
a feature matrix H,

H =

 P11 · · · P1Q
...

PW1 · · · PWQ

 (4.2)

It can be calculated as the covariance of the feature matrix as
follows:

COV =
1

W − 1

W−1∑
i=1

(Hi − µ) (Hi − µ)T (4.3)

where µ is the mean vector of feature vectors {h1, h2, ..., hW}.
Based on separating the time series into L overlapping

subsequences with each having a length W, the general
representation was adapted for the time series classification
problem. In this study, to decrease the dimensionality of data
which leads to enhance detection of possible abnormalities in the
prescribed EEG signal, the eigenvalues of the covariance matrix
are investigated by extracting 10 features from each eigenvector.

In this research, the data were derived from multichannel EEG
signals, where each channel consists of a matrix (256 × 30),
where 256 represents the number of rows and 30 represents the
number of columns. For more clarification, we will explain using
the following example: an experiment of 61channels that consists
of a matrix (15,616× 30) was used in this article. The time series
was divided into four segments (n = 4), each segment containing
(3,904× 30) data points. Then, each segment of 3,904 datapoints
was divided into 32 clusters with each cluster containing 120
data points. Based on our previous work (Zhu et al., 2011), it
was found that dividing each EEG segment into 32 clusters gave
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satisfactory results. As a result, each segment was represented
by a matrix of 120 × 32. To reduce the dimensionality of
each segment, the sampling technique was applied to reduce the
number of clusters. The number of clusters was reduced from 32
to 30. Consequently, each segment was represented by 120 × 30
instead of 120 × 32. To remove any redundant information
and extract features from each cluster, each cluster was divided
into 4 sub-clusters, and a covariance matrix was applied to each
subcluster, from each its eigenvector, 10 statistical features were
selected to form a vector of 40 statistical features. As a result, each
segment was represented by a matrix of 40 × 30, where 40 refers
to the number of features and 30 indicates the number of clusters.

Feature Selection
In the work described in this study, one of the primary objectives
of conducting many experiments was to find the optimal features
that improved results. The features briefly summarize the most
important information in the data, thus, this is used in cases
where there is a large number of dimensions (Abdulla et al.,
2019). Selecting the optimal features could lead to a high
rate of classification accuracy. Therefore, six experiments were
conducted on EEG channels to determine the features set using
KST. More details are given in the results section.

CLASSIFICATION APPROACH BASED
ON SVM

Radius-Margin-Based Support Vector
Machine
Given the training set q =

(
x1, y1

)
,
(
xn, yn

)
, the fundamental

SVM paradigm is displayed below. The paradigm only deems
the maximization of margin. However, an accurate description
can explain that the generalization error bounds of SVM are the
function of radius and margin (Hedges et al., 1999).

min
d,b,δ

1
2|| (n) ||22 + Z

∑
i

δi

s.t. yi

(
nTxib

)
≥1− δi∀i (4.4)

δi = 0, i = 1, 2, 3, ...,

Given the radius, a group of researchers, (Ergezer and
Leblebicioǧlu, 2016) have proposed a novel formula 1

2 R≤R≤R.

Let the matrix K = ATA where A is denoted as transform matrix,
the slack variables δi (i = 1, 2, 3, n). The paradigm of linear
F-SVM is represented in (2):

min
w, b,δ,K

1
2

(
wTK−1w

)
Z

n∑
i=1

δi + ρtr (KS)

s.t. yi

(
wTxib

)
≥1− δi ∀i (4.5)

δi = 0, i = 1, 2, 3, ...,

K � 0

Wu et al. (2018) solved the nonlinear classification problems
by incorporating kernel PCA into linear F-SVM. The proportion
of cumulative eigenvalues to the sum of all eigenvalues is set as
0.9 in the dimension selection of kernel PCA. The paradigm can
be formulated as follows:

min1
2

(
wTK−1w

)
Z

n∑
i=1

δi + ρtr
(
KNq

)
s.t. yi

(
wT fi + b

)
= 1− δi ∀i (4.6)

δi = 0, i = 1, 2, 3, ...,

K � 0

where Nq =
∑n

i=1 wiqiqT
i , qi = QT

∅ (xi) , Q = [q1, q2, q3, ..., qGo]

is indicated tothe eigenvectors corresponding to the first G
eigenvalues. The mapping function of kernel F-SVM that is
always utilized is radial-basis-function (RBF), i.e.,

(
xi, xj

)
= exp(

−γ||xi − xj||
2), where γ is the specified parameter to limit the

width of the RBF (Chen et al., 2014). Between the minimization
of training error and maximization of the classification margin
in the paradigm, factor Z controls the trade-off (Tharwat
and Hassanien, 2018). The classification accuracy differs
between these two parameters. Therefore, defining the values
of the parameters is essential to the performance of the
SVM classifier.

Fruit Fly Optimization Algorithm
The fruit fly optimization algorithm is based on the foraging
behavior of the insect after which it is named (Pan, 2012). The
main concept of the algorithm is that the insect primarily flies
toward food via utilizing its olfactory sensory neurons: one of
the groups of neurons will emit a pheromone when it is near
to food. Thereafter, the fruit fly will change its direction and fly
to meet its peers. Through continually updating its status and
flying direction, the fruit fly will finally get nearer to the food, the
position of which is the optimum solution. The algorithm will be
completed if the iteration reaches maximization or the outcome
is to archive the permissible accuracy. The algorithm can be split
into a number of steps:

1) The position of the fruit fly is random initialization
(InitX, InitY).

2) For each fruit fly, given a random direction and distance to
hunt for food via its olfactory sensory neurons:

Xi = X + Random value

Yi = Y + Random value

3) Due to the unknown exact location of food, the distance
will be computed from the location of the fly to the origin;
thereafter, the mutual distance is computed. As a result,
the value will be defined as a smell concentration judgment
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value (d):

Disti =
(
X2

i + Y2
i
)1/2

d1i =
1

Disti

4) to detect a better smell concentration, set the above
smell concentricity judgment value into smell concentricity
judgment function:

Smelli = Function (ni)

5) discover individuals with the raised concentricity in the
population:

[
bestSmell, bestIndex

]
= max(Smell)

6) preserve the most appropriate concentricity and an
assortment of the fruit fly, and other fruit flies to that
coordinates utilizing vision:

X = X
(
bestindex

)
Y = Y(bestindex)

7) In Steps 2-5, the iterative optimization was performed.
Thereafter, judge whether the concentricity is higher than
that of the former level. If so, perform Step 6.

Classification Based on FOA-F-SVM
Model
This section introduces the main idea used in developing the
newly proposed FOA-F-SVM system. In order to improve and
further develop the performance accuracy of the traditional
SVM model, the F-SVM for joint learning of the feature
transformation and SVM classifier integrated with FOA were
proposed for the analysis of alcoholism through multichannel
EEG signals. As shown in Figure 3, the proposed model
consists of different stages. The first five steps represent internal
parameter optimization and the next five steps display the
external evaluation of the classification performance. The path
of the proposed model is this: tune parameters depend on the
FOA, after that gain an optimum classifier. Eventually, by testing
the dataset through external assessment, the performance of the
classifier was measured.

The fruit fly optimization algorithm was utilized to set the
parameters in the section of parameter optimization. Depending
on the RBF kernel of the SVM classifier, the fruit fly’s solution
was used to represent the classifier parameters Z and γ. To direct
the updating of the fruit fly location, the rate of classification
accuracy of the structure SVM classifier was used. The optimum
solution was gained via the iterative optimization procedure,
depending on the location. The SVM classifier was built up with
the optimum parameters gained above in the external assessment
section; thereafter, the eventual classification outcomes were
gained on the test set via this classifier.

Optimization Algorithm
In the FOA-F-SVM model, there are many unknown variables,
such as in the formula (11). To solve obscure variables (matrix K
and hyperplane (w,b)) of the FOA-F-SVM model, there are three
main steps:

(i) Initiating K
Suppose the weighted covariance Nq performs eigenvalues
decomposition, i.e., Nq = D

∧
DT , where

∧
= Diag{λ1,2...,

λn} and λ is arranged in order from highest to lowest. After
algebraic computation, matrix K0 can be denoted as K0 =

D∧−(1/2)DT . Due to K = ATA, the transformation matrix A
can be written as A0 = ∧

−(1/4)DT . Therefore, the samples
are transformed into z = dataset ∗ A0.
(ii) Resolve hyperplane (w, b)
This step consists of an explanation of how the FOA
model is adopted to gain an optimum SVM classifier. The
particular operation is that: the range of each parameter
is given; thereafter, various values are randomly allocated
within this range for every fruit fly. In the meantime,
the fruit fly is represented in every group solution.
Subsequently, find the preferable of these solutions. The
finding operation includes two portions: via a smell search
procedure, every fruit fly adjusts its position; based on
the preferable fruit fly through the vision-based search
procedure, the worst fruit fly in the population will be
encouraged. This will then lead to obtaining a solution
of the parameters via the iteration. Eventually, the test
samples from z and gained optimum parameters are fed to
the F-SVM prediction model.
(iii) Resolve matrix K
Now, having gained the SVM classifier, formula (11) can be
formulated again as follows:

min
K f (K) = 1

2

(
wTK−1w

)
Z

n∑
i=1

δi + ρtr (KN) (4.7)

s.t. K � 0

The function is cambered and is able to be differentiated
for K, thus, to solve K, the gradient-projection method was
chosen. The derived function for this term is given below.
Thereafter, update K via Kh1 = PN(Kh − t1∇f (Kh)) until
K converges.

∇f (K) = −
1
2

K−1wwTK−1
+ ρN (4.8)

(iv) From all the illustrations and explanations above,
it is clear that the matrix K is a significant parameter
in the FOA-F-SVM. Only via initializing K, it can
transform the dataset into a new feature space. Thereafter,
an SVM classifier is gained via optimizing parameters
through FOA. Eventually, an optimal classifier is gained by
constantly updating K.
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FIGURE 3 | Flow diagram representation algorithm of the proposed FOA-F-SVM model.

PERFORMANCE EVALUATION
METHODS

It is important to evaluate the performance of any classification
or detection system. A set of methods was used to assess the
performance of the alcoholism classification and detection system
based on the proposed FOA-F-SVM technique, as described
below:

(a) Accuracy (Acc.) is a degree of proximity of a measured
or calculated quantity to its actual (true) value. The term
accuracy is utilized to assess the performance of the SVM
method depending on the formula as given below:

Acc. = (TPTN)/(TPTNFPFN) (4.9)

(b) Sensitivity (Sen.) is a statistical measure of the performance
of a binary classification test used to measure the rate of the
real positive prediction. This is defined as follows:

Sen. = TP/(TPFN) (4.10)

(c) Specificity (Spe.) is utilized to measure the proportion of
the real negative predication and is defined as follows:

Spe. = TN/(TNFP) (4.11)

(d) Predictive positive value (PPV) is defined as the rate of
positives that correspond to the presence of the condition
described via the formula as below:

PPV = TP/(TPFP) (4.12)

(e) Predictive negative value (PNV) is the ratio of negatives
that correspond to the absence of the condition and is
defined as follows:

PNV = TN/(TNFN) (4.13)

EXPERIMENTAL RESULTS

To conduct the simulation effectively, the same number of
iterations and the same population size were set for particle
swarm optimization (PSO), genetic algorithm (GA), and FOA.
According to our preliminary experiment, when the number
of maximum iteration and population size are, respectively,
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set as 100 and 20, the methods involved result in satisfactory
classification performance. Furthermore, in the experiment,
parameter Z is in range Z ∈ {2−10,1,20

}, parameter g is set
as g ∈ {220,1,10

}. The parameters of each model are as follows:
for FOA-F-SVM, the x and y are denoted to initialize the
location of fruit fly and the search direction ax, bx, ay, and by
are set as 10, 20, 20, and 10, respectively, in the distance
function. For PSO-SVM, the maximum velocity is 0.5 times the
maximum parameter Z. The learning factors Z1, Z2 were set
as 1.6, 1.5, and the intermediate variable w was set as 1 in the
updating velocity function and updating location function. All
experiments were carried out on a desktop computer with a
CPU (2.30 GHz) and 8.00 GB RAM under the MATLAB 2020
programming environment.

The experimental EEG data used to assist the proposed
model were obtained from the University of California, Irvine
Knowledge Discovery in Databases Archive UCI KDD. The EEG
signals were collected from 122 participants, and each subject
performed 120 trials with three types of stimuli (Tao et al., 2020).
The recordings were obtained from 61 channel EEG signals,
two EOG channels, and one reference electrode. There are three
datasets, named SMNI_CMI_- TRAIN, SMNI_CMI_TEST, and
FULL, respectively. In this study, only the first two databases were
utilized because the full datasets contain a few all-zero recordings.
There were 600 recorded files in SMNI_CMI_TRAIN, with each
recording containing the signals from 64 electrodes caps. The 64
electrodes are FC4, FC3, C6, C5, F2, F1, TP8, TP7, AFZ, CP3, CP4,
P5, P6, C1, C2, PO7, FP1, FP2, F7, F8, AF1, AF2, FZ, F4, F3, FC6,
FC5, FC2, FC1, T8, T7, CZ, C3, C4, CP5, CP6, CP1, CP2, P3, P4,
PZ, P8, P7, PO2, PO1, O2, O1, X, AF7, AF8, F5, F6, FT7, FT8, FPZ,
PO8, FCZ, POZ, OZ, P2, P1, CPZ, nd, and Y. The electrodes X
and Y are EOG signals, and nd is reference electrode. The EOG
and nd were removed in our analysis. However, the features were
extracted from 61 channels.

Features Selection Using KST
In this section, six experiments were conducted to select the most
powerful features to classify EEG signals.

In the first experiment, 11 channels were tested (AF1, AF2,
AF7, AF8, AFZ, C1, C2, C3, C4, C5, and C6) to determine
whether these channels were adequate to analyze the alcoholism
signals. Table 1 reports the results of feature selection using KST.
Based on statistical analysis, the results showed that using these
channels could explain 60% of the data.

In the second experiment, the channels AF8, C1, C2, C3,
C4, CP1, CP5, CP6, FC5, FT7, P8, PO8, and P were utilized
in the second experiment below. The outcomes indicate that
the acceptance rate was high, reaching 90%, which means that
the signal in these channels was suitable for detecting the EEG
signals. Table 2 reports the obtained results.

In the third experiment, the number of channels tested was
23. The success rate was 70%. The channels were CP1, CP2, CP3,
CP4, CP5, CP6, CPZ, CZ, F1, F2, F3, F4, F5, F6, F7, F8, FC1,
FC2, FC3, FC4, FC5, FC6, and FCZ. Table 3 reports the results
of experiment 3.

In the fourth experiment, the acceptance rate was 50%. A total
of twenty-eight channels passed the test in this experiment. The

channels used in this experiment were FP1, FP2, FPZ, FT7, FT8,
FZ, O1, O2, OZ, P1, P2, P3, P4, P5, P6, P7, P8, PO1, PO2, PO7, PO8,
POZ, PZ, S1, T7, T8, TP7, and TP8 (Table 4).

In the fifth experiment, the channels AF1, AF2, AF7, AF8, AFZ,
FP1, FP2, FPZ, FT7, FT8, P1, P2, P3, P4, P5, P6, P6, P7, P8, PO1,
PO2, PO7, PO8, POZ, F1, F2, F3, F4, F5, F6, F7, F8, T7, T8, TP7,

TABLE 1 | Feature set outcome of Experiment No. 1.

Features Testing Training Compared with
the p-values

Controlled vs. Alcohol Controlled vs. Alcohol

Mean 0.1088 0.2003 Rejected

Max 0.46 0.342 Rejected

Med 0.0017 2.9480 × 10−09 Accepted

Min 0.011 0.02 Accepted

Mod 0.011 0.02 Accepted

Range 1.7552 × 10−05 0.034 Accepted

Skew 0.1088 0.94 Rejected

Kur 0.1 0.93 Rejected

Std. 2.0212 × 10−04 0.01088 Accepted

Var. 1.7552 × 10−05 0.02003 Accepted

TABLE 2 | Feature set outcome of Experiment No. 2.

Features Testing Training Compared with
the p-values

Controlled vs. Alcohol Controlled vs. Alcohol

Mean 5.5870 × 10−08 0.02585 Accepted

Max 2.0480 × 10−09 0.00455 Accepted

Med 1.7973 × 10−14 3.5202 × 10−10 Accepted

Min 1.4977 × 10−13 0.00165 Accepted

Mod 1.4977 × 10−13 0.00165 Accepted

Range 2.0480 × 10−09 2.6199 × 10−07 Accepted

Skew 0.10875 0.935 Rejected

Kur 0.045 6.1578 × 10−04 Accepted

Std. 0.00465 0.045 Accepted

Var. 1.1088 × 10−08 0.00165 Accepted

TABLE 3 | Feature set outcome of Experiment No. 3.

Features Testing Training Compared with
the p-values

Controlled vs Alcohol Controlled vs Alcohol

Mean 0.055 0.3420 Rejected

Max 0.0259 0.0017 Accepted

Med 0.0113 1.7552 × 10−05 Accepted

Min 1.1615 × 10−12 5.6313 × 10−11 Accepted

Mod 1.1615 × 10−12 5.6313 × 10−11 Accepted

Range 0.05 0.0113 Accepted

Skew 0.2003 0.76 Rejected

Kur 0.5372 0.9360 Rejected

Std. 6.1578 × 10−04 0.011 Accepted

Var. 0.0113 0.002 Accepted
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TABLE 4 | Feature set outcome of Experiment No. 4.

Features Testing Training Compared with
the p-values

Controlled vs Alcohol Controlled vs Alcohol

Mean 0.34 0.2 Rejected

Max 0.53 0.20 Rejected

Med 0.002 0.005 Accepted

Min 0.06 0.2003 Rejected

Mod 0.06 0.2003 Rejected

Range 0.012 0.0017 Accepted

Skew 0.8 0.54 Rejected

Kur 0.026 0.0259 Accepted

Std. 0.005 0.0046 Accepted

Var. 6.1578 × 10−04 0.005 Accepted

TABLE 5 | Feature set outcome of Experiment No. 5.

Features Testing Training Compared with the
p-values

Controlled vs Alcohol Controlled vs Alcohol

Mean 6.1740 × 10−05 0.012 Accepted

Max 2.0212 × 10−04 0.109 Accepted

Med 1.7973 × 10−14 0.03 Accepted

Min 0.34 0.9 Rejected

Mod 0.34 0.9 Rejected

Range 2.0212 × 10−04 0.005 Accepted

Skew 0.55 0.54 Rejected

Kur 0.93 0.4 Rejected

Std. 0.76 0.46 Rejected

Var. 0.1088 0.01 Rejected

TABLE 6 | Feature set outcome of Experiment No. 6.

Features Testing Training Compared with the
p-values

Controlled vs Alcohol Controlled vs Alcohol

Mean 0.045 0.0446 Accepted

Max 0.3420 0.1088 Rejected

Med 6.1740 × 10−05 1.7973 × 10−14 Accepted

Min 1.4977 × 10−13 0.026 Accepted

Mod 1.4977 × 10−13 0.026 Accepted

Range 0.011 0.03 Accepted

Skew 0.1 0.76 Rejected

Kur 0.046 0.034 Accepted

Std. 0.00238 0.01 Accepted

Var. 0.0476 0.02 Accepted

TABLE 7 | Classification accuracy of the comparison among FOA-F-SV,
PSO-SVM, GA-SVM, F-SVM, and SVM.

Approach Accuracy Sensitivity Specificity

FOA-F-SVM 99.2% 98.4% 98.5%

PSO-SVM 95.5% 94.3% 95.9%

GA-SVM 96.5% 95.2% 95.3%

F-SVM 92.5% 91.7% 92.4%

SVM 85.5% 86.2% 84.6%

and TP8 were used in this experiment. The acceptance rate was
very low, that is, 40%. This indicates that the channels used were
not valid for classification (Table 5).

In the sixth experiment, the results obtained from Experiment
No. 6 indicate that the use of 61 channels was efficient in the
analysis. They could, thus, be used to classify EEG signals. The
61 channels were as follows: FC4, FC3, C6, C5, F2, F1, TP8, TP7,
AFZ, CP3, CP4, P5, P6, C1, C2, PO7, FP1, FP2, F7, F8, AF1, AF2,
FZ, F4, F3, FC6, FC5, FC2, FC1, T8, T7, CZ, C3, C4, CP5, CP6, CP1,
CP2, P3, P4, PZ, P8, P7, PO2, PO1, O2, O1, AF7, AF8, F5, F6, FT7,
FT8, FPZ, PO8, FCZ, POZ, OZ, P2, P1, CPZ (Table 6).

As a result, with the highest acceptance rates, the second
and sixth experiments performed the best. The last group of
features utilized to identify each pair of EEG groups (Controlled
vs. Alcoholic) were [Mean, Median, Minimum, Mode, Range,
Kurtosis, SD, and Variance]. Therefore, by conducting a number
of experiments, we were able to thoroughly investigate the feature
selection in order to select the most effective feature set to
recognize EEG groups.

Evaluating the Performance of the
Proposed FOA-F-SVM Model
To evaluate the performance of the FOA-F-SVM in alcoholic
EEG signals, a comparison was made with SVM, PSO-SVM,
GA-SVM, and F-SVM. Table 7 shows the average results of
the comparison among the FOA-F-SVM, PSO-SVM, GA-SVM,
F-SVM, and SVM. Based on the results, the performance of
the FOA-F-SVM attains higher classification accuracy than other
approaches. However, the PSO-SVM and GA-SVM scored the
second highest results, and they outperformed the basic SVM.
These research findings indicate that tuning parameters were
important in improving classification accuracy of EEG signals.
In addition, the classification accuracy obtained by the F-SVM
is higher than the basic SVM.

Figure 4 shows the detailed classification accuracy of 10 runs,
as well the results of FOA-F-SVM, which are up to 98%, while the
results of PSO-SVM and GA-SVM are distributed in the range
from 90 to 94%. While the F-SVM and SVM gained a rate of
accuracy from 86 to 93%. As a result, it can be observed that
the FOA-F-SVM obtained the highest accuracy on each run and
the best value is 100%. However, because of the robustness of the
proposed method, the average result is the highest with 99.2%.

Channel Selection Based on
Classification Accuracy
The accuracy of the proposed model based on 61-channel EEG
signals is shown in Figure 5. In this experiment, the features
were extracted from each channel and forwarded to the proposed
model. The results show that not all channels yielded high
classification accuracy. As a result, 13 optimal channels, including
AF8, C1, C2, C3, C4, CP1, CP5, CP6, FC5, FT7, P8, PO8, PZ, were
selected and used to classify EEG signals as shown in Figure 5.

The results in Figure 5 are compatible with the results
obtained by statistical metrics in the feature selection and
enhanced the results (not all channels gave high classification
accuracy). The present study thus demonstrates the ability
of the proposed model to assess alcoholic EEG signals from
multichannel EEG signals. The extracted features from electrodes
C1, C3, and FC5 were found to be significantly effective in
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FIGURE 4 | The detailed classification accuracy of 10 folds.

FIGURE 5 | The accuracy based on EEG channels.

classifying EEG signals: an accuracy of 87.6 % was achieved. In
addition, it was found that when the 13 channels were used to
extract the features, the classification accuracy was close to the
whole 61-channel performance. Table 8 presents the classification
accuracy based on the number of channels.

DISCUSSION

This study carried out an analysis of EEG signals to detect the
prevalence and health effects of alcoholism from multichannel
EEG signals. We integrated the CT with BS, CT-BS, to reduce

TABLE 8 | Classification accuracy based on the number channels.

Channel No. Accuracy Sensitivity Specificity

C1, C3 and FC5 85.6% 83.8% 82.4%

AF8, C1, C2, C3, C4, CP1, CP5,
CP6, FC5, FT7, P8, PO8, P

99.4% 98.7% 99.1%

All 61 channels 99.5% 98.3% 99.2%

the dimensionality of EEG signals. Then, the covariance matrix
with its eigenvalues was applied to investigate the EEG signals,
and to extract the important features. Arithmetic operators based
on the KST technique were utilized to remove the noisy features
from the obtained features set. The FOA-F-SVM was proposed to
classify the EEG signals. The proposed FOA-F-SVM classification
mode was compared with different methods such as SVM, PSO-
SVM, GA-SVM, and F-SVM. In this section, we summarized the
following main findings:

(1) The novelty of this article lies in the utilization of CT and
BS (CT-BS) coupled with the covariance matrix for feature
extraction. It has been shown that the low dimensionality
of EEG signals achieved by CT-BS can efficiently improve
the classification rate. In comparison to other dimension-
reduction techniques such as linear discriminate analysis
(LDA) and PCA, the experimental results indicate that
CT-BS performs better than PCA and LDA, and the
classification rate of the FOA-F-SVM was increased with
CT-BS by more than 9%. Table 9 reports the classification
rate based on dimension reduction techniques.
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TABLE 9 | Classification rate based on different features reduction algorithms.

Technique \metrics Accuracy Sensitivity Specificity

PCA with OA-F-SVM 89.1 90.2 88.2

LDA with OA-F-SVM 87.4 85.3 86.3

CT-BS with OA-F-SVM 99.2 98.1 99.3

(2) The proposed approach is a simple classification method
for the identification of normal versus alcoholic EEG
signals. The complexity of the proposed method was tested
using a different number of samples. The results of the
simulation showed that the proposed method achieved
a better performance among traditional classification
algorithms with acceptable time consumption. Therefore,
this method could be a practical and feasible model for a
real-time brain–computer interface (BCI) system. Figure 6
reports the run time of the proposed classification model
compared with LS-SVM, k-nearest, f-SVM, and GA-SVM.
It can be noticed that the proposed model is faster than
LS-SVM, k-nearest, f-SVM, and GA-SVM.

(3) The proposed model is still at the experimental stage.
Larger datasets are required to make further validation of
this model before it could be utilized as a tool in real-
time applications.

(4) In this article, a small EEG dataset was used to evaluate the
proposed model. The next work will focus on the use of a
large EEG dataset such as EEG sleep stages, aesthetic EEG
data, to analyze the performance of the proposed model
under a huge dataset. This can guide us to improve the
effectiveness of the proposed model.

(5) Although the CT-BS technique improved the performance
of the classification model, it took more time than the PCA
and LDA. In the future, we will work on how to reduce the
complexity time of the CT-BS model.

(6) Comparison of classification accuracy of the proposed
model FOA-F-SVM with KNN, k-means, and SVM: In this
experiment, on the performance of the proposed model,
FOA-F-SVM based on 13 EEG channels was reported.
For further verification and to reach the highest level of
reliability, the results were compared with KNN, k-means,

FIGURE 6 | A Comparison of run time among the proposed model with other.

FIGURE 7 | A Comparison among the proposed model with SVM, k-means, and KNN.
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TABLE 10 | Comparison with existing methods using the same database.

Authors Features/ techniques Analysis Accuracy

Acharya et al. (2012) APPENT, SAMENT, LLE SVM 91.7%

Faust et al. (2013b) WPT, energy measures KNN 95.8%

Patidar et al. (2017) TQWT, CE LS-SVM 97.02%

Faust et al. (2013a) HOS cumulants FSC 92.4%

Kannathal et al. (2005) CD, LLE, entropy, H Unique ranges 90%

Anuragi and Sisodia (2020) Empirical wavelet transform LS-SVM, KNN 98.75%

Bavkar et al. (2021) Empirical Mode Decomposition KNN 93.87%

The proposed model CT-BS-Cov-Eig FOA-F-SVM 99%

and SVM. To the best of our knowledge after extensive
research, this is the first time the FOA-F-SVM model has
been proposed and applied to the analysis and detection of
alcoholism EEG signals. The results showed that compared
to other algorithms, the proposed model FOA-F-SVM
has promising performance that can be adopted as a
classification technique of alcoholism EEG signals. The
database SMNI_CMI_TRAIN was used for the training,
and the database SMNI_CMI_TEST was utilized for the
testing set. To show clearly the classification results based
on the 13 selected channels, Figure 7 depicts the accuracy
of the proposed model FOA-F-SVM with KNN, k-means,
and SVM. The proposed model outperformed KNN,
k-means, and SVM over all the 13 channels. In addition,
the proposed model achieves 99% when all channels are
used for the classification of EEG signals.

(7) Many studies were focused on finding a system that could
be utilized for the automated detection of alcoholism
EEG signals to estimate the effect of treatment and help
significantly with clinical diagnosis. In this point, we shall
review some of the previous studies that used the same data
as this work did; for each, we shall provide a comparison
of results. The identification of nonlinear features such
as SAMENT, APPENT, largest Lyapunov exponent (LLE),
and higher-order spectra (HOS) with LS-SVM classifier
was used by Acharya et al. (2012), who obtained an
average classification accuracy of 91.7%. However, the
classification accuracy that is achieved by the proposed
model is significantly higher than that of Acharya et al.
(2012). Another group of researchers (Faust et al., 2013b)
has improved an automated system utilizing wavelet
packet-based energy measures with the KNN classifier; this
method achieved a classification accuracy of 95.8%, which
is less than the rate obtained by the proposed model.

A study by Patidar et al. (2017) suggested an automated system
for the diagnosis of alcoholism. The study utilised TQWT to
decompose EEG signals into various bands (SBS). Compared
to the results obtained by the proposed method, the model
of Patidar et al. (2017) obtained a classification accuracy of
97.02%, which is, again, less than our classification accuracy
of 99%. For the detection of alcoholic-related changes in EEG
signals, (Pan, 2012) have proposed the use of HOS cumulants-
based features. Based on the fuzzy Sugeno classifier (FSC),

the investigators achieved a classification accuracy of 92.4%,
which is considerably less than the 99% obtained in the present
work. Finally, the largest Lyapunov exponent (LLE), entropies,
correlation dimension (CD), and Hurst exponent (H) were
proposed by (Kannathal et al., 2005) to obtain the features for
detecting alcoholism from EEG signals: the rate of accuracy was
90%, which is considerably less than the classification accuracy
achieved by the model proposed in this study. Anuragi et al.
(Anuragi and Sisodia, 2020) proposed an adaptive filtering model
to extract time–frequency-domain characteristics from Hilbert–
Huang transform. LS-SVM and KNN were used to classify the
extracted features into alcoholic and normal signals. Bavkar et al.,
2021) also applied empirical mode decomposition to classify
alcoholic EEG signals. The extracted features using empirical
mode decomposing were sent to the KNN classifier.

The results in Table 10 show that the method proposed
was superior to other studies and obtained a higher level of
accuracy. After conducting many experiments and various types
of comparisons, it has become clear that the proposed CT-BS-
OFA-F-SVM model has a promising future in analyzing and
classifying EEG signals with a high rate of accuracy. It was
also noted that most of the previous studies were working on
developing one part of the analysis, whereas, in this study, the
focus was on most of the analysis steps.

CONCLUSION

Accurate detection algorithms can be used effectively to help
clinical research as a fast, reliable, and easy-to-use tool in
the diagnosis and monitoring of neurological disorders and
in alcoholism. We developed an effective method that was
designed for sampling by integrating CT and BS (CT-BS)
in one phase. To detect and analyze abnormalities in the
EEG signal, the eigenvalues of the covariance matrix were
investigated utilizing a statistical method that extracted ten
statistical features from the eigenvalues of the covariance matrix.
To classify EEG signals, the FOA-F-SVM was proposed to
detect and analyze multichannel EEG signals. The proposed
model was compared to previous studies, and the results
showed that the proposed model was superior, with a high
accuracy rate of 99%.

The acquired results clearly illustrate the superior
performance of the proposed CT-BS model coupled with
FOA-F-SVM to the existing state-of-the-art methods. The
proposed model can be used to assist neurologists and other
medical specialists in the precise diagnosis of alcoholism EEG
signals. Future studies may investigate the improvement of the
performance of the proposed model by decreasing the number
of features used in this initial study. Also, because there is a
great similarity between the results of feature selection and
the results of channel selection, the possibility of proposing
and implementing feature selection methods will be studied to
find the optimal channels. Furthermore, with regard to the few
numbers of studies focused on designing feature extraction as
well as a detection model for the reliable diagnosis of alcoholism
EEG signals, there is a need for further research in this area.
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Ergezer, H., and Leblebicioǧlu, K. (2018). Time series classification with feature
covariance matrices. Knowl. Inf. Syst. 55, 695–718. doi: 10.1007/s10115-017-
1098-1

Fattah, S., Fatima, K., and Shahnaz, C. (2015). An approach for classifying alcoholic
and non-alcoholic persons based on time domain features extracted from EEG
signals. Paper Presented at the 2015 IEEE International WIE Conference on
Electrical and Computer Engineering (WIECON-ECE), Dhaka. doi: 10.1109/
WIECON-ECE.2015.7443972

Faust, O., Acharya, R., Allen, A. R., and Lin, C. (2008). Analysis of EEG signals
during epileptic and alcoholic states using AR modeling techniques. IRBM 29,
44–52. doi: 10.1016/j.rbmret.2007.11.003

Faust, O., Yanti, R., and Yu, W. (2013a). Automated detection of alcohol related
changes in electroencephalograph signals. J. Med. Imaging Health Inform. 3,
333–339. doi: 10.1166/jmihi.2013.1170

Faust, O., Yu, W., and Kadri, N. A. (2013b). Computer-based identification of
normal and alcoholic EEG signals using wavelet packets and energy measures.
J. Mech. Med. Biol. 13:1350033. doi: 10.1142/S0219519413500334

Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., et al. (2021). Complex
networks and deep learning for EEG signal analysis. Cogn. Neurodyn. 15,
369–388. doi: 10.1007/s11571-020-09626-1

Hedges, L. V., Gurevitch, J., and Curtis, P. S. (1999). The meta-analysis of response
ratios in experimental ecology. Ecology 80, 1150–1156. doi: 10.1890/0012-
9658(1999)080[1150:TMAORR]2.0.CO;2

Hennig, C. (2007). Cluster-wise assessment of cluster stability. Comput. Stat. Data
Anal. 52, 258–271. doi: 10.1016/j.csda.2006.11.025

Hettich, S., and Bay, S. (1999). The UCI KDD Archive. (Irvine, CA: University of
California), 152.

Hira, Z. M., and Gillies, D. F. (2015). A review of feature selection and
feature extraction methods applied on microarray data. Adv. Bioinformatics
2015:198363. doi: 10.1155/2015/198363

Isaksson, A., Wennberg, A., and Zetterberg, L. H. (1981). Computer analysis of
EEG signals with parametric models. Proc. IEEE 69, 451–461. doi: 10.1109/
PROC.1981.11988

Frontiers in Neuroinformatics | www.frontiersin.org 14 February 2022 | Volume 15 | Article 808339

https://kdd.ics.uci.edu/databases/eeg/eeg.html
https://kdd.ics.uci.edu/databases/eeg/eeg.html
https://doi.org/10.1016/j.eswa.2019.07.007
https://doi.org/10.1016/j.eswa.2019.07.007
https://doi.org/10.1016/j.yebeh.2014.10.001
https://doi.org/10.1016/j.yebeh.2014.10.001
https://doi.org/10.1142/S0129065712500116
https://doi.org/10.1016/j.eswa.2020.113676
https://doi.org/10.1109/TITS.2007.894194
https://doi.org/10.1109/TITS.2007.894194
https://doi.org/10.1016/j.bspc.2019.101777
https://doi.org/10.1007/s00521-016-2276-x
https://doi.org/10.1016/j.bbe.2020.11.001
https://doi.org/10.1016/j.compbiomed.2021.104969
https://doi.org/10.1016/j.compbiomed.2021.104969
https://doi.org/10.1162/rest.90.3.414
https://doi.org/10.1016/j.irbm.2017.02.002
https://doi.org/10.1016/j.irbm.2017.02.002
https://doi.org/10.1016/j.amc.2014.04.039
https://doi.org/10.1016/j.amc.2014.04.039
https://doi.org/10.1093/bja/aep291
https://doi.org/10.1016/j.bspc.2019.101611
https://doi.org/10.1016/j.bspc.2019.101611
https://doi.org/10.1016/j.artmed.2020.102005
https://doi.org/10.1016/j.cmpb.2019.105116
https://doi.org/10.1016/j.measurement.2018.01.024
https://doi.org/10.1049/iet-smt.2018.5393
https://doi.org/10.1049/iet-smt.2018.5393
https://doi.org/10.1007/978-3-319-48881-3_51
https://doi.org/10.1007/978-3-319-48881-3_51
https://doi.org/10.1007/s10115-017-1098-1
https://doi.org/10.1007/s10115-017-1098-1
https://doi.org/10.1109/WIECON-ECE.2015.7443972
https://doi.org/10.1109/WIECON-ECE.2015.7443972
https://doi.org/10.1016/j.rbmret.2007.11.003
https://doi.org/10.1166/jmihi.2013.1170
https://doi.org/10.1142/S0219519413500334
https://doi.org/10.1007/s11571-020-09626-1
https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
https://doi.org/10.1016/j.csda.2006.11.025
https://doi.org/10.1155/2015/198363
https://doi.org/10.1109/PROC.1981.11988
https://doi.org/10.1109/PROC.1981.11988
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-808339 January 29, 2022 Time: 15:21 # 15

Al-Hadeethi et al. An Eigenvalues Model for EEG Signals Analysis

Jaccard, P. (1901). Étude Comparative de la distribuition florale dans une portion
des Alpes et des Jura. Bull. Soc. Vaudoise Sci. Nat. 7, 547–579.

Kannathal, N., Acharya, U. R., Lim, C. M., and Sadasivan, P. (2005).
Characterization of EEG—a comparative study. Comput. Methods Programs
Biomed. 80, 17–23. doi: 10.1016/j.cmpb.2005.06.005

Knight, R. G., and Longmore, B. E. (1994). Clinical Neuropsychology of Alcoholism.
Mahwah, NJ: Lawrence Erlbaum Associates.

Kousarrizi, M. R. N., Ghanbari, A. A., Gharaviri, A., Teshnehlab, M., and Aliyari,
M. (2009). “Classification of alcoholics and non-alcoholics via EEG using SVM
and neural networks,” in Proceedings of the 2009 3rd International Conference
on Bioinformatics and Biomedical Engineering, Beijing.

Kumar, Y., Dewal, M., and Anand, R. (2012). “Features extraction of EEG signals
using approximate and sample entropy,” in Proceedings of the 2012 IEEE
Students’ Conference on Electrical, Electronics and Computer Science, Bhopal.
doi: 10.1109/SCEECS.2012.6184830

Lieber, C. S. (1995). Medical disorders of alcoholism. N. Engl. J. Med. 333, 1058–
1065. doi: 10.1056/NEJM199510193331607

Lin, C.-F., Yeh, S.-W., Chien, Y.-Y., Peng, T.-I., Wang, J.-H., and Chang, S.-H.
(2009). A HHT-based time frequency analysis scheme for clinical alcoholic EEG
signals. WSEAS Trans. Biol. Biomed. 5, 249–260.

Oscar-Berman, M., Shagrin, B., Evert, D. L., and Epstein, C. (1997). Impairments
of brain and behavior: the neurological effects of alcohol. Alcohol Health Res.
World 21, 65–75.

Pan, W.-T. (2012). A new fruit fly optimization algorithm: taking the financial
distress model as an example. Knowl. Based Syst. 26, 69–74. doi: 10.1016/j.
knosys.2011.07.001

Patidar, S., Pachori, R. B., Upadhyay, A., and Acharya, U. R. (2017). An
integrated alcoholic index using tunable-Q wavelet transform based features
extracted from EEG signals for diagnosis of alcoholism. Appl. Soft Comput. 50,
71–78. doi: 10.1016/j.asoc.2016.11.002

Pelvig, D. P., Pakkenberg, H., Stark, A. K., and Pakkenberg, B. (2008). Neocortical
glial cell numbers in human brains. Neurobiol. Aging 29, 1754–1762. doi:
10.1016/j.neurobiolaging.2007.04.013

Priya, A., Yadav, P., Jain, S., and Bajaj, V. (2018). Efficient method for
classification of alcoholic and normal EEG signals using EMD. J. Eng. 2018,
166–172. doi: 10.1049/joe.2017.0878

Shooshtari, M. A., and Setarehdan, S. K. (2010). “Selection of optimal EEG channels
for classification of signals correlated with alcohol abusers,” in Proceedings of the
2010 IEEE 10th International Conference on Signal, Beijing. doi: 10.1109/ICOSP.
2010.5656482

Shri, T. P., and Sriraam, N. (2016). Spectral entropy feature subset selection using
SEPCOR to detect alcoholic impact on gamma sub band visual event related
potentials of multichannel electroencephalograms (EEG). Appl. Soft Comput.
46, 441–451. doi: 10.1016/j.asoc.2016.04.041

Singhal, V., Mathew, J., and Behera, R. K. (2021). Detection of alcoholism
using EEG signals and a CNN-LSTM-ATTN network. Comput. Biol. Med.
138:104940. doi: 10.1016/j.compbiomed.2021.104940

Sun, Y., Ye, N., and Xu, X. (2006). “EEG analysis of alcoholics and controls
based on feature extraction,” in Proceedings of the 2006 8th International
Conference on Signal Processing, Guilin. doi: 10.1109/ICOSP.2006.34
4501

Tao, W., Li, C., Song, R., Cheng, J., Liu, Y., Wan, F., et al. (2020). “EEG-
based emotion recognition via channel-wise attention and self attention,” in
Proceedings of the 2020 IEEE Transactions on Affective Computing, Beijing.
doi: 10.1109/TAFFC.2020.3025777

Taran, S., and Bajaj, V. (2017). Rhythm-based identification of alcohol EEG
signals. IET Sci. Meas. Technol. 12, 343–349. doi: 10.1049/iet-smt.2017.
0232

Tharwat, A., and Hassanien, A. E. (2018). Chaotic antlion algorithm for parameter
optimization of support vector machine. Appl. Intell. 48, 670–686. doi: 10.1007/
s10489-017-0994-0

Volkow, N. D., Wiers, C. E., Shokri-Kojori, E., Tomasi, D., Wang, G.-J., and
Baler, R. (2017). Neurochemical and metabolic effects of acute and chronic
alcohol in the human brain: studies with positron emission tomography.
Neuropharmacology 122, 175–188. doi: 10.1016/j.neuropharm.2017.
01.012

Wu, X., Zuo, W., Lin, L., Jia, W., and Zhang, D. (2018). F-SVM: combination
of feature transformation and SVM learning via convex relaxation. IEEE
Trans. Neural Netw. Learn. Syst. 29, 5185–5199. doi: 10.1109/TNNLS.2018.27
91507

Zhang, X. L., Begleiter, H., Porjesz, B., and Litke, A. (1997). Electrophysiological
evidence of memory impairment in alcoholic patients. Biol. Psychiatry 42,
1157–1171. doi: 10.1016/S0006-3223(96)00552-5

Zhu, G., Li, Y., and Wen, P. (2011). Evaluating functional connectivity in alcoholics
based on maximal weight matching. J. Adv. Comput. Intell. Intell. Inform. 15,
1221–1227. doi: 10.20965/jaciii.2011.p1221

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Al-Hadeethi, Abdulla, Diykh, Deo and Green. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 15 February 2022 | Volume 15 | Article 808339

https://doi.org/10.1016/j.cmpb.2005.06.005
https://doi.org/10.1109/SCEECS.2012.6184830
https://doi.org/10.1056/NEJM199510193331607
https://doi.org/10.1016/j.knosys.2011.07.001
https://doi.org/10.1016/j.knosys.2011.07.001
https://doi.org/10.1016/j.asoc.2016.11.002
https://doi.org/10.1016/j.neurobiolaging.2007.04.013
https://doi.org/10.1016/j.neurobiolaging.2007.04.013
https://doi.org/10.1049/joe.2017.0878
https://doi.org/10.1109/ICOSP.2010.5656482
https://doi.org/10.1109/ICOSP.2010.5656482
https://doi.org/10.1016/j.asoc.2016.04.041
https://doi.org/10.1016/j.compbiomed.2021.104940
https://doi.org/10.1109/ICOSP.2006.344501
https://doi.org/10.1109/ICOSP.2006.344501
https://doi.org/10.1109/TAFFC.2020.3025777
https://doi.org/10.1049/iet-smt.2017.0232
https://doi.org/10.1049/iet-smt.2017.0232
https://doi.org/10.1007/s10489-017-0994-0
https://doi.org/10.1007/s10489-017-0994-0
https://doi.org/10.1016/j.neuropharm.2017.01.012
https://doi.org/10.1016/j.neuropharm.2017.01.012
https://doi.org/10.1109/TNNLS.2018.2791507
https://doi.org/10.1109/TNNLS.2018.2791507
https://doi.org/10.1016/S0006-3223(96)00552-5
https://doi.org/10.20965/jaciii.2011.p1221
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

	An Eigenvalues-Based Covariance Matrix Bootstrap Model Integrated With Support Vector Machines for Multichannel EEG Signals Analysis
	Introduction
	Materials and Methods
	Experimental Effects of Alcoholism From Multichannel Electroencephalogram Dataset
	Methodology
	Segmentation
	Clustering Technique Coupled With-Based Bootstrap
	Features Extraction
	Feature Selection


	Classification Approach Based on Svm
	Radius-Margin-Based Support Vector Machine
	Fruit Fly Optimization Algorithm
	Classification Based on FOA-F-SVM Model
	Optimization Algorithm

	Performance Evaluation Methods
	Experimental Results
	Features Selection Using KST
	Evaluating the Performance of the Proposed FOA-F-SVM Model
	Channel Selection Based on Classification Accuracy

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


