
fninf-16-1006494 September 2, 2022 Time: 15:26 # 1

TYPE Original Research
PUBLISHED 08 September 2022
DOI 10.3389/fninf.2022.1006494

OPEN ACCESS

EDITED BY

Dmitrii Kaplun,
Saint Petersburg State Electrotechnical
University, Russia

REVIEWED BY

Aleksandr Sinitca,
Saint Petersburg State Electrotechnical
University, Russia
Kandarpa Kumar Sarma,
Gauhati University, India

*CORRESPONDENCE

Jun Luo
jscut@foxmail.com
YiWen Zhu
yiduqq@163.com

†These authors have contributed
equally to this work and share first
authorship

RECEIVED 29 July 2022
ACCEPTED 16 August 2022
PUBLISHED 08 September 2022

CITATION

Chen X, Hu D, Zhang R, Pan Z, Chen Y,
Xie L, Luo J and Zhu Y (2022)
Interpretable evaluation
for the Brunnstrom recovery stage
of the lower limb based on wearable
sensors.
Front. Neuroinform. 16:1006494.
doi: 10.3389/fninf.2022.1006494

COPYRIGHT

© 2022 Chen, Hu, Zhang, Pan, Chen,
Xie, Luo and Zhu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Interpretable evaluation for the
Brunnstrom recovery stage of
the lower limb based on
wearable sensors
Xiang Chen1†, DongXia Hu1†, RuiQi Zhang2, ZeWei Pan3,
Yan Chen3, Longhan Xie3, Jun Luo1* and YiWen Zhu1*
1Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University,
Nanchang, China, 2Fuzhou Medical College, Nanchang University, Nanchang, China, 3Shien-Ming
Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China

With the increasing number of stroke patients, there is an urgent need for an

accessible, scientific, and reliable evaluation method for stroke rehabilitation.

Although many rehabilitation stage evaluation methods based on the

wearable sensors and machine learning algorithm have been developed, the

interpretable evaluation of the Brunnstrom recovery stage of the lower limb

(BRS-L) is still lacking. The paper propose an interpretable BRS-L evaluation

method based on wearable sensors. We collected lower limb motion data

and plantar pressure data of 20 hemiplegic patients and 10 healthy individuals

using seven Inertial Measurement Units (IMUs) and two plantar pressure

insoles. Then we extracted gait features from the motion data and pressure

data. By using feature selection based on feature importance, we improved

the interpretability of the machine learning-based evaluation method. Several

machine learning models are evaluated on the dataset, the results show

that k-Nearest Neighbor has the best prediction performance and achieves

94.2% accuracy with an input of 18 features. Our method provides a

feasible solution for precise rehabilitation and home-based rehabilitation of

hemiplegic patients.

KEYWORDS

rehabilitation evaluation, Brunnstrom recovery stage, wearable sensor, machine
learning, feature importance

Introduction

Stroke is an acute cerebrovascular disease caused by bleeding or blockage of blood
vessels in the brain. Deaths from stroke account for 11% of all deaths in the world and
rank second among the leading causes of death (World Health Organization, 2020). In
some regions, such as Bulgaria, 3 out of 1,000 deaths are due to stroke (Kim et al., 2020),
indicating the high incidence and mortality of stroke. 80% of stroke survivors exhibit
hemiplegia due to loss of central nervous system control of the motor system, resulting in
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abnormal coordination of the patient’s muscle groups and
abnormal muscle tones (Qiu et al., 2018), such as pain, swelling,
fatigue, and coordination problems (Alonso-Vázquez et al.,
2009), which severely affects the patient’s rehabilitation exercises
and quality of life, and the risk of falls is raised. Therefore,
rehabilitation evaluation and treatment of stroke has become
a major issue in public health, and hemiplegic gait analysis has
become an important part of rehabilitation.

Studies have shown that timely, active, and accurate
rehabilitation interventions can restore self-care to most
patients with hemiplegia and performing accurate and
appropriate rehabilitation is promising for the function of
the lower limb (Nepveu et al., 2017; Li et al., 2018; Hosseini
et al., 2019). Berengueres et al. (2014) found that if muscles
are not actively exercised when the foot is fixed in corrective
shape, the muscles are not activated by training, which can
make protective shock-absorbing function, effective gait and
other complex functions to be impaired. A proper hemiplegia
evaluation is crucial for correct treatment plan for hemiplegia
to better restore the patients’ muscle function. However, current
clinical evaluation is based on clinician observation and clinical
scale evaluation, and the evaluation of stroke severity is based
on the patient’s medical history as well as the examination.

The Brunnstrom recovery stage (BRS) is one of the most
popular motor function evaluation methods, which consists of
three items for the arm, hand, and lower limb, each with six
levels of flaccidity, spasticity, co-movement, partial dissociative
movement, dissociative movement, and normal (Brunnstrom,
1966), as shown in Table 1. Due to its high correlation with
motor recovery in stroke patients, BRS has been extensively
used in clinical as well as scientific research (Huang et al.,
2016). However, the results of the observation method rely
heavily on the observer’s level of observation skills and clinical
experience. Besides, the evaluation process has a great impact on
the patient’s comfort level, and the tedious operation also tends
to cause physical and mental fatigue and discomfort, which
cannot be recorded in real-time (Zhao et al., 2017). Therefore,
the observation method is mostly used for the comparison
of patients’ stages of rehabilitation, which cannot meet the
requirements of clinical applications (Tran et al., 2018).

To address the shortcomings of the observational scale
method, devices such as visual monitoring systems and plantar
pressure monitoring systems have been used in more advanced
rehabilitation units and laboratories for hemiplegic gait analysis.
However, the visual system and the dynamometric platform are
complicated to operate, the testing process can only move within
a certain area, it does not facilitate the timely adjustment of
the treatment method, and it also causes privacy issues under
the surveillance of cameras. Therefore, the above devices still
do not meet the conditions for community-based rehabilitation,
i.e., they do not allow for immediate evaluation and feedback
of the patient’s gait problems, and the patient still needs to
travel between home and hospital with high frequency, which

TABLE 1 Description of each Brunnstrom recovery stage
(Naghdi et al., 2010).

Stage Description

Stage 1 Lack of movement in the extremities.

Stage 2 Slight voluntary motor response in the extremities and the onset of
spasticity.

Stage 3 Patients can control synkinesis autonomously, spasticity is severe.

Stage 4 Patients have control of detachment movements and spasticity
begins to diminish.

Stage 5 The diminished role of co-movement and enhanced control of
separate movement.

Stage 6 Normalization of movement and disappearance of spasticity.

is a burden for patients with hemiplegia who are already
having difficulty walking. Fortunately, the research conducted
with the above devices provides a solid practical basis for the
clinical application of wearable sensors, such as the feasibility of
evaluation methods based on joint angle and plantar pressure.

In recent years, wearable sensors have highlighted great
potential for clinical evaluation (Stuart et al., 2022; Zhang et al.,
2022). Berengueres et al. (2014) formed a smart insole by means
of pressure-sensitive sensors placed in the mid-lateral aspect of
the insole to monitor the pressure in real-time, use pressure
thresholds to detect excessive internal rotation and pronation
of the foot and provide feedback to the user to indicate if an
abnormality is occurring. The Smart Textile Sock integrates five
pressure sensors and utilizes a pressure vector algorithm for pre-
and post-rotation detection. It is relatively low cost and can
be used both indoors and outdoors (Domínguez-Morales et al.,
2019). In addition, diagnosis can be assisted by a physician using
an Inertial Measurement Unit (IMU) mounted at the heel by
calculating parameters such as gait speed and gait (Qiu et al.,
2018). With the development of machine learning, deep neural
network analysis of the data from the IMU installed at the calf
has been performed to identify drop-foot gait, pirouette gait,
hip hiking gait, and rear knee stroke gait (Wang et al., 2021).
These methods proved to be effective using wearable sensors to
assess the hemiplegic gait at a relatively low cost. However, this
part of the study could only detect the presence or absence of
hemiplegic gait or abnormal gait type and could not quantify
the degree, making it difficult to obtain a definite severity of
hemiplegia (Mannini et al., 2016; Hsu et al., 2018). On the
other hand, most studies have focused on the association of
upper limb behavior with the evaluation of FMA and ADLs, and
few studies have focused on the degree of lower limb function
based on the analysis of gait parameters. Only 7 of 34 papers
related to wearable sensors and machine learning mentioned
the lower limb and 3 mentioned gait (Boukhennoufa et al.,
2022). In general, studies have focused on the recognition of
daily movements, motion classification, and clinical evaluation,
and further research is needed on the use of wearable sensors
for gait analysis for clinical evaluation. In particular, medical
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professionals are interested in the contextual information of
the evaluation results, i.e., the interpretability of the evaluation
algorithms (Capela et al., 2015).

According to the surveyed data, few scholars have focused
on feature importance-based lower limb functional evaluation,
and few have seen a combination of wearable sensors based
on seven wearable IMU as well as dynamometric insoles, or
feature analysis of lower limb functional evaluation. By using
dual-source data fusion consisting of IMU and plantar pressure,
the features extracted in the present paper are more accurate and
also form a variety of multiple pre-selected features, including
kinematic parameters, plantar pressure parameters, and spatial
parameters. Berengueres et al. (2014) indirectly determined
inversion and eversion by monitoring plantar pressure with
sensors placed on the lateral side of the midfoot insole, but
neither gave an evaluation of the degree of lower limb function.
Also, some studies have used deep learning neural networks to
increase the accuracy of the evaluation (Boukhennoufa et al.,
2021), but this failed to provide more contextual information to
the physician for this evaluation method.

The focus of this study is on using comfortable wearable
sensors for intelligent, self-service and reliable evaluation,
to achieve comprehensive, home-based and immediate
rehabilitation. In this study, we use the joint motion of
the lower limb and the distribution of plantar pressure to
assess the movement status of stroke patients. Considering
that stroke patients generally need to undergo lower
limb rehabilitation, this study objectively assesses the
BRS-L in a graded manner. Due to the convenience of
the monitoring method in this study, the therapist can
dynamically adjust the treatment plan during the prime
rehabilitation period of the hemiplegic patient, which
is beneficial for the patient’s recovery. One benefit that
distinguishes this study from other methods is that our method
is interpretable, focusing on the selection of gait parameters and
characteristics.

The research methodology is first introduced in sections
“Experimental protocols” and “Materials and methods,”
including the design and conduct of experiments, equipment
introduction, data preprocessing, calculation, analysis and
selection of parameters and features, and model construction
and performance evaluation. Section “Results,” this paper
presents the results of the experiments, which are finally
discussed in section “Discussion.”

Experimental protocols

We recruited volunteers to collect their gait data using
wearable IMUs and plantar pressure insoles, and the following
is the experiment setup.

Participants

The following criteria were utilized to recruit participants:
(1) Unilateral hemiplegia and undergoing rehabilitation in
hospital; (2) Age between 18 and 80 years; (3) Brunnstrom
recovery stages of lower limb (BRS-L) III-V; (4) Normal mental
status and consciousness; (5) Subject can walk 10 meters indoors
(with or without assistive devices). Because patients in the stages
of BRS-L I-II are unable to walk (independently or assisted), we
excluded them. To increase the sample size of the data set, we
also recruited 10 healthy individuals.

Before carrying out this experiment, we obtained approval
of the Ethics Committee of the Second Hospital of NanChang
University. Voluntary subjects signed informed consents before
the experiment. Finally, 30 individuals participated in the
experiment, including 20 stroke subjects (aged 57.7 ± 8.7 years,
with a height of 164.5 ± 6.9 cm and a weight of 61.5 ± 9.1 kg)
and 10 healthy subjects (aged 34.3 ± 2.5 years, with a height of
173.6 ± 4.6 cm and a weight of 63.2 ± 6.6 kg).

Experimental setup

Figure 1 shows the experimental setup. Seven IMUs were
selected for inclusion in the experiment and were strapped to
the patient’s bilateral feet, bilateral calves, bilateral thighs, and
waist. The selected IMU sensor uses a JY901s inertial sensor chip
module made by Wit Motion, which includes an accelerometer,
magnetometer, and gyroscope. Supplementary Table 1 displays
the chip’s specific parameters.

In addition, a smart insole was added to the shoe
to obtain plantar pressure. We designed and manufactured
the smart insole, which incorporates 8 pressure sensors.
The position arrangement of pressure sensors is derived by
minimizing the pressure center position measurement error.
Please see article (Xian et al., 2021) for further details. The
sampling frequency of IMU and pressure sensor is 200 Hz. The
above devices use Bluetooth wireless transmission. To achieve
multi-sensor synchronization, the upper computer examines the
data transmitted by the sensor at a frequency of 200 Hz and
considers the most recent frame of data received by each sensor
as the data of the current moment.

After the devices are worn, the IMUs need to be calibrated
to obtain stable posture data. All patients first walked at their
comfortable walking speed in the shoes with built-in sensory
insoles to perform an adaptation familiarization test. After
finding their comfortable walking speed and reaching a stable
gait, they begin to walk formally for about 2 min while recording
plantar pressure data. The experiment is conducted in a quiet
environment in a hospital.
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FIGURE 1

Schematic diagram of wearable sensing and data analysis device.

FIGURE 2

Flowchart of the data processing.
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Materials and methods

The method designed in this paper is shown in Figure 2.
The collected IMU data and plantar pressure data are used for
further parameter and feature calculations. First, the data are
filtered and divided into steps. Then, the feature data of each
step are calculated and correlation and importance analyses are
performed for each feature. Finally, the filtered features are used
for model training and realistic lower limb function evaluation.

Data preprocessing

To obtain a well-organized dataset, the collected raw data
needs to go through a series of preprocessing.

Low-pass filtering
To eliminate the noise data, a 6-order Butterworth low-

pass filter with a cut-off frequency of 15 Hz was used to
preprocess the data.

Gait cycle segmentation
A gait cycle consists of heel touch, mid-foot touch, heel

off, forefoot touch, forefoot off and swing. Since normal gait
generally begins with heel touch, this study uses the response
of heel sensors for touch judgment. We consider the sudden
increase in the value of the pressure sensor under the heel as
the activation signal, in other words, as the beginning of current
gait cycle and the end of previous gait cycle.

Gait phase segmentation
Because hemiplegic patients do not have multiple support

subphases as normal due to the muscle weakness, we only
divide gait cycle into the double support phase and single
support phase, i.e., the affected side touches the ground as
the affected side double support phase, and then enters the
affected side’s single support phase until the healthy side’s heel
touches the ground.

Feature extraction

After the preprocessing, gait features are extracted from
the gait cycles. As indicated in Table 2, the gait features
include primarily spatial parameters and their characteristics,
temporal parameters and their characteristics, and plantar
pressure parameters and their characteristics.

After the above rotation matrix l
fR, the quadratic numbers

can be transformed into Euler angles, which are finally translated
into plantarflexion and dorsiflexion, inversion and valgus, and
internal and external rotation angles of the ankle joint. Besides,
this paper uses the quadratic integration of acceleration for the
calculation of gait length during walking. The average velocity of

TABLE 2 Descriptions of gait features.

Gait
feature

Description

Gait line The trajectory line formed by the position center of pressure

Regional
pressure

Pressure ratios at different locations on the plantar

Gait phase The proportion of each phase of a gait cycle

Acceleration Three-axis acceleration based on sensor coordinate system

Step length Length of each step forward

Joint angle The rotation angle of the joint during the movement

the human walking process during the gait cycle can be obtained
with the gait cycle time length. The special feature of this paper
is that the moment of touching the ground and leaving the
ground judged by the plantar pressure can be more accurate
to the integration start time of the stride length so that the
stride length data can be obtained more accurately. And the
calculation process of quadratic integration is as follows:

At moment t, the transformation matrix of the attitude of
the foot sensor relative to the Earth coordinate system is e

fRt ,
and the three-axis acceleration of the foot sensor relative to
the sensor coordinate system output at this time is Accft . Since
the accelerometer is affected by the acceleration of gravity at
this moment, the actual acceleration of motion during the walk
Accfrt needs to be subtracted from the acceleration of gravity G.

Accfrt = Accft − e
fR

T
t
· G (1)

Since the Y-axis direction of the sensor is basically the same
as the travel direction when the foot sensor is arranged, the
Y-axis direction of the sensor motion acceleration AccfrtY can be
obtained after the quadratic integration of the time from the t1
moment after the toe leaves the ground to the t2 moment when
the heel on the same side hits the ground, corresponding to the
step length l:

l =
s t2

t1 AccfrtYdt (2)

The features shown inTable 2 can be classified as follows: for
the gait phase parameters, the percentage of each gait phase can
be reflected as one of the features for gait. For spatial parameters,
ankle mobility and mean stride length are also commonly used
gait parameters. For plantar pressure, the ratio of pressure in
each plantar region is a feature of interest. According to plantar
anatomy, the plantar can be divided into three major regions:
forefoot, midfoot, and hindfoot, and the data are shown by
the sensors located in the corresponding regions in the smart
insole can be summed up to obtain the total pressure of the
plantar regions and the regional pressure ratio can be derived. In
addition, the trajectory of the plantar center of pressure has been
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FIGURE 3

The proportion of each gait phase of subjects at each stage. Different low case letters above columns indicate statistical differences at P < 0.05.

FIGURE 4

(A) Comparison of step length and (B) knee range of motion (ROM) in patients with different degrees of hemiplegia. Different low case letters
above columns indicate statistical differences at P < 0.05.

shown to reflect a variety of gait characteristics. The Equation for
calculating the center of plantar pressure is shown below:

Xcen =
∑T

k = 1 p(Xk,Yk)∗Xk∑1
m p(Xk,Yk)

, (3)

Ycen =
∑T

k = 1 p(Xk,Yk)∗Yk∑1
m p(Xk,Yk)

, (4)

where p(Xk,Yk) denotes the pressure value of the pressure
sensor k of the smart insole, and (Xk,Yk) denotes the
coordinates of the pressure sensor k in the smart insole
coordinate system.

Ultimately, a total of six types of gait features were
obtained from the data collected by the wearable device system
and the active joint mobility measured clinically, which were
subsequently used as input features for the dataset to train
different regression models. Because of the patient’s walking
ability, the length of collection time and number of collected
steps varied. The number of steps collected by each person
is between 50 and 150. The data uses one gait cycle as
a sample, with a total of 2,352 samples. There were 760
samples in Healthy, 521 in B-Vn 726 in B-IV, and 345
in B-III. The dataset’s dimension after feature extraction is
2352 × 130.
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FIGURE 5

Correlation matrix of top 18 most important features.

Feature analysis and selection

Since the number of features obtained from the current
calculation is large, the number of input features needs to
be further streamlined using data analysis techniques. In
this regard, the relevance and importance of features are
further considered in the dimensionality reduction process.
Eliminating redundant features not only speeds up the model
training process, but also avoids prediction errors due to
multicollinearity as much as possible. In this paper, the Pearson
correlation matrix between features is constructed by calculating
the Pearson coefficients between each feature, such as the
correlation between feature a and feature b as shown in Equation
(8).

rab =
cov(Sa,Sb)

σ(Sa) × σ(Sb)
(5)

where Sa is the sample vector of feature a, σ (Sa) is the standard
deviation of feature a, and cov(Sa, Sb) is the sample vector
covariance of feature a and feature b.

After removing some redundant features, the importance
of the features also needs to be ranked. Based on the feature
importance, more robust features can be selected, improving the
generalization ability of the model. In addition, by analyzing the
importance of features, it is possible to further understand the
importance of relevant features for lower limb evaluation and
improve the interpretability of the algorithm, which is an area
that has received little attention in other studies.

In this paper, we utilize Random Forest (RF) for feature
importance analysis. It is easy to implement, and it has high
generalization ability, also it is easy to interpret. Random
Forest is a machine learning algorithm whose decision process
integrates the classification predictions of multiple decision
trees to produce a final result. Specifically, the algorithm first
performs random sample sampling in the dataset with put-
backs, and then randomly selectsM features as training inputs to
construct decision trees (DT). After the above steps are repeated
K times, the consequent forest formed by K decision trees is
obtained. The feature importance evaluation is to evaluate the
contribution of each feature to the classification performance of
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the constructed K decision trees, using the out-of-bag (OOB)
error rate as an indicator. Specifically, for the kth tree, the
number of classification accuracies acck is obtained for nk
sample numbers. At this time, the mth feature Fm is randomly
scrambled and a new feature Fm2 is formed. After replacing the
old feature Fm with the new feature Fm2, the kth tree is retrained
and the number of classification accuracies acckm2 is obtained.
The classification accuracy is also changed after the replacement
of features. By measuring the change of accuracy, the feature
importance of the mth feature Fm for the kth tree IMPkm is:

IMPkm =
acck−acckm2

nk
(6)

In this, if there is no feature Fm in the kth tree, then IMPkm
is defined as 0. For a RF of k trees, the importance of the feature
Fm is:

IMPm =
∑K

k = 1 IMPkm
K·σ

(7)

where σ is the standard deviation of IMPkm of K tree.

Model training and evaluation

Our goal is to create a classification model that predicts BRS-
L grade from the selected features. In addition to the Random
Forest mentioned above, we examined various common
effective classifiers, including Naïve Bayes (NB), Support Vector
Machine (SVM), k-Nearest Neighbor (kNN). We use cross-
validation methods to evaluate the prediction performance of
the classification models. In specific, we apply the leave-one-
subject-out strategy to divide data into training set and test set.
For each iteration, we choose the data of one subject as the test
set, and the data of the remaining 29 subjects as the training set.
The results of the test sets are aggregated and compared to the
entire data set to determine accuracy. And finally, we take the
average prediction accuracy as the final result.

In the training process, according to Bayes’ theorem, the
probability of occurrence of the corresponding classification
under different data features can be known, and the category
with the highest probability is finally selected as the final
result. SVM makes classification by finding the vector in the
data feature space that maximizes the classification interval.
In this process, the kernel function plays a crucial role in the
performance of the model and needs to be further tuned during
the training process. The kNN classifies the data by classifying
them under known different categories. When a data point to be
predicted appears, it is categorized according to the distance of
that data point from other data points already classified, i.e., the
closer to which category it is classified.

It should be noted that the model utilized in this paper is
a multi-category algorithm model, so the performance of the
model needs to be evaluated using the evaluation metrics under

TABLE 3 Definition of features in Figure 5.

Feature Description

A_CopLength COP trajectory length in affected side

A_AreaComp_F Forefoot pressure to body weight ratio in affected side

A_CopLengthS Standard deviation of COP trajectory in affected side

UF_y_ACCave Average of Y axis acceleration of foot IMU in in unaffected side

UF_y_ACCvar Variance of Y axis acceleration of foot IMU in unaffected side

U_AnkleROM Range of motion of ankle joint in unaffected side

US_y_ACCvar Variance of Y axis acceleration of shank IMU in unaffected side

A_AreaComp_L Left plantar pressure to body weight ratio in affected side

A_KneeROM Range of motion of knee joint in affected side

U_KneeROM Range of motion of knee joint in unaffected side

A_HipROM Range of motion of hip joint in affected side

U_CopLengthS Standard deviation of COP trajectory in unaffected side

US_x_ACCvar Variance of X axis acceleration of shank IMU in unaffected side

UF_y_ACCrms Root mean square of Y axis acceleration of foot IMU in
unaffected side

A_AreaComp_S Sum of plantar pressure to body weight ratio in affected side

US_y_ACCrms Root mean square of Y axis acceleration of shank IMU in
unaffected side

A_AreaComp_
FH

Hind plantar pressure to body weight ratio in affected side

U_CopLength COP trajectory length in unaffected side

multi-category, and the performance measures of the model
generally have the following metrics.

The detection rate P (Precision) is the proportion of
correctly predicted cases to the total sample size. And for the
multiclassification problem, can be expressed by the Macro-
average method. The recall for a single category is the ratio
of positive cases correctly predicted to all positive cases. The
F1 value is then summed average of the accuracy rate and the
completion rate, which can characterize the importance of the
accuracy rate as well as the completion rate (Park et al., 2020).

In addition, the results can be plotted using the subject
operating characteristic curve (ROC), which is based on the
true case rate as well as the false positive case rate, where the
more ideal the classification situation is, the fewer samples are
expected to be incorrectly predicted, and the closer the ROC
curve should be to the upper left corner. The indicator AUC
(Area Under Curve) is defined as the area under the ROC curve,
and the closer to 1, the better the model performance.

Results

Comparison of feature characteristics

We analyzed the difference of gait phase time ratio, knee
motion and step length in different hemiplegia grades. The
one-way Analysis of Variance (ANOVA) was used, and the
homogeneity test of variance had a p-value of 0.05, which

Frontiers in Neuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2022.1006494
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1006494 September 2, 2022 Time: 15:26 # 9

Chen et al. 10.3389/fninf.2022.1006494

FIGURE 6

Feature importance ranking (top 18).

TABLE 4 Accuracy of classification results.

Model NB kNN SVM RF

Accuracy 82.43 94.2 75.35 80.07

F1 64.53 93.18 75.56 71.93

indicated that variance was not uniform. So, Tamhane’s T2
was used for non-parametric test. The results were show
in Figure 3, and the significant differences of characteristics
between different groups were marked. Different low case letters
above columns indicate statistical differences at P < 0.05.

The results for the gait phase parameters are shown in
Figure 3 for the proportion of gait phases of four subjects,
namely, the affected side double support phase (A-DB), the
affected side single support phase (A-SB), the healthy side
double support phase (U-DB), and the healthy side single
support phase (U-SB). There were significant differences in

U-SB among patients with different hemiplegia grades. In A-DB,
U-DB, and A-SB, a few groups had no significant differences,
but the group with no significant differences did not overlap
in the three features. There were significant differences in gait
proportion among patients with different grades of hemiplegia.
The percentages of healthy individuals in A-DB, A-SB, U-DB,
and U-SB are near 12, 38, 12, and 38%. In addition to this, the
percentage of bilateral gait phases in healthy individuals with
the normal function of both lower limbs in one gait cycle is
also symmetrical. In contrast, patients with B-V reached 20%
in both dual support phases, i.e., the proportion of time spent
in the dual support phase was increased and patients needed
to stay on both feet for a longer period. Patients in B-IV
stayed in the double support phase for a longer time, while the
swing process was shorter on the affected side. For the B-III
patients which have more severe conditions, the double support
phase was longer in proportion, and symmetry became worse.
We can see that the more serious the degree of hemiplegia,
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FIGURE 7

Accuracy of different classification models with the different number of features.

FIGURE 8

Confusion matrix of the kNN model.

the lower the proportion of swing time on the healthy side,
because the hemiplegia weakens the supporting ability of the
hemiplegia side.

FIGURE 9

ROC of different classification models.

Figure 4 shows that patients with different grades of
hemiplegia showed significant differences in step length and
knee motion range. Generally, the knee motion range and step
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TABLE 5 Statistical analysis of ankle range of motion and the
trajectory length of CoP.

Indicators B-III-A B-III-U B-V-A B-V-U

Mean (◦) 20.4 28.1 61.4 72.9

Standard deviation 4.1 7.1 5.2 5.7

Mean (mm) 65.1 68.1 79.2 81.3

Standard deviation 11.1 23.1 11.2 16.3

length both reduced as the severity of hemiplegia increased.
From B-III to B-IV, although the range of motion of the
healthy side of the knee joint was reduced, but the affected
side was increased, and the step length was also increased,
indicating that the affected side function was initially restored.
From B-IV to B-V, the knee motion and step length of
the affected and healthy sides were significantly improved.
Hospitals also consider B-V to be discharge level. Comparing
with healthy subjects, the step length of B-V patients was
close to the normal level, and there was also a large
range of motion of the knee joint, but the variance of the
affected side of the knee joint was large, indicating that the
joint stability of the affected side was still poor. According
to previous studies on hemiplegic gait, the results of the
present study are consistent with the reality that hemiplegic
patients have slowed gait speed and compensated for the

healthy side in the presence of nerve damage and muscle
strength deficit.

Characterization and model analysis

The correlation matrix and the degree of redundancy
of the data were obtained by correlation analysis of the
gait parameters and their characteristics. According to the
correlation, features with an absolute value of correlation
greater than 0.85 should be excluded. The process of feature
rejection also requires the selection of features according to their
importance. The correlation matrix of some features is shown
in Figure 5. Table 3 and Figure 6 demonstrate the top 18 most
important features. The Supplementary material provides the
full list of features.

In this paper, the most important features under different
numbers are selected for model training based on the
importance of the features obtained from the RF algorithm,
and the results obtained are shown in Figure 7. It can
be seen that as the number of features increases, the
classification accuracy of different classification models shows
a trend of first increasing and then decreasing. Among
them, the kNN algorithm shows a more stable classification
accuracy for different numbers of features. When the number
of features is 18, the classification accuracy of kNN is

FIGURE 10

Plantar CoP trajectory in B-III vs. B-V patients. (A) Comparison of CoP trajectory on the affected side. (B) Comparison of CoP trajectory on the
unaffected side.
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the highest, reaching 94.2%. If we use all features as
input, i.e., there is no feature extraction, the classification
performance of the models will be very poor (accuracy
lower than 65%).

Since the highest classification accuracy can be obtained by
using the first 18 significant features, the performance of the
model under this condition is further analyzed in this paper.

The confusion matrix (Figure 8) shows that the healthy
individuals are more accurately classified with B-IV. The
major recognition errors mostly occur in patients with B-III
incorrectly predicting patients with bit B-IV.

Comparing the various algorithmic models mentioned
above (Table 4), it can be seen that the kNN algorithm has
a higher recognition accuracy of 94.2%. The classification
accuracy of the other algorithmic models is the lowest at only
69.72%. As can be seen from the Figure 9, the ROC curve of
the kNN algorithm is in the upper left corner, and the AUC
value at this point is 0.98. Therefore, the most effective and
convincing results were achieved by using the kNN model. The
results shows that machine learning-based degree evaluation
using wearable sensors is feasible and accurate.

Discussion

This paper proposes an evaluation method based on feature
selection and machine learning for automatically assessing BRS-
L grade. We extracted a large number of features from the lower
limb motion and plantar pressure data collected by wearable
sensors. Then we build several machine learning models to
classify BRS-L grade using selected features. The kNN achieved
the highest prediction accuracy of 94.2%.

We also discovered several interesting findings. One is that
the BRS-L is highly correlated with 18 features (Table 3), this
indicates that more clinical attention should be paid to these
features of the patient.

The key features found in this paper are also of clinical
relevance. It is worth noting that the standard deviation of the
range of motion of the ankle on the healthy side is greater, as
shown in Table 5, the standard deviation of this index reached
7.1◦ in B-III patients and 5.7◦ in B-V patients, and the greater
standard deviation also indicates that the range of motion of the
ankle on the healthy side contains more information. In fact,
the B-III grade complained of weakness on the affected side for
nearly 50 days and a circle gait during walking. Therefore, when
the muscle strength of the affected side is lacking, the lack of
strong support of the body will lead to interference of the ankle
motion process on the healthy side, creating a more discrete
ankle range of motion.

Similarly, for the first three important characteristics,
forefoot pressure values indicate that the patient has weak
forefoot stirrups on the affected side, or even does not bring

the forefoot to the ground. The standard deviation of the
trajectory length of the center of plantar pressure in both
feet indicates that the greater the trajectory dispersion, the
weaker the patient’s support of the affected side and the less
stable the walking. As shown in Table 5, the dispersion on
the affected side was greater in B-III patients than in B-V
patients. Also, the trajectory length of the center of pressure was
shorter in B-III patients, which corroborates with the results
in Figure 10, indicating that B-III patients do not have a
normal ankle motion process and no forefoot stirrups after
heel contact with the ground. For the other important features,
also illustrate well their importance for the evaluation, but
too many features can lead to a decrease in the classification
performance of the model.

Importantly, this paper found that subtle data variation on
the robust side was more important for evaluation, possibly
because the abnormalities on the affected side were too extreme
and varied across individuals, which was detrimental to the
generalization of the model. In contrast, the stability of the
affected side was better captured by the data variation on
the healthy side, and therefore the important features chosen
were reasonable.

Since our method is based on gait characteristics, the next
step can be to design online correction tools to help patients
perform gait correction during the evaluation process (Yang
et al., 2018), thus helping patients to consciously perform
rehabilitation training, reshape nerves, activate muscles and
promote recovery. In addition, by adding visual feedback for
stroke patients, patients can visualize their lower limb function
and improve the quality of rehabilitation.

Conclusion

In contrast to previous studies, this paper provides a
wearable sensors-based, reliable and interpretable method for
evaluating the BRS-L, providing physicians with contextual
information for evaluation. Using the dual-source information
provided by the wearable device as well as feature analysis,
this method is a convenient, accurate, and reliable objective
quantitative evaluation method. The accuracy of the feature
selection based method in this paper was up to 94.2%.
Our method doesn’t require complex setup and thus can
provide a home-based evaluation, which greatly reduces the
burden on the healthcare system as well as the patient,
such as by eliminating the need for frequent trips between
home and hospital. Besides, our method greatly improves
the relevance and real-time nature of rehabilitation treatment,
allowing patients to receive more effective treatment during
the prime time of hemiplegia rehabilitation. Because of its
simplicity and ease of use, patients can regularly evaluate
their stage of recovery, our method is suitable to the home-
based rehabilitation.
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