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Melanoma is a malignant tumor formed by the cancerous transformation of

melanocytes, and its medical images contain much information. However,

the percentage of the critical information in the image is small, and the

noise is non-uniformly distributed. We propose a new multi-threshold image

segmentation model based on the two-dimensional histogram approach

to the above problem. We present an enhanced ant colony optimization

for continuous domains (EACOR) in the proposed model based on the

soft besiege and chase strategies. Further, EACOR is combined with two-

dimensional Kapur’s entropy to search for the optimal thresholds. An

experiment on the IEEE CEC2014 benchmark function was conducted to

measure the reliable global search capability of the EACOR algorithm in

the proposed model. Moreover, we have also conducted several sets of

experiments to test the validity of the image segmentation model proposed

in this paper. The experimental results show that the segmented images from

the proposed model outperform the comparison method in several evaluation

metrics. Ultimately, the model proposed in this paper can provide high-quality

samples for subsequent analysis of melanoma pathology images.

KEYWORDS
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Introduction

Melanoma is a malignant tumor arising from the malignant
transformation of melanocytes. While melanoma is less
common than other skin cancers, it is responsible for nearly
10,000 deaths in the United States each year alone (Albittar
et al., 2020). Due to the similarity of cutaneous melanoma
to benign nevi can easily be overlooked and misdiagnosed
in the pathological diagnosis. Accurate pathological diagnosis
plays an important role in the therapy of melanoma (Ahn
et al., 2017; Bi et al., 2017; Al-Masni et al., 2018). To
improve the diagnostic accuracy, the concept of computer-
assisted pathological diagnosis of initial malignant melanoma
has been intensively investigated in recent years. Lee et al. (2018)
proposed a computer-aided diagnostic process that effectively
differentiated melanoma images from non-melanoma images
through feature extraction, selection, and classification. Song
et al. (2020) designed an end-to-end multitasking deep learning
framework for automated analysis of melanoma diagnosis. Chen
W. et al. (2020) used logistic regression and the Newton-
Raphson method to effectively discriminate between melanoma
and benign nevus. In general, computer-aided diagnosis can be
divided into image acquisition (Lafci et al., 2022), pre-processing
(Ilesanmi et al., 2021), image segmentation (Wang S. et al.,
2022), feature extraction (You et al., 2022) and classification (Hu
et al., 2021; Yu et al., 2021). The image segmentation technique
is key to further analysis of melanoma pathology images, which
can provide quality image samples for subsequent image analysis
and ultimately improve the accuracy of melanoma diagnosis
(Pennisi et al., 2016; Kassem et al., 2021).

In order to be able to provide quality material for subsequent
image processing, we employed an image segmentation method
with the advanced threshold optimization technique. In this
study, an enhanced ant colony algorithm (EACOR) based on
the soft besiege strategy and the chase strategy is proposed
to obtain a more reasonable threshold segmentation scheme.
Furthermore, to obtain a more reasonable solution that retains
the maximum amount of information between the target and the
background, Kapur’s entropy is used as the objective function for
EACOR to evaluate the threshold sets. In addition, the non-local
mean two-dimensional histogram method is used to exploit the
spatial information of the image to reduce noise interference.
The threshold optimization ability and segmentation ability
of the proposed model are verified in this paper. A series
of global optimization experiments on the IEEE CEC2014
benchmark test function (Liang et al., 2013) is used to validate
whether EACOR is a suitable threshold search method. To
test the image segmentation model, we set up segmentation
experiments on the melanoma dataset at five threshold levels
of 4, 8, 12, 16, and 20. Feature similarity index (FSIM) (Zhang
et al., 2011), structural similarity index method (SSIM) (Wang
et al., 2014), and peak signal to noise ratio (PSNR) (Huynh-
Thu and Ghanbari, 2008) is used to evaluate the segmentation

experiments to feedback on a more comprehensive and objective
result. The experimental results show that the model proposed
in this paper can perform the task of image segmentation
excellently. It provides high-quality samples for subsequent
melanoma pathology image segmentation. In summary, the
contributions of this paper are as follows:

� A novel ant colony algorithm with the soft besiege and
chase strategies is proposed. Its powerful optimization
capability is applied to the segmentation of melanoma
pathology images, and segmentation results of high
quality are obtained.

� The performance of EACOR is compared with some
excellent peers and variants.

� EACOR improves the original ant colony algorithm’s
convergence speed, accuracy, and ability to jump out of the
local optimum on complex functions.

� The quality of the segmented images is evaluated
comprehensively, and the proposed threshold
optimization method can improve the efficiency of
threshold search.

The remainder of the paper is organized as follows:
related works are discussed in Section “Related works.” Section
“Overview of relevant methods” reviews the multi-threshold
segmentation method and the original ant colony algorithm.
Section “EACOR-based segmentation model” introduces the
EACOR-based multilevel threshold segmentation method.
Section “Experiments and results analysis” shows and analyzes
the experimental results of the benchmark function and
image segmentation. The model proposed in this paper is
discussed in Section “Discussions.” In Section “Conclusion and
future works,” the work of the paper and the next research
plan are summarized.

Related works

Threshold segmentation method

As one of the most common image segmentation methods,
threshold segmentation usually determines the gray scale range
of the segmented image based on pixel gray scale or other
ordered metrics. The segmentation is then completed based
on a histogram of the grayscale, mean grayscale, non-local
mean, etc. According to the objective function, threshold
segmentation can be divided into minimum error, maximum
between-class variance (Otsu), maximum entropy, etc. The
most widely used of these is the maximum entropy method
and Otsu. Threshold segmentation does not rely on a priori
knowledge of the image and has low computational complexity.
In addition, threshold segmentation is suitable for processing
some images where the gray scale reflects the target of interest.
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Therefore, this method is often applied to the problem of
processing medical images. However, the increase in threshold
level according to the medical diagnosis requirements make the
objective function complex and increases computational cost.
Recently, some researchers have found that taking advantage
of swarm intelligence algorithms can reduce computational
consumption. As a result, the multi-level threshold image
segmentation method with swarm intelligence optimization has
attracted more attention.

For example, Siri et al. (2020) proposed a novel multi-
threshold liver segmentation model based on the ’Slope
Difference Distribution’ of image histogram, and the
segmentation of the CT images of the liver is satisfactory.
The Jaccard Coefficient results with the popular method
demonstrated that this model could be more accurate for lung
CT images. Li W. et al. (2020) presented a multi-threshold
segmentation-based genetic algorithm for fine segmentation
of medical images. The experimental results show that the
feature extraction model based on the segmentation method
had a higher region recognition rate. Renugambal and Selva
Bhuvaneswari (2021) used Kapur’s entropy and a modified
moth flame optimization algorithm to differentiate between
gray matter, white matter, and cerebrospinal fluid. The objective
function values, the PSNR, and the computational cost were
all satisfactory. Patra et al. (2021) used a multilayer threshold
segmentation method based on a student psychology-based
optimizer for lesion detection on breast dynamic contrast-
enhanced magnetic resonance imaging. The accuracy of the
segmented image after feature extraction was 99.44%. Chen et al.
(2022) designed an enhanced shuffled frog leaping algorithm
for multi-threshold image segmentation of breast cancer. The
method was used for multi-threshold image segmentation of
breast invasive ductal carcinoma, and the images obtained by
the method performed well in terms of FSIM, PSNR, and SSIM.
As a result, swarm intelligence optimization has been widely
used for solving multi-threshold image segmentation problems.

Analysis of previous literature shows that the multi-
threshold image segmentation method based on the
optimization algorithm is an image segmentation method
with excellent segmentation performance, which is suitable for
segmenting medical images. Furthermore, such segmentation
methods still have great potential due to the performance of
threshold optimization methods.

Optimization method

The swarm intelligence algorithm is a flexible, gradient-
independent method. Solving for the optimal threshold reduces
the risk of obtaining sub-optimal or inferior solutions. The
field of optimization of swarm intelligence algorithms is
not restricted to a specific problem, and there are no
special requirements for the objective function. Based on

these advantages, it has become one of the most popular
optimization methods. Common swarm intelligence include:
differential evolution algorithm (DE) (Storn and Price, 1997),
stochastic fractal search (SFS) (Salimi, 2015), ant colony
algorithm for continuous domain problems (ACOR) (Socha
and Dorigo, 2008), grey wolf optimizer (GWO) (Mirjalili et al.,
2014), moth-flame optimization (MFO) (Mirjalili, 2015), whale
optimization algorithm (WOA) (Mirjalili and Lewis, 2016),
Runge Kutta optimizer (RUN) (Ahmadianfar et al., 2021), tree-
seed algorithm (TSA) (Kiran, 2015), firefly algorithm (FA)
(Yang, 2010), hunger games search (HGS) (Yang et al., 2021),
Harris hawks optimization (HHO) (Heidari et al., 2019b), sine
cosine algorithm (SCA) (Mirjalili, 2016), slime mould algorithm
(SMA) (Li S. et al., 2020), colony predation algorithm (CPA) (Tu
et al., 2021), weighted mean of vectors (INFO) (Ahmadianfar
et al., 2022), and cuckoo search algorithm (CS) (Yang and Deb,
2010). The above methods have been applied to a particular
area with excellent performance. However, the increase in
dimensionality and complexity leads to low convergence
accuracy and a higher probability of obtaining a locally optimal
solution. Therefore, improving existing algorithms is one of the
most common ways to enhance their optimization performance.

For example, a boosted bat algorithm (CDLOBA) (Yong
et al., 2018), the chaotic bat algorithm (CBA) (Adarsh et al.,
2016), the hybridizing grey wolf optimization with differential
evolution (HGWO) (Zhu et al., 2015), the hybrid algorithm
(ASCA-PSO) that combines SCA with PSO (Issa et al., 2018),
the hybridizing sine cosine algorithm with differential evolution
(SCADE) (Nenavath and Jatoth, 2018), the modified SCA
based on neighborhood search and greedy Lévy mutation
(m_SCA) (Qu et al., 2018), the improved GWO algorithm
(IGWO) exploits the powerful exploratory power of the
hierarchical mechanism (Cai et al., 2019), the efficient boosted
grey wolf optimizers (OBLGWO) (Heidari et al., 2019a),
the A-C parametric whale optimization Algorithm (ACWOA)
(Khashan et al., 2018), the mutative whale-inspired optimization
methods with multi-strategy (BMWOA) (Luo et al., 2019), the
multi-population and DE assisted Harris hawks optimization
(CMDHHO) (Chen H. et al., 2020). Therefore, based on
an analysis of previous literature, we believe that focused
improvement of the original algorithm is a viable option. These
methods have excellent performance in dealing with some
optimization problems, such as economic emission dispatch
problem (Dong et al., 2021), image segmentation (Hussien
et al., 2022; Yu et al., 2022b), feature selection (Hu J. et al.,
2022; Liu et al., 2022), robust optimization (He et al., 2019,
2020), scheduling problems (Gao et al., 2020; Han et al., 2021;
Wang G. G. et al., 2022), multi-objective problem (Hua et al.,
2021; Deng et al., 2022d), plant disease recognition (Yu et al.,
2022a), complex optimization problem (Deng et al., 2022b),
train scheduling (Song et al., 2023), resource allocation (Deng
et al., 2022a), airport taxiway planning (Deng et al., 2022c),
optimization of machine learning model (ling Chen et al., 2014),
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medical diagnosis (Chen et al., 2016; Wang et al., 2017), and
solar cell parameter identification (Ye et al., 2021). But there
are still some issues to be considered in these methods. For
example, Niu et al. (2019) found after repeated experiments that
GWO was uncertain when dealing with optimization problems.
The optimization capability of GWO is significantly better
than other methods only when the optimal solution of the
optimization problem is zero. When the optimal value is far
from zero, the performance of GWO gradually decreased. It
means that the algorithm performance is unstable for real-world
applications. Furthermore, a series of studies based on algorithm
structure and core ideas question the innovativeness of some
popular algorithms including intelligent water drops algorithm,
firefly algorithm, black holes optimization algorithm, whale
optimization algorithm and sine cosine algorithm. Some of these
studies have argued that these methods are simply a novel
modification of previous methods, confusing the researcher’s
understanding of the nature of the algorithm (Piotrowski et al.,
2014; Camacho-Villalón et al., 2018; Camacho Villalón et al.,
2020).

Based on the above factors, the originality of the ant colony
optimization algorithm (ACO) is supported by a scientifically
complete theory. The traditional ACO is mainly applied to
solve discrete problems. Subsequently, Socha and Dorigo (2008)
proposed ACOR for continuous domains, known as ACOR.
ACOR and its variants are widely used in various fields. ACOR is
a classical swarm intelligence algorithm with a simple structure
and high robustness. ACOR and its variants are widely used in
various fields. Juang and Chang (2011) applied the improved
ACOR algorithm (ECACOR) to the field of dynamic plant
control. Zhang et al. (2013) proposed applying the homogenous
continuous ant colony optimization algorithm (HACOR) to the
one-dimensional coupled radiation and thermal conductivity
heat transfer inverse problem. Gao (2014) solved the landslide
forecasting problem by combining the artificial immune
system with ACOR. Jero et al. (2016) applied ACOR to
Electrocardiography steganography. Ma et al. (2019) proposed
an adaptive hybrid ACO for the classification problem. Omran
and Al-Sharhan (2019) applied two variants of his proposed
ACOR to practical engineering optimization problems.

Based on an analysis of previous literature, ACOR can
obtain better result when dealing with different optimization
tasks. However, ACOR still has potential for improvement.
When solving high-dimensional problems or complex multi-
peaked problems, the convergence accuracy of ACOR may
appear insufficient, and the probability of obtaining a locally
optimal solution increase. If ACOR is used as a thresholding
search method for segmentation models, it may reduce the
effectiveness of image segmentation. Based on the above
literature analysis, it can be concluded that a multi-threshold
segmentation method with excellent performance is still
necessary. Therefore, this study proposes an enhanced ACOR
method (EACOR) based on the soft besiege and chase strategies.

Overview of relevant methods

Multi-threshold image segmentation

Two-dimensional histogram
The non-local means (NLM) two-dimensional histogram

(Buades et al., 2005) is an essential method for image denoising.
The basic principle of NLM filtering is like that of means
filtering. They both achieve denoising by averaging the pixels
around the current pixel point, except that a weighting strategy
is added to the NLM filtering. NML method can achieve
denoising and preserve the details of the image edges. The value
of NLM O(p) can be obtained according to Eq. 1.

O(p) =

∑
q∈I X(q)ω(p, q)∑

q∈I ω(p, q)
(1)

where p and q are two pixels in image I, respectively. X(p) and
X(q) represent the values of p and q, respectively. The Gaussian
weighting function ω

(
p, q

)
is defined as shown in Eq. 2.

ω(p, q) = exp−
|µ(q)−µ(p)|2

σ2 (2)

where σ is the standard deviation of the Gaussian weighting
function. µ(p), µ(q) denote the local means of p, q pixels,
respectively, obtained from Eq. 3.

µ(x) =
1

n × n

∑
i∈S(x)

I(i) (3)

where x is a pixel in the image I, S(x) is a square filter of size
n× n around pixel x.

Suppose an image I(x, y) with gray level L and size M × N,
x ∈ [1, M], y∈ [1, N]. For each pixel in I, the corresponding
grayscale value f (x, y) and NLM g(x, y) can be calculated.
Therefore, each pixel in the original image I(x, y) will be
associated with two dimensions: grayscale and NLM. Moreover,
we can also obtain the number of h(i, j) pixels with the same
grayscale and NLM in (s, t), which is calculated by Eq. 4.

h
(
i, j
)
= ci,j (4)

where i, j denote the grayscale value f (x, y) and the nonlocal
mean g(x, y) of (x, y) pixels. Both i and j are in the range of 0
to L1. ci,j is the number of pixels with grayscale value and NLM
of (i, j). Two-dimensional histogram of the image is obtained by
normalizing Eq. (5) according to h

(
i, j
)
.

Pi,j =
h
(
i, j
)

M × N
, i, j = 0, 1, 2, ..., L− 1,

L−1∑
i = 0

L−1∑
j = 0

Pi,j = 1

(5)
The grayscale and NLM values are used as the horizontal

and longitude axes of the two-dimensional histogram. The
number of normalized pixels is used as the vertical axis of the
two-dimensional histogram, as shown in Figure 1.
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Kapur’s entropy
Entropy is a physical quantity that measures a certain

distribution, and a higher entropy value means that the
distribution is more uniform. In order to fully consider the
source independence and be able to well extract the feature
signal in the picture, Kapur’s entropy is selected to measure the
amount of information in the target region and background
region. The larger Kapur’s entropy indicates the higher quality
of image segmentation. The method of MTIS using Kapur’s
entropy can be described as follows: {t1, t2..., tT} represents
the grayscale values of the grayscale image and {s1, s2..., sT}

characterizes the grayscale values of the non-local mean image.
The objective function is expressed as calculating the entropy
of T + 1 image segmentations and then summing them. The
expression for the objective function F of Kapur’s entropy is
shown in Eqs. 6, 7.

F
(
th1, th2, ..., thT

)
= H0 + H1 + ...+ HT (6)



H1 = −
∑s1

i = 0
∑t1

j = 0
Pi,j
ω0

ln
(

Pi,j
ω0

)
,

ω0 =
∑s1

i = 0
∑t1

i = 0 Pi,j

H2 = −
∑s2

i = s1+1
∑t2

j = t1+1
Pi,j
ω1

ln
(

Pi,j
ω1

)
,

ω1 =
∑s2

i = s1+1
∑t2

j = t1+1 Pi,j

HT = −
∑sT

i = sT−1

∑tT
j = tT−1

Pi,j
ωT

ln
(

Pi,j
ωT

)
,

ωT =
∑sT

i = sT−1

∑tT
j = tT−1

Pi,j

(7)

where Hi denotes the entropy of the i-th image segmentation.
{ω1,ω2, ...,ωT} are the sum of the grayscale levels in the
threshold interval.

Ant colony algorithm for continuous
domains

The original ACO algorithm could only deal with discrete
optimization problems. Socha and Dorigo (2008) extended
ACO to a continuous domain (ACOR). ACOR has excellent
performance and has great potential for improvement.
Meanwhile, the ACOR has a robust theoretical framework.
Therefore, this study optimizes the optimal threshold based on
ACOR. The traditional ACOR is as follows.

The archive mechanism is a significant feature of ACOR.
The essence of the archive of solutions mechanism is to
simulate the pheromone model. The total number of individuals
is N, dimension is dim. The population is denoted as
X = {X1, ...,Xk}, and the i-th individual is denoted as
Xi =

(
x1

i , ... xdim
i

)
, i ∈ [1, N]. The size of the solution

archive is set to k. At each iteration, the mechanism keeps
k solutions with the best fitness values from k + N search
individuals (the k best search agents in the previous iteration and
the N search agents in the population of the current iteration),
and stores them in the solution archive. The solution archive

is denoted by S = {S1, ..., Sk}, and individuals in the solution
archive are represented as Sm =

(
s1
m, ... sdim

m

)
, m ∈ [1, k].

In the archive, each search agent Sm corresponds to a weighting
factor ωm and a probability pm. ωm and pm are calculated from
Eqs. 8, 9, respectively.

ωm =
1

qk
√

2π
exp [−

(m− 1)2

2q2k2 ] (8)

pm =
ωm∑k

r = 1 ωr
(9)

where q is a parameter that is used to reconcile the local search
with the global search.

The guide solution Sg is selected from the solution archive
based on the roulette selection method and probability P. The µ

and σ required to update the population can be derived from
the information on each dimension of Sg and S. µ and σ are
calculated from Eqs. 10–12, respectively.

µj = sj
g (10)

σj = ξDj, j = 1, ..., dim (11)

Dj =

k∑
r = 1

|sj
r − sj

g |

k− 1
(12)

where ξ is used to replace the pheromone evaporation rate. Dj is
the Manhattan distance. |sj

r − sj
g | denotes the distance from each

solution to the reference individual in the archive.
The update formula for the current search agent Xi is shown

in Eq. 13.
xj

i = normrnd(µj, σj) (13)

where normrnd(µ, σ) is the normal distribution function,
µ denotes the mean vector, and σ denotes the standard
deviation vector.

Enhanced ant colony optimization
for continuous domains-based
segmentation model

This section details the proposed EACOR and the EACOR-
based thresholding image segmentation model.

The proposed enhanced ant colony
optimization for continuous domains

Motivation
In order to increase the convergence speed while improving

the accuracy. This study introduced the soft besiege strategy.
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FIGURE 1

Three-dimensional view of a 2D histogram.

The soft besiege strategy is inspired by HHO (Heidari et al.,
2019b). The soft besiege strategy ensures a more reasonable
ratio of global exploration and local exploitation of the
algorithm, which is conducive to searching for higher quality
solution. At the beginning of the optimization process, the
algorithm tends to explore the entire search space more
globally, which accelerates convergence and reduces the local
optimum risk. Toward the end of the optimization process,
the algorithm focuses more on further exploitation around the
current optimal solution, improving the convergence accuracy
of the algorithm. The pursuit strategy can enhance the local
exploitation performance of the algorithm.

The soft besiege strategy
The adaptive step size facilitates to coordinate the

exploration and exploitation of the proposed method. The

exploration phase enables the search agents to conduct a global
search with a big step size. In the exploitation phase, the search
agent performs the local search with a small step size. E is
calculated from Eq. 14.

E = 2(1−
FEs

MaxFEs
)(2r1 − 1) (14)

where FEs is the number of current function evaluation. MaxFEs
is the maximum number of function evaluation. r1 is a randomly
generated number between 0 and 1. From Eq. 14, as the number
of iterations rises, we know that |E| drops from 2 to 0. The
variation of E with the increasing number of iterations is shown
in Figure 2.

The soft besiege strategy uses the average position of all ants
in the colony, the random ant position, and the food position
(global optimal solution) to influence the current ant movement.
The soft besiege strategy consists of two phases according to the
optimization process.

When the current number of iterations is 1, the update
formula for the current individual Xi =

(
x1

i , ... xdim
i

)
, i ∈

[1, N] is shown in Eq. 15.

xj
i =

 xj
rand − r2 ×

∣∣∣xj
rand − 2r3 × xj

i

∣∣∣ , r6 > 0.5(
xj

best − xj
mean

)
− r4

(
r5
(
ubj − lbj

)
+ lbj

)
, r6 ≤ 0.5

(15)
where xj

rand, xj
best , and xj

mean denote the j-th component of the
random individual, optimal individual and average individual
in the population, respectively. r2, r3, r4, r5, and r6 are randomly
generated between 0 and 1. ubj and lbj denote the maximum
and minimum values of the j-th component, respectively. When
r6 > 0.5, xj

i is updated according to the position of other

FIGURE 2

The change curve of E in 1000 iterations based on Heidari et al. (2019b).
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individual. When r6 ≤ 0.5, xj
i updates its position based on

the current best individual ant and the mean value of the
population. This stage ensures that the colony can explore
the search space more extensively and find the global optimal
solution more easily.

When the number of iterations is greater than one, the main
factor affecting the update of individual position is the current
optimal individual. In addition, to improve the convergence
accuracy and prevent falling into local optimum, random step
J and Lévy flight are introduced. The updated formula for J is
shown in Eq. 16.

J = 2(1− r7) (16)

where r7 means random numbers between 0 and 1.
J and Lévy flight ensures that an individual can search locally

at the current position and jump out of the local optimum by the
feature of Lévy flight between long and short steps. At the next
iteration, the individual Xtemp that may replace the current Xi is
generated by Eqs. 17, 18.

xj
temp =


(

xj
best − xj

i

)
− E

∣∣∣J × xj
best − xj

i

∣∣∣ , r8 ≥ 0.5 (17)

xj
best − E

∣∣∣J × xj
best − xj

i

∣∣∣ , r8 < 0.5 (18)

where xj
temp denotes the j-th component of Xtemp. r8 is randomly

generated between 0 and 1.
In addition, when r8 < 0.5, the current individual’s

position is further developed based on local information to
obtain a better solution. If the fitness value of Xtemp is better, the
next search step is performed according to Eq. 19. Otherwise,
the original position is retained.

xj
temp = xj

best − E
∣∣∣J × xj

best − xj
i

∣∣∣+ r9 × Levy (19)

where Levy denotes Lévy flight. r9 denotes a random number
between 0 and 1.

As a result, the individual with the best fitness value of
Xtemp and Xi is retained for the next iteration based on the
current individual. The pseudo-code of the soft besiege strategy
is shown in Algorithm 1.

Input: N, dim, ub, lb, MaxFEs, object

function fobj, current iteration

number t,
population X(t) = {X1, ...,XN}.

Output: Updated population

X(t + 1) = {X1, ...,XN} and its function

value.

Find the optimal individual Xbest
according to the function value;

For i = 1: N
Calculate E according to Eq. 14;

For j = 1: dim
If t equals 1

Update current individual xj
i by

Eq. 15;

Else then

Update J by Eq. 16;

If r8 ≥ 0.5
Update the individual xj

temp by

Eq. 17;

Else then

Update the individual xj
temp by

Eq. 18;

Iffobj(Xtemp) better than fobj(Xi)

Update the individual xj
temp by

Eq. 19;

End

End

End

Update Xi according to the fitness

function values of Xtemp and Xi;

End

End

Algorithm 1. Pseudo-code of the soft besiege strategy.

The chase strategy
The chase strategy mainly updates the current individual’s

position based on the guided individual Sg =
(

s1
g , ... sdim

g

)
and the global optimal Xbest . Since the two best individuals
influence the current position, the strategy gradually devotes
more computing resources to local location exploitation. The
chase strategy is divided into two cases as shown in Eq. 20, by
comparing the function value of Sg and Xi.

xj
temp =


sj
g + r10

(
sj
g − xj

i

)
+ r11

(
xj

best − sj
g

)
,

fobj(Sg) better than fobj(Xi)

xj
i + r12

(
xj

i − sj
g

)
+ r13

(
xj

best − xj
i

)
, otherwise

(20)
where r10, r11, r12, r13 denote the random numbers
between 0 and 1. The pseudo-code of the chase strategy is
shown in Algorithm 2.

Input: N, dim, object function fobj,
population X(t) = {X1, ...,XN}.

Output: Updated population

X(t + 1) = {X1, ...,XN} and its function

value.

Find the optimal individual Xbest
according to the function value;

For i = 1: N
For j = 1: dim
Update the individual xj

temp by

Eq. 20;
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End

Update Xi according to the fitness

function values of Xtemp and Xi;

End

Algorithm 2. Pseudo-code of the chase strategy.

Implementation of enhanced ant colony
optimization for continuous domains

This subsection describes the process of implementing
EACOR. Step 1: the parameters of the algorithm are defined.
Step 2: the archive is initialized and the fitness value is calculated.
Step 3: ACOR’s core update formula of is executed. Step 4: the
chase strategy is used to further exploit the population position.
Step 5: update the population according to the soft besiege

strategy. Step 6: remove N bad solutions from k + N individuals
in this iteration. Step 7: the optimal individuals are output. The
flow chart of EACOR is shown in Figure 3.

Implementation of the image
segmentation model

In this study, a multi-level threshold segmentation method
based on EACOR and Kapur’s entropy is used to achieve high-
quality segmentation of melanoma images. According to the
above method description, multi-threshold image segmentation
is achieved according to the following steps.

Step 1: The original image is transformed into grayscale and
NLM filtering images.

FIGURE 3

Flowchart of EACOR.
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Step 2: The grayscale and NLM filtering images are mapped
in an NLM two-dimensional histogram.

Step 3: Kapur’s entropy is used as the fitness function for the
image information. According to the observation in Figure 4,
the most useful image information is distributed in the sub-
regions of the main diagonal of the 2D histogram, so we only
compute these regions. The objective function is optimized
using the EACOR algorithm proposed in this paper. The final
optimal value is used as the optimal threshold for this image.

Step 4: The segmented gray image and the color jet
colormap image are obtained according to the optimal
solution information.

The details of the proposed segmentation model are shown
in Figure 4.

Experiments and results analysis

In this section, the algorithm’s performance was verified in
two main aspects: the benchmark function experiment and the
image segmentation experiment. For the benchmark function
experiments, all experiments were tested on the IEEE CEC2014
benchmark function. In addition, the global optimization
performance of EACOR is verified by objective comparison
experiments with some advanced methods. The EACOR-based
multi-threshold image segmentation method segmented nine
melanomas at different thresholds for the image segmentation

TABLE 1 Details of the public parameters.

Name Remark Value

N The population size 30

dim Objective function dimension 30

MaxFEs The maximum number of evaluations 300,000

ub Maximum value available in the search space 100

lb Minimum value available in the search space −100

Flod Number of independent experiments 30

experiments. Three segmentation quality assessment criteria
were used to test the above results. To test whether the obtained
data were statistically significant, the Wilcoxon signed-rank
test (WSRT) (Garcia et al., 2010) and the Friedman test (FT)
(Derrac et al., 2011) were used as statistical criteria for the
data in this paper.

It is worth noting that ‘+,’ ‘−,’ and ‘=’ results appear in the
comparison between the baseline function experiment and the
image segmentation experiment. ‘+’ Indicates that the difference
between the two results is significant and that the results of the
proposed method are better. ‘−’ Indicates that the difference
between the two results is significant and that the proposed
method results are worse. ‘=’ Means that the difference between
the two results is insignificant, and the performance of the two
algorithms can be considered similar.

FIGURE 4

Flowchart of image segmentation.
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TABLE 2 Values of important parameters in EACOR.

ξ Average rank k Average rank q Average rank

ξ(0.5) 2.87 k(5) 3.17 q(0.1) 4.17

ξ(0.75) 2.73 k(8) 3.13 q(0.3) 3.30

ξ(1) 2.40 k(10) 2.60 q (0.5) 2.40

ξ(1.25) 2.70 k(12) 2.93 q(0.7) 2.50

ξ(1.5) 2.97 k(15) 3.17 q(0.9) 2.63

In addition, bold in the table indicates the best data.

TABLE 3 Four combinations of two strategies in EACOR.

Methods Soft besiege strategy Chase strategy

EACOR 1 1

ACOR_S 1 0

ACOR_C 0 1

ACOR 0 0

TABLE 4 Comparative results of strategy combination
comparison experiment.

Methods WSRT FT +/−/=

EACOR 1 (1.93) 1 (1.98) ∼

ACOR_S 2 (2.07) 2 (2.07) 6/4/20

ACOR_C 3 (2.14) 3 (2.21) 9/2/19

ACOR 4 (3.74) 4 (3.76) 27/2/1

In addition, bold in the table indicates the best data.

Moreover, all experiments were performed on a computer
with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processor
and 16GB RAM, using MATLAB R2018b.

Experiments on benchmark functions

Experimental conditions and environmental
settings

The benchmark function experiments in subsection
“Experiments on benchmark functions” focused on testing the
global optimization performance of EACOR. IEEE CEC2014
test suite consists of unimodal, multimodal, hybrid, and
composition functions that effectively validate the exploration
and exploitation capabilities of the algorithms. Details of all
IEEE CEC2014 benchmark functions can be referred to Liang
et al. (2013). In order to ensure the fairness of the algorithm, all
common parameters were standardized, as shown in Table 1.
In addition, Table 2 shows the average ranking of the key
parameters tested on the 30 functions. It was finally determined
that ξ was set to 1, k was set to 10, and q was set to 0.5.

The strategy combination comparison test
Enhanced ant colony optimization for continuous domains

introduced the soft besiege strategy and the chase strategy.

In order to verify whether the two enhanced strategies
can improve EACOR’s optimization capabilities, a strategy
comparison experiment was set up in this subsection. The four
combinations of the two strategies are shown in Table 3, where
’1’ means that the strategy was used and ’0’ means that the
strategy was not used.

Table 4 shows the rankings of WSRT and FT and the
comparison results. For WSRT, EACOR ranked the best
of the four algorithms with an average ranking of 1.93
on the 30 benchmark functions. For FT, EACOR ranked
first, and its average ranking was 1.98. In the last column
of Table 4, EACOR had six results that were better than
ACOR_S, four results that were worse than ACOR_S, and other
results that were like ACOR_S. Compared to ACOR without
both strategies, EACOR won in 27 functions and failed in
only 2 functions.

The convergence curves for the four different combinations
of the two techniques are shown in Figure 5 and Supplementary
Figures B.1, B.2. From the convergence curves, we can see that
EACOR has better convergence accuracy than the other three
algorithms. Furthermore, it can be seen at F11, F29, and F30
that there was a rapid downward trend in the curves of EACOR
and ACOR_S for evaluation numbers between 250,000 and
300,000. It is due to the process of EACOR escaping from the
local optimum solution when dealing with some multi-peaked
functions. It shows that the soft besiege strategy introduced by
the algorithm improved the ability of the algorithm to avoid
falling into the local optimum solution.

According to the above analysis, only the ACOR algorithm
with both the soft besiege strategy and the chase strategy can
reach the optimal state.

The qualitative analysis
To analyze the impact of the introduced strategy on ACOR,

the search process of EACOR and ACOR was analyzed through
1000 iterations. Figure 6 shows the search process of some
functions of EACOR on IEEE CEC2014. Figure 6A shows the 3-
D search space of the global optimization problems. Figure 6B
shows all exploration trajectories in the search space, where the
red dot indicates the optimal positions. Figure 6C depicts the
algorithm’s search trajectory in the first dimension. EACOR’s
average fitness value is seen in Figure 6D.

Figure 6B demonstrates that most search agents focus their
efforts on a local search around the global optimal solution,
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FIGURE 5

The convergence curve of the EACOR strategy combination.

whereas only a tiny number of search agents conduct a global
search for the optimal solution. This shows that EACOR has not
only local but also global search capability. Figure 6C shows that
EACOR has a sharp oscillation in the search trajectory curve
in the early stage of the search, and then the curve becomes
smooth. This change ensures that the algorithm improves
both the convergence accuracy and the speed of convergence.
Figure 6D shows that EACOR has a variety of search agents
during the preliminary iterations. The diversity of search agents,
on the other hand, decreases as the number of iterations
increases. This confirms the transformation of the algorithm
from the exploration phase to the exploitation phase.

To further analyze how the introduction mechanism
improves the ACOR search capability. We have conducted

balanced experiments on the Exploration phase and
Exploitation phase of EACOR and ACOR based on 30
functions of IEEE CEC2014. In addition, experiments on
the diversity of the two algorithms were conducted. The
experimental result is shown in Figure 7 and Supplementary
Figures B.3–B.7. The red and blue lines in Figures 7A,B
represent the Exploration and Exploitation phases, respectively.
The first and second column images show the balance test
results for EACOR and ACOR, respectively. From the first
two columns of test results, it can be seen that the exploitation
phase of EACOR and ACOR dominates and facilitates
the algorithm to explore the known solutions further. By
comparing the exploration and exploitation phases of the
two methods, it can be seen that EACOR enhances the
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FIGURE 6

(A) Three-dimensional location distribution of EACOR. (B) Distribution of historical search tracks of EACOR. (C) Historical trajectory of EACOR’s
component. (D) Average fitness of EACOR.

algorithm’s exploration of the search space and improves the
probability of obtaining an optimal solution. A comparison of
Figures 7A,B in the same row shows that the search ratio of
EACOR in the Exploration phase is significantly higher than
that of ACOR. This leads to the situation shown in Figure 7C,
where the population diversity of EACOR is significantly
larger than that of ACOR at the beginning of the iteration
and gradually decreases at the end of the iteration. From the
above analysis, we can conclude that EACOR can jump out
of the local optimal solution and achieve better convergence

accuracy because the global search capability is stronger
than that of ACOR.

The stability experiment of enhanced ant
colony optimization for continuous domains

To verify the effect of the real problem dimension
component on the EACOR optimization performance (Zhu B.
et al., 2018), this subsection analyzed the experimental results
of the EACOR algorithm for 30 benchmark functions in high
dimensions (dim was set to 50 and 100).
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FIGURE 7

(A) The balance tests of EACOR. (B) The balance tests of ACOR. (C) The diversity tests of EACOR and ACOR.

Table 5 shows the ranking of EACOR and ACOR for WSRT
and FT in dealing with high dimensional problems and the
comparison results. From the table, EACOR was the best in both
the WSRT and FT statistical tests in both 50 and 100 dimensions.
Furthermore, EACOR achieved stronger optimization results
than ACOR for 26 functions in both dimensions, indicating that

EACOR can still show excellent optimization performance when
dealing with high-dimensional complex problems.

In addition, Figures 8, 9 show the convergence curve
of the algorithm in dealing with high-dimensional problems.
Although the algorithm’s convergence accuracy was reduced due
to the increase in problem dimensionality, EACOR was less
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TABLE 5 Comparative results of stability analysis.

dim = 50 dim = 100

EACOR ACOR EACOR ACOR

WSRT 1 (1.10) 2 (1.90) 1 (1.13) 2 (1.87)

FT 1 (1.10) 2 (1.90) 1 (1.11) 2 (1.89)

+/−/= ∼ 26/2/2 ∼ 26/3/1

In addition, bold in the table indicates the best data.

affected than the original algorithm. It is worth noting that the
convergence curves for F9, F10, F29, and F30 can be observed;
EACOR can still jump out of the local optimal solution at the late
stage of the iteration in the high dimension. As a result, EACOR

was superior in terms of convergence performance and escape
from local optimum solutions.

Comparison experiment with the original
algorithms

To enable a more objective evaluation of EACOR’s
performance, it was compared to ten well-known competitors
in this subsection. These algorithms included ACOR, DE, FA,
GWO, WOA, HHO, MFO, SCA, SFS, and TSA.

Table 6 shows the average ranking of the optimization
results for the 30 benchmark functions. Among the 11 methods,
EACOR ranked first in both WSRT and FT, with an average
ranking of 2.37 and 2.77, respectively. The suboptimal method
is DE, which has an average ranking of 2.97 and 3.2 for

FIGURE 8

Convergence curves of EACOR and ACOR at 50 dimensions.
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FIGURE 9

Convergence curves of EACOR and ACOR at 100 dimensions.

WSRT and FT, respectively. Furthermore, EACOR can beat
DE on 18 functions, while DE outperformed EACOR on
only 10 functions, and the other two results were considered
equal. It is noteworthy that the worst-performing method of
both statistical methods was ACOR, which shows that the
improvement strategy proposed in this study can adequately
improve the algorithm’s performance.

Figure 10 and Supplementary Figures B.12, B.13 show the
convergence of the 11 algorithms on 30 benchmark functions.
We can see that EACOR is at the bottom of the convergence
curve. In F1, F6, F9, F21, F30, and EACOR finds better solutions
and converges faster than the other algorithms. In F1, F9, F17,
F20, F21, F30, and EACOR still finds better solutions at the
end of the iterations, especially in F21, EACOR converges at

the beginning of the iteration with accuracy second to that
of DE, but EACOR’s advantage of jumping out of the local
optimum at the end of the iteration makes the result better
than DE’s result.

The means and standard deviations of 30 independent
runs of the experiments indicate that the algorithm can
obtain excellent and stable optimization results. WSRT and
FT demonstrate the statistical significance of the experimental
results. Overall, EACOR is more competitive than some
advanced and original algorithms.

Comparison experiments with the peers
To further demonstrate the superiority of the

EACOR algorithm in terms of performance, EACOR
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TABLE 6 Comparative results of EACOR with ten original algorithms.

Methods WSRT FT +/−/=

Avg. Rank Avg. Rank

EACOR 2.37 1 2.77 1 ∼

ACOR 9.53 11 9.31 11 26/2/2
DE 2.97 2 3.2 2 18/10/2
FA 9.37 10 9.21 10 27/1/2
GWO 5.17 6 5.14 5 23/3/4
HHO 4.03 3 4.28 3 18/3/9
MFO 7.2 8 6.96 8 26/3/1
SCA 8.7 9 8.71 9 27/1/2
WOA 6.63 7 6.43 7 25/3/2
SFS 4.67 4 4.82 4 20/3/7
TSA 4.97 5 5.19 6 24/3/3

In addition, bold in the table indicates the best data.

was compared with ten other excellent improved
algorithms. These peers were CDLOBA, CBA, HGWO,
ASCA_PSO, SCADE, m_SCA, IGWO, OBLGWO,
ACWOA, and BMWOA.

TABLE 7 Comparative results of EACOR with ten peers.

Methods WSRT FT +/−/=

Avg. Rank Avg. Rank

EACOR 2.17 1 2.62 1 ∼

CDLOBA 6.67 8 6.31 7 22/3/5

CBA 5.93 4 5.71 4 21/3/6

HGWO 7.57 9 7.45 9 24/3/3

ASCA_PSO 6.33 6 6.19 6 26/1/3

SCADE 8.93 11 8.97 11 24/2/4

m_SCA 5.93 4 5.93 5 25/3/2

IGWO 3.73 2 4.12 2 23/4/3

OBLGWO 4.27 3 4.57 3 24/2/4

ACWOA 7.63 10 7.54 10 23/3/4

BMWOA 6.43 7 6.59 8 28/1/1

In addition, bold in the table indicates the best data.

Table 7 shows the ranking of EACOR with these ten
peers for both statistical methods. EACOR performed best in
WSRT and FT, with an average ranking of 2.17 and 2.62,

FIGURE 10

Convergence curves of EACOR with ten original algorithms.
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FIGURE 11

Convergence curves of EACOR with ten peers.

respectively. In addition, EACOR can beat the second-ranked
IGWO on 23 functions and be disadvantaged on only 4
functions. The various comparisons in Table 7 show that
EACOR has better optimization performance and can handle
different optimization problems better.

Figure 11 and Supplementary Figures B.14, B.15 show the
convergence of EACOR with ten advanced peer methods on
IEEE CEC2014, and it can be seen that EACOR can achieve
better optimization results in most functions compared to other
methods. In addition, by looking at F3, F16, and F29, we can
see that the convergence curves of EACOR are still significantly
skewed in the late iterations, which indicates that EACOR has
an excellent ability to jump out of the local optimal solution.

Based on the above analysis, we can conclude that EACOR
still has significant advantages not only compared with the
original algorithm but also compared with the improved
algorithm in terms of convergence accuracy, convergence speed,
and prevention of premature convergence.

Experiments on image segmentation

To validate the performance of the EACOR-based multi-
level threshold image segmentation model proposed in this
paper, we used image segmentation on nine real melanoma
pathology images and compared them with some well-known
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TABLE 8 Image quality evaluation index.

Name Formula Remark

PSNR (Huynh-Thu and
Ghanbari, 2008)

PSNR = 10·log10(peak2)/MSE The larger PSNR value between the two images
indicates that the image has less distortion after
compression.

FSIM (Zhang et al., 2011) FSIM =
∑

x∈� SL(x)·PCm(x)∑
x∈� PCm(x)

The larger the FSIM value obtained, the better the
segmentation effect.

SSIM (Wang et al., 2014) SSIM = (2µIµK+C1)(2σIK−C2)
(µ2

I+µ
2
K+C1)(σ

2
I+σ2

K+C2)
The larger the SSIM value between two images, the
smaller the image distortion, and its value range is
[0, 1].

algorithms. The original pathology images and the non-local
mean two-dimensional histogram are shown in Supplementary
Figure B.16. Notably, we conducted experiments at different
thresholds to investigate the competitive performance of the
proposed segmentation method at different thresholds. Then,
the obtained segmentation results were analyzed.

Validation criteria for image quality
In order to judge the quality of the segmented image, three

methods, PSNR, SSIM, and FSIM, were used to evaluate the
segmentation results. Table 8 describes the evaluation methods
PSNR, SSIM, and FSIM.

After obtaining the above three criteria, the evaluation
data were statistically analyzed using the mean, standard
deviation, WSRT, and FT. The final evaluation data of the image
segmentation effect were obtained.

Melanoma image segmentation experiment
Since melanoma can be easily confused with a pigmented

nevus, there are some mistakes in the process of pathological
image detection. To segment melanoma effectively, we use the
MTIS technique to segment melanoma pathological images.
To see more clearly the value of EACOR in melanoma
image segmentation, 9 pathological images of melanoma were
segmented at 5 thresholds by EACOR with 9 similar algorithms,
namely ACOR, CS, GWO, HHO, SCA, ACWOA, IGWO,
m_SCA, and SCADE, according to the evaluation method in
subsection “Validation criteria for image quality.”

Figure 12 shows the jet colormap and gray images obtained
after segmentation of nine melanoma images by each method.
It is easy to observe that the image segmentation obtained by
SCA and IGWO was inferior to the other methods. However,
EACOR, ACOR, and CS were visually difficult to distinguish
the segmentation quality. Therefore, in subsequent experiments,
the performance of the methods was compared more visually
through the three evaluation methods.

Supplementary Tables A.1–A.3 compare FSIM, PSNR,
and SSIM at different thresholds. As can be seen from the
table, EACOR ranked first for all thresholds. Furthermore, the
difference between EACOR and ACOR for segmentation of 9
images was small at thresholds 4, 8, and 12. However, at 16

and 20 thresholds, most images segmented using EACOR were
significantly better than those obtained with ACOR. Figures 13–
15 show the three image evaluation metric scores at each
threshold. The mean values of FSIM, PSNR, and SSIM were the
highest for EACOR, indicating that the EACOR-based image
segmentation method can achieve high-quality segmentation of
melanoma images. And by comparing the thresholding results
of the five levels of thresholding an increase in the threshold
level between the experimentally set threshold levels is beneficial
in improving the segmentation results. To further verify the
significance of the obtained results, the experimental results
were further analyzed by the Friedman test. Figures 16–18 show
the FT results of the three evaluation criteria. The three FT
results show that EACOR was the best compared to the other
algorithms with the same conditions. The combination of FSIM,
PSNR, and SSIM shows that the melanoma images obtained by
this method retain more useful image features and have less
image distortion.

As the proposed image segmentation framework used
Kapur’s entropy as the objective function of the segmentation
threshold. Therefore, the larger Kapur’s entropy value indicates
that the maximum amount of information is retained between
the background and the target, which is more conducive
to improving image segmentation quality. Supplementary
Table A.4 shows that the maximum of Kapur’s entropy is
obtained for different thresholds, and EACOR can still obtain
the optimal Kapur’s entropy value in most cases. Figure 19
shows the convergence curves for each algorithm for nine
images at 20 levels of thresholding. Based on the above analysis
of Kapur’s entropy, the most reasonable solution was obtained
by EACOR, followed by ACOR. Finally, Supplementary
Figures B.17–B.25 show the optimal set of thresholds for the
9 images at 8 levels of thresholding.

Discussion

We can draw the following conclusions based on the
experimental results in subsection “Experiments on benchmark
functions.” First, when EACOR is compared with ACOR in
a higher dimension of the same function, the convergence
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FIGURE 12

Segmentation results of all algorithms.

of EACOR becomes faster, and the convergence accuracy is
higher. It shows that EACOR has a better and more stable
optimization performance than ACOR in different dimensions.

Second, in analyzing the effect of the soft besiege strategy
and the chase strategy on ACOR, the soft besiege strategy
balances the exploration and development phases so that
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FIGURE 13

FSIM results at different thresholds for nine melanoma images.

FIGURE 14

PSNR results at different thresholds for nine melanoma images.

the global search ability of EACOR becomes weaker with
increasing iterations. The local search ability becomes more
robust with increasing iterations, effectively solving the problem
of insufficient convergence accuracy of ACOR. Moreover, by
observing the EACOR search process, we can conclude that
EACOR can still perform the global search while performing
the local search at the end. The chase strategy can increase the

local search capability of EACOR. Thirdly, comparing EACOR
with some peers and variants further demonstrates the strong
optimization capability of EACOR. As a result, EACOR can cope
with different complex optimization problems.

In subsection “Experiments on image segmentation,”
the results of FSIM, PSNR, and SSIM are evaluated
by analyzing 4, 8, 12, 16, and 20 thresholds. Then the
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FIGURE 15

SSIM results at different thresholds for nine melanoma images.

FIGURE 16

FT result of FSIM evaluation at different thresholds for nine melanoma images.

convergence curves of mean, standard deviation, WSRT,
FT, and optimal threshold combinations are used to verify
the segmentation effectiveness of the EACOR-based multi-
threshold segmentation method. Firstly, based on the
results of 30 experimental means and standard deviations,
it can be concluded that the experimental results are not
coincidental, and EACOR shows excellent stability and
segmentation ability. Secondly, based on the comparison
results of WSRT and FT at 5 different thresholds, EACOR
outperforms other segmentation methods at all thresholds,
and as the threshold level increases, EACOR’s WSRT and

FT results become better. This indicates that the higher the
threshold value within a certain threshold range, the better
EACOR’s segmentation results become. Thirdly, combining
the optimal threshold combinations and the adaptation
convergence curves of each method shows that EACOR
can find the optimal threshold combination in the shortest
time. The segmentation efficiency of the model is improved.
It can be obtained through global optimization and image
segmentation experiments that the EACOR-based multi-
threshold Kapur’s entropy segmentation method is an excellent
segmentation tool for melanoma images, which can provide
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FIGURE 17

FT result of PSNR evaluation at different thresholds for nine melanoma images.

FIGURE 18

FT result of SSIM evaluation at different thresholds for nine melanoma images.

samples with less redundant information for subsequent
computer-aided diagnosis.

Because it is based on an improvement of the original
algorithm, it inevitably makes the EACOR calculation more
complex. The significant improvement in optimization
performance makes the increased computational cost
acceptable. Moreover, this problem can be overcome in
subsequent work by introducing parallel computing techniques
and high arithmetic devices. The superior optimization
performance of EACOR ensures efficient image segmentation
models, and provide greater possibilities for application to other
fields in the future, such as disease prediction (Su et al., 2019;

Li L. et al., 2021), recommender system (Li et al., 2014, 2017),
information retrieval services (Wu et al., 2020a, 2021b), human
activity recognition (Qiu et al., 2022), colorectal polyp region
extraction (Hu K. et al., 2022), location-based services (Wu
et al., 2020b, 2021a), text clustering (Guan et al., 2020), essay
recommendation (Liang et al., 2021), image denoising (Zhang
et al., 2020), drug-disease associations prediction (Cai et al.,
2021), other disease image segmentation (Qi et al., 2022;
Ren et al., 2022; Su et al., 2022), dynamic module detection
(Ma et al., 2020; Li D. et al., 2021), drug discovery (Zhu F.
et al., 2018; Li Y. et al., 2020), and road network planning
(Huang et al., 2022).
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FIGURE 19

The convergence curve of 20-level threshold segmentation.

Conclusion and future works

To obtain higher quality segmentation results of
pathological images in melanoma, this paper proposes a
high-quality improvement algorithm EACOR based on ACOR.
We also propose an MTIS method based on EACOR and Kapur’s
entropy. EACOR introduces the soft besiege strategy and the
chase strategy based on ACOR. In addition to addressing
ACOR’s convergence speed and accuracy shortcomings, it
enhances the ability of global search to keep the algorithm from
falling into a local optimum. The following experiments were
conducted to evaluate the usefulness of EACOR in practical
applications. The first step is to assess EACOR’s ability to
optimize its performance. On 30 benchmark functions from

IEEE CEC2014, we tested EACOR and used the WSRT and
the FT to analyze the results of our experiments statistically.
We performed quantitative and qualitative analysis of the new
strategy by a series of experiments, and the results showed that
the soft besiege strategy and the chase strategy could enhance
the optimization capability of EACOR. The stability of EACOR
is demonstrated through high-dimensional experiments. To
further validate the optimization performance of EACOR, we
compare EACOR with 10 peers with excellent performance and
10 variants of the algorithm. The experimental results show
that EACOR has the best optimization performance among
these 20 similar algorithms. In the second step, we validate
the segmentation effect of EACOR on melanoma images. For
nine genuine melanoma pathology images, we used EACOR to
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conduct MTIS with EACOR. The NLM and two-dimensional
histogram at the heart of MTIS is used in conjunction with the
EACOR method to determine the best threshold for Kapur’s
entropy. To fully demonstrate the segmentation capability of
EACOR, we evaluate the segmentation results obtained by
EACOR at 4, 8, 12, 16, 20 thresholds using FSIM, PSNR, SSIM as
segmentation criteria. In the image segmentation experiments,
we added 9 similar algorithms to compare with EACOR. The
experimental results show that EACOR can perform effective
MTIS for more complex melanoma images.

In future work, we will apply the powerful optimization
capabilities of EACOR to other areas. For example, engineering
optimization problems, feature selection, photovoltaic
parameter identification and bankruptcy prediction are among
the practical problems. In addition, the main area of EACOR
is the segmentation of pathological images so we will use
EACOR for more segmentation of melanoma pathological
images. It is hoped that the quality of segmentation of
pathological images from other diseases, including HE staining
or immunohistochemical (IHC) staining can be applied to
practice and improved.
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