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Objective: To understand the infection characteristics and risk factors for

infection by analyzing multicenter clinical data of newly diagnosed multiple

myeloma (NDMM) patients.

Methods: This study reviewed 564 NDMM patients from 2 large tertiary

hospitals from January 2018 to December 2021, of whom 395 comprised

the training set and 169 comprised the validation set. Thirty-eight variables

from first admission records were collected, including patient demographic

characteristics, clinical scores and characteristics, laboratory indicators,

complications, and medication history, and key variables were screened using

the Lasso method. Multiple machine learning algorithms were compared, and

the best performing algorithm was used to build a machine learning prediction

model. The model performance was evaluated using the AUC, accuracy, and

Youden’s index. Finally, the SHAP package was used to assess two cases and

demonstrate the application of the model.

Results: In this study, 15 important key variables were selected, namely,

age, ECOG, osteolytic disruption, VCD, neutrophils, lymphocytes, monocytes,

hemoglobin, platelets, albumin, creatinine, lactate dehydrogenase, affected

globulin, β2 microglobulin, and preventive medicine. The predictive

performance of the XGBoost model was significantly better than that of the

other models (AUROC: 0.8664), and it also performed well for the expected

dataset (accuracy: 68.64%).

Conclusion: A machine learning algorithm was used to establish an infection

prediction model for NDMM patients that was simple, convenient, validated,

and performed well in reducing the incidence of infection and improving the

prognosis of patients.
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Background and purpose

Multiple myeloma (MM) is a malignant disease
characterized by abnormal proliferation of clonal plasma
cells; it accounts for 13% of hematological malignancies and is
the second most common malignant tumor in the blood system.
Active treatment methods for myeloma prolong the lifespan
of myeloma patients, but the disease is incurable (Holmstrom
et al., 2015; Valković et al., 2015). Infection is a common
complication in patients with MM and is also the main cause of
death. The number of deaths associated with infection in MM
patients worldwide exceeds 80,000 annually, accounting for 2%
of deaths from malignancies (Rajkumar, 2016). In a large UK
study (Augustson et al., 2015), 45% of deaths within the first
2 months of treatment were due to infection. Infections account
for 17% of all MM deaths and are a common cause of death
among patients of all ages throughout the course of the disease.
Therefore, it is necessary to study the infection status of patients
with MM.

The mechanism of infection in patients with MM is
relatively complex. In addition to the immunodeficiency caused
by the disease itself (Faiman et al., 2018), in recent years,
with the emergence of new treatment methods for MM, such
as immunomodulators, proteasome inhibitors, monoclonal
antibodies, and autologous stem cell transplantation, the
survival of MM patients has improved, the risk of infection
has increased, and the characteristics and spectrum of infection
have changed (Tete et al., 2014; Blimark et al., 2015; Joshua
et al., 2016; Park et al., 2017; Girmenia et al., 2019). In a
population-controlled study in Sweden (Blimark et al., 2015),
the risk of bacterial infection among patients with MM was 7
times that of the control group, and the overall risk of viral
infection was 10 times higher. In terms of etiology, among
281 microbiologically defined infections (MDIs) studied by
Teh et al., 152 were bacterial infections. There were 72 (47
4%), 59 (38 8%), and 21 (13 8%) infections caused by gram-
negative (GN), gram-positive (GP), and multiple organisms,
respectively. Escherichia coli was the most common isolate
(23 7%), followed by Clostridium difficile (11 8%). In terms
of infection time, previous studies have noted that infection
is more common during the initial diagnosis and induction
therapy (Lin et al., 2020). However, due to inconsistencies in
the economic level and local epidemiology of each country,
the infection situation of MM patients is also inconsistent. At
present, the amount of research data related to infection in
NDMM patients in China is relatively small, and the clinical
data are not perfect. The use of antibiotics to prevent infection in
MM patients with a high risk of infection based on a prediction
model constructed with a single risk factor is controversial
(Vesole et al., 2012; Drayson et al., 2019). If a prediction
model for identifying patients with a high risk of infection
is constructed based on complete clinical data and a large
number of cases, this problem can be solved. Most of the

current research on infection prediction models for patients
with MM is based on traditional statistical methods. Shang
et al. (2022) analyzed data from 914 patients at two centers
and identified elevated ECOG scores, hemoglobin (anemia),
B2 microglobulin, and GLB as factors associated with early
infection and developed an IRMM model to classify patients
into high-, intermediate-, and low-risk groups. A study by
Dumontet et al. (2018) developed a predictive model for
first TE ≥ grade 3 infection within the first 4 months
of treatment in the Eastern Cooperative Oncology Group
based on a multifactorial logistic regression analysis of data
from 1,378 patients based on serum β2-microglobulin, lactate
dehydrogenase, and hemoglobin levels to define high- and
low-risk groups. Valkovic et al. collected retrospective data
from 240 MM inpatients to create a numerical multiple
myeloma infection risk index (MMIRI) to predict infections
in myeloma patients. The results of the study showed that
factors affecting the pathogenesis and incidence of infection
included sex, physical status, Durie–Salmon disease stage,
international staging system, serum creatinine level, immune
paralysis, neutropenia, serum ferritin level, presence of any
catheter, duration of disease, stable/progressive disease, and
type of treatment (Valkovic et al., 2018). Nevertheless, no
studies have used machine learning to build a model to predict
the risk of infection in NDMM patients. Machine learning is
an application of artificial intelligence that learns from data
based on computational modeling. The advantage of machine
learning is that it can be directly applied to individuals. For
complex medical problems, such as processing and analyzing
medical big data, the performance of machine learning is better
than that of traditional methods. Statistical analysis is better,
and performance on specific tasks improves with experience
(Beam and Kohane, 2018).

This study analyzed the clinical data of 564 NDMM patients
from multiple centers, revealed the characteristics of infection
in MM patients, identified risk factors for infection, and used
machine learning to build a model to predict the risk of
infection in MM patients, which is helpful information when
determining the use of antibiotics for infection prevention and
treatment. The timing of other anti-infection measures and
the early implementation of infection prevention strategies can
reduce the incidence of infection and improve the prognosis
of patients.

Materials and methods

Study subjects

The clinical data of 564 NDMM patients (349 males and 215
females) from January 2018 to December 2021 were collected
through a medical record system.
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Inclusion and exclusion criteria

The inclusion criteria were (1) diagnoses that met
the diagnostic criteria of the National Comprehensive
Cancer Network (NCCN) and the International Myeloma
Working Group (IMWG) (Rajkumar et al., 2014) and (2)
complete medical records. The exclusion criteria were as
follows: (1) patients with non-NDMM; (2) patients with
psychiatric disorders or confusion and patients who could
not cooperate; (3) patients who were transferred to the
hospital for other reasons during the treatment period;
and (4) patients with other infectious diseases or other
malignant tumors.

Study design and data collection

For all included patients, we obtained information on
patient demographic characteristics (age, sex), clinical scores
and characteristics (ECOG score, CVC, ureter, staging, DS,
ISS, RISS), comorbidities (diabetes, tuberculosis, hepatitis,
COPD, cardiovascular disease, chronic gastrointestinal
disease, osteolytic destruction, extramedullary infiltration),
medication history (chemotherapy regimens, infection
prevention medication), and laboratory indicators [levels
of neutrophils, lymphocytes, monocytes, eosinophils, basophils,
hemoglobin, platelets, albumin, serum calcium, lactate
dehydrogenase (LHD), affected globulin, and β2 microglobulin
(β2MG)]. Patients who were already infected on admission and
those with missing data were excluded.

Data collection

All variables were obtained from the electronic medical
record systems of both hospitals. Data included variables
such as patient demographic characteristics, clinical scores
and clinical features, comorbidities, medication history, and
laboratory indicators. In total, 38 variables were collected
for the first admission record. The Lasso method was also
used to screen out key variables. Data entry was performed
by physicians or medical students who were involved in
this study.

Definitions

Infections were defined as MDIs, clinically defined
infections (CDIs), and fever of unknown origin.

Microbiologically defined infections were infections with
a pathogen identified by microbiological testing of blood or
secretion samples from any site. CDIs were observed when there
was imaging evidence and clinical symptoms of infection after
negative microbiological test results.

Feature selection and data
transformation

Only information from the first admission to the hospital
before treatment was included in the model development,
and patients were divided into infected and non-infected
groups according to whether they were infected or not. Data
units included from different hospitals were converted and
harmonized; for example, a creatinine value of 1 mg/dL equaled
88.4 µmol/L. Medication-related variables were converted
into ordinal variables as follows: 1 = VCD, 2 = VRD,
3 = VCD + VRD, 4 = CD38, and 5 = other chemotherapy
regimens. The key variables were selected for subsequent
modeling with the LassoCV approach.

First, a variety of machine learning algorithms were used
to classify the data. These algorithms included the XGBoost,
logistic regression, LightGBM, random forest, AdaBoost, and
GaussianNB algorithms. The resampling method was used for
verification. The samples were repeated 5 times, the validation
set of each resampling training accounted for 30.000% of
the total sample, and the training set accounted for 70.000%.
This was to ensure that the selected training samples during
training of multiple models were consistent and to better
compare multiple models. The individual models were evaluated
using the AUC, calibration plot, accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, F1 score,
and Kappa value.

The best algorithm was selected by multimodel comparison
and then remodeled using the best algorithm. The model
parameters were as follows: the objective (optimization objective
function) was binary logistic regression; the learning rate was
0.1; the maximum tree depth was 3; the Minimum Bifurcation
Weights Sum was 9; and the regularization lambda was 3. Unlike
the method based on a multimodel comparison, when modeling
with the best performing algorithm, we randomly selected 10%
of the overall sample as the test set, and the remaining samples
were used as the training set for 5-fold cross-validation.

Interpretation of the model

The Shapley additive explanations (SHAP) package
(Python) interprets the output of a machine learning model,
treating all features as “contributors,” and for each predicted
sample, the model produces a predicted value. Its greatest
advantage is that it can reflect the influence of the features in
each sample and show the positive and negative influences. This
study used the SHAP package to interpret the model. A SHAP
value plot was used to show the contribution of each variable in
the model. Model variable importance plots were used to show
the importance rank of each variable. The force plot was used
to exemplify how each variable affected the predicted outcome
for each sample.
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Statistical analysis

This study used Python version 3.7, and the statsmodels
0.11.1 package in Python was used to determine whether
the differences in each variable were statistically significant
in the two populations. The analysis method was selected
according to the distribution of the samples, the homogeneity
of variance and the sample size. The chi-square test was used for
categorical variables, and the Mann–Whitney U test was used
for quantitative variables.

In this study, LassoCV was used to screen key variables using
a 5-fold cross-validation method to automatically eliminate
factors with coefficients of zero (sklearn 0.22.1 package in
Python). Lasso resulted in a more refined model constructed
with a penalty function; thus, some regression coefficients were
compressed, i.e., the sum of the absolute values of the coefficients
was forced to be less than some fixed value, and some regression
coefficients were set to zero. Thus, retaining the advantage of
subset shrinkage, it was a biased estimator dealing with data
with complex covariance. In the multimodel and best model
modeling process, the xgboost 1.2.1 package in Python was
used for the XGBoost algorithm, the lightgbm 3.2.1 package in
Python was used for the LightGBM algorithm, and the sklearn
0.22.1 package in Python was used for the other algorithms.

The SHAP 0.39.0 package in Python was used to
demonstrate the interpretability of the model.

Results

There were 564 patients in this study. During the
multimodel comparison, 395 patients were included in the
training set, and 169 patients were included in the validation set.
Table 1 shows the baseline characteristics of the total population.
The median age was 61.0 years (range 54.0–66.0). The IgG
subtype (47.3%) accounted for the largest proportion of the
population, followed by the IgA (25.1%), λ light chain (10.8%),
κ light chain (8.7%), IgD (5.3%), double clone (1.96%), non-
secretory (0.35%), and IgM (0.17%) subtypes. In the population,
249 (44.15%) patients were infected, and 315 (55.85%) patients
were not infected. Among the infected patients, the lungs
and upper respiratory tract were the most common infection
sites in 81.1% of the patients, the urinary tract in 6.8%,
and the gastrointestinal tract in 4%; a bloodstream infection
and unexplained fever were observed in 1.1% of the patients.
Figure 1 shows the flowchart of our research.

Variable filter

A total of 15 key factors were selected by the LassoCV
method: “age,” “ECOG score,” “osteolytic destruction,”
“VCD,” “neutrophil count,” “lymphocyte count,” “monocytes,”

“hemoglobin,” “platelet,” “albumin,” “creatinine,” “lactate
dehydrogenase,” “affected globulin,” “B2 microglobulin,” and
“infection prevention medication.”

Multialgorithm model comparison

Six machine learning models were used to classify the
sample data. Among the six different machine learning
algorithms, XGBoost performed the best, with AUCs of 0.969
and 0.876 in the training and validation sets, respectively
(Figures 2A, B). It also performed the best in the calibration
curve graph (Figure 2C). Additionally, its cutoff value,
accuracy, sensitivity, specificity, positive predictive value,
negative predictive value, F1 score, and Kappa value in the
training set were 0.452, 0.911, 0.921, 0.908, 0.888, 0.931, 0.904,
and 0.820, respectively. The indices of the other machine
learning algorithms are shown in Table 2 and Supplementary
Table 1.

Best algorithm model

After comparing multiple models, the XGBoost model
performed the best, and we used XGBoost for modeling analysis.
We randomly selected 10% of the total sample as the test set, and
the remaining samples were used as the training set for 5-fold
cross-validation. The AUC of the XGBoost model was 0.971 in
the training set, 0.884 in the validation set, and 0.760 in the test
set (Figures 3A–C). Additionally, during cross-validation, when
the training samples reached 200, the AUC of the model reached
as table state (Figure 3D). Supplementary Tables 2–4 show the
model evaluation metrics for the training set, validation set, and
test set, respectively.

Model interpretability

The SHAP plot in Figure 4A shows how each variable in
the validation set contributed to predicting infection. The redder
each point is, the larger the absolute value of the point, and the
bluer the point is, the smaller the absolute value of the point. The
larger the absolute value of the negative ordinate is, the greater
the possibility of the predicted result being negative, and the
greater the absolute value of the positive ordinate is, the greater
the possibility of the predicted result being positive.

For example, the larger the neutrophil count is, the more
likely the patient is to have an infection, and the higher the
platelet count is, the less likely the patient is to have an
infection. Figure 4B shows the importance ranking of each
variable. Neutrophil count, ECOG score, and age were the most
important variables.

Figures 4C, D show how the variables of the two samples
affected the results with two force plots. As shown in Figure 4C,
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TABLE 1 Preoperative information.

Variable All (n = 564) Non-infection group
(n = 315)

Infection group
(n = 249)

P-value

Infection prevention medication, n (%) 347 (61.525) 201 (63.810) 146 (58.635) 0.210

217 (38.475) 114 (36.190) 103 (41.365)

VCD regimens, n (%) 233 (41.312) 117 (37.143) 116 (46.586) 0.024

331 (58.688) 198 (62.857) 133 (53.414)

VRD regimens, n (%) 551 (97.695) 310 (98.413) 241 (96.787) 0.201

13 (2.305) 5 (1.587) 8 (3.213)

VCD + VRD regimens, n (%) 428 (75.887) 246 (78.095) 182 (73.092) 0.168

136 (24.113) 69 (21.905) 67 (26.908)

CD38 regimens, n (%) 554 (98.227) 309 (98.095) 245 (98.394) 0.790

10 (1.773) 6 (1.905) 4 (1.606)

Other chemotherapy regimens, n (%) 553 (98.050) 311 (98.730) 242 (97.189) 0.189

11 (1.950) 4 (1.270) 7 (2.811)

Osteolytic destruction, n (%) 223 (39.539) 134 (42.540) 89 (35.743) 0.101

341 (60.461) 181 (57.460) 160 (64.257)

Extramedullary infiltration, n (%) 543 (96.277) 305 (96.825) 238 (95.582) 0.439

21 (3.723) 10 (3.175) 11 (4.418)

Hepatitis, n (%) 514 (91.135) 285 (90.476) 229 (91.968) 0.536

50 (8.865) 30 (9.524) 20 (8.032)

COPD, n (%) 504 (89.362) 285 (90.476) 219 (87.952) 0.334

60 (10.638) 30 (9.524) 30 (12.048)

Cardiovascular disease, n (%) 375 (66.489) 221 (70.159) 154 (61.847) 0.038

189 (33.511) 94 (29.841) 95 (38.153)

Chronic gastrointestinal disease, n (%) 485 (85.993) 271 (86.032) 214 (85.944) 0.976

79 (14.007) 44 (13.968) 35 (14.056)

Tuberculosis, n (%) 537 (95.213) 302 (95.873) 235 (94.378) 0.409

27 (4.787) 13 (4.127) 14 (5.622)

Diabetes, n (%) 505 (89.539) 281 (89.206) 224 (89.960) 0.772

59 (10.461) 34 (10.794) 25 (10.040)

RISS, n (%) 40 (7.092) 26 (8.254) 14 (5.622) 0.182

338 (59.929) 194 (61.587) 144 (57.831)

186 (32.979) 95 (30.159) 91 (36.546)

ISS, n (%) 85 (15.071) 59 (18.730) 26 (10.442) 0.003

180 (31.915) 107 (33.968) 73 (29.317)

299 (53.014) 149 (47.302) 150 (60.241)

DS, n (%) 16 (2.837) 12 (3.810) 4 (1.606) 0.090

52 (9.220) 34 (10.794) 18 (7.229)

496 (87.943) 269 (85.397) 227 (91.165)

Disease classification, n (%) 267 (47.340) 147 (46.667) 120 (48.193) 0.283

142 (25.177) 83 (26.349) 59 (23.695)

110 (19.504) 60 (19.048) 50 (20.080)

30 (5.319) 20 (6.349) 10 (4.016)

15 (2.660) 5 (1.587) 10 (4.016)

(Continued)
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TABLE 1 (Continued)

Variable All (n = 564) Non-infection group
(n = 315)

Infection group
(n = 249)

P-value

Ureter, staging, n (%) 540 (95.745) 306 (97.143) 234 (93.976) 0.064

24 (4.255) 9 (2.857) 15 (6.024)

CVC, n (%) 432 (76.596) 245 (77.778) 187 (75.100) 0.456

132 (23.404) 70 (22.222) 62 (24.900)

Sex, n (%) 349 (61.879) 194 (61.587) 155 (62.249) 0.872

215 (38.121) 121 (38.413) 94 (37.751)

B2GM, median [IQR] 5.530 [3.300, 10.610] 4.540 [3.100, 8.800] 6.360 [3.520, 12.110] <0.001

Affected globulin, median [IQR] 25.500 [7.790, 51.600] 24.150 [7.010, 50.190] 29.000 [8.420,54.250] 0.189

LHD, median [IQR] 185.000 [148.000, 232.000] 180.000 [146.000, 225.000] 191.000 [149.000,238.000] 0.053

Creatinine, median [IQR] 94.000 [73.000, 180.800] 91.000 [70.200, 158.000] 102.000 [76.000,223.000] 0.012

Serum calcium, median [IQR] 2.280 [2.120, 2.500] 2.290 [2.130, 2.500] 2.270 [2.100,2.500] 0.266

Albumin, mean (±SD) 32.183 (±7.322) 33.189 (±7.471) 30.910 (±6.923) <0.001

Platelets 109/L, median [IQR] 161.000 [111.000, 218.000] 172.000 [122.000, 218.000] 148.000 [98.000, 219.000] 0.010

Hemoglobin g/L, median [IQR] 86.000 [69.000, 105.000] 89.000 [71.000, 108.000] 82.000 [69.000, 98.000] 0.010

Basophils, median [IQR] 0.010 [0.000, 0.020] 0.010 [0.000, 0.030] 0.010 [0.000, 0.020] 0.016

Eosinophils, median [IQR] 0.060 [0.000, 0.110] 0.080 [0.030, 0.110] 0.030 [0.000, 0.100] <0.001

Monocytes, median [IQR] 0.400 [0.300, 0.590] 0.400 [0.300, 0.500] 0.460 [0.300, 0.700] 0.002

Lymphocyte 1012/L, median [IQR] 1.200 [0.800, 1.660] 1.300 [1.000,1.720] 0.940[0.500, 1.470] <0.001

Neutrophil 109/L, median [IQR] 3.400 [2.300, 5.620] 3.100 [2.300,4.000] 5.120[2.000, 8.610] <0.001

ECOG score, median [IQR] 2.000 [1.000, 3.000] 2.000 [1.000,3.000] 2.000[2.000, 3.000] <0.001

Age, median [IQR] 61.000 [54.000, 66.000] 60.000 [53.000,66.000] 62.000[55.000, 67.000] 0.086

VCD, Bortezomib, cyclophosphamide, dexamethasone; VRD, Bortezomib, Lenalidomide, dexamethasone; COPD, Chronic obstructive pulmonary Disease; ISS, International Staging
System; DS, Durie-Salmon; CVC, Central venous Catheter; ECOG, Eastern Cooperative Oncology Group; LHD, Lactate dehydrogenase.

the model predicted a positive outcome for the patient who
actually developed an infection. The longest segment in the
red part in the figure was the lymphocyte count (0.4∗109/L),
indicating that the lymphocyte count had the largest positive
contribution to the outcome of infection in this patient, and the
second largest positive impact on the outcome was the platelet
count (98∗109/L). In Figure 4D, the model predicted a negative
outcome for the patient who was actually uninfected. The two
variables with the most positive effects were the platelet count
(67∗109/L) and VCD (0.0), and the variables with the most
negative effects on the outcome were the age and monocyte
count (66.0 and 0.32∗109/L).

Discussion

Patients with MM have varying degrees of
immunodeficiency, which increases the risk of serious
infection, and this study found that infection is common
among patients with MM and appears to be the main cause of
initial presentation and poor prognosis. This study reviewed
564 patients with NDMM in two large tertiary hospitals from
January 2018 to December 2021, analyzed the infection of

NDMM patients, and provided insights into the assessment,
prevention and treatment of MM patients. In all, 395 cases
comprised the training set, and 169 cases comprised the
validation set. Thirty-eight variables recorded on the first
admission were collected, including patient demographics,
clinical scores and characteristics, laboratory indicators,
complications, and drug history. Key variables were screened
out using the Lasso method. Multiple machine learning
algorithms were compared, and the best performing algorithm
was used to establish a machine learning prediction model.
The AUC, accuracy, Youden’s index and other indicators
were used to evaluate the model performance. Finally, the
SHAP package was used to demonstrate the application of the
model in two cases.

In this study, the infection rate of NDMM patients on initial
admission was as high as 44.15%; 152 of the 328 MM patients
in the study by Song Bin et al. had nosocomial infection, and
the infection rate was 46.3%, which was similar to the results of
this study. Valkovic et al. found an infection incidence of 17.9%
(43/240) in their study, which was somewhat different from
the results of this study. There may be a certain relationship
between hospitals in China and abroad and the different modes
of infection control and clinical management of MM patients;
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FIGURE 1

The workflow diagram of this study.

FIGURE 2

Comparison of 6 machine learning algorithms. (A) The ROC results of the models established by 6 machine learning algorithms in the training
set. (B) The ROC results of the models established by 6 machine learning algorithms in the validation set. (C) Calibration plots of models built by
6 machine learning algorithms.
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TABLE 2 Multi-model classification–training set results.

Model AUC (SD) Cut off
(SD)

Accuracy
(SD)

Sensitivity
(SD)

Specificity
(SD)

Positive
predictive
value (SD)

Negative
predictive
value (SD)

F1 score
(SD)

Kappa
(SD)

Logistic 0.807 (0.024) 0.428 (0.098) 0.730 (0.010) 0.724 (0.147) 0.741 (0.114) 0.704 (0.064) 0.782 (0.067) 0.698 (0.047) 0.455 (0.028)

XGBoost 0.969 (0.004) 0.452 (0.029) 0.911 (0.005) 0.921 (0.014) 0.908 (0.015) 0.888 (0.019) 0.931 (0.011) 0.904 (0.007) 0.820 (0.011)

LightGBM 0.871 (0.033) 0.418 (0.126) 0.812 (0.012) 0.832 (0.063) 0.810 (0.070) 0.796 (0.064) 0.840 (0.044) 0.808 (0.010) 0.619 (0.019)

RandomForest 1.000 (0.000) 0.620 (0.040) 0.996 (0.002) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.994 (0.003) 1.000 (0.000) 0.993 (0.004)

AdaBoost 0.910 (0.007) 0.482 (0.005) 0.834 (0.008) 0.776 (0.016) 0.884 (0.011) 0.847 (0.005) 0.825 (0.012) 0.810 (0.009) 0.659 (0.017)

GNB 0.847 (0.007) 0.284 (0.094) 0.783 (0.012) 0.800 (0.064) 0.774 (0.062) 0.741 (0.040) 0.829 (0.036) 0.766 (0.011) 0.563 (0.021)

FIGURE 3

The performance of the model built by the XGBoost algorithm. (A) The ROC result of the model established by the XGBoost algorithm in the
training set. (B) The ROC result of the model established by the XGBoost algorithm in the validation set. (C) Shows the results of the ROC of the
model established by the XGBoost algorithm in the training set and the verification set according to the change of the sample size. (D) During
cross-validation, the ROC of the training set and the validation set varies with the sample size of the training set.

hospitals in foreign countries emphasize early detection, early
diagnosis, and early treatment of MM, which may be the
reason why the incidence of infection obtained in foreign

studies is lower than that in China. The most common sites of
infection were the lungs and upper respiratory tract, which were
similar to results from previous studies (Dumontet et al., 2018;
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FIGURE 4

Interpretation of the model. (A) SHAP plot of 15 key variables. (B) Importance ranking chart of 15 key variables. (C,D) Show patients with positive
(infected) and negative (uninfected) predictions, respectively.

Faiman et al., 2018; Lin et al., 2020; Shang et al., 2022). These
were followed by infections of the urinary tract, gastrointestinal
tract, and bloodstream.

This study analyzed 564 NDMM patients at the time of
initial admission and used machine learning to establish an
infection prediction model that contained 15 important key
variables, including age, ECOG score, osteolytic destruction,
VCD, neutrophil count, lymphocyte count, monocyte
count, hemoglobin, platelets, albumin, creatinine, lactate
dehydrogenase, affected globulin, and B2 microglobulin.
A retrospective study by Valkovic et al. analyzed the clinical data
of 240 MM inpatients and found that the susceptibility factors
for the development of infection in MM patients were female
sex (p = 0.001), poor general condition (p < 0.001), DS stage
III group B (advanced) disease duration (p = 0.007), elevated
serum creatinine level (p = 0.036), neutropenia (p = 0.009),
indwelling catheterization (p < 0.001), granulocytopenia
(p = 0.009), and elevated serum ferritin level (p = 0.001)
(Valković et al., 2015). Sørrig et al. (2019) retrospectively
analyzed all infectious complications in 2,557 patients within
6 months after diagnosis of MM through the Danish registry,
showing that pulmonary infections and bloodstream infections

accounted for 46% of total infections and that multivariate
analysis indicated that risk factors for pulmonary infections in
MM patients were male sex (p= 0.001), ISS stage II (p= 0.0004)
and III (p = 0.0004), and elevated lactate dehydrogenase level
(p = 0.0008). The key factors included in this study have
been reported in previous studies, including ECOG score,
hemoglobin, B2 microglobulin, affected globulin, lactate
dehydrogenase, serum creatinine, and neutropenia, and 8
other risk factors associated with the development of infection
were included in this study’s prediction model, which helps
to more fully predict the risk of infection among patients
with newly diagnosed myeloma. In recent years, studies have
found that platelets play an important role in initiating the
inflammatory response and immune regulation, and at present,
platelet concentrates such as platelet-rich plasma (PRP) have
achieved significant clinical efficacy in the treatment of chronic
wounds (Yuan et al., 2009; Miron et al., 2017). The mechanism
is not only the release of growth factors after platelet activation
but also the anti-infection effect of platelets, which is one of
the reasons they promote wound healing. Lymphopenia has
been shown to indicate the presence of immunosuppressive
states (Teh et al., 2016; Ying et al., 2017), and patients with
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lymphopenia have an inadequate immune response and are
susceptible to bacterial infections, consistent with a positive
effect on lymphocyte counts in the model. Bortezomib disrupts
intracellular proteasome function and NF-kB activation (Teh
et al., 2015; Li and Wang, 2019), leading to selective depletion of
T cells and decreased viral antigen presentation, increasing the
risk of viral reactivation associated with the use of bortezomib
zoster virus reactivation (up to 36%). Therefore, prophylaxis
with acyclovir or valacyclovir during treatment with PI is
now commonly recommended (Eisen et al., 2003; Teh et al.,
2014). In addition, seven factors, including albumin, osteolytic
destruction, age, and creatinine, are extremely important. When
the level of albumin in the blood is low, the body’s immunity
is low, and the chance of infection increases. When bone pain
symptoms occur during osteolytic destruction, normal lung
ventilation and lung ventilation function are affected, and
pathogens easily invade the respiratory system and are stored in
the lungs and difficult to eliminate. Regardless of the presence of
MM, older patients are particularly susceptible to infection, with
a higher morbidity and at least a three times higher mortality
than younger patients (Yoshikawa, 2000; Nucci and Anaissie,
2009; Solana et al., 2012), which may be related to age-related
immune dysfunction. When the patient’s creatinine is elevated
and renal insufficiency occurs, the body’s immune system is
easily damaged due to the accumulation of toxins in the body
and acidosis. Therefore, the above factors can be included in the
infection risk model.

In this study, the model was evaluated on its ability to predict
infection in NDMM patients, and nine machine learning models
were used to classify the data sample. XGBoost performed
best among the nine different machine learning algorithms,
with AUCs of 0.971 and 0.884 in the training and validation
sets, respectively, and an AUC = 0.760 in the final model
in the test set (Figure 3). Additionally, when cross-validation
was performed, the model reached a stable state when the
sample size of the training and validation sets reached 200.
Thus, we developed an infection prediction model for NDMM
patients with great predictive power. This was a multicenter
study, which was also an advantage over other studies; rich
data allow for rigorous evaluation of the performance of
machine learning models. Therefore, the model established in
this study can be used to predict the risk of infection among
patients with NDMM, help determine the timing for the use
of antimicrobials and other anti-infective measures, implement
early infection prevention strategies, reduce the incidence of
infection, improve patient outcomes, and reduce the economic
burden on patients by reducing the length of hospital stay and
reducing hospitalization costs for most patients. In addition,
machine learning can be applied to the diagnosis, prognosis, and
treatment options for MM.

This study has several limitations. One is that, as with
other retrospective studies, some patients were excluded due
to missing key data, resulting in selection bias; nevertheless,

participants from multiple hospitals were assessed and
indicators that were readily available for routine testing were
evaluated. Second, our model can be used to predict the risk of
developing infection, but the risk of a specific type of infection
cannot be clearly classified; however, clinicians can decide to
take appropriate precautions based on clinical experience. For
example, when using bortezomib regimens, antiviral drugs such
as valacyclovir can be used prophylactically to prevent herpes
zoster virus activation, as bortezomib leads to selective depletion
of T cells and decreased viral antigen presentation, leading to
an increased risk of viral reactivation. Finally, while SHAP
values were used to help explain our machine learning models,
there is still a need for a more interpretable model in clinical
practice (Rudin, 2019). In future work, we plan to develop
automated clinical scoring systems based on nomograms or
machine learning based on our data to provide clinicians with
more practical and easy-to-understand tools (Xie et al., 2020).

Conclusion

In conclusion, this study found that infections are common
among NDMM patients. The XGBoost machine learning
algorithm was used to build an infection prediction model for
NDMM patients with easy operation and good performance
with an AUC of 0.884. This model can help determine the timing
of the preventive use of antibiotics and other anti-infection
measures and has important clinical significance for early
implementation of infection prevention strategies to improve
patient outcomes.

Data availability statement

The original contributions presented in this study are
included in this article/Supplementary material, further
inquiries can be directed to the corresponding author.

Author contributions

TP, LL, and JL designed and performed the study. TP, LL, FL,
LD, HZ, and CL collected the data. LL processed statistical data.
TP drafted the manuscript under the guidance of JL. All authors
contributed to the article and approved the submitted version.

Funding

This work was supported by the National Natural Science
Foundation of China (No. 81870166) and Extreme Smart
Analysis platform (https://www.xsmartanalysis.com/).

Frontiers in Neuroinformatics 10 frontiersin.org

https://doi.org/10.3389/fninf.2022.1063610
https://www.xsmartanalysis.com/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1063610 January 13, 2023 Time: 6:45 # 11

Peng et al. 10.3389/fninf.2022.1063610

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fninf.2022.1063610/full#supplementary-material

References

Augustson, B. M., Begum, G., Dunn, J. A., Barth, N. J., Davies, F., Morgan,
G., et al. (2015). Early mortality after diagnosis of multiple myeloma: Analysis
of patients entered onto the United Kingdom Medical Research Council trials
between 1980 and 2002–medical research council adult leukaemia working party.
J. Clin. Oncol. 2336, 9219–9226. doi: 10.1200/JCO.2005.03.2086

Beam, A., and Kohane, I. (2018). Big data and machine learning in health care.
JAMA 31913, 1317–1318. doi: 10.1001/jama.2017.18391

Blimark, C., Holmberg, E., Mellqvist, U., Landgren, O., Björkholm, M.,
Hultcrantz, M., et al. (2015). Multiple myeloma and infections: A population-
based study on 9253 multiple myeloma patients. Haematologica 1001, 107–113.
doi: 10.3324/haematol.2014.107714

Drayson, M. T., Bowcock, S., Planche, T., Iqbal, G., Pratt, G., Yong, K., et al.
(2019). Levofloxacin prophylaxis in patients with newly diagnosed myeloma
(TEAMM): A multicentre, double-blind, placebo-controlled, randomised,
phase 3 trial. Lancet Oncol. 2012, 1760–1772. doi: 10.1016/S1470-2045(19)
30506-6

Dumontet, C., Hulin, C., Dimopoulos, M., Belch, A., Dispenzieri, A., Ludwig,
H., et al. (2018). A predictive model for risk of early grade≥ 3 infection in patients
with multiple myeloma not eligible for transplant: Analysis of the FIRST trial.
Leukemia 326, 1404–1413. doi: 10.1038/s41375-018-0133-x

Eisen, D., Essell, J., Broun, E. R., Sigmund, D., and DeVoe, M. (2003). Clinical
utility of oral valacyclovir compared with oral acyclovir for the prevention of
herpes simplex virus mucositis following autologous bone marrow transplantation
or stem cell rescue therapy. Bone Marrow Transpl. 31, 51–55. doi: 10.1038/sj.bmt.
1703817

Faiman, B., Kurtin, S., Timko, J., and Gracie-King, L. (2018). Multiple myeloma
education: Results from the ACE Program’s Digital, serial learning approach. Clin.
J. Oncol. Nurs. 225, E120–E126. doi: 10.1188/18.CJON.E120-E126

Girmenia, C., Cavo, M., Offidani, M., Scaglione, F., Corso, A., Raimondo,
F. D., et al. (2019). Management of infectious complications in multiple myeloma
patients: Expert panel consensus-based recommendations. Blood Rev. 34, 84–94.
doi: 10.1016/j.blre.2019.01.001

Holmstrom, M., Gimsing, P., Abildgaard, N., Andersen, N. F., Helleberg, C.,
Clausen, N. A., et al. (2015). Causes of early death in multiple myeloma patients
who are ineligible for high-dose therapy with hematopoietic stem cell support: A
study based on the nationwide danish myeloma database. Am. J. Hematol. 904,
E73–E74. doi: 10.1002/ajh.23932

Joshua, D., Suen, H., Brown, R., Bryant, C., Ho, P., Hart, D., et al. (2016).
The T cell in myeloma. Clin. Lymphoma Myeloma Leuk. 1610, 537–542. doi:
10.1016/j.clml.2016.08.003

Li, L., and Wang, L. (2019). Multiple myeloma: What do we do about
immunodeficiency? J Cancer 1016, 75–84. doi: 10.7150/jca.29993

Lin, C., Shen, H., Zhou, S., Liu, M., Xu, A., Huang, S., et al. (2020). Assessment
of infection in newly diagnosed multiple myeloma patients: Risk factors
and main characteristics. BMC Infect. Dis. 201:699. doi: 10.1186/s12879-020-
05412-w

Miron, R. J., Fujioka-Kobayashi, M., Bishara, M., Zhang, Y., Hernandez, M.,
and Choukroun, J. (2017). Platelet-rich fibrin and soft tissue wound healing: A
systematic review. Tissue Eng. Part B Rev. 231, 83–99. doi: 10.1089/ten.TEB.2016.
0233

Nucci, M., and Anaissie, E. (2009). Infections in patients with multiple myeloma
in the era of high-dose therapy and novel agents. Clin. Infect Dis. 498, 1211–1225.
doi: 10.1086/605664

Park, H., Youk, J., Kim, H. R., Koh, Y., Kwon, J., Yoon, S., et al. (2017). Infectious
complications in multiple myeloma receiving autologous stem cell transplantation
in the past 10 years. Int. J. Hematol. 1066, 801–808. doi: 10.1007/s12185-017-
2313-2

Rajkumar, S. (2016). Multiple myeloma: 2016 update on diagnosis, risk-
stratification, and management. Am. J. Hematol. 917, 719–734. doi: 10.1002/ajh.
24402

Rajkumar, S. V., Dimopoulos, M. A., Palumbo, A., Blade, J., Merlini, G., Mateos,
M., et al. (2014). International myeloma working group updated criteria for the
diagnosis of multiple myeloma. Lancet Oncol. 1512, 538–548. doi: 10.1016/S1470-
2045(14)70442-5

Rudin, C. (2019). Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 15,
206–215. doi: 10.1038/s42256-019-0048-x

Shang, Y., Wang, W., Liang, Y., Kaweme, N. M., Wang, Q., Liu, M., et al.
(2022). Development of a risk assessment model for early grade≥3 infection
during the first 3 months in patients newly diagnosed with multiple myeloma
based on a multicenter, real-world analysis in China. Front. Oncol. 12:772015.
doi: 10.3389/fonc.2022.772015

Solana, R., Tarazona, R., Gayoso, I., Lesur, O., Dupuis, G., and Fulop, T. (2012).
Innate immunosenescence: Effect of aging on cells and receptors of the innate
immune system in humans. Semin Immunol. 245, 331–341. doi: 10.1016/j.smim.
2012.04.00837

Sørrig, R., Klausen, T., Salomo, M., Vangsted, A., and Gimsing, P. (2019). Risk
factors for infections in newly diagnosed multiple myeloma patients: A Danish
retrospective nationwide cohort study. Eur. J. Haematol. 1022, 182–190. doi: 10.
1111/ejh.13190

Teh, B. W., Harrison, S. J., Pellegrini, M., Thursky, K. A., Worth, L. J., and
Slavin, M. A. (2014). Changing treatment paradigms for patients with plasma cell
myeloma: Impact upon immune determinants of infection. Blood Rev. 282, 75–86.
doi: 10.1016/j.blre.2014.01.004

Teh, B. W., Harrison, S. J., Worth, L. J., Thursky, K. A., and Slavin, M. A.
(2016). Infection risk with immunomodulatory and proteasome inhibitor-based
therapies across treatment phases for multiple myeloma: A systematic review and
meta-analysis. Eur. J. Cancer 67, 21–37. doi: 10.1016/j.ejca.2016.07.025

Teh, B., Slavin, M., Harrison, S., and Worth, L. (2015). Prevention of viral
infections in patients with multiple myeloma: The role of antiviral prophylaxis
and immunization. Exp. Rev. Anti. Infect Ther. 1311, 1325–1336. doi: 10.1586/
147872

Tete, S. M., Bijl, M., Sahota, S. S., and Bos, N. A. (2014). Immune defects in
the risk of infection and response to vaccination in monoclonal gammopathy of
undetermined significance and multiple myeloma. Front. Immunol. 5:257. doi:
10.3389/fimmu.2014.00257

Valkovic, T., Gacic, V., and Nacinovic-Duletic, A. (2018). Multiple myeloma
index for risk of infection. J. Cancer 912, 2211–2214. doi: 10.7150/jca.24288
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