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Introduction: Although tuberculous pleural effusion (TBPE) is simply an

inflammatory response of the pleura caused by tuberculosis infection, it can

lead to pleural adhesions and cause sequelae of pleural thickening, which may

severely affect the mobility of the chest cavity.

Methods: In this study, we propose bGACO-SVM, a model with good

diagnostic power, for the adjunctive diagnosis of TBPE. The model is based

on an enhanced continuous ant colony optimization (ACOR) with grade-

based search technique (GACO) and support vector machine (SVM) for

wrapped feature selection. In GACO, grade-based search greatly improves the

convergence performance of the algorithm and the ability to avoid getting

trapped in local optimization, which improves the classification capability of

bGACO-SVM.

Results: To test the performance of GACO, this work conducts comparative

experiments between GACO and nine basic algorithms and nine state-of-

the-art variants as well. Although the proposed GACO does not offer much

advantage in terms of time complexity, the experimental results strongly

demonstrate the core advantages of GACO. The accuracy of bGACO-

predictive SVM was evaluated using existing datasets from the UCI and TBPE

datasets.
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Discussion: In the TBPE dataset trial, 147 TBPE patients were evaluated using

the created bGACO-SVM model, showing that the bGACO-SVM method is an

effective technique for accurately predicting TBPE.

KEYWORDS

tuberculous pleural effusion, swarm intelligence, machine learning, feature selection,
support vector machine

1 Introduction

According to WHO Global tuberculosis report 2016, there
was an approximately 10.4 million new cases of TB and 1.4
million deaths caused by TB. Six countries with the most
severe cases of TB were China, South Africa, India, Indonesia,
Nigeria, and Pakistan (Pan, 2012). Besides, the most common
pulmonary tuberculosis, there is tuberculous pleurisy and so
on. One of the most common causes of pleural effusion is
tuberculous pleurisy. Tuberculous pleurisy is often manifested
as non-productive cough, fever, chest pain, dyspnea, etc. Those
patients suspected of tuberculous pleurisy need rapid and
accurate diagnosis and prompt treatment, otherwise it will
develop into tuberculous empyema, thoracic malformations and
other serious consequences, and even death.

Diagnosis of tuberculous pleurisy relies on sputum, pleural
effusion, pleural biopsy specimen culture, or molecular linear
probe assay to detect Mycobacterium tuberculosis (World
Health Organization, [WHO], 2010). The patient often presents
with a non-productive cough and less bacteria in pleural
fluid so the culture has low sensitivity. With long incubation,
timely diagnosis is almost impossible (Gopi et al., 2007; von
Groote-Bidlingmaier et al., 2013). Pleural biopsy for invasive
examination includes blind biopsy and Thoracoscopic pleural
biopsy. Blind biopsy has low sensitivity and it can easily cause
pneumothorax. Thoracoscopic examination requires higher
infrastructure and technical skills, difficult to access in regions
with poor economy and higher incidence of TB. Other common
examinations, such as acid-fast Mycobacterium tuberculosis
smear, Xert MTB/RIF detection on samples, IFN-r assay, pleural
fluid cell count, and biochemical detection etc. exist but have
moderate sensitivity, low specificity, and high cost (Seibert
et al., 1991; Conde et al., 2003; Jiang et al., 2007; Udwadia and
Sen, 2010; Porcel et al., 2013; Lee et al., 2014). In the areas
with high prevalence of tuberculosis, the most frequent cases
of tuberculous pleurisy were inferred from a predominantly
lymphocytic exudate combined with high adenosine deaminase
(ADA), which is comparatively better but there was still a false
negative or false positive, especially in early tuberculous pleurisy
(Lee et al., 2014).

Others diagnose tuberculous pleurisy using diagnostic
models. In addition, artificial general intelligence methods
(Yang S. et al., 2021; Yang et al., 2022a,b,c) are critical studies
in the field of brain-inspired intelligence to realize high-
level intelligence, high accuracy, high robustness, and low

power consumption in comparison with the state-of-the-art
artificial intelligence works. Seixas et al. (2013) employ artificial
neural networks (ANN), the non-invasive prediction model
established for the pleural effusion smear, culture, ADA,
serology, and nucleic acid amplification (NAA) test results in
HIV-infected patients, and the detection accuracy was > 90%.
Shu et al. (2015) use logistic regression analysis in patients
with predominantly lymphocytic pleural effusion to analyze
the inflammatory cytokines, anti-inflammatory cytokines and T
lymphocyte effector molecules, including total protein, cell and
classification counts, culture of bacteria, lactate dehydrogenase
(LDH), fungi, and chemokines [monocyte chemo-attractant
protein (MCP)-1, cytology, cytokines interleukin (IL)-1β, IL-
2, IL-6, IL-10, IL-12, IL-13, TNF-α, and IFN-γ, mycobacteria,
macrophage inflammatory protein (MIP)-1α, regulated on
activation, normal T cell expressed and secreted, and IP-10],
soluble tumor necrosis factor receptor TNF-sR1 and TNF-
sR2, vascular endothelial growth factor (VEGF) and establish
the diagnostic model. The results showed ADA ≥ 40 IU/mL,
IFN-γ ≥ 75 pg/mL, DcR3 ≥ 9.3 ng/mL, and soluble tumor
necrosis factor receptor 1 (TNF-sR1) ≥ 3.2 ng/mL which
were independent factors associated with tuberculous pleurisy.
Based on the prediction probability of four predictors, the
area under ROC curve was 0.920, and the specificity and
sensitivity were 86.7 and 82.9%, respectively (Shu et al., 2015).
Klimiuk et al. (2015) used ROC analysis and multiple regression
analysis to construct the prediction model of tuberculous
pleurisy. According to the patient’s clinical data and multiple
pleural effusion biomarkers (ADA, IFN-γ, IL-2, IL-2sRα, IL-
12p40, IL-18, IL-23, IP-10, Fas-ligand, MDC, and TNF-α), the
diagnostic accuracy (AUC) of tuberculous pleurisy was higher
than 0.95 (Klimiuk et al., 2015). Demirer used unrestricted
logistic regression method to distinguish tuberculous pleural
effusion (TBPE) from the non-TBPE, which only relies on the
general condition of a patient with pleural effusion, imaging
studies, results of pleural effusion routine test. Results showed
that specificity and sensitivity were 83.0 and 60.5% and AUC
was 0.719 when only the age was less than 47 and the pleural
fluid ADA more than 35 or pleural fluid protein serum protein
ratio was higher than 0.71 (Demirer et al., 2012). Some of these
models need to detect unusual molecular markers, which are
expensive. Since some models rely on pleural fluid detection, it’s
difficult to use the model when the fluid is difficult to obtain,
such as inadequate fluid, a scapular posterior pleural effusion,
patient has severe pleural reaction, and so on.
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In computer-aided diagnosis technology, machine learning
methods play an important role, and the classification and
prediction ability of support vector machine (SVM) has been
fully validated not only in the medical field, but also by
many scholars in various other fields, and many researches
on SVM have been conducted for this purpose. For example,
in medical diagnosis fields, Zhou et al. (2022) developed a
SVM-based discriminating model to extract a set of candidate
biomarkers for malignant brain gliomas. Gao et al. (2022)
proposed a novel kernel-free ν-fuzzy reduced kernel-free
quadratic surface SVM model and applied it to Alzheimer’s
Disease prodromal detection. Badr et al. (2022) applied a recent
gray wolf optimizer to improve the performance of SVM for
breast cancer diagnosis with efficient scaling techniques. Vidya
and Gait (2021) presented a gait classification based decision
support system using multi-class SVM to assist the clinicians
to diagnose the Parkinson’s disease and rate the severity level.
Chen B. et al. (2021) implemented an extended kalman filter
with SVM for automated brain tumor detection. Viloria et al.
(2020) applied a SVM to predict the diagnosis of diabetes
according to the above factors in patients. Akinnuwesi et al.
(2020) adopted the hybrid of principal component analysis
(PCA) and SVM to establish breast cancer risk assessment and
early diagnosis model which can accurately establish the early
diagnosis model of breast cancer. In other fields, Devi Thangavel
et al. (2023) used fuzzy logic and multi-class SVM techniques
to properly set and monitor model parameters such as suitable
temperature, humidity, and soil moisture for greenhouse farms
located near Modaculic Erosion. Zhao Z. et al. (2022) proposed a
new residual-type combined Gray Model-Least Squares Support
Vector Machine (LSSVM) forecasting model by extracting the
load characteristics of components. Zhang J. et al. (2022)
proposed a two-stage intelligent fault diagnosis methodology
for rotating machinery based on optimized support vector
data description to optimize SVM. Wang S. et al. (2022)
proposed a novel optimization method named synergy adaptive
moving window algorithm based on the immune SVM to
select wavelength variables or preprocessing methods in near-
infrared spectroscopy. Pathivada and Vedagiri (2022) evaluated
the dilemma frontier under mixed traffic levels using SVM,
contributing to better understand the dilemma frontier in
developing countries under mixed traffic conditions, such as
India.

Based on the above research on SVM, it is easy to find that
SVM has powerful classification and prediction ability, and has
been widely used in many fields, among which the contribution
in the field of medical diagnosis is indelible. In previous
study, we used the SVM method in the machine learning
algorithm to diagnose TBPEs. The general clinical condition,
blood biochemical parameters and routine pleural fluid analysis
had very good diagnostic accuracy of 94.3%, sensitivity and
specificity were 93.6 and 94.1%. We envisage the ability to
diagnose tuberculous pleural fluid that is difficult to obtain by
pleural effusion by detecting the blood of our patients. In the end

we employed the bGACO-SVM method, a swarm intelligence
algorithm to establish the diagnosis of tuberculous pleurisy
model, only based on patient general condition and routine
blood test results. The diagnostic accuracy of ACC reached
96.57%, Matthew correlation coefficient (MCC) was 0.9366, with
F-measure and specificity 96.65 and 96.91%, respectively.

In this study, the ACOR is first reviewed, and then an in-
depth study is conducted to propose an ant colony optimizer
with a grade-based search, called grade-based search technique
(GACO), focusing on the aspects of ACOR in terms of the
convergence accuracy and avoiding falling into local optimum.
In GACO, a grade-based search mechanism with strong
convergence properties is mainly introduced into the original
ACOR, which effectively improves the convergence accuracy of
GACO and further enhances the ability to avoid falling into
local optima. In order to prove the performance of GACO,
a comparative simulation was conducted between GACO and
nine basic algorithms and nine similar variant optimization
algorithms, and the Wilcoxon signed-rank test (García et al.,
2010) and Friedman test (Derrac et al., 2011) were utilized
to evaluate the experimental results, which effectively proved
that GACO has a strong convergence ability and the ability
to avoid being trapped in a local optimum. Finally, to achieve
diagnostic prediction of TBPE, the GACO was first transformed
into a binary version, called bGACO, and subsequently an SVM
classifier with both feature selection functions, called bGACO-
SVM, was proposed based on bGACO. For the proposed
bGACO-SVM, it is not only validated on some very common
public datasets, but also applied to the TBPE prediction
problem. bGACO-SVM is effectively demonstrated to have
strong classification prediction capability and can be successfully
used for TBPE diagnosis and prediction through experimental
simulation results.

To summarize, the important contributions and innovations
of this paper are as follows.

â A novel swarm intelligence optimization algorithm,
called GACO, is proposed by introducing a grade-based
search method to ACO.

â The grade-based search greatly improves the convergence
performance of GACO and the ability to avoid getting
trapped in local optimization, thus improving the
classification capability of bGACO-SVM.

â Both GACO and nine basic algorithms and nine state-of-
the-art variants are compared with each other, providing
strong evidence of GACO’s core strengths.

â The prediction accuracy of bGACO-SVM was evaluated
using existing datasets from the UCI and TBPE datasets,
showing that the bGACO-SVM method can accurately
predict TBPE.

The follow-up of the paper is organized as follows. Section
II describes the data acquisition of TBPE and other related
contents. The review of ACOR and the proposed GACO are
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TABLE 1 The features at diagnosis of PE.

Causes n % Males/females Age, yearsa

Tuberculosis 73 49.70% 54/19 41.8± 19.9

Neoplastic 43 29.30% 21/22 66.2± 11.4

Infectious 18 l2.2% 16/2 57.8± 17.9

Lymphoma 2 1.40% 2/0

Renal
transplantation

1 0.70% 1/0

Heart failure 1 0.70% 1/0

Multiple
myeloma

1 0.70% 0/1

Undifferentiated
connective tissue
disease

1 0.70% 1/0

Unclassified 7 4.7i% 5/2 50.3± 17.2

Total 147 100% 101/46

aMean± standard deviation.

given in Section 3. The construction process of bGACO-
SVM model is given in Section 4. Section 5 first validates
the performance of GACO by way of experiments and then
simulates the diagnosis prediction of TBPE using bGACO-SVM.
Section 6 discusses all the research work in this paper. Section 7
summarizes the whole paper and discusses future works.

2 Data analysis

2.1 Patient information

The research was prospectively conducted on the 147
patients with pleural effusion that were admitted to the First
Affiliated Hospital Wenzhou Medical University from October
2015 to May 2016, with an age greater than 15 years and no
HIV infection. This research was carried out in accordance
with the declaration of Helsinki and approved by the Medical
Ethics Committee of The First Affiliated Hospital Wenzhou
Medical University.

The results of growth of mycobacterium tuberculosis in
biopsy specimens or pleural fluid culture were utilized as the
gold standard for the diagnosis of tuberculous pleuritis (World
Health Organization, [WHO], 2010). The pathogenesis of
pleural effusion was determined by means of thoracic puncture,
closed pleural blindness, internal medicine thoracoscopy, bone
marrow puncture, blood test, pleural effusion and pleural tissue
culture, and pathological examination. Results 73 patients were
diagnosed with tuberculous pleurisy. There are 67 patients with
non- TBPE, including transudate (Light et al., 1972) (postrenal
transplantation, heart failure), malignant tumor, infectious
disease, connective tissue disease, and hematopathy. 7 patients
were not included in the research because the cause could not be
determined see Table 1.

TABLE 2 The whole features utilized in this research and
their descriptions.

Item Brief description

ID1 High (H)

ID2 Weight (W)

ID3 Diabetes (DM)

ID4 Temperature (Tem)

ID5 Sex

ID6 Age

ID7 White blood cell (WBC)

ID8 Percentage of neutrophils (PN)

ID9 Percentage of eosinophils (PE)

ID10 Percentage of basophils (PB)

ID11 Percentage of monocyte (PM)

ID12 Percentage of lymphocytes (PL)

ID13 Absolute value of eosinophils (AVE)

ID14 Absolute value of neutrophils (AVN)

ID15 Absolute value of monocyte AVM

ID16 Absolute value of lymphocytes (AVL)

ID17 Absolute value of basophils (AVB)

ID18 Red blood cell (RBC)

ID19 Hemoglobin (HB)

ID20 Hematokrit (HCT)

ID21 Mean corpuscular volume (MCV)

ID22 Mean corpuscular hemoglobin (MCH)

ID23 Mean corpuscular hemoglobin concentration
(MCHC)

ID24 Red cell volume distribution width (RBCDW)

ID25 Red cell volume distribution SD value
(RBCVDSD)

ID26 Blood platelet (PLT)

ID27 Thrombocytocrit (THR)

ID28 Mean platelet volume (MPL)

ID29 Platelet distribution width SD value
(PDWSDV)

ID30 Platelet large cell ratio (P-LCR)

2.2 Statistical analysis

With medical history and physical examination, general
clinical data were collected including body mass index, sex,
age, body temperature, and diabetes status. The fasting venous
blood was collected from all subjects using a vacuum blood
collection vessel (Becton Dickinson, Medical Devices Co., Ltd.,
NC, USA). The Hospital Inspection Center used Japan’s sysmex
XE—2100 automatic blood cell analyzer (Sysemx Corporation,
Kobe, Japan) to conduct 24 routine blood indices. See Table 2
for a detailed description.

SPSS 19 was used for statistical analysis. Using analysis
of ANOVA and chi square test, the general clinical data and
blood routine test of both patients of TBPE and non-TBPE were
analyzed to find out the statistical differences. In all analyses, a
p-value of less than 0.05 (5% significant level) was considered
significant. The detailed statistics are shown in Tables 3, 4.
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TABLE 3 The clinical features of TPE patients and Non-TPE patients.

Feature TPE
(n = 73)

NTPE
(n = 67)

P-value χ2-value

Sex Male/Female 54/19 41/26 0.106 2.615

DM Yes/No 5/68 6/61 0.644 0.214

DM, diabetes.

3 The proposed GACO

In this subsection, a review of ACOR is presented, followed
by an introduction of the Grade-based search strategy, and
finally a detailed description of the process and significance
of GACO proposal.

3.1 An overview of ACOR

In recent years, swarm intelligence optimization algorithms
have been widely applied to various fields, and therefore have
been developed rapidly, and many excellent algorithms have
sprung up. For example, there are some basic optimization
algorithms including gray wolf optimization (GWO) (Mirjalili
et al., 2014), Harris hawks optimization (HHO) (Heidari
et al., 2019), moth-flame optimization (MFO) (Mirjalili, 2015),
particle swarm optimization (PSO) (Kennedy and Eberhart,
1995), whale optimizer (WOA) (Mirjalili and Lewis, 2016),
Runge Kutta optimizer (RUN) (Ahmadianfar et al., 2021),
hunger games search (HGS) (Yang Y. et al., 2021), weighted
mean of vectors (INFO) (Ahmadianfar et al., 2022), colony
predation algorithm (CPA) (Tu et al., 2021), slime mold
algorithm (SMA) (Li S. et al., 2020), JAYA optimization
algorithm (Rao, 2016), firefly algorithm (FA) (Yang, 2009),
stochastic fractal search (SFS) (Salimi, 2015), and ant colony
optimization for continuous domains (ACOR) (Socha and
Dorigo, 2008). In addition, there are some advanced variant
algorithms, such as fruit fly optimizer with multi-population
outpost mechanism (MOFOA) (Chen et al., 2020), bat algorithm
based on collaborative and dynamic learning of opposite
population (CDLOBA) (Yong et al., 2018), hybridizing gray
wolf optimization (HGWO) (Zhu et al., 2015), opposition-
based sine cosine algorithm (OBSCA) (Abd Elaziz et al.,
2017), Moth-flame optimizer with sine cosine (SMFO) (Chen
C. et al., 2021), Cauchy and Gaussian sine cosine algorithm
(CGSCA) (Kumar et al., 2017), modified SCA (m_SCA) (Qu
et al., 2018), double adaptive random spare reinforced
whale optimization algorithm (RDWOA) (Chen et al., 2019),
and associative learning-based exploratory whale optimizer
(BMWOA) (Heidari et al., 2020). Furthermore, they are already
making their impact in many fields, such as train scheduling
(Song et al., 2023), image segmentation (Hussien et al., 2022;
Yu et al., 2022), feature selection (Liu Y. et al., 2022),
complex optimization problem (Deng et al., 2022a), bankruptcy
prediction (Zhang et al., 2021), gate resource allocation

(Deng et al., 2020; Wu D. et al., 2020), multi-objective problem
(Hua et al., 2021; Deng et al., 2022d), expensive optimization
problems (Li J.-Y. et al., 2020; Wu S.-H. et al., 2021), robust
optimization (He et al., 2019, 2020), airport taxiway planning
(Deng et al., 2022c), scheduling problems (Gao et al., 2020; Han
et al., 2021; Wang G.-G. et al., 2022), medical diagnosis (Chen
et al., 2016; Wang et al., 2017), and resource allocation (Deng
et al., 2022b).

Besides, no single algorithm is one-size-fits-all and can
solve every issue, as stated in the notion of no free lunch
(Wolpert and Macready, 1997). Therefore, we designed a
novel feature selection method based on continuous ant
colony optimization (ACOR) (Socha and Dorigo, 2008). The
proposed feature selection method has also been successfully
applied to TBPE prediction. ACOR is proposed firstly
by Socha and Dorigo (2008), which has been applied to a
wide variety of realistic scenarios with relatively unexpected
success, such as image segmentation (Liu et al., 2021;
Zhao et al., 2021a,b), engineering optimization design (Chen
and Wang, 2014; Zhao D. et al., 2022), path planning
(Liu J. et al., 2022), image registration (Wu et al., 2019),
energy optimization (Fetanat and Khorasaninejad, 2015), and
maintenance scheduling problem (Fetanat and Shafipour, 2011).
As far as we know, few studies have used this approach to
address this TBPE prediction problem.

In the design and implementation of ACOR, the core idea
is the archive theory shown in Figure 1, which stores the ant
individuals, the individual fitness values, and the individual
weight.
where sl = {sl1, . . . , sln} denotes an ant individual l, and f (sl)

and wl denote the corresponding fitness value and weight value
of individual l, respectively. Between f (sl) and wl, if f (s1) ≤

. . . f (sl) ≤ . . . f (sk), then the foot w1 ≥ . . .wl ≥ . . . wk .
The continuous probability density function is the core

of ACOR. Among the common probability density functions,
the Gaussian function, although easy to sample, has only one
peak for a single Gaussian function, and when there are two
or more peaks, the Gaussian function cannot be handled well.
Therefore, ACOR uses the Gaussian kernel function Gi (x) as the
probability density function, and it is actually a weighted sum
of several one-dimensional Gaussian functions, as shown in Eq.
(1).

Gi (sli) =

k∑
l=1

wlgli (x) =
k∑

l=1

wl
1

σli
√

2π
e
−
(sli−µli)

2

2σ2
li (1)

where k is the number of individual ants composing the archive
bag,

{
µi

1, . . . ,µ
i
k
}

is the mean vector in the Gaussian function
Gi (sli), and

{
σi

1, . . . , σ
i
k
}

is the standard deviation vector related
to Gi (sli) in a single dimension.

In the actual implementation, firstly, the guide individual
sl is selected by roulette based on the weight w. The
greater the weight of the guide individual, the higher the
chance of being selected, and then new ant individuals
are generated by exploring around the guide individual sl.
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TABLE 4 Biochemical and clinical parameters in TPE patient and Non-TPE patient.

Index TPE (n = 73) Min Max SD NTPE (n = 67) Min Max SD p-value

Mean Mean

H (cm) 165.84 150.00 182.00 7.06 163.99 150.00 176.00 6.04 0.1

W (kg) 58.99 38.00 85.00 9.44 60.00 40.00 80.00 8.49 0.508

Tem (◦C) 38.51 37 40 0.78 37.64 36.5 39.9 0.66 <0.001

AGE (years) 41.85 15 81 19.87 63.19 25 88 14.63 <0.001

WBC (10ˆ9/L) 7 3.12 16.83 2.31 8.58 2.86 22.82 3.76 0.003

PN (100%) 0.6771 0.49 0.910.06 0.0864 0.6756 0.11 0.9 0.134 0.935

PE (100%) 0.0156 0 0.01 0.013 0.0265 0.06 0.19 0.0312 0.007

PB (100%) 0.0021 0 0.86 0.0017 0.0024 0 0.01 0.0024 0.378

PM (100%) 0.1355 0.04 0.39 0.0922 0.0869 0.01 0.21 0.0336 <0.001

PL (100%) 0.1802 0.04 0.41 0.069 0.2119 0.04 0.85 0.1258 0.063

AVE (10ˆ9/L) 0.1 0 12.87 0.08 0.31 0 4.42 0.77 0.02

AVN (10ˆ9/L) 4.81 2.05 2.04 2 5.923 0.13 20.5 3.81 0.032

AVM (10ˆ9/L) 0.85 0.15 2.76 0.35 0.7 0.1 2 0.37 0.017

AVL (10ˆ9/L) 1.2 0.33 0.09 0.47 1.6 0 8.6 1.11 0.006

AVB (10ˆ9/L) 0.0145 0 5.52 0.0135 0.0193 0 0.1 0.0225 0.13

RBC (10ˆ12/L) 4.51 2.71 165 0.59 4.21 2.65 5.75 0.72 0.007

HB (pg) 130.93 84 0.49 18.09 125.79 76 178 19.74 0.11

HCT (L/L) 0.3892 0.26 98.8 0.0476 0.3726 0.23 0.52 0.0577 0.064

MCV (fl) 86.48 62.1 32.7 4.81 89.23 71.3 103.4 5.58 0.002

MCH (pg) 29.05 18.5 360 2 30.1 21.5 34.6 1.97 0.002

MCHC (g/L) 335.88 297 16.9 12.49 337.78 302.11 372 13.95 0.397

RBCDW (%) 12.84 11.5 54.1 0.99 13.33 11.8 17 1.03 0.004

RBCVDSD (fl) 40.42 30.4 601 3.71 42.92 35.8 60.2 4.09 <0.001

PLT (10ˆ9/L) 365.15 169 0.57 91.32 293.01 67 670 135.19 0.001

THR (L/L) 0.3474 0.19 12.9 0.083 0.2997 0.1 0.64 0.123 0.008

MPL (fl) 9.73 1.5 17.7 1.38 10.31 6.6 13.4 1.13 0.008

PDWSDV (fl) 11.08 7.7 49.5 1.85 12.46 1.2 19.1 2.89 0.001

P-LCR (%) 23.47 9.6 22 7.78 28.4 13.1 52.7 8.4 0.001

FIGURE 1

The archive of solutions in AOCR.
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The exploration process mainly relies on the constructed
Gaussian function. Finally, the m ant individuals generated
and the k individuals in the archive are merged, and
the m poorer individuals are removed from the merged
archive, which is also the process of pheromone update of
ant individuals.

3.2 Grade-based search strategy

The grade-based search strategy (GS) is a mechanism
abstracted from GWO, where the core is mainly to simulate
the hierarchy of gray wolves. As a swarm intelligence
optimization algorithm proposed by Mirjalili et al. (2014)
in 2014, GWO is characterized by few parameters, strong
convergence performance and easy implementation. Therefore,
based on the inspiration of the above ideas, GS is introduced into
this paper to improve the convergence performance of ACOR.

In the GS, ant individuals are also classified into four classes:
α, β, δ, and ω. There are the α, β, and δ leaders in the population,
representing the current optimal candidate solution, second
best solution, and third best solution, independently. Other
individual ants are called ω, which follow α, β, and δ to search
for food. Therefore, ant individuals searching for food can be
represented by the following mathematical model.

⇀
D=

∣∣∣∣⇀C · ⇀Xf (t)−
⇀
X (t)

∣∣∣∣ (2)

⇀
X (t + 1) =

⇀
Xf (t)−

⇀
A ·

⇀
D (3)

where t represents the number of current iterations,
⇀
A and

⇀
C

are coefficient vectors,
⇀
Xf indicates the position vector of food,

and
⇀
X is the location vector of ant individual.

⇀
A and

⇀
C can be

obtained according to the following Eqs. 4, 5.

⇀
A= 2

⇀
a ·

⇀
r1−

⇀
a (4)

⇀
C= 2 ·

⇀
r2 (5)

where
⇀
a decreases linearly from 2 to 0 as the iteration.

⇀
r1

and
⇀
r2 are all random number vectors between [0, 1].
Furthermore, the ant individual takes the current location

as the optimal food position when | A | < 1. In contrast, the ant
moved away from the food when | A |> 1 and searched for other
food. The central position of α, β, and δ is taken as the optimal
solution since the position of the optimal food is unknown.
Other ant individuals update their positions according to these
three optimal ant individuals with the following Eqs. (6–8).

−→
Dα = |

−→
Ca ·
−→
Xα (t)−

−→
Xi (t)|

−→
Dβ = |

−→
Cb ·
−→
Xβ (t)−

−→
Xi (t)|

−→
Dδ = |

−→
Cc ·
−→
Xδ (t)−

−→
Xi (t)|

(6)


−→
X1 =

−→
Xα −

−→
Aa ·
−→
Dα

−→
X2 =

−→
Xβ −

−→
Ab ·
−→
Dβ

−→
X3 =

−→
Xδ −

−→
Ac ·
−→
Dδ

(7)

−→
Xi (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(8)

3.3 The proposed GACO

By reviewing the key elements of ACOR in section “3.1 An
overview of ACOR,” it can be seen that ACOR relies mainly on
the constant updating of individuals in the archive to obtain
the optimal solution. Therefore, since each iteration removes
the inferior solutions and retains the superior ones, this allows
the ant individuals to continuously move closer to the optimal
ones, but this also leads to the same problem of reduced diversity
of ant individuals, poor convergence and easy to fall into local
optimum. To make up for these shortcomings as much as
possible, this paper introduces the GS strategy in ACOR to form
a new continuous ant colony optimizer, called GACO. The GS
strategy mainly simulates the wolf pack hierarchy and group
hunting behavior in GWO, and it mainly acts on the population
as a whole after merging the ant individuals in the archive
and the newly generated ant individuals. Since the first half of
wolf foraging emphasizes more on the global performance in
optimization and the second half emphasizes more on the local
performance, the introduction of GS strategy then makes ACOR
have better convergence performance and stronger ability to
jump out of the local optimum. See Algorithm 1 for the pseudo-
code of the proposed GACO.

Input: The fitness function f(s),

maximum evaluation number (MaxFEs),

the parameter q, archive size(k),

population size (m), dimension (n),

pheromone evaporation rate(ξ)

Output: The best ant (bestAnt)

Initialize the parameters

MaxFEs,q,k,m,ξ;
Initialize the population of k ants in

archive;

s = ∅;
For l = 1 to k

sl = rand (UL);
s = s∪ sl;

fl = f (sl);

End For

s = sorting (s);

wl =
1

qk
√

2π
e
−
(l−1)2

2q2k2 ;

pl =
wl∑k

r=1 wr
;
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BestAnt = x1;

While (FEs ≤ MaxFEs)
Generate the empty population of m

ants;

For i = 1 to m
Choose a solution sc according to

probability pc where c ∈
[
1, k

]
;

For j = 1 to n
µij = scj;

σij = ξ
k∑

e=1

|sej−scj|

k−1 ;

xij = N
(
µij, σij

)
;

End For

fk+i = f (xi);

x = s∪ xi;

End For

x = sorting (x);
For l = 1 to k+m
Form x′l by simulating GS strategy;

f ′l = f
(
x′l
)
;

If fl < f ′l
xl = x′l;

End If

End For

x = sorting (x);
x = x− sm;

bestAnt = x1;

End While

Return bestAnt

Algorithm 1. Pseudo-code of GACO.

4 The proposed bGACO-sVM
model

4.1 Binary transformation method

Feature selection technique is regarded as a binary
optimization problem. In order to solve the feature selection
issue, an enhanced binary version based on the GACO algorithm
is put forward. In this study, the solution is represented as a
d dimension vector, where d is the number of attributes of the
dataset. The original update method of the GACO algorithm is
useless when handling binary optimization issues because these
solutions do not only have the “0” and “1” values. In order to
settle the problem, it discretizes the position vector of individual
ants into a binary value. The updated formula is defined
as following.

Xd (t + 1) =

{
1 , sigmoid (Xd (t)) ≥ rand

0 , otherwise
(9)

where rand denotes a random number obeying a uniform
distribution between [0, 1]· Xd (t + 1) is an iteration of t using
binary position update. the specific expression of sigmoid is
shown below.

sigmoid (x) =
1

1+ e−10(x−0.5) (10)

In this way, the original continuous problem is transformed
into a discrete problem. In addition, in order to further evaluate
the importance of the selected features, machine learning
methods are added to the evaluation of the fitness values to
further select the most effective features.

4.2 Support vector machine

SVM has been applied to many practical issues such as
breast cancer diagnosis (Huang et al., 2019), TBPE diagnosis
(Li et al., 2018), analysis of patients with paraquat poisoning
(Hu et al., 2017), prognosis of patients with paraquat poisoning
(Chen et al., 2017), prediction of electricity price (Weron,
2014), prediction of electricity spot-prices (Cincotti et al., 2014),
and prediction of Parkinson’s disease (Cai et al., 2017). The
mechanism of SVM is to find an optimal plane that can
maximally separate different data. The support-vector is the
data point closest to the boundary. In data processing, SVM
is often used as a supervised learning method to decide the
optimal hyperplane which distinguish positive and negative
samples accurately. The hyperplane is defined as follows, giving
the dataset G =

(
xi, yi

)
, i = 1, . . . ,N, x ∈ Rd, y ∈ {±1}.

g (x) = ωTx+ b (11)

Minimization in terms of geometric comprehension of the
hyperplane equals to the maximization of geometric spacing
equals minimization. In the presence of a small number of
outliers, the “soft interval” idea is added, and the slack variable
ξi > 0 is utilized. The discipline factor c represents the ability
to accept outliers and is one of the main factors affecting the
effectiveness of SVM classification. The standard SVM model is
shown in the figure below. min (ω) = 1

2 ‖ ω ‖
2
+c

N∑
i=1
ξ 2

i

s.t yi
(
ωTxi + b

)
≥ 1− ξi, i = 1, 2, . . . ,N

(12)

where ω denotes the weight of inertia, b represents a constant.
This method transforms low-dimensional data i into

high-dimensional data and combines the multivariate linear
techniques to partition the optimal classification surface. At
the same time, SVM changes the set of linearly indivisible
samples 8 : Rd

→ H non-linearly. In order to ensure that
the computational outcomes of the high-dimensional part
are the same as the low-dimensional part, an appropriate
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kernel function k
(
xi, xj

)
is constructed, with αi indicating the

Lagrange multiplier and Eq. (3) being transformed as follows:
Q (α) = 1

2

N∑
i=1
αiαjyiyjk

(
xi, xj

)
−

N∑
i=1
αi

s.t
N∑

i=1
aiyi = 0, 0 ≤ ai ≤ C, i = 1, 2, . . . ,N

(13)

In this paper, the generalized radial basis kernel function is
adopted, and its expression is as follows.

k
(
x, y

)
= e−γ ‖xi−xj‖ (14)

where γ is another factor that is very important for the
classification performance of SVM and denotes a kernel
parameter that specifies the interaction width of the
kernel function.

4.3 The proposed bGACO-SVM model

This section proposes a novel and efficient model based on
the bGACO and the SVM for feature selection experiments,
named bGACO-SVM model. The model is mainly used to select
key features from the dataset. The fitness of the selected feature
subset for each individual ant is evaluated during the feature
selection process. The specific fitness values are calculated as
follows.

Fitness = α · error + β ·
|R|
|D|

(15)

where er denotes the SVM classification error rate, |D|
represents the number of features in the dataset. |R| denotes the
number of features of the selected feature subset. α is a weight
that measure the importance of the classification error rate and
β is a weight that measure the length of the selected features,
respectively. In our research, α = 0.99 and β = 0.01 are set, and
both are commonly used in many works.

In summary, we can obtain the bGACO-SVM model by
combining the proposed bGACO with the SVM in this paper,
and its workflow is shown in Figure 2.

5 Experiments results and analysis

The proposed method is validated and applied using
experiments from two aspects. First, a series of benchmark
function experiments are conducted to validate the performance
of GACO, and second, bGACO-SVM is applied to some
classification prediction problems on feature selection, which
effectively illustrates that bGACO-SVM has strong classification
prediction capability.

5.1 Benchmark function validation

In this subsection, IEEE CEC2017 is used as the basis
for benchmark function experiments, and the core advantages
of GACO with strong convergence performance and less

FIGURE 2

Flow chart of the bGACO-SVM model.
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susceptibility to local optima are fully illustrated by comparing
experiments not only between GACO and nine basic algorithms,
but also between GACO and nine advanced variant algorithms.

5.1.1 Experiment setup
In the benchmark function experiments, 30 benchmark

functions in IEEE CEC2017 are used as the basis of the
experiments, which are illustrated in Table 5. In the process of
the experiments, the basic algorithm comparative experiments
and advanced variant algorithm comparative experiments were
conducted. In the basic algorithm comparative experiments,
the algorithms involved in the simulation are ACOR (Socha
and Dorigo, 2008), GWO (Mirjalili et al., 2014), HHO
(Heidari et al., 2019), MFO (Mirjalili, 2015), PSO (Kennedy
and Eberhart, 1995), WOA (Mirjalili and Lewis, 2016), JAYA
(Rao, 2016), FA (Yang, 2009), and SFS (Salimi, 2015), whose
superior performance has been well demonstrated in some
previous original studies, so much so that the comparison
with their comparative results are also convincing. It is
also necessary to compare with some advanced variant
algorithms since GACO actually belongs to one variant

algorithm, where MOFOA (Chen et al., 2020), CDLOBA
(Yong et al., 2018), HGWO (Zhu et al., 2015), OBSCA
(Abd Elaziz et al., 2017), SMFO (Chen C. et al., 2021),
CGSCA (Chen C. et al., 2021), RDWOA (Chen et al., 2019),
m_SCA (Qu et al., 2018), and BMWOA (Heidari et al., 2020)
participate in the comparative study. These variant algorithms
involved in the comparison not only have a performance
due to but also have been successfully applied to several
fields.

Furthermore, to ensure fairness of the experimental
process and the accuracy of the experimental results, all
the algorithms participating in the comparison are carried
out under the same conditions, where the population size
is set to 30 and the maximum number of evaluations
is uniformly set to 300,000. In addition, the values of
the key parameters of all the algorithms involved in the
comparison are kept consistent with the values of the
parameters in the original literature. Besides, all algorithms
are independently tested 30 times to reduce the effect of
random conditions. Mean, standard deviation, the Wilcoxon
signed-rank test and the Friedman test are used for detailed

TABLE 5 The detailed 30 benchmark functions of CEC2017.

Item The function class The function name The optimal fitness

F1 Unimodal functions Shifted and rotated bent cigar function 100

F2 Shifted and rotated sum of different power function 200

F3 Shifted and rotated zakharov function 300

F4 Multimodal functions Shifted and rotated rosenbrocks function 400

F5 Shifted and rotated rastrigins function 500

F6 Shifted and rotated expanded scaffers F6 function 600

F7 Shifted and rotated lunacek Bi_Rastrigin function 700

F8 Shifted and rotated Non-continuous rastrigins function 800

F9 Shifted and rotated levy function 900

F10 Shifted and rotated schwefels function 1,000

F11 Hybrid functions Hybrid function 1 (N = 3) 1,100

F12 Hybrid function 2 (N = 3) 1,200

F13 Hybrid function 3 (N = 3) 1,300

F14 Hybrid function 4 (N = 4) 1,400

F15 Hybrid function 5 (N = 4) 1,500

F16 Hybrid function 6 (N = 4) 1,600

F17 Hybrid function 6 (N = 5) 1,700

F18 Hybrid function 6 (N = 5) 1,800

F19 Hybrid function 6 (N = 5) 1,900

F20 Hybrid function 6 (N = 6) 2,000

F21 Composition functions Composition function 1 (N = 3) 2,100

F22 Composition function 2 (N = 3) 2,200

F23 Composition function 3 (N = 4) 2,300

F24 Composition function 4 (N = 4) 2,400

F25 Composition function 5 (N = 5) 2,500

F26 Composition function 6 (N = 5) 2,600

F27 Composition function 7 (N = 6) 2,700

F28 Composition function 8 (N = 6) 2,800

F29 Composition function 9 (N = 3) 2,900

F30 Composition function 10 (N = 3) 3,000
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TABLE 6 The average values and the standard deviations obtained by GACO and basic algorithms.

F1 F2 F3

AVG STD AVG STD AVG STD

GACO 8.2256E + 06 7.7175E + 06 1.0590E + 85 5.0960E + 85 3.0497E + 05 5.4569E + 04

ACOR 3.6100E + 10 1.7715E + 10 3.0027E + 138 1.6446E + 139 6.0684E + 05 9.0501E + 04

GWO 5.0960E + 10 1.0219E + 10 3.6382E + 132 1.9923E + 133 2.3043E + 05 2.0478E + 04

HHO 4.3145E + 08 4.1722E + 07 4.0250E + 96 1.2975E + 97 1.9619E + 05 1.9851E + 04

MFO 1.4511E + 11 5.9631E + 10 1.0574E + 164 6.5535E + 04 6.3817E + 05 1.8557E + 05

PSO 1.6059E + 09 9.8073E + 07 8.2461E + 74 2.6019E + 75 8.4109E + 04 1.5101E + 04

WOA 1.2008E + 09 4.6558E + 08 2.2068E + 152 1.0509E + 153 7.8453E + 05 1.5669E + 05

JAYA 1.0349E + 11 1.1484E + 10 4.1537E + 141 2.2577E + 142 3.9396E + 05 4.0375E + 04

FA 1.2877E + 11 7.0207E + 09 7.4327E + 151 2.2871E + 152 4.3255E + 05 3.2019E + 04

SFS 4.7679E + 10 9.3071E + 09 1.5726E + 134 8.5640E + 134 2.4843E + 05 1.4207E + 04

F4 F5 F6

AVG STD AVG STD AVG STD

GACO 7.1068E + 02 5.5357E + 01 1.0100E + 03 2.8355E + 02 6.0957E + 02 3.2392E + 00

ACOR 3.2978E + 03 1.7649E + 03 1.7046E + 03 1.4535E + 02 6.2972E + 02 4.8767E + 00

GWO 4.9131E + 03 1.3196E + 03 1.1389E + 03 6.5861E + 01 6.3857E + 02 5.6532E + 00

HHO 1.0370E + 03 9.1619E + 01 1.4964E + 03 5.5559E + 01 6.8146E + 02 4.4131E + 00

MFO 2.9679E + 04 1.5588E + 04 1.8138E + 03 1.6297E + 02 6.7074E + 02 5.3080E + 00

PSO 7.7564E + 02 1.0928E + 02 1.6982E + 03 7.1390E + 01 6.9035E + 02 6.6557E + 00

WOA 1.5272E + 03 1.8335E + 02 1.4911E + 03 8.8708E + 01 6.8498E + 02 8.6502E + 00

JAYA 1.7696E + 04 2.7371E + 03 1.7631E + 03 5.6782E + 01 6.7036E + 02 6.0310E + 00

FA 1.7797E + 04 1.8868E + 03 1.7553E + 03 3.0198E + 01 6.7541E + 02 2.5695E + 00

SFS 6.0276E + 03 1.3589E + 03 1.4953E + 03 4.5356E + 01 6.6920E + 02 5.6041E + 00

F7 F8 F9

AVG STD AVG STD AVG STD

GACO 1.6294E + 03 2.9561E + 02 1.3525E + 03 3.0638E + 02 1.5681E + 04 5.0118E + 03

ACOR 3.3360E + 03 4.6313E + 02 1.8264E + 03 2.8730E + 02 6.8794E + 04 1.5724E + 04

GWO 1.9769E + 03 1.5215E + 02 1.4535E + 03 5.3471E + 01 2.6998E + 04 1.1298E + 04

HHO 3.6528E + 03 1.5064E + 02 1.9509E + 03 5.5012E + 01 4.6558E + 04 4.7553E + 03

MFO 5.2019E + 03 1.1267E + 03 2.2185E + 03 1.5174E + 02 4.8050E + 04 4.6064E + 03

PSO 1.8430E + 03 6.3657E + 01 2.0805E + 03 8.6441E + 01 6.7596E + 04 6.9463E + 03

WOA 3.3797E + 03 1.7804E + 02 1.9691E + 03 9.5630E + 01 4.0896E + 04 8.6796E + 03

JAYA 3.0867E + 03 1.6241E + 02 2.1500E + 03 6.4354E + 01 4.9478E + 04 5.5002E + 03

FA 4.9452E + 03 2.0113E + 02 2.0569E + 03 3.2362E + 01 4.9924E + 04 2.4190E + 03

SFS 2.7896E + 03 2.6812E + 02 1.9160E + 03 8.0118E + 01 5.4216E + 04 7.1330E + 03

F10 F11 F12

AVG STD AVG STD AVG STD

GACO 3.0986E + 04 3.2558E + 03 3.9846E + 03 1.3114E + 03 9.9691E + 07 8.6298E + 07

ACOR 3.1319E + 04 9.4427E + 02 3.6931E + 04 3.1612E + 04 2.3767E + 09 3.5117E + 09

GWO 1.4934E + 04 1.3572E + 03 5.3227E + 04 1.4592E + 04 9.7268E + 09 3.8915E + 09

HHO 2.0134E + 04 1.4566E + 03 4.7016E + 03 8.0608E + 02 5.1398E + 08 1.6789E + 08

MFO 1.7023E + 04 1.6742E + 03 1.3476E + 05 8.1816E + 04 4.0575E + 10 2.2988E + 10

(Continued)
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TABLE 6 (Continued)

F10 F11 F12

AVG STD AVG STD AVG STD

PSO 2.4828E + 04 1.2067E + 03 3.5492E + 03 2.3929E + 02 1.0644E + 09 1.9690E + 08

WOA 2.3319E + 04 2.5357E + 03 5.9014E + 04 3.5771E + 04 1.2011E + 09 4.0590E + 08

JAYA 3.1447E + 04 5.8932E + 02 6.2055E + 04 9.2973E + 03 2.7457E + 10 4.7948E + 09

FA 3.1171E + 04 4.4500E + 02 1.2679E + 05 1.7575E + 04 4.7380E + 10 3.3462E + 09

SFS 2.3193E + 04 3.0843E + 03 4.7273E + 04 9.6927E + 03 1.0455E + 10 5.7766E + 09

F13 F14 F15

AVG STD AVG STD AVG STD

GACO 9.4264E + 04 1.1070E + 05 7.7696E + 05 8.1489E + 05 1.7601E + 04 1.1305E + 04

ACOR 8.6415E + 07 3.2235E + 08 1.2860E + 06 2.8603E + 06 9.9486E + 07 5.4309E + 08

GWO 1.0131E + 09 7.3267E + 08 5.7396E + 06 3.2209E + 06 1.9895E + 08 3.0217E + 08

HHO 7.2212E + 06 1.2380E + 06 2.0307E + 06 5.5807E + 05 2.3151E + 06 1.3174E + 06

MFO 6.7366E + 09 5.2358E + 09 8.8703E + 06 1.0445E + 07 1.6566E + 09 2.3418E + 09

PSO 9.4036E + 07 9.1179E + 06 1.4371E + 06 4.8151E + 05 3.2478E + 07 4.2943E + 06

WOA 1.0125E + 06 6.5198E + 05 4.0841E + 06 2.1279E + 06 6.5230E + 05 1.5870E + 06

JAYA 3.3460E + 09 5.8203E + 08 2.0404E + 07 6.1547E + 06 1.2102E + 09 2.2209E + 08

FA 9.7405E + 09 8.4986E + 08 4.0528E + 07 9.8837E + 06 3.8676E + 09 5.7707E + 08

SFS 5.3077E + 08 7.4002E + 08 4.3394E + 06 2.0366E + 06 7.6357E + 06 5.2135E + 06

F16 F17 F18

AVG STD AVG STD AVG STD

GACO 5.7358E + 03 2.3390E + 03 6.4921E + 03 1.7745E + 03 4.4177E + 06 2.3376E + 06

ACOR 6.7722E + 03 2.4763E + 03 5.7058E + 03 1.2735E + 03 3.5441E + 06 2.1597E + 06

GWO 6.0808E + 03 5.9306E + 02 5.3245E + 03 9.8942E + 02 4.0363E + 06 2.0454E + 06

HHO 7.5667E + 03 8.4357E + 02 6.2019E + 03 5.9569E + 02 3.2626E + 06 1.2479E + 06

MFO 8.2079E + 03 1.0619E + 03 1.1898E + 04 8.5543E + 03 1.8763E + 07 2.3755E + 07

PSO 8.0057E + 03 6.9435E + 02 6.0817E + 03 5.1887E + 02 2.8781E + 06 1.1508E + 06

WOA 1.2021E + 04 1.5446E + 03 7.5235E + 03 8.9234E + 02 3.7969E + 06 1.9433E + 06

JAYA 1.1935E + 04 3.9134E + 02 1.0884E + 04 6.3055E + 02 3.1558E + 07 1.0144E + 07

FA 1.1908E + 04 3.3078E + 02 1.2672E + 04 1.2568E + 03 6.7360E + 07 1.5507E + 07

SFS 8.2635E + 03 9.8760E + 02 6.1484E + 03 8.7472E + 02 5.7382E + 06 3.5855E + 06

F19 F20 F21

AVG STD AVG STD AVG STD

GACO 9.0580E + 04 1.4671E + 05 6.7341E + 03 1.2898E + 03 2.8239E + 03 2.6964E + 02

ACOR 2.3778E + 07 1.2803E + 08 6.8177E + 03 9.5926E + 02 3.4864E + 03 2.3384E + 02

GWO 2.9512E + 08 5.5053E + 08 4.7312E + 03 7.1369E + 02 2.9656E + 03 8.0566E + 01

HHO 7.9411E + 06 3.5798E + 06 5.8085E + 03 4.1462E + 02 4.0340E + 03 2.0346E + 02

MFO 8.6606E + 08 1.0386E + 09 5.8370E + 03 6.9192E + 02 3.7331E + 03 1.6980E + 02

PSO 5.0654E + 07 1.0964E + 07 5.9648E + 03 4.7727E + 02 3.8360E + 03 1.3323E + 02

WOA 2.6514E + 07 1.6930E + 07 6.3206E + 03 4.8385E + 02 3.9557E + 03 2.3823E + 02

JAYA 1.2052E + 09 2.3756E + 08 7.2429E + 03 2.3323E + 02 3.5848E + 03 5.3667E + 01

FA 3.9109E + 09 5.0919E + 08 7.1081E + 03 2.2258E + 02 3.5997E + 03 2.7543E + 01

SFS 3.5426E + 07 4.1572E + 07 5.6331E + 03 3.9694E + 02 3.5285E + 03 1.1670E + 02

(Continued)
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TABLE 6 (Continued)

F22 F23 F24

AVG STD AVG STD AVG STD

GACO 3.2237E + 04 4.7406E + 03 3.2363E + 03 1.6394E + 02 3.8665E + 03 2.8500E + 02

ACOR 3.2137E + 04 3.5784E + 03 3.4544E + 03 1.2518E + 02 3.9442E + 03 1.5828E + 02

GWO 1.9020E + 04 3.3369E + 03 3.5578E + 03 8.2209E + 01 4.1983E + 03 9.2443E + 01

HHO 2.3925E + 04 1.5476E + 03 5.2012E + 03 2.8788E + 02 6.3045E + 03 4.0125E + 02

MFO 2.0418E + 04 1.6253E + 03 3.8749E + 03 1.4992E + 02 4.5054E + 03 1.7933E + 02

PSO 2.8077E + 04 1.2457E + 03 4.9337E + 03 2.7125E + 02 5.8868E + 03 4.9029E + 02

WOA 2.5579E + 04 2.4395E + 03 4.7940E + 03 3.4278E + 02 6.0490E + 03 3.6440E + 02

JAYA 3.3901E + 04 5.7469E + 02 4.6835E + 03 1.4235E + 02 6.1066E + 03 2.1815E + 02

FA 3.3445E + 04 5.2014E + 02 4.1180E + 03 3.7619E + 01 4.8621E + 03 5.9943E + 01

SFS 2.5187E + 04 2.8835E + 03 4.4516E + 03 1.9623E + 02 5.8170E + 03 2.5337E + 02

F25 F26 F27

AVG STD AVG STD AVG STD

GACO 3.3714E + 03 5.8312E + 01 1.0976E + 04 2.9287E + 03 3.5413E + 03 6.2898E + 01

ACOR 6.1377E + 03 1.6769E + 03 1.3491E + 04 1.3763E + 03 3.6055E + 03 9.8467E + 01

GWO 6.3944E + 03 1.1488E + 03 1.5364E + 04 1.3283E + 03 4.0608E + 03 1.2048E + 02

HHO 3.6669E + 03 1.0497E + 02 2.3951E + 04 5.5858E + 03 4.4867E + 03 4.3769E + 02

MFO 1.3739E + 04 6.5349E + 03 1.9147E + 04 1.6406E + 03 4.1285E + 03 2.6704E + 02

PSO 3.4591E + 03 5.1934E + 01 1.6941E + 04 8.3486E + 03 3.2845E + 03 4.2689E + 01

WOA 4.0227E + 03 1.1089E + 02 3.1718E + 04 3.0965E + 03 5.3490E + 03 1.0257E + 03

JAYA 1.1044E + 04 1.1947E + 03 3.1820E + 04 1.8720E + 03 6.4061E + 03 4.0874E + 02

FA 1.8005E + 04 1.3440E + 03 2.1482E + 04 5.1965E + 02 5.2925E + 03 1.6817E + 02

SFS 6.3670E + 03 6.0614E + 02 2.7142E + 04 2.9023E + 03 5.2094E + 03 3.8056E + 02

F28 F29 F30

AVG STD AVG STD AVG STD

GACO 3.5733E + 03 5.2075E + 02 6.2878E + 03 5.4587E + 02 1.0256E + 06 1.7309E + 06

ACOR 1.5202E + 04 1.8765E + 03 6.9565E + 03 7.5323E + 02 1.9251E + 08 7.2647E + 08

GWO 8.5347E + 03 1.6676E + 03 8.1485E + 03 8.8332E + 02 9.4571E + 08 9.9770E + 08

HHO 3.6801E + 03 6.3656E + 01 9.6652E + 03 6.7693E + 02 5.1889E + 07 1.8154E + 07

MFO 2.1062E + 04 2.2769E + 03 1.1910E + 04 4.4811E + 03 2.7856E + 09 2.4137E + 09

PSO 3.4322E + 03 5.4773E + 01 9.6976E + 03 4.5820E + 02 1.4845E + 08 3.5743E + 07

WOA 4.3863E + 03 2.3776E + 02 1.4509E + 04 1.8289E + 03 4.2799E + 08 1.8114E + 08

JAYA 1.9079E + 04 1.7054E + 03 1.3307E + 04 6.8642E + 02 2.2355E + 09 4.1862E + 08

FA 1.6331E + 04 1.3891E + 03 1.8595E + 04 1.5208E + 03 6.0185E + 09 6.2062E + 08

SFS 9.0535E + 03 1.1890E + 03 1.0488E + 04 8.3307E + 02 7.9833E + 08 1.2287E + 09

statistics and analysis of all experimental results obtained on the
benchmark functions.

5.1.2 Comparison with basic algorithms
In this subsection, GACO and nine basic algorithms are

compared in experiments at IEEE CEC2017, and the algorithms
involved in the comparison are ACOR (Socha and Dorigo,
2008), GWO (Mirjalili et al., 2014), HHO (Heidari et al., 2019),

MFO (Mirjalili, 2015), PSO (Kennedy and Eberhart, 1995),
WOA (Mirjalili and Lewis, 2016), JAYA (Rao, 2016), FA
(Yang, 2009), and SFS (Salimi, 2015). Table 6 gives their
average values and standard deviations obtained during the
experiment, where “AVG” denotes the average value and
“STD” denotes the standard deviation. The best results are
bolded in each column. By observing the average and standard
deviation, it can be found that GACO obtained the minimum
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average value on 20 functions, PSO on 6 functions and
GWO on 4 functions. Based on the observation of the
average values, it is evident that GACO performs the best
on two-thirds of the functions, which effectively shows that
GACO has a strong optimization capability to obtain high-
quality solutions. Similarly, GACO also performs well in
terms of standard deviation, indicating that it has good
stability.

Further, Table 7 gives the performance ranking of all
algorithms on each benchmark function, as well as the overall
ranking on the 30 benchmark functions. The observation
shows that GACO not only performs as No. 1 on every
function category in IEEE CEC2017, but it also ranks No.
1 overall on 30 functions, which provides sufficient proof
of GACO’s performance. In addition, for a more reliable

analysis of the experimental results, the results of the
Wilcoxon signed-rank test are presented in Table 7, where “+”
indicates that GACO outperforms the comparison algorithm, “-
” indicates that GACO outperforms the comparison algorithm,
and “=” indicates that the performance of GACO and
the comparison algorithm are comparable. Based on the
observation of the analysis results, GACO outperforms
the other algorithms on 20 out of 30 functions, which
provides sufficient evidence to prove the performance of
GACO.

After the Wilcoxon signed-rank test analysis, Figure 3 gives
the results of the Friedman test analysis, where GACO is No.
1 with 2.46 and GWO is No. 2 with 4.04. Therefore, the
analysis shows that GACO has a greater advantage over GWO,
which is ranked No. 2, and this also shows that GACO has

TABLE 7 The performance ranking of all algorithms and the results of the Wilcoxon signed-rank test.

F GACO ACOR GWO HHO MFO PSO WOA JAYA FA SFS

F1 1 5 7 2 10 4 3 8 9 6

F2 2 6 4 3 10 1 9 7 8 5

F3 5 8 3 2 9 1 10 6 7 4

F4 1 5 6 3 10 2 4 8 9 7

F5 1 7 2 5 10 6 3 9 8 4

F6 1 2 3 8 6 10 9 5 7 4

F7 1 6 3 8 10 2 7 5 9 4

F8 1 3 2 5 10 8 6 9 7 4

F9 1 10 2 4 5 9 3 6 7 8

F10 7 9 1 3 2 6 5 10 8 4

F11 2 4 6 3 10 1 7 8 9 5

F12 1 5 6 2 9 3 4 8 10 7

F13 1 4 7 3 9 5 2 8 10 6

F14 1 2 7 4 8 3 5 9 10 6

F15 1 6 7 3 9 5 2 8 10 4

F16 1 3 2 4 6 5 10 9 8 7

F17 6 2 1 5 9 3 7 8 10 4

F18 6 3 5 2 8 1 4 9 10 7

F19 1 3 7 2 8 6 4 9 10 5

F20 7 8 1 3 4 5 6 10 9 2

F21 1 3 2 10 7 8 9 5 6 4

F22 8 7 1 3 2 6 5 10 9 4

F23 1 2 3 10 4 9 8 7 5 6

F24 1 2 3 10 4 7 8 9 5 6

F25 1 5 7 3 9 2 4 8 10 6

F26 1 2 3 7 5 4 9 10 6 8

F27 2 3 4 6 5 1 9 10 8 7

F28 2 7 5 3 10 1 4 9 8 6

F29 1 2 3 4 7 5 9 8 10 6

F30 1 4 7 2 9 3 5 8 10 6

± / = ∼ 22/0/8 21/5/4 24/5/1 27/3/0 20/8/2 26/3/1 28/0/2 28/0/2 24/4/2

Mean 2.23 4.60 4.00 4.40 7.47 4.40 6.00 8.10 8.40 5.40

Rank 1 5 2 3 8 3 7 9 10 6
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FIGURE 3

The results of the Friedman test analysis.

an advantage over other algorithms. Finally, to illustrate the
convergence performance of GACO, the convergence curves on
some functions are given in Figure 4, where F6, F9, F14, F15, and
F19 demonstrate that the convergence performance of GACO is
better than other basic algorithms, and F1, F12, F13, and F20
reflect the strong ability of avoiding falling into local optimum
that GACO has.

Therefore, based on the above experimental analysis, the
convergence performance of GACO, as well as the stronger
ability to avoid local optima, are well demonstrated in the
comparison experiments of the basic algorithms.

5.1.3 Comparison with state-of-art variants
This subsection compares GACO with nine advanced

variants since GACO is one variant by introducing the
GS strategy into ACOR. Their average values and standard
deviations obtained for each function are given in Table 8,
where the best results are bolded in each column, GACO obtains
the best average value on 23 functions, CDLOBA obtains the
best average value on 5 functions, and m_SCA has a better
performance on 2 two functions. Based on the observation of
the mean performance, it is clear that GACO has a very obvious
advantage over other algorithms. In addition, its performance
on STD is also very good, which also reflects that GACO has
some stability.

In order to further analyze the performance of GACO
on 30 benchmark functions, the ranking of all algorithms on
each function is given in Table 9, where the advantage of
GACO is clearly demonstrated, both on individual functions
and overall performance is far better than other similar
algorithms. The advanced performance of GACO is further

verified by the Wilcoxon signed-rank test, which shows that
GACO outperforms other algorithms on at least 23 benchmark
functions.

Next, the Friedman test analysis was further used to analyze
the performance of the algorithms, and Figure 5 gives the
Friedman ranking results for each algorithm. By observing
the ranking results, it can be found that GACO ranks No. 1
with 1.94, followed by RDWOA in second place with 2.76,
which effectively shows that GACO outperforms RDWOA,
and likewise shows that GACO is better than other similar
algorithms. Finally, the convergence curves of all algorithms
on some functions are given in Figure 6, which clearly shows
that GACO has a greater advantage in convergence performance
than other similar variants of the algorithm.

Therefore, the core performance of GACO is further
demonstrated by the comparison experiments between GACO
and advanced variant algorithms, effectively showing that
GACO is an excellent swarm optimization algorithm so that
it can applied more fields, such as recommender system (Li
et al., 2014, 2017), information retrieval services (Wu Z. et al.,
2020, Wu et al., 2021), microgrids planning (Cao et al., 2021),
clustering of cancer attributed networks (Gao et al., 2021; Wu
and Ma, 2022), drug discovery (Zhu et al., 2018; Li Y. et al.,
2020), disease identification and diagnosis (Su et al., 2019;
Tian et al., 2020), image denoising (Zhang et al., 2020), tensor
completion (Wang W. et al., 2022), colorectal polyp region
extraction (Hu et al., 2022), drug repositioning (Cai et al.,
2021), smart contract vulnerability detection (Zhang L. et al.,
2022), human activity recognition (Qiu et al., 2022), structured
sparsity optimization (Zhang X. et al., 2022), and medical data
processing (Guo et al., 2022).
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FIGURE 4

The convergence curves of GACO and basic algorithms on some functions.

5.2 Feature selection experiments

In this subsection, the proposed bGACO-SVM is mainly
applied to a variety of feature selection problems, mainly
including tests on the public dataset, and tests on the TBPE
dataset, as a way to show that it has good application capabilities.

5.2.1 Experimental setup
In this subsection, firstly, bGACO is experimented with

some similar methods on 11 public datasets, where the specific
datasets involved are shown in Table 10. Then, bGACO is
similarly compared with similar algorithms on the TBPE

dataset, where the relevant description of the data is given
in section “2 Data analysis.” In order to effectively illustrate
the role of bGACO on TBPE, experiments comparing GACO
with five very common machine learning algorithms are also
performed. In order to ensure the reliability of the experiments,
all experiments were conducted in the same environment as
the benchmark function experiments, where some important
parameters of the algorithms involved in the comparison are set
using their settings in the original studies.

Accuracy, specificity, precision, the Mathews correlation
coefficient (MCC), and the F-measure are the metrics that
are used in order to assess how well the model performs
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TABLE 8 The average values and standard deviations of GACO and nine advanced variants.

F1 F2 F3

AVG STD AVG STD AVG STD

GACO 5.6891E + 06 4.3937E + 06 7.4428E + 89 4.0760E + 90 3.1735E + 05 3.8486E + 04

MOFOA 2.6711E + 11 2.6295E + 09 1.1255E + 170 6.5535E + 04 3.3772E + 05 4.2760E + 03

CDLOBA 1.2623E + 07 4.8252E + 07 1.2300E + 108 6.7369E + 108 3.6842E + 05 1.1282E + 05

HGWO 1.0067E + 11 7.5732E + 09 3.6954E + 143 2.0052E + 144 3.3992E + 05 1.4764E + 04

OBSCA 1.9600E + 11 1.2115E + 10 3.7517E + 163 6.5535E + 04 3.5362E + 05 2.4996E + 04

SMFO 2.2737E + 11 2.1089E + 10 9.8487E + 172 6.5535E + 04 3.5021E + 05 1.5963E + 04

CGSCA 1.7607E + 11 7.6925E + 09 1.0114E + 153 6.5535E + 04 3.0041E + 05 1.4008E + 04

RDWOA 2.7916E + 09 2.7871E + 09 7.2820E + 123 3.2861E + 124 2.4424E + 05 2.3924E + 04

m_SCA 1.1729E + 11 1.4978E + 10 4.8033E + 144 2.6309E + 145 2.3064E + 05 2.3654E + 04

BMWOA 2.4823E + 11 1.3003E + 10 1.4963E + 171 6.5535E + 04 3.9269E + 05 8.5130E + 04

F4 F5 F6

AVG STD AVG STD AVG STD

GACO 7.1727E + 02 5.4114E + 01 9.0318E + 02 2.0575E + 02 6.0762E + 02 2.7936E + 00

MOFOA 9.9043E + 04 2.9035E + 03 2.1535E + 03 1.8140E + 01 7.1991E + 02 9.8085E-01

CDLOBA 9.7324E + 02 1.3149E + 02 2.0058E + 03 1.5369E + 02 6.8393E + 02 6.2058E + 00

HGWO 1.1036E + 04 1.0112E + 03 1.7152E + 03 3.0153E + 01 6.7553E + 02 2.4073E + 00

OBSCA 4.1876E + 04 5.3045E + 03 1.9819E + 03 5.1167E + 01 6.9791E + 02 4.3750E + 00

SMFO 7.1560E + 04 1.1179E + 04 2.0341E + 03 5.1684E + 01 7.0666E + 02 6.2014E + 00

CGSCA 3.6263E + 04 5.3517E + 03 1.9653E + 03 5.3088E + 01 6.9753E + 02 4.5596E + 00

RDWOA 1.3230E + 03 1.9472E + 02 1.5463E + 03 1.0643E + 02 6.6650E + 02 6.8233E + 00

m_SCA 1.3195E + 04 3.5938E + 03 1.4408E + 03 8.6192E + 01 6.6553E + 02 3.9864E + 00

BMWOA 8.3366E + 04 8.2941E + 03 2.1573E + 03 3.7247E + 01 7.1575E + 02 2.0205E + 00

F7 F8 F9

AVG STD AVG STD AVG STD

GACO 1.6553E + 03 2.9269E + 02 1.3096E + 03 2.9279E + 02 1.6619E + 04 5.2477E + 03

MOFOA 4.0402E + 03 2.8747E + 01 2.6259E + 03 1.7593E + 01 8.5000E + 04 2.4664E + 03

CDLOBA 1.0446E + 04 6.6761E + 02 2.5220E + 03 1.2641E + 02 4.7612E + 04 5.3404E + 03

HGWO 2.7900E + 03 8.5229E + 01 2.0427E + 03 3.0169E + 01 5.4724E + 04 4.3961E + 03

OBSCA 3.7478E + 03 1.1665E + 02 2.3505E + 03 7.0773E + 01 7.7112E + 04 5.5740E + 03

SMFO 3.9405E + 03 8.1444E + 01 2.5141E + 03 7.8276E + 01 7.2056E + 04 4.2652E + 03

CGSCA 3.4932E + 03 1.0714E + 02 2.3359E + 03 6.8760E + 01 7.4300E + 04 2.8601E + 03

RDWOA 3.0339E + 03 2.0416E + 02 2.0010E + 03 1.6488E + 02 3.0604E + 04 6.8706E + 03

m_SCA 2.8941E + 03 1.8522E + 02 1.7863E + 03 7.0689E + 01 3.9727E + 04 7.3789E + 03

BMWOA 4.0752E + 03 8.5327E + 01 2.6241E + 03 4.6038E + 01 8.7045E + 04 4.1294E + 03

F10 F11 F12

AVG STD AVG STD AVG STD

GACO 3.1032E + 04 3.5120E + 03 4.6920E + 03 2.2564E + 03 9.5070E + 07 8.5116E + 07

MOFOA 3.1963E + 04 4.9890E + 02 2.0592E + 05 1.5329E + 04 2.1472E + 11 5.2516E + 09

CDLOBA 1.6908E + 04 1.4985E + 03 6.9745E + 03 3.6119E + 03 4.9396E + 07 4.0021E + 07

HGWO 2.6578E + 04 7.9503E + 02 1.6128E + 05 1.5017E + 04 2.8297E + 10 3.5749E + 09

OBSCA 2.9336E + 04 1.1102E + 03 1.1464E + 05 1.3140E + 04 8.5411E + 10 8.6090E + 09

(Continued)
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TABLE 8 (Continued)

F10 F11 F12

AVG STD AVG STD AVG STD

SMFO 3.1746E + 04 1.0942E + 03 2.5603E + 05 8.5753E + 04 1.3429E + 11 2.7382E + 10

CGSCA 3.1376E + 04 5.6440E + 02 1.0540E + 05 1.5132E + 04 7.1672E + 10 8.4520E + 09

RDWOA 2.0674E + 04 2.3922E + 03 1.6766E + 04 5.1345E + 03 5.9383E + 08 5.5529E + 08

m_SCA 1.9045E + 04 1.9004E + 03 4.7959E + 04 1.0684E + 04 2.8088E + 10 8.8816E + 09

BMWOA 3.3092E + 04 6.1772E + 02 3.4479E + 05 8.4359E + 04 1.6690E + 11 1.4943E + 10

F13 F14 F15

AVG STD AVG STD AVG STD

GACO 6.6817E + 04 7.9597E + 04 9.4596E + 05 5.7572E + 05 1.7428E + 04 1.2184E + 04

MOFOA 5.2952E + 10 1.0296E + 09 1.4727E + 08 5.2422E + 07 3.0293E + 10 2.5254E + 09

CDLOBA 1.0030E + 05 3.2683E + 04 1.5607E + 05 8.3605E + 04 1.0944E + 05 5.4513E + 04

HGWO 5.5367E + 09 7.5157E + 08 1.7214E + 07 5.4166E + 06 1.5541E + 09 4.7492E + 08

OBSCA 1.5458E + 10 2.2157E + 09 3.1149E + 07 1.1222E + 07 4.8525E + 09 1.3541E + 09

SMFO 2.8976E + 10 6.3323E + 09 4.8643E + 07 2.8715E + 07 1.2242E + 10 4.7235E + 09

CGSCA 1.1377E + 10 1.9100E + 09 1.9230E + 07 4.7376E + 06 3.5175E + 09 8.0500E + 08

RDWOA 4.5217E + 06 8.8377E + 06 1.2513E + 06 5.4704E + 05 5.0743E + 04 1.1522E + 05

m_SCA 3.6031E + 09 1.6165E + 09 5.6029E + 06 3.4815E + 06 7.8553E + 08 9.0421E + 08

BMWOA 3.5298E + 10 5.4313E + 09 6.0155E + 07 2.6975E + 07 1.6107E + 10 3.6335E + 09

F16 F17 F18

AVG STD AVG STD AVG STD

GACO 5.9147E + 03 2.5403E + 03 5.8620E + 03 1.6837E + 03 4.8110E + 06 1.9265E + 06

MOFOA 2.3638E + 04 1.2695E + 03 1.6826E + 07 4.5661E + 06 3.1738E + 08 6.3057E + 07

CDLOBA 8.0546E + 03 1.1168E + 03 6.8603E + 03 6.1523E + 02 3.2821E + 05 1.7020E + 05

HGWO 1.0611E + 04 5.2572E + 02 9.8283E + 03 1.4170E + 03 2.1173E + 07 6.3602E + 06

OBSCA 1.4051E + 04 6.7942E + 02 2.5773E + 04 1.0563E + 04 5.1867E + 07 2.5038E + 07

SMFO 1.9104E + 04 3.1393E + 03 1.9592E + 06 3.2793E + 06 9.2659E + 07 8.8024E + 07

CGSCA 1.3661E + 04 6.9149E + 02 1.9455E + 04 1.0214E + 04 3.3627E + 07 1.4577E + 07

RDWOA 8.5543E + 03 8.7235E + 02 6.3095E + 03 8.2113E + 02 2.3249E + 06 1.0906E + 06

m_SCA 7.7833E + 03 9.3556E + 02 5.9623E + 03 7.7630E + 02 7.3133E + 06 3.9826E + 06

BMWOA 1.9585E + 04 1.7580E + 03 2.4042E + 06 1.9447E + 06 1.3773E + 08 5.7575E + 07

F19 F20 F21

AVG STD AVG STD AVG STD

GACO 7.1769E + 04 1.0313E + 05 6.1385E + 03 1.6546E + 03 2.7472E + 03 2.1729E + 02

MOFOA 3.0201E + 10 5.4381E + 08 8.1863E + 03 1.7316E + 02 5.3523E + 03 1.7323E + 02

CDLOBA 5.4223E + 05 1.1564E + 05 6.1509E + 03 6.6181E + 02 4.1918E + 03 2.2466E + 02

HGWO 1.4594E + 09 3.4800E + 08 6.5100E + 03 3.7159E + 02 3.5718E + 03 4.1709E + 01

OBSCA 4.0578E + 09 1.2242E + 09 6.8729E + 03 3.1138E + 02 4.0106E + 03 8.8106E + 01

SMFO 9.2857E + 09 3.7734E + 09 7.1751E + 03 3.4021E + 02 4.5424E + 03 1.8386E + 02

CGSCA 3.2830E + 09 7.6698E + 08 7.2223E + 03 2.6327E + 02 4.0227E + 03 8.6903E + 01

RDWOA 1.9957E + 05 2.0600E + 05 5.7283E + 03 5.2369E + 02 3.6490E + 03 2.3422E + 02

m_SCA 8.4100E + 08 6.9085E + 08 5.2470E + 03 6.2811E + 02 3.3516E + 03 1.0000E + 02

BMWOA 1.3745E + 10 2.7376E + 09 8.1658E + 03 3.1767E + 02 4.5849E + 03 1.1633E + 02

(Continued)
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TABLE 8 (Continued)

F22 F23 F24

AVG STD AVG STD AVG STD

GACO 3.3499E + 04 6.7654E + 02 3.2564E + 03 2.3647E + 02 3.7234E + 03 2.1216E + 02

MOFOA 3.6376E + 04 4.1795E + 02 6.7876E + 03 2.8532E + 02 1.1421E + 04 1.1510E + 03

CDLOBA 1.9533E + 04 1.1609E + 03 5.1652E + 03 3.1021E + 02 7.0944E + 03 5.0849E + 02

HGWO 2.0952E + 04 6.3594E + 03 4.2797E + 03 4.7083E + 01 5.1699E + 03 1.1019E + 02

OBSCA 2.9696E + 04 1.6673E + 03 5.0120E + 03 1.0476E + 02 6.7822E + 03 2.3221E + 02

SMFO 3.3642E + 04 8.8573E + 02 6.3810E + 03 4.2232E + 02 1.0113E + 04 1.0687E + 03

CGSCA 3.3714E + 04 1.4690E + 03 4.8181E + 03 1.1706E + 02 6.2838E + 03 2.0506E + 02

RDWOA 2.3229E + 04 2.3558E + 03 4.0729E + 03 2.0916E + 02 4.9384E + 03 3.2467E + 02

m_SCA 2.1217E + 04 1.5259E + 03 3.9738E + 03 1.0417E + 02 4.9441E + 03 1.9369E + 02

BMWOA 3.6109E + 04 9.8353E + 02 5.5581E + 03 2.1316E + 02 8.4928E + 03 7.5663E + 02

F25 F26 F27

AVG STD AVG STD AVG STD

GACO 3.3748E + 03 6.7374E + 01 1.1059E + 04 3.0245E + 03 3.5337E + 03 7.3582E + 01

MOFOA 2.6610E + 04 9.4632E + 02 5.6693E + 04 9.5579E + 02 1.6729E + 04 2.1063E + 03

CDLOBA 3.7330E + 03 1.9094E + 02 4.3410E + 04 6.3077E + 03 5.7317E + 03 9.9061E + 02

HGWO 9.2565E + 03 5.6266E + 02 2.3789E + 04 8.2974E + 02 5.4537E + 03 2.0783E + 02

OBSCA 1.9805E + 04 2.3025E + 03 3.7320E + 04 1.9393E + 03 8.0478E + 03 6.3265E + 02

SMFO 2.3235E + 04 3.1999E + 03 4.6746E + 04 3.6419E + 03 1.0925E + 04 1.8727E + 03

CGSCA 1.6360E + 04 1.0295E + 03 3.5378E + 04 2.9080E + 03 7.0088E + 03 4.7392E + 02

RDWOA 4.0132E + 03 1.7287E + 02 2.4847E + 04 3.3510E + 03 4.3765E + 03 3.8047E + 02

m_SCA 9.7672E + 03 1.3584E + 03 2.1726E + 04 1.6597E + 03 4.7256E + 03 2.2278E + 02

BMWOA 2.3989E + 04 1.8122E + 03 4.7776E + 04 2.1187E + 03 1.0896E + 04 1.1218E + 03

F28 F29 F30

AVG STD AVG STD AVG STD

GACO 3.9038E + 03 2.2816E + 03 6.4901E + 03 9.3290E + 02 9.1421E + 05 1.1131E + 06

MOFOA 3.3321E + 04 5.6811E + 02 1.0369E + 06 2.1002E + 05 4.8865E + 10 3.6363E + 09

CDLOBA 6.5968E + 03 4.3899E + 03 1.2923E + 04 2.2381E + 03 7.6047E + 06 8.2526E + 06

HGWO 1.1358E + 04 8.2582E + 02 1.5530E + 04 8.6072E + 02 4.3779E + 09 1.0478E + 09

OBSCA 2.5167E + 04 1.9027E + 03 2.5075E + 04 5.6381E + 03 1.1665E + 10 2.4836E + 09

SMFO 2.5277E + 04 2.2267E + 03 1.1595E + 05 1.2348E + 05 2.2785E + 10 7.3377E + 09

CGSCA 2.1191E + 04 1.2692E + 03 1.9650E + 04 2.6334E + 03 7.8347E + 09 1.4230E + 09

RDWOA 4.1840E + 03 2.3454E + 02 1.0631E + 04 9.9180E + 02 5.1192E + 07 2.6411E + 07

m_SCA 1.3788E + 04 1.5582E + 03 1.0324E + 04 9.5652E + 02 1.9429E + 09 1.1864E + 09

BMWOA 2.6941E + 04 1.3195E + 03 2.3134E + 05 1.6466E + 05 3.1427E + 10 4.5072E + 09

in response to the outcomes of the experiments that were
carried out. Accuracy refers to the proportion of cases correctly
classified by the model, both in terms of true positives and
true negatives. When the accuracy rate is higher, it suggests
that a greater percentage of the samples have been accurately
predicted. The term “specificity” refers to the percentage of
“positive negatives” that are correctly classified by the model in
“negative occurrences.” A lower rate of incorrect categorization

is associated with a better specificity. The term “precision” refers
to the likelihood that a given sample is positive out of the total
number of samples for which a positive result is anticipated.
When the precision is greater, it means that the forecast of
affirmative instances is more precise. The MCC score provides
insight into the model’s dependability. A more accurate forecast
of the topic is indicated by an MCC that is closer to the value 1.
A classifier may be evaluated in its entirety using the F-measure.
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TABLE 9 The ranking of all algorithms on each function and the Wilcoxon signed-rank test result.

F GACO MOFOA CDLOBA HGWO OBSCA SMFO CGSCA RDWOA m_SCA BMWOA

F1 1 10 2 4 7 8 6 3 5 9

F2 1 8 2 4 7 10 6 3 5 9

F3 4 5 9 6 8 7 3 2 1 10

F4 1 10 2 4 7 8 6 3 5 9

F5 1 9 7 4 6 8 5 3 2 10

F6 1 10 5 4 7 8 6 3 2 9

F7 1 8 10 2 6 7 5 4 3 9

F8 1 10 8 4 6 7 5 3 2 9

F9 1 9 4 5 8 6 7 2 3 10

F10 6 9 1 4 5 8 7 3 2 10

F11 1 8 2 7 6 9 5 3 4 10

F12 2 10 1 5 7 8 6 3 4 9

F13 1 10 2 5 7 8 6 3 4 9

F14 2 10 1 5 7 8 6 3 4 9

F15 1 10 3 5 7 8 6 2 4 9

F16 1 10 3 5 7 8 6 4 2 9

F17 1 10 4 5 7 8 6 3 2 9

F18 3 10 1 5 7 8 6 2 4 9

F19 1 10 3 5 7 8 6 2 4 9

F20 3 10 4 5 6 7 8 2 1 9

F21 1 10 7 3 5 8 6 4 2 9

F22 6 10 1 2 5 7 8 4 3 9

F23 1 10 7 4 6 9 5 3 2 8

F24 1 10 7 4 6 9 5 2 3 8

F25 1 10 2 4 7 8 6 3 5 9

F26 1 10 7 3 6 8 5 4 2 9

F27 1 10 5 4 7 9 6 2 3 8

F28 1 10 3 4 7 8 6 2 5 9

F29 1 10 4 5 7 8 6 3 2 9

F30 1 10 2 5 7 8 6 3 4 9

± / = ∼ 29/0/1 24/5/1 27/2/1 27/2/1 28/0/2 27/1/2 23/4/3 25/4/1 30/0/0

Mean 1.63 9.53 3.97 4.37 6.60 7.97 5.87 2.87 3.13 9.07

Rank 1 10 4 5 7 8 6 2 3 9

When the F-measure is greater, it implies that the results of the
classification are more in line with predictions. The definitions
of the evaluation metrics may be found in Eqs (16)–(20).

Accuracy =
TP + TN

TP + FP + FN + TN
(16)

Specificity =
TN

TN + FP
(17)

Precision =
TP

TP + FP
(18)

MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

(19)

F −measure =
TP

TP + FN+FP
2

(20)

where TP represents the number of occurrences of a true
positive, TN represents the number of instances of a true
negative, FN represents the number of instances of a false
negative, and FP represents the number of instances of
a false positive.

5.2.2 Public dataset experiment
The overall predictive potential of the bGACO-SVM is

illustrated in this portion of the article. On various datasets from
the University of California, Irvine (UCI),1 which is an open-
source dataset suitable for the direction of pattern recognition
and machine learning, and many scholars choose to use the
dataset on UCI to verify the correctness of their proposed
algorithms. The bGACO-SVM feature selection framework is

1 http://archive.ics.uci.edu/ml/index.php
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FIGURE 5

The Friedman ranking results for each algorithm.

put up against 12 different standard approaches, which include
bACOR, bCSO, bWOA, bGWO, bHHO, bJAYA, bPSO, bSCA,
bSMA, bSSA, bDE, and bFA.

Table 11 compares the accuracy of 13 different algorithms
applied to various datasets from the University of California,
Irvine, and finds that the bGACO-based technique achieves
the highest average accuracy over 20 separate tests, where
the best results are bolded in each column. The bGACO-
based technique has an accuracy of 99.48, 99.83, 99.33,
100.00, 99.77, 100.00, 99.43, 97.04, 95.93, 100.00, and 92.10%,
respectively, for each of the nine datasets. Only the technique
that was based on bSMA had a standard deviation that
was significantly lower than the others in the BreastEW
dataset. In the Breastcancer dataset, only the bJAYA-based
technique had a standard deviation that was significantly
lower than the others. Only the approach that was based
on bHHO had a standard deviation that was much lower
than the others in the heart dataset. In addition, the
experimental outcomes of the bGACO-based technique are
more consistent when applied to different datasets. According to
the findings of the aforementioned investigation, the bGACO-
SVM feature selection approach exceeds any and all other
methods with regard to the accuracy and consistency of
its predictions.

The specificity ratings for each of the 10 algorithms
are shown in Table 12. The best results are bolded in
each column. It is clear from looking at the table that the
bGACO-based technique yields mean values that are all
equal to No 1. The typical results of Bgaco’s Specificity
test may achieve values as high as 98.62, 100.00, 98.57,

100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00,
95.00, 95.00, 100.00, and 92.95%, respectively. Only for
the BreastEW, JPNdata, heart, and HeartEW do the
results of the standard deviation not show the greatest
performance, but the prediction results of bGACO are
similarly stable in all other cases. As a result, the bGACO-
SVM has a smaller classification error in these comparing
methodologies’ species.

The mean as well as the standard deviation of the accuracy
findings are shown in Table 13. The best results are bolded in
each column. The bGACO-based technique achieved average
outcomes of 99.20, 100.00, 98.89, 100.00, 100.00, 100.00, 100.00,
96.28, 96.28, 100.00, and 92.20%, respectively, when applied
to all 11 datasets. Table 13 shows that the bGACO-based
technique delivers the greatest and most consistent Precision
results overall. These findings are based on an average of the
measurements. Therefore, when compared to other techniques
of prediction, bGACO-SVM has a higher level of accuracy when
it comes to forecasting positive cases.

The mean and standard deviation of the MCC are shown
in Table 14. The best results are bolded in each column. The
approach that was suggested in this article achieved mean
outcomes of 0.9891, 0.9963, 0.9873, 1.0000, 0.9953, 1.0000,
0.9880, 0.9417, 0.9207, 1.0000, and 0.8439, respectively, in
the MCC. The comparative findings are shown in Table 14,
and they reveal that the bGACO-based technique is capable
of demonstrating superior performance and more reliable
outcomes, where the best results are bolded in each column. As
a result, the bGACO-SVM that was presented is an improved
method for making predictions using the target dataset.
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FIGURE 6

The convergence curves of all algorithms on some functions.

Table 15 displays the mean and standard deviation of the
F-measure. The best results are bolded in each column. It can be
seen that the mean standards of bGACO-based method reached
99.59, 99.76, 99.41, 100.00, 99.80, 100.00, 99.55, 97.40, 96.34,
100.00, and 91.49%, respectively. The bGACO-based method
is the most stable among the experimental results of wdbc,
JPNdata, IonosphereEW, CongressEW, SonarEW, HeartEW,
Vote, and Wielaw. According to the analysis of Table 15, the
experimental data shows that the bGACO-SVM technique is a
more effective classification method than the others.

In this part, comparison experiments are conducted using
the UCI dataset. Based on the results of these tests, it is clear

that bGACO-SVM has dependable and outstanding prediction
performance. Based on the results of the experiments including
accuracy, specificity, precision, MCC, and F-measure, it would
seem that bGACO-SVM is successful in achieving the target it
was intended for.

5.2.3 TBPE dataset experiment
Comparisons are made between bGACO-SVM and 13 other

comparable techniques, also including bACOR, bCSO, bWOA,
bGWO, bHHO, bJAYA, bMFO, bPSO, bSCA, bSMA, bSSA,
bDE, and bFA. This is done to prove that bGACO-SVM
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TABLE 10 Description of UCI datasets.

Datasets Samples Features Classes

BreastEW 569 31 2

wdbc 569 31 2

JPNdata 152 11 2

IonosphereEW 351 35 2

CongressEW 435 17 2

SonarEW 208 61 2

Breastcancer 699 10 2

Heart 270 14 2

HeartEW 270 14 2

Vote 101 17 2

Wielaw 240 31 2

is extremely competitive when compared to other methods
of a similar kind.

The findings of the six assessment criteria are broken down
and averaged in Table 16. It is clear to observe that the
bGACO-SVM has an accuracy of 96.57%, specificity of 96.91%,
precision of 97.64%, MCC of 0.9366, and an F-measure of
96.65%, respectively. Despite the fact that the bGACO-SVM
algorithm requires a considerable amount of time. Along with
the large gain in classification accuracy, a certain amount of
additional time consumption is unavoidable; nevertheless, we
have the ability to make up for this shortfall by using methods
for parallel computing or boosting the computational capacity of
computing equipment. The 10 iterations of the boxplot for the
10 different algorithms are shown in Figure 7. The maximum,
median, and lowest values shown in the figure demonstrate that
the experimental results of bGACO-SVM are both outstanding
and consistent. The good classification results that bGACO-
SVM produces are not the product of a few lucky tests; rather,
they are the consequence of the system’s consistency and its
outstanding classification performance.

In this part, the bGACO-SVM algorithm is evaluated with a
number of other well-known classifiers. It is clear from looking
at Figure 8 that the classification approach that performs the
best out of the six options is the bGACO-SVM, followed by
the BP neural network. The results of the Extreme Learning
Machine (ELM) for forecasting TBPE are disappointing. This
suggests that classification models based on bGACO and SVM
can make up for the deficiency of single classifier in classification
and provide classification results with a greater level of accuracy.

The above experimental study allows us to draw the
conclusion that bGACO-SVM has the potential to produce a
feature subset for the TBPE dataset that has superior outcomes.
We increased the number of runs to a hundred so that
we could assess whether or not the best feature subset that
was chosen is relevant for medical diagnosis. The frequency
with which each characteristic occurred served as a reliable
indicator of the significance of those characteristics in terms of

clinical diagnosis. Figure 9 shows the number of occurrences
of the overall features. The main characteristics that affect
TEPB are temperature, age, white blood cell, percentage of
monocyte, absolute value of eosinophils, mean corpuscular
hemoglobin, where age (ID6) is selected 63 times, absolute value
of eosinophils (ID13) is selected 62 times, mean corpuscular
hemoglobin (ID22) is selected 61 times, serum temperature
(ID4) is selected 59 times, percentage of monocyte (ID11) is
selected 55 times, and white blood cell (ID7) is selected 54 times.
These features are not negligible in the TEPB forecast.

6 Discussion

It is suspected that patients with TBPE need rapid accurate
diagnosis and immediate treatment, otherwise it can cause
tuberculous abscess, thickening of pleural membrane, thoracic
malformations, and other adverse consequences. This study
by the method of GACO, only used the patients’ general
clinical condition and routine blood test results, set up
effective diagnosis model to distinguish the TBPE and non-
TBPE. The model diagnosis accuracy ACC reached 96.57%,
MCC was 0.9366, F-measure and specificity of 96.65 and
96.91%, respectively.

In this experiment, we acquired a relatively high diagnostic
accuracy with the methods of combination. We also carried
out the statistics and found several of the characteristics had
relatively high frequency, which is consistent with the actual
situation of clinical medicine. Among the high frequency
characteristics were body temperature, WBC count, absolute
value of eosinophils, age, percentage of monocytes, and mean
corpuscular hemoglobin (MCH). These six characteristics play
an important role in the identification of TBPE and non-TBPE.
Fever is a common clinical manifestation of tuberculous pleurisy
(Kimura et al., 2002). Non-TBPE such as malignant tumors,
transudate, blood disease, connective tissue disease often has
no fever, but infectious pleural effusion can also be expressed
as fever. Peripheral white blood cell count is increased in non-
TBPE, may be related to pleural effusion of pneumonia in
non-TBPE. This is the research results of Carrion-Valero and
Perpina-Tordera (2001) and Neves et al. (2007), and the these
two regard the peripheral white blood cell count as an important
feature of distinguishing TBPE and non-TBPE models. The
absolute value of eosinophils is increased in non-TBPE and may
be related to lung cancer, lymphoma and multiple myeloma. In
this study, the average age of TBPE was 41.85 years old, and age
was selected as an important distinguishing feature, which may
be related to China’s high prevalence of tuberculosis (Pan, 2012).
In countries with high incidence of tuberculosis, tuberculous
pleurisy is slightly in the younger, with an average age of 32–
35 years (Valdes et al., 1998; Mihmanli et al., 2004; Ibrahim
et al., 2005; Porcel et al., 2008). Whereas the average age of
patients with tuberculous pleurisy in industrial countries is high.
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TABLE 11 Accuracy value on UCI datasets.

Methods BreastEW wdbc JPNdata IonosphereEW

Mean Std Mean Std Mean Std Mean Std

bGACO 99.48% 0.0117 99.83% 0.0055 99.33% 0.0211 100.00% 0.0000

bACOR 99.12% 0.0124 99.82% 0.0056 96.83% 0.0445 99.71% 0.0093

bCSO 99.12% 0.0093 99.48% 0.0084 98.67% 0.0281 100.00% 0.0000

bWOA 99.30% 0.0169 99.65% 0.0075 96.79% 0.0339 99.71% 0.0090

bGWO 99.30% 0.0122 99.65% 0.0073 98.71% 0.0272 100.00% 0.0000

bHHO 99.29% 0.0149 99.65% 0.0075 98.13% 0.0422 100.00% 0.0000

bJAYA 99.12% 0.0124 99.83% 0.0055 96.74% 0.0453 100.00% 0.0000

bPSO 99.12% 0.0092 99.47% 0.0085 96.61% 0.0491 100.00% 0.0000

bSCA 99.30% 0.0121 99.48% 0.0084 96.75% 0.0343 99.71% 0.0093

bSMA 99.30% 0.0091 99.65% 0.0074 97.33% 0.0346 100.00% 0.0000

bSSA 99.13% 0.0149 99.47% 0.0085 97.42% 0.0334 100.00% 0.0000

bDE 98.24% 0.0186 98.96% 0.0146 93.71% 0.0722 98.56% 0.0203

bFA 99.12% 0.0124 99.48% 0.0084 96.08% 0.0631 100.00% 0.0000

Methods CongressEW SonarEW Breastcancer heart

Mean Std Mean Std Mean Std Mean Std

bGACO 99.77% 0.0074 100.00% 0.0000 99.43% 0.0138 97.04% 0.0292

bACOR 99.08% 0.0119 98.57% 0.0321 98.71% 0.0142 95.19% 0.0305

bCSO 99.55% 0.0096 99.00% 0.0316 98.86% 0.0131 95.19% 0.0495

bWOA 98.86% 0.0221 98.55% 0.0234 98.86% 0.0113 94.44% 0.0436

bGWO 99.07% 0.0163 99.50% 0.0158 99.28% 0.0101 94.82% 0.0358

bHHO 99.31% 0.0111 99.05% 0.0301 98.86% 0.0113 93.70% 0.0250

bJAYA 99.08% 0.0119 99.52% 0.0151 98.71% 0.0082 94.82% 0.0312

bPSO 99.09% 0.0159 98.55% 0.0234 99.14% 0.0121 94.82% 0.0435

bSCA 98.85% 0.0162 99.52% 0.0151 99.00% 0.0118 96.30% 0.0462

bSMA 99.08% 0.0160 99.52% 0.0151 99.00% 0.0118 94.82% 0.0259

bSSA 99.31% 0.0112 99.02% 0.0206 99.14% 0.0121 95.93% 0.0408

bDE 97.49% 0.0227 94.69% 0.0616 97.57% 0.0096 86.30% 0.0631

bFA 99.31% 0.0112 99.05% 0.0201 99.00% 0.0118 95.56% 0.0292

Methods HeartEW Vote Wielaw

Mean Std Mean Std Mean Std

bGACO 95.93% 0.0273 100.00% 0.0000 92.10% 0.0305

bACOR 94.82% 0.0358 99.00% 0.0225 90.81% 0.0826

bCSO 94.44% 0.0501 99.33% 0.0141 91.21% 0.0624

bWOA 93.33% 0.0340 98.69% 0.0228 90.44% 0.0577

bGWO 95.56% 0.0625 98.68% 0.0232 91.21% 0.0379

bHHO 94.07% 0.0358 98.66% 0.0234 90.04% 0.0835

bJAYA 95.56% 0.0383 98.99% 0.0163 90.39% 0.0350

bPSO 93.70% 0.0429 99.34% 0.0138 89.13% 0.0417

bSCA 95.56% 0.0340 99.02% 0.0219 90.79% 0.0594

bSMA 94.07% 0.0435 99.67% 0.0105 90.81% 0.0436

bSSA 94.82% 0.0358 98.65% 0.0238 91.28% 0.0594

bDE 87.41% 0.0468 96.63% 0.0317 84.56% 0.0636

bFA 94.44% 0.0400 99.68% 0.0102 90.00% 0.0562
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TABLE 12 Specificity value on UCI datasets.

Methods BreastEW wdbc JPNdata IonosphereEW

Mean Std Mean Std Mean Std Mean Std

bGACO 98.62% 0.0309 100.00% 0.0000 98.57% 0.0452 100.00% 0.0000

bACOR 98.10% 0.0333 100.00% 0.0000 95.00% 0.0874 99.17% 0.0264

bCSO 97.62% 0.0251 100.00% 0.0000 97.32% 0.0566 100.00% 0.0000

bWOA 98.57% 0.0321 100.00% 0.0000 95.89% 0.0663 99.17% 0.0264

bGWO 98.12% 0.0331 100.00% 0.0000 97.50% 0.0527 100.00% 0.0000

bHHO 98.10% 0.0402 100.00% 0.0000 98.75% 0.0395 100.00% 0.0000

bJAYA 98.12% 0.0331 100.00% 0.0000 97.32% 0.0566 100.00% 0.0000

bPSO 98.12% 0.0243 100.00% 0.0000 97.32% 0.0566 100.00% 0.0000

bSCA 98.14% 0.0322 100.00% 0.0000 97.50% 0.0527 99.17% 0.0264

bSMA 98.59% 0.0227 100.00% 0.0000 97.32% 0.0566 100.00% 0.0000

bSSA 97.64% 0.0403 100.00% 0.0000 94.82% 0.0671 100.00% 0.0000

bDE 96.67% 0.0392 99.72% 0.0088 92.50% 0.0874 95.90% 0.0585

bFA 98.59% 0.0319 100.00% 0.0000 96.25% 0.0844 100.00% 0.0000

Methods CongressEW SonarEW Breastcancer heart

Mean Std Mean Std Mean Std Mean Std

bGACO 100.00% 0.0000 100.00% 0.0000 100.00% 0.0000 95.00% 0.0583

bACOR 98.82% 0.0248 99.09% 0.0287 98.77% 0.0199 91.67% 0.0680

bCSO 100.00% 0.0000 99.09% 0.0287 98.75% 0.0201 93.33% 0.1024

bWOA 98.82% 0.0372 99.09% 0.0287 99.17% 0.0264 92.50% 0.0615

bGWO 98.79% 0.0256 99.09% 0.0287 99.17% 0.0176 90.83% 0.0730

bHHO 100.00% 0.0000 99.09% 0.0287 98.75% 0.0201 91.67% 0.0786

bJAYA 99.41% 0.0186 100.00% 0.0000 99.17% 0.0176 94.17% 0.0791

bPSO 99.41% 0.0186 99.09% 0.0287 99.18% 0.0172 92.50% 0.0730

bSCA 99.38% 0.0198 100.00% 0.0000 98.77% 0.0199 94.17% 0.0686

bSMA 98.82% 0.0248 100.00% 0.0000 100.00% 0.0000 94.17% 0.0686

bSSA 100.00% 0.0000 99.09% 0.0287 98.75% 0.0281 93.33% 0.0766

bDE 98.24% 0.0284 95.46% 0.0643 97.52% 0.0290 80.83% 0.0791

bFA 100.00% 0.0000 99.09% 0.0287 98.35% 0.0290 92.50% 0.0473

Methods HeartEW Vote Wielaw

Mean Std Mean Std Mean Std

bGACO 95.00% 0.0583 100.00% 0.0000 92.95% 0.0440

bACOR 92.50% 0.0917 98.89% 0.0351 92.95% 0.0862

bCSO 94.17% 0.0562 99.47% 0.0166 91.35% 0.0778

bWOA 92.50% 0.0829 97.87% 0.0371 89.04% 0.0833

bGWO 94.17% 0.1115 98.39% 0.0259 92.95% 0.0570

bHHO 90.83% 0.0829 98.36% 0.0372 92.12% 0.0825

bJAYA 95.00% 0.0583 98.92% 0.0228 92.24% 0.0726

bPSO 88.33% 0.0978 98.95% 0.0222 88.97% 0.0777

bSCA 92.50% 0.0615 99.47% 0.0166 88.27% 0.0835

bSMA 90.83% 0.0829 100.00% 0.0000 92.12% 0.0741

bSSA 95.00% 0.0430 97.81% 0.0386 92.95% 0.0692

bDE 85.83% 0.0966 96.70% 0.0387 85.90% 0.1286

bFA 94.17% 0.0791 99.47% 0.0166 89.94% 0.0728
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TABLE 13 Precision value on UCI datasets.

Methods BreastEW Wdbc JPNdata IonosphereEW

Mean Std Mean Std Mean Std Mean Std

bGACO 99.20% 0.0178 100.00% 0.0000 98.89% 0.0351 100.00% 0.0000

bACOR 98.92% 0.0187 100.00% 0.0000 95.78% 0.0722 99.57% 0.0137

bCSO 98.64% 0.0143 100.00% 0.0000 97.64% 0.0499 100.00% 0.0000

bWOA 99.19% 0.0182 100.00% 0.0000 96.67% 0.0537 99.58% 0.0132

bGWO 98.93% 0.0185 100.00% 0.0000 97.64% 0.0499 100.00% 0.0000

bHHO 98.93% 0.0225 100.00% 0.0000 98.89% 0.0351 100.00% 0.0000

bJAYA 98.92% 0.0187 100.00% 0.0000 97.50% 0.0527 100.00% 0.0000

bPSO 98.91% 0.0141 100.00% 0.0000 97.32% 0.0566 100.00% 0.0000

bSCA 98.93% 0.0186 100.00% 0.0000 97.64% 0.0499 99.57% 0.0137

bSMA 99.18% 0.0132 100.00% 0.0000 97.78% 0.0468 100.00% 0.0000

bSSA 98.68% 0.0224 100.00% 0.0000 95.42% 0.0593 100.00% 0.0000

bDE 98.09% 0.0223 99.55% 0.0144 92.78% 0.0815 97.90% 0.0291

bFA 99.20% 0.0179 100.00% 0.0000 96.57% 0.0735 100.00% 0.0000

Methods CongressEW SonarEW Breastcancer heart

Mean Std Mean Std Mean Std Mean Std

bGACO 100.00% 0.0000 100.00% 0.0000 100.00% 0.0000 96.28% 0.0424

bACOR 99.27% 0.0153 99.00% 0.0316 99.36% 0.0104 93.89% 0.0481

bCSO 100.00% 0.0000 98.89% 0.0351 99.35% 0.0104 95.27% 0.0660

bWOA 99.29% 0.0226 99.00% 0.0316 99.58% 0.0132 94.27% 0.0454

bGWO 99.27% 0.0153 99.00% 0.0316 99.57% 0.0092 93.30% 0.0522

bHHO 100.00% 0.0000 99.00% 0.0316 99.35% 0.0104 93.93% 0.0564

bJAYA 99.63% 0.0117 100.00% 0.0000 99.57% 0.0092 95.75% 0.0542

bPSO 99.63% 0.0117 99.09% 0.0287 99.57% 0.0091 94.41% 0.0498

bSCA 99.64% 0.0113 100.00% 0.0000 99.35% 0.0105 95.58% 0.0516

bSMA 99.26% 0.0156 100.00% 0.0000 100.00% 0.0000 95.69% 0.0493

bSSA 100.00% 0.0000 99.00% 0.0316 99.37% 0.0141 95.15% 0.0553

bDE 98.89% 0.0179 95.09% 0.0701 98.71% 0.0150 85.65% 0.0528

bFA 100.00% 0.0000 99.09% 0.0287 99.15% 0.0147 94.32% 0.0343

Methods HeartEW Vote Wielaw

Mean Std Mean Std Mean Std

bGACO 96.28% 0.0424 100.00% 0.0000 92.20% 0.0481

bACOR 94.69% 0.0629 98.57% 0.0452 92.11% 0.0955

bCSO 95.37% 0.0449 99.23% 0.0243 90.75% 0.0819

bWOA 94.48% 0.0588 96.97% 0.0517 88.58% 0.0817

bGWO 95.90% 0.0743 97.55% 0.0396 92.30% 0.0605

bHHO 93.35% 0.0564 97.74% 0.0497 91.05% 0.0921

bJAYA 96.19% 0.0431 98.40% 0.0338 91.71% 0.0743

bPSO 91.75% 0.0630 98.40% 0.0338 88.50% 0.0753

bSCA 94.40% 0.0440 99.17% 0.0264 88.02% 0.0832

bSMA 93.28% 0.0571 100.00% 0.0000 91.64% 0.0791

bSSA 96.16% 0.0332 96.92% 0.0538 92.09% 0.0733

bDE 89.20% 0.0701 95.26% 0.0547 85.49% 0.1208

bFA 95.74% 0.0542 99.23% 0.0243 89.03% 0.0765
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TABLE 14 MCC value on UCI datasets.

Methods BreastEW Wdbc JPNdata IonosphereEW

Mean Std Mean Std Mean Std Mean Std

bGACO 0.9891 0.0245 0.9963 0.0118 0.9873 0.0402 1.0000 0.0000

bACOR 0.9815 0.0262 0.9962 0.0119 0.9413 0.0816 0.9936 0.0201

Bcso 0.9813 0.0197 0.9889 0.0179 0.9748 0.0532 1.0000 0.0000

bWOA 0.9849 0.0365 0.9925 0.0158 0.9392 0.0642 0.9937 0.0198

bGWO 0.9852 0.0259 0.9926 0.0155 0.9757 0.0513 1.0000 0.0000

bHHO 0.9851 0.0314 0.9925 0.0158 0.9657 0.0767 1.0000 0.0000

bJAYA 0.9815 0.0262 0.9963 0.0118 0.9373 0.0886 1.0000 0.0000

bPSO 0.9815 0.0195 0.9888 0.0181 0.9346 0.0967 1.0000 0.0000

bSCA 0.9853 0.0255 0.9889 0.0179 0.9387 0.0647 0.9936 0.0201

bSMA 0.9852 0.0192 0.9925 0.0158 0.9494 0.0655 1.0000 0.0000

bSSA 0.9815 0.0315 0.9888 0.0180 0.9512 0.0631 1.0000 0.0000

bDE 0.9625 0.0398 0.9780 0.0308 0.8755 0.1434 0.9688 0.0441

bFA 0.9816 0.0261 0.9889 0.0179 0.9263 0.1191 1.0000 0.0000

Methods CongressEW SonarEW Breastcancer heart

Mean Std Mean Std Mean Std Mean Std

bGACO 0.9953 0.0149 1.0000 0.0000 0.9880 0.0286 0.9417 0.0577

bACOR 0.9811 0.0244 0.9717 0.0640 0.9724 0.0300 0.9055 0.0600

bCSO 0.9907 0.0195 0.9798 0.0639 0.9750 0.0287 0.9064 0.0941

bWOA 0.9761 0.0467 0.9721 0.0449 0.9753 0.0243 0.8900 0.0873

bGWO 0.9812 0.0325 0.9905 0.0302 0.9844 0.0223 0.8980 0.0712

bHHO 0.9859 0.0227 0.9809 0.0604 0.9749 0.0249 0.8771 0.0503

bJAYA 0.9811 0.0245 0.9908 0.0290 0.9719 0.0180 0.8991 0.0599

bPSO 0.9810 0.0334 0.9720 0.0451 0.9815 0.0259 0.8985 0.0849

bSCA 0.9767 0.0325 0.9908 0.0290 0.9781 0.0258 0.9255 0.0934

bSMA 0.9808 0.0335 0.9908 0.0290 0.9786 0.0250 0.8989 0.0507

bSSA 0.9859 0.0228 0.9813 0.0395 0.9814 0.0261 0.9206 0.0801

bDE 0.9490 0.0452 0.8960 0.1227 0.9468 0.0216 0.7254 0.1280

bFA 0.9859 0.0228 0.9817 0.0385 0.9783 0.0254 0.9116 0.0586

Methods HeartEW Vote Wielaw

Mean Std Mean Std Mean Std

bGACO 0.9207 0.0530 1.0000 0.0000 0.8439 0.0613

bACOR 0.9001 0.0682 0.9802 0.0438 0.8230 0.1648

bCSO 0.8895 0.1008 0.9863 0.0289 0.8279 0.1239

bWOA 0.8695 0.0685 0.9741 0.0445 0.8129 0.1149

bGWO 0.9137 0.1214 0.9725 0.0491 0.8297 0.0749

bHHO 0.8845 0.0694 0.9733 0.0458 0.8038 0.1676

bJAYA 0.9131 0.0752 0.9794 0.0333 0.8135 0.0661

bPSO 0.8775 0.0817 0.9867 0.0280 0.7881 0.0832

bSCA 0.9119 0.0676 0.9796 0.0459 0.8210 0.1167

bSMA 0.8835 0.0856 0.9932 0.0215 0.8225 0.0877

bSSA 0.9004 0.0671 0.9736 0.0463 0.8296 0.1188

bDE 0.7492 0.0960 0.9331 0.0624 0.7023 0.1276

bFA 0.8936 0.0766 0.9935 0.0205 0.8034 0.1111
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TABLE 15 F-measure value on UCI datasets.

Methods BreastEW wdbc JPNdata IonosphereEW

Mean Std Mean Std Mean Std Mean Std

bGACO 99.59% 0.0091 99.76% 0.0077 99.41% 0.0186 100.00% 0.0000

bACOR 99.31% 0.0097 99.76% 0.0077 97.05% 0.0408 99.78% 0.0070

bCSO 99.31% 0.0073 99.28% 0.0116 98.75% 0.0265 100.00% 0.0000

bWOA 99.45% 0.0132 99.51% 0.0103 96.90% 0.0328 99.79% 0.0067

bGWO 99.46% 0.0095 99.52% 0.0100 98.75% 0.0265 100.00% 0.0000

bHHO 99.45% 0.0116 99.51% 0.0103 97.98% 0.0469 100.00% 0.0000

bJAYA 99.31% 0.0097 99.76% 0.0077 96.75% 0.0452 100.00% 0.0000

bPSO 99.30% 0.0073 99.27% 0.0118 96.57% 0.0494 100.00% 0.0000

bSCA 99.45% 0.0095 99.28% 0.0116 96.64% 0.0357 99.78% 0.0070

bSMA 99.44% 0.0072 99.51% 0.0103 97.29% 0.0356 100.00% 0.0000

bSSA 99.32% 0.0115 99.28% 0.0116 97.57% 0.0315 100.00% 0.0000

bDE 98.62% 0.0145 98.58% 0.0198 93.82% 0.0701 98.92% 0.0151

bFA 99.31% 0.0097 99.28% 0.0116 95.79% 0.0690 100.00% 0.0000

Methods CongressEW SonarEW Breastcancer heart

Mean Std Mean Std Mean Std Mean Std

bGACO 99.80% 0.0062 100.00% 0.0000 99.55% 0.0109 97.40% 0.0256

bACOR 99.25% 0.0098 98.47% 0.0341 99.01% 0.0111 95.80% 0.0264

bCSO 99.62% 0.0080 98.89% 0.0351 99.13% 0.0101 95.79% 0.0416

bWOA 99.08% 0.0178 98.42% 0.0254 99.12% 0.0086 95.03% 0.0398

bGWO 99.23% 0.0137 99.47% 0.0166 99.45% 0.0077 95.50% 0.0308

bHHO 99.43% 0.0091 99.00% 0.0316 99.12% 0.0086 94.42% 0.0213

bJAYA 99.24% 0.0098 99.47% 0.0166 99.01% 0.0063 95.36% 0.0267

bPSO 99.25% 0.0130 98.41% 0.0258 99.34% 0.0094 95.39% 0.0391

bSCA 99.04% 0.0136 99.47% 0.0166 99.23% 0.0090 96.75% 0.0404

bSMA 99.25% 0.0130 99.47% 0.0166 99.22% 0.0092 95.35% 0.0230

bSSA 99.43% 0.0092 98.95% 0.0222 99.34% 0.0093 96.42% 0.0358

bDE 97.91% 0.0193 94.22% 0.0667 98.14% 0.0072 87.96% 0.0566

bFA 99.43% 0.0092 99.00% 0.0212 99.24% 0.0090 96.09% 0.0260

Methods HeartEW Vote Wielaw

Mean Std Mean Std Mean Std

bGACO 96.34% 0.0248 100.00% 0.0000 91.49% 0.0322

bACOR 95.45% 0.0304 98.76% 0.0271 89.64% 0.0970

bCSO 94.94% 0.0459 99.12% 0.0186 90.63% 0.0666

bWOA 94.03% 0.0287 98.40% 0.0276 90.08% 0.0582

bGWO 96.11% 0.0538 98.29% 0.0308 90.34% 0.0442

bHHO 94.81% 0.0311 98.32% 0.0284 89.05% 0.0926

bJAYA 95.97% 0.0352 98.69% 0.0212 89.53% 0.0371

bPSO 94.63% 0.0348 99.17% 0.0176 88.38% 0.0454

bSCA 96.11% 0.0299 98.73% 0.0283 90.59% 0.0599

bSMA 94.81% 0.0380 99.57% 0.0137 89.95% 0.0493

bSSA 95.18% 0.0355 98.37% 0.0288 90.40% 0.0688

bDE 88.71% 0.0411 95.63% 0.0437 83.43% 0.0651

bFA 94.95% 0.0363 99.60% 0.0126 89.39% 0.0593
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A study from the United States, from 1993 to 2003, showed
7,549 patients with tuberculous pleurisy had an average age of
45 years (Baumann et al., 2007). Monocytes are often increased
in tuberculosis (Viloria et al., 2020) but are reduced in acute and
chronic lymphocytic leukemia and all-bone marrow dysfunction
diseases. Using the bGACO-SVM method, we selected the mean
corpuscular hemoglobin as an important feature, with currently
no similar study. The average amount of hemoglobin may be a
potential predictor of TBPE.

In some diagnostic models, such as the artificial neural
network model (ANN) of Seixas et al. (2013), the multivariate
regression prediction model of Klimiuk et al. (2015) and the
multi-factor prediction model of Shu et al. (2015) mentioned in
the introduction section, need high requirements, or to detect
some clinically not commonly used predictors. These predictors
have not yet been routinely applied clinically, and the reagents
are difficult to obtain and costly. In some underdeveloped
regions and poor laboratory conditions, it’s difficult to carry out.

There are also some diagnostic models, such as Sales
et al. (2009) which established two digital scoring models
to distinguish TBPE and tumor pleural effusion. Diagnostic
tuberculosis model 1, including characteristic variables ADA,
globulin, and tumor cells with accuracy, sensitivity, specificity
97, 94.5, and 99.5%, respectively. Diagnostic tuberculosis model
2, including the characteristic variables ADA, globulin, and
pleural effusion appearance with accuracy, sensitivity, specificity
of 95.8, 95.5, and 96.1%, respectively. Porcel and Vives (2003)
established a scoring system to identify TBPEs and tumor-
related pleural effusions through multivariate analysis. Model 1
includes variable ADA, age, body temperature, pleural effusion
RBC count, and the area under the ROC curve is 0.987, and
sensitivity and specificity are 95 and 97%, respectively. Model
2 includes no tumor history, age, body temperature, chest
water red cell count, pleural effusion LDH and serum LDH
ratio, pleural effusion protein, and ROC curve of 0.982, with a
sensitivity and specificity of 97 and 91%, respectively. Although
these models are simple, diagnostic accuracy is high, but doesn’t
include the various causes of pleural effusion in other patients,
so only suitable for identifying cancerous pleural effusion and
TBPE.

Our model has the advantages of simplicity, rapid prediction
and low cost compared with the previous model, and the
diagnostic accuracy is 90%. This model doesn’t require
thoracocentesis; very suitable for diagnosing TBPE in patients
with high difficulty obtaining pleural fluid such as less pleural
fluid, a posterior scapular pleural effusion, encapsulated pleural
effusion, etc. For non-invasive diagnosis, it is possible to avoid
invasive pleural biopsy or thoracoscopy, which is more suitable
for patients with severe pleural reaction or advanced age. The
model is low cost and easy to detect, and it can be used
in the economically underdeveloped areas and the high TB
prevalence regions. It can be made as a phone or tablet app that

TABLE 16 Average values of 10 methods in the six metrics.

Algorithms Accuracy Specificity Precision

Value Rank Value Rank Value Rank

bGACO 96.57% 1 96.91% 1 97.64% 1

bACOR 94.37% 7 92.62% 9 94.07% 10

bCSO 93.56% 9 94.05% 5 95.28% 4

bWOA 91.41% 13 92.62% 9 93.67% 12

bGWO 94.99% 5 90.95% 13 92.78% 13

bHHO 92.78% 11 92.14% 12 94.31% 9

bJAYA 95.66% 2 93.81% 7 94.96% 6

bMFO 95.09% 3 95.71% 2 96.53% 2

bPSO 92.14% 12 92.38% 11 93.71% 11

bSCA 93.51% 10 93.81% 7 94.96% 6

bSMA 94.33% 8 95.48% 3 96.07% 3

bSSA 94.99% 6 94.29% 4 95.28% 4

bDE 75.81% 14 61.19% 14 73.39% 14

bFA 95.00% 4 94.05% 5 94.96% 6

Algorithms MCC F-measure Time cost

Value Rank Value Rank Value Rank

bGACO 0.9366 1 96.65% 1 20.7936 14

bACOR 0.8931 7 94.69% 7 8.6635 10

bCSO 0.8800 9 93.52% 10 8.1199 3

bWOA 0.8381 13 91.44% 13 8.8293 11

bGWO 0.9052 5 95.39% 3 13.7221 13

bHHO 0.8650 11 93.16% 11 4.1057 1

bJAYA 0.9161 2 95.88% 2 8.2238 5

bMFO 0.9076 3 95.18% 5 7.8886 2

bPSO 0.8513 12 92.21% 12 8.237 6

bSCA 0.8756 10 93.68% 9 8.3403 7

bSMA 0.8898 8 94.45% 8 8.1968 4

bSSA 0.9058 4 95.29% 4 8.4339 9

bDE 0.5471 14 79.56% 14 10.2055 12

bFA 0.9039 6 95.11% 6 8.3914 8

requires no Internet connection to make it easier for clinicians
to use it anywhere.

Our model also has some flaws. Sample size is small but
the it can be expanded by continuous collection of pleural
effusion cases, and the model can be optimized to improve the
diagnostic accuracy. China is a highly epidemic country with
tuberculosis, and the age of TB patients is significantly lower
than that of tuberculosis low prevalence countries. Therefore,
the model needs to be further validated in the low epidemic
area of tuberculosis. We take into account the economic burden,
didn’t join the blood gamma interferon release test or sputum
NAA detection. These tests in economically underdeveloped
areas are difficult to carry out. Including these detections or
other biological indicators may improve the diagnostic accuracy.
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FIGURE 7

Boxplot of the performance of 10 methods in six metrics.

FIGURE 8

Comparison of bGACO-SVM with well-known classifiers.
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FIGURE 9

The number of times each feature was selected in 100 experiments.

7 Conclusion and future directions

In order to develop a study on the assisted diagnosis
of TBPE, a high-performance classification prediction model,
called bGACO-SVM, is proposed in this paper for the assisted
diagnosis of TBPE from the perspective of swarm intelligence
optimization and machine learning. bGACO-SVM consists of
a classification prediction model combining a newly proposed
swarm intelligence optimization algorithm GACO and a
machine learning method SVM, where SVM is mainly used
as a cost function of GACO to select the optimal subset of
features. GACO, the core of bGACO-SVM, is an improved ant
colony optimizer formed by introducing the grade-based search
strategy into ACOR, which effectively compensates for the
shortcomings of ACOR in terms of convergence performance
and avoidance of local optima, and further enhances the
performance of the bGACO-SVM model. In order to investigate
the performance of GACO, this paper conducts basic algorithm
comparison experiments and advanced variant algorithm
comparison experiments using 30 benchmark functions in
IEEE CEC2017 as the experimental basis. For the obtained
experimental results, the Wilcoxon signed-rank test (García
et al., 2010) and the Friedman test (Derrac et al., 2011)
are mainly used to analyze the experimental results, which
effectively prove that GACO has strong convergence ability and
the ability to avoid falling into local optimum.

To investigate the classification prediction ability of
bGACO-SVM for TBPE, we first validated it on the public
dataset and then applied it to the TBPE prediction problem.

During the experiments, bGACO-SVM was first compared
with some similar algorithms on public datasets, and then,
on the TBPE dataset, bGACO-SVM was compared not only
with some similar algorithms, but also with five very classical
machine learning methods. Five metrics, including accuracy,
specificity, precision, MCC, and F-measure, are analyzed on
the experimental simulation results from several perspectives,
effectively demonstrating that bGACO-SVM has a strong
classification prediction capability and can be successfully used
for TBPE diagnosis prediction. However, the work in this
paper also has some limitations. For example, by introducing
grade-based search strategy into ACOR, the complexity of the
algorithm is increased. However, these problems will be ready to
be solved in the future by concurrency control of computers and
future computer performance improvements. In conclusion,
we have established a simple diagnostic model for predicting
TBPE by the bGACO-SVM method of swarm intelligence
algorithm, which achieves better diagnostic accuracy, sensitivity,
and specificity by testing blood routine only. The low cost,
fast diagnosis, non-invasive, and low equipment and technical
requirements make it suitable for wide clinical application.
Although the proposed GACO achieves very good performance
on the benchmark functions, and the bGACO-SVM also shows
some advantages on the classification prediction of TBPE, the
introduction of the grade-based search strategy makes GACO
have a large limitation in time complexity.

In the future, it is one of the most important works to
overcome the time limitation of the proposed method by
using high performance computing techniques. In addition,
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bGACO-SVM can be used for more disease diagnosis, and
GACO can be applied to more optimization problems, such
as: recommender system, image dehazing, medical image
augmentation, and location-based services.
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Mihmanli, A., Ozşeker, F., Baran, A., Küçüker, F., Atik, S., Akkaya, E., et al.
(2004). [Evaluation of 105 cases with tuberculous pleurisy]. Tuberk Toraks 52,
137–144.

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-
inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249. doi: 10.1016/j.knosys.
2015.07.006

Mirjalili, S. S., Mirjalili, M., and Lewis, A. (2014). Grey Wolf
Optimizer. Adv. Eng. Softw. 69, 46–61. doi: 10.1016/j.advengsoft.2013.1
2.007

Mirjalili, S., and Lewis, A. (2016). The Whale Optimization Algorithm. Adv.
Eng. Softw. 95, 51–67. doi: 10.1016/j.advengsoft.2016.01.008

Neves, D. D., Dias, R. M., and Cunha, A. J. (2007). Predictive model for the
diagnosis of tuberculous pleural effusion. Braz. J. Infect. Dis. 11, 83–88. doi: 10.
1590/S1413-86702007000100019

Pan, W. T. (2012). A new Fruit Fly Optimization Algorithm: Taking the financial
distress model as an example. Knowl. Based Syst. 26, 69–74. doi: 10.1016/j.knosys.
2011.07.001

Pathivada, B. K., and Vedagiri, P. (2022). Investigating dilemma zone
boundaries for mixed traffic conditions using support vector machines. Transp.
Lett. 14, 378–384. doi: 10.1080/19427867.2020.1870307

Porcel, J. M., Alemán, C., Bielsa, S., Sarrapio, J., Fernández de Sevilla, T.,
Esquerda, A., et al. (2008). A decision tree for differentiating tuberculous from
malignant pleural effusions. Respir. Med. 102, 1159–1164. doi: 10.1016/j.rmed.
2008.03.001

Porcel, J. M., and Vives, M. (2003). Differentiating tuberculous from malignant
pleural effusions: A scoring model. Med. Sci. Monit. 9, CR175–CR180.

Porcel, J. M., Palma, R., Valdés, L., Bielsa, S., San-José, E., Esquerda, A., et al.
(2013). Xpert(R) MTB/RIF in pleural fluid for the diagnosis of tuberculosis. Int. J.
Tuberc. Lung Dis. 17, 1217–1219. doi: 10.5588/ijtld.13.0178

Qiu, S., Zhao, H., Jiang, N., Wang, Z., Liu, L., An, Y., et al. (2022). Multi-
sensor information fusion based on machine learning for real applications in
human activity recognition: State-of-the-art and research challenges. Inf. Fusion
80, 241–265. doi: 10.1016/j.inffus.2021.11.006

Qu, C., Zeng, Z., Dai, J., Yi, Z., and He, W. (2018). A Modified Sine-Cosine
Algorithm Based on Neighborhood Search and Greedy Levy Mutation. Comput.
Intel. Neurosci. 2018, 4231647–4231647. doi: 10.1155/2018/4231647

Rao, R. V. (2016). Jaya: A simple and new optimization algorithm for solving
constrained and unconstrained optimization problems. Int. J. Ind. Eng. 7, 19–34.
doi: 10.5267/j.ijiec.2015.8.004

Sales, R. K., Vargas, F. S., Capelozzi, V. L., Seiscento, M., Genofre, E. H., Teixeira,
L. R., et al. (2009). Predictive models for diagnosis of pleural effusions secondary to
tuberculosis or cancer. Respirology 14, 1128–1133. doi: 10.1111/j.1440-1843.2009.
01621.x

Salimi, H. (2015). Stochastic Fractal Search: A powerful metaheuristic
algorithm. Knowl. Based Syst. 75, 1–18. doi: 10.1016/j.knosys.2014.07.025

Seibert, A. F., Haynes, J. Jr., Middleton, R., and Bass, J. B. Jr. (1991). Tuberculous
pleural effusion Twenty-year experience. Chest 99, 883–886. doi: 10.1378/chest.99.
4.883

Seixas, J. M., Faria, J., Souza Filho, J. B., Vieira, A. F., Kritski, A., Trajman,
A., et al. (2013). Artificial neural network models to support the diagnosis of

pleural tuberculosis in adult patients. Int. J. Tuberc. Lung Dis. 17, 682–686. doi:
10.5588/ijtld.12.0829

Shu, C. C., Wang, J. Y., Hsu, C. L., Keng, L. T., Tsui, K., Lin, J. F., et al. (2015).
Diagnostic role of inflammatory and anti-inflammatory cytokines and effector
molecules of cytotoxic T lymphocytes in tuberculous pleural effusion. Respirology
20, 147–154. doi: 10.1111/resp.12414

Socha, K., and Dorigo, M. (2008). Ant colony optimization for continuous
domains. Eur. J. Oper. Res. 185, 1155–1173. doi: 10.1016/j.ejor.2006.06.046

Song, Y., Cai, X., Zhou, X., Zhang, B., Chen, H., Li, H., et al. (2023). Dynamic
hybrid mechanism-based differential evolution algorithm and its application.
Expert Syst. Appl. 213:118834. doi: 10.1016/j.eswa.2022.118834

Su, Y., Li, S., Zheng, C., and Zheng, X. (2019). A heuristic algorithm for
identifying molecular signatures in cancer. IEEE Trans. Nanobioscience 19, 132–
141. doi: 10.1109/TNB.2019.2930647

Tian, Y., Su, X., Su, X., and Zhang, X. (2020). EMODMI: A multi-objective
optimization based method to identify disease modules. IEEE Trans. Emerg. Top.
Comput. Intell. 5, 570–582. doi: 10.1109/TETCI.2020.3014923

Tu, J., Chen, H., Wang, M., and Gandomi, A. H. (2021). The Colony Predation
Algorithm. J. Bionic. Eng. 18, 674–710. doi: 10.1007/s42235-021-0050-y

Udwadia, Z. F., and Sen, T. (2010). Pleural tuberculosis: An update. Curr. Opin.
Pulm. Med. 16, 399–406. doi: 10.1097/MCP.0b013e328339cf6e

Valdes, L., Alvarez, D., San José, E., Penela, P., Valle, J. M., García-Pazos, J. M.,
et al. (1998). Tuberculous pleurisy: A study of 254 patients. Arch. Intern. Med. 158,
2017–2021. doi: 10.1001/archinte.158.18.2017

Vidya, B., and Gait, S. P. (2021). based Parkinson’s disease diagnosis and severity
rating using multi-class support vector machine. Appl. Soft Comput. 113:107939.
doi: 10.1016/j.asoc.2021.107939

Viloria, A., Herazo-Beltran, Y., Cabrera, D., and Bonerge Pineda, O. (2020).
Diabetes Diagnostic Prediction Using Vector Support Machines. Procedia Comput.
Sci. 170, 376–381. doi: 10.1016/j.procs.2020.03.065

von Groote-Bidlingmaier, F., Koegelenberg, C. F., Bolliger, C. T., Chung, P. K.,
Rautenbach, C., Wasserman, E., et al. (2013). The yield of different pleural fluid
volumes for Mycobacterium tuberculosis culture. Thorax 68, 290–291. doi: 10.
1136/thoraxjnl-2012-202338

Wang, G.-G., Gao, D., and Pedrycz, W. (2022). Solving multi-objective
fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution
algorithm. IEEE Trans. Industr. Inform. 18, 8519–8528. doi: 10.1109/TII.2022.
3165636

Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., et al. (2017). Toward an
optimal kernel extreme learning machine using a chaotic moth-flame optimization
strategy with applications in medical diagnoses. Neurocomputing 267, 69–84. doi:
10.1016/j.neucom.2017.04.060

Wang, S., Zhang, P., Chang, J., Fang, Z., Yang, Y., and Meng, Y. (2022). A
powerful tool for near-infrared spectroscopy: Synergy adaptive moving window
algorithm based on the immune support vector machine. Spectrochim. Acta Part
A: Mol. Bio. Spectros. 282:121631. doi: 10.1016/j.saa.2022.121631

Wang, W., Zheng, J., Zhao, L., Chen, H., Zhang, X., et al. (2022). A Non-
Local Tensor Completion Algorithm Based on Weighted Tensor Nuclear Norm.
Electronics 11:3250. doi: 10.3390/electronics11193250

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art
with a look into the future. Int. J. Forecast 30, 1030–1081. doi: 10.1016/j.ijforecast.
2014.08.008

World Health Organization, [WHO] (2010). Guidelines Approved by the
Guidelines Review Committee, in Treatment of Tuberculosis: Guidelines. Geneva:
World Health Organization.

Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorems for
optimization. IEEE Trans. Evol. Comput. 1, 67–82. doi: 10.1109/4235.585893

Wu, D., Xu, J., Song, Y., and Zhao, H. (2020). An Effective Improved Co-
evolution Ant Colony Optimization Algorithm with Multi-Strategies and Its
Application. Int. J. Bio-Inspired Comput. 16, 158–170. doi: 10.1504/IJBIC.2020.
111267

Wu, S.-H., Zhan, Z.-H., and Zhang, J. (2021). SAFE: Scale-adaptive fitness
evaluation method for expensive optimization problems. IEEE Trans. Evol.
Comput. 25, 478–491. doi: 10.1109/TEVC.2021.3051608

Wu, W., and Ma, X. (2022). “Network-based Structural Learning Nonnegative
Matrix Factorization Algorithm for Clustering of scRNA-seq Data,” in IEEE/ACM
Transactions on Computational Biology and Bioinformatics, (New York, NY: IEEE).
doi: 10.1109/TCBB.2022.3161131

Wu, Y., Ma, W., Miao, Q., and Wang, S. (2019). Multimodal continuous ant
colony optimization for multisensor remote sensing image registration with local
search. Swarm Evol. Comput. 47, 89–95. doi: 10.1016/j.swevo.2017.07.004

Frontiers in Neuroinformatics 34 frontiersin.org

https://doi.org/10.3389/fninf.2022.1078685
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1093/bib/bby130
https://doi.org/10.1093/bib/bby130
https://doi.org/10.7326/0003-4819-77-4-507
https://doi.org/10.1016/j.eswa.2022.116605
https://doi.org/10.1016/j.compbiomed.2021.104609
https://doi.org/10.1016/j.compbiomed.2021.104609
https://doi.org/10.1016/j.neucom.2022.06.075
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1590/S1413-86702007000100019
https://doi.org/10.1590/S1413-86702007000100019
https://doi.org/10.1016/j.knosys.2011.07.001
https://doi.org/10.1016/j.knosys.2011.07.001
https://doi.org/10.1080/19427867.2020.1870307
https://doi.org/10.1016/j.rmed.2008.03.001
https://doi.org/10.1016/j.rmed.2008.03.001
https://doi.org/10.5588/ijtld.13.0178
https://doi.org/10.1016/j.inffus.2021.11.006
https://doi.org/10.1155/2018/4231647
https://doi.org/10.5267/j.ijiec.2015.8.004
https://doi.org/10.1111/j.1440-1843.2009.01621.x
https://doi.org/10.1111/j.1440-1843.2009.01621.x
https://doi.org/10.1016/j.knosys.2014.07.025
https://doi.org/10.1378/chest.99.4.883
https://doi.org/10.1378/chest.99.4.883
https://doi.org/10.5588/ijtld.12.0829
https://doi.org/10.5588/ijtld.12.0829
https://doi.org/10.1111/resp.12414
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1016/j.eswa.2022.118834
https://doi.org/10.1109/TNB.2019.2930647
https://doi.org/10.1109/TETCI.2020.3014923
https://doi.org/10.1007/s42235-021-0050-y
https://doi.org/10.1097/MCP.0b013e328339cf6e
https://doi.org/10.1001/archinte.158.18.2017
https://doi.org/10.1016/j.asoc.2021.107939
https://doi.org/10.1016/j.procs.2020.03.065
https://doi.org/10.1136/thoraxjnl-2012-202338
https://doi.org/10.1136/thoraxjnl-2012-202338
https://doi.org/10.1109/TII.2022.3165636
https://doi.org/10.1109/TII.2022.3165636
https://doi.org/10.1016/j.neucom.2017.04.060
https://doi.org/10.1016/j.neucom.2017.04.060
https://doi.org/10.1016/j.saa.2022.121631
https://doi.org/10.3390/electronics11193250
https://doi.org/10.1016/j.ijforecast.2014.08.008
https://doi.org/10.1016/j.ijforecast.2014.08.008
https://doi.org/10.1109/4235.585893
https://doi.org/10.1504/IJBIC.2020.111267
https://doi.org/10.1504/IJBIC.2020.111267
https://doi.org/10.1109/TEVC.2021.3051608
https://doi.org/10.1109/TCBB.2022.3161131
https://doi.org/10.1016/j.swevo.2017.07.004
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1078685 December 13, 2022 Time: 15:15 # 35

Li et al. 10.3389/fninf.2022.1078685

Wu, Z., Shen, S., Zhou, H., Li, H., Lu, C., Zou, D., et al. (2021). An
effective approach for the protection of user commodity viewing privacy in
e-commerce website. Knowl. Based Syst. 220:106952. doi: 10.1016/j.knosys.2021.10
6952

Wu, Z., Zhou, Z., Li, R., and Guo, J. (2020). A user sensitive subject protection
approach for book search service. J. Assoc. Inf. Sci. Technol. 71, 183–195. doi:
10.1002/asi.24227

Yang, S., Gao, T., Wang, J., Deng, B., Azghadi, M. R., Lei, T., et al. (2022a).
SAM: A Unified Self-Adaptive Multicompartmental Spiking Neuron Model for
Learning With Working Memory. Front. Neurosci. 16:850945. doi: 10.3389/fnins.
2022.850945

Yang, S., Linares-Barranco, B., and Chen, B. (2022b). Heterogeneous Ensemble-
Based Spike-Driven Few-Shot Online Learning. Front. Neurosci. 16:850932. doi:
10.3389/fnins.2022.850932

Yang, S., Tan, J., and Chen, B. (2022c). Robust spike-based continual meta-
learning improved by restricted minimum error entropy criterion. Entropy 24:455.
doi: 10.3390/e24040455

Yang, S., Wang, J., deng, B., and Linares-Barranco, B. (2021). “Neuromorphic
Context-Dependent Learning Framework With Fault-Tolerant Spike Routing,” in
IEEE Transactions on Neural Networks and Learning Systems, (New York, NY:
IEEE), 1–15.

Yang, X.-S. (2009). Firefly Algorithms for Multimodal Optimization. Berlin:
Springer. doi: 10.1007/978-3-642-04944-6_14

Yang, Y., Chen, H., Asghar Heidari, A., and Gandomi, A. H. (2021). Hunger
games search: Visions, conception, implementation, deep analysis, perspectives,
and towards performance shifts. Expert Syst. Appl. 177:114864. doi: 10.1016/j.
eswa.2021.114864

Yong, J., He, F., Li, H., Zhou, W. (2018). “A Novel Bat Algorithm based
on Collaborative and Dynamic Learning of Opposite Population,” in 2018
IEEE 22nd International Conference on Computer Supported Cooperative
Work in Design, (NewYork, NY: IEEE). doi: 10.1109/CSCWD.2018.846
4759

Yu, H., Song, J., Chen, C., Asghar Heidari, A., Liu, J., Chen, H., et al. (2022).
Image segmentation of Leaf Spot Diseases on Maize using multi-stage Cauchy-
enabled grey wolf algorithm. Eng. Appl. Artif. 109:104653. doi: 10.1016/j.engappai.
2021.104653

Zhang, J., Zhang, Q., Qin, X., and Sun, Y. (2022). A two-stage
fault diagnosis methodology for rotating machinery combining
optimized support vector data description and optimized support vector
machine. Measurement 200:111651. doi: 10.1016/j.measurement.2022.11
1651

Zhang, L., Wang, J., Wang, W., Jin, Z., Su, Y., Chen, H., et al. (2022).
Smart contract vulnerability detection combined with multi-objective detection.
Comput. Netw. 217:109289. doi: 10.1016/j.comnet.2022.109289

Zhang, X., Zheng, J., Wang, D. F., Tang, G., Zhou, Z., Lin, Z., et al. (2022).
Structured Sparsity Optimization with Non-Convex Surrogates of l2,0-Norm: A
Unified Algorithmic Framework. IEEE Trans. Pattern Anal. Mach. Intell. [Epub
ahead of print]. doi: 10.1109/TPAMI.2022.3213716

Zhang, X., Zheng, J., Wang, D., and Zhao, L. (2020). Exemplar-Based Denoising:
A Unified Low-Rank Recovery Framework. IEEE Trans. Circuits Syst. Video
Technol. 30, 2538–2549. doi: 10.1109/TCSVT.2019.2927603

Zhang, Y., Liu, R., Asghar Heidari, A., Wang, X., Chen, Y., Wang, M., et al.
(2021). Towards augmented kernel extreme learning models for bankruptcy
prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing
430, 185–212. doi: 10.1016/j.neucom.2020.10.038

Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Oliva, D., et al. (2021b). Ant
colony optimization with horizontal and vertical crossover search: Fundamental
visions for multi-threshold image segmentation. Expert Syst. Appl. 167:114122.
doi: 10.1016/j.eswa.2020.114122

Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Chen, H., et al. (2022).
Opposition-based ant colony optimization with all-dimension neighborhood
search for engineering design. J. Comput. Dec. Eng. 9, 1007–1044. doi: 10.1093/
jcde/qwac038

Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Liang, G., et al.
(2021a). Chaotic random spare ant colony optimization for multi-threshold image
segmentation of 2D Kapur entropy. Knowl. Based Syst. 216:106510. doi: 10.1016/j.
knosys.2020.106510

Zhao, Z., Zhang, Y., Yang, Y., and Yuan, S. (2022). Load forecasting via
Grey Model-Least Squares Support Vector Machine model and spatial-temporal
distribution of electric consumption intensity. Energy 255:124468. doi: 10.1016/j.
energy.2022.124468

Zhou, J., Ji, N., Wang, G., Zhang, Y., Song, H. C., Yuan, Y. J., et al. (2022).
Metabolic detection of malignant brain gliomas through plasma lipidomic analysis
and support vector machine-based machine learning. eBioMedicine 81:104097.
doi: 10.1016/j.ebiom.2022.104097

Zhu, A., Xu, C., Li, Z., Wu, J., and Liu, Z. (2015). Hybridizing grey
wolf optimization with differential evolution for global optimization and test
scheduling for 3D stacked SoC. J. Syst. Eng. Electron. 26, 317–328. doi: 10.1109/
JSEE.2015.00037

Zhu, F., Li, X. X., Yang, S. Y., and Chen, Y. Z. (2018). Clinical success of
drug targets prospectively predicted by in silico study. Trends Pharmacol. Sci. 39,
229–231. doi: 10.1016/j.tips.2017.12.002

Frontiers in Neuroinformatics 35 frontiersin.org

https://doi.org/10.3389/fninf.2022.1078685
https://doi.org/10.1016/j.knosys.2021.106952
https://doi.org/10.1016/j.knosys.2021.106952
https://doi.org/10.1002/asi.24227
https://doi.org/10.1002/asi.24227
https://doi.org/10.3389/fnins.2022.850945
https://doi.org/10.3389/fnins.2022.850945
https://doi.org/10.3389/fnins.2022.850932
https://doi.org/10.3389/fnins.2022.850932
https://doi.org/10.3390/e24040455
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1016/j.eswa.2021.114864
https://doi.org/10.1016/j.eswa.2021.114864
https://doi.org/10.1109/CSCWD.2018.8464759
https://doi.org/10.1109/CSCWD.2018.8464759
https://doi.org/10.1016/j.engappai.2021.104653
https://doi.org/10.1016/j.engappai.2021.104653
https://doi.org/10.1016/j.measurement.2022.111651
https://doi.org/10.1016/j.measurement.2022.111651
https://doi.org/10.1016/j.comnet.2022.109289
https://doi.org/10.1109/TPAMI.2022.3213716
https://doi.org/10.1109/TCSVT.2019.2927603
https://doi.org/10.1016/j.neucom.2020.10.038
https://doi.org/10.1016/j.eswa.2020.114122
https://doi.org/10.1093/jcde/qwac038
https://doi.org/10.1093/jcde/qwac038
https://doi.org/10.1016/j.knosys.2020.106510
https://doi.org/10.1016/j.knosys.2020.106510
https://doi.org/10.1016/j.energy.2022.124468
https://doi.org/10.1016/j.energy.2022.124468
https://doi.org/10.1016/j.ebiom.2022.104097
https://doi.org/10.1109/JSEE.2015.00037
https://doi.org/10.1109/JSEE.2015.00037
https://doi.org/10.1016/j.tips.2017.12.002
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

	Tuberculous pleural effusion prediction using ant colony optimizer with grade-based search assisted support vector machine
	1 Introduction
	2 Data analysis
	2.1 Patient information
	2.2 Statistical analysis

	3 The proposed GACO
	3.1 An overview of ACOR
	3.2 Grade-based search strategy
	3.3 The proposed GACO

	4 The proposed bGACO-sVM model
	4.1 Binary transformation method
	4.2 Support vector machine
	4.3 The proposed bGACO-SVM model

	5 Experiments results and analysis
	5.1 Benchmark function validation
	5.1.1 Experiment setup
	5.1.2 Comparison with basic algorithms
	5.1.3 Comparison with state-of-art variants

	5.2 Feature selection experiments
	5.2.1 Experimental setup
	5.2.2 Public dataset experiment
	5.2.3 TBPE dataset experiment


	6 Discussion
	7 Conclusion and future directions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


