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Modern neuroscience employs in silico experimentation on ever-increasing and more

detailed neural networks. The high modeling detail goes hand in hand with the need for

high model reproducibility, reusability and transparency. Besides, the size of the models

and the long timescales under study mandate the use of a simulation system with high

computational performance, so as to provide an acceptable time to result. In this work,

we present EDEN (Extensible Dynamics Engine for Networks), a new general-purpose,

NeuroML-based neural simulator that achieves both high model flexibility and high

computational performance, through an innovative model-analysis and code-generation

technique. The simulator runs NeuroML-v2 models directly, eliminating the need for

users to learn yet another simulator-specific, model-specification language. EDEN’s

functional correctness and computational performance were assessed through NeuroML

models available on the NeuroML-DB and Open Source Brain model repositories.

In qualitative experiments, the results produced by EDEN were verified against the

established NEURON simulator, for a wide range of models. At the same time,

computational-performance benchmarks reveal that EDEN runs from one to nearly two

orders-of-magnitude faster than NEURON on a typical desktop computer, and does so

without additional effort from the user. Finally, and without added user effort, EDEN has

been built from scratch to scale seamlessly over multiple CPUs and across computer

clusters, when available.

Keywords: computational neuroscience, biological neural networks, simulation, High-Performance Computing,

code morphing, interoperability, NeuroML, software

1. INTRODUCTION

Simulation of biological neural networks is an essential tool of modern neuroscience. However,
there are currently certain challenges associated with the development and in silico study of such
networks. The neural models in use are diverse and heterogeneous; there is no single set of
mathematical formulae that is commonly used by the majority of existing models. In addition, the
biophysical mechanisms that make up models are constantly being modified, and reused in various
combinations in new models. These factors mandate the use of general-purpose neural simulators
in common practice. At the same time, the network sizes and levels of modeling detail employed
in modern neuroscience translate to a constant increase in the volume of required computations.
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Thus, neuroscience projects necessitate high-performance tools
for simulations to finish in a practical amount of time and for
models to fit into available computer memory.

Although there already exists a rich arsenal of simulators
targeting neuroscience, the aforementioned challenges of neural
simulation remain an open problem. On one hand, there are
hand-written codes that push the processing hardware to the
limit but they are difficult or impossible to extend in terms
of model support, because of their over-specialization. They
offer great computational performance by executing solely the
numerical calculations required by the model’s dynamics. On
the other hand, there are general-purpose simulators that readily
support most types of models, however, their computational
efficiency is much less than that of hand-written codes.
Hence, there is a significant gap in efficiency between general-
purpose neural simulators and the computational capabilities
that modern hardware platforms can achieve.

Besides, simulation of large networks often requires deploying
neural models on multiple processor cores or, even, on computer
clusters. Existing general-purpose simulators do not manage
the technicalities of parallelization, model decomposition, and
communication automatically. Thus, significant engineering
effort is spent on setting up the simulators to run on multi-core
and multi-node systems, which further obstructs scientific work.

A further problem is that, presently, each neural simulator
uses its own model-specification language. Thus, models written
for one simulator are difficult and laborious to adapt for another,
which hampers the exchange and reuse of models across the
neuroscience community. In this context, if a new simulator were
to support only its own modeling language, this would fragment
the modeling community further and would add a serious barrier
to the simulator’s adoption as well as the reuse of existing models.

1.1. The EDEN Simulator
To address the challenges in in silico neuroscience, we
designed a new general-purpose neural simulator, called EDEN
(Extensible Dynamics Engine for Networks). EDEN directly runs
models described in NeuroML, achieves leading computational
performance through a novel architecture, and handles parallel-
processing resources—both on standalone personal computers as
well as on computer clusters—automatically.

EDEN employs an innovative model-analysis and code-
generation technique1 through which the model’s variables and
the mathematical operations needed for the simulation are
converted into a set of individual work items. Each work item
consists of the data that represent a part of the neural network,
and the calculations to simulate this part of the network over
time. The calculations for the individual work items can then be
run in parallel within each simulation step, allowing distribution
of the computational load among many processing elements.
This technique enables by-design support for general neural
models, and at the same time offers significant performance

1 Code generation as a general technique is prevalent in high-performance neural
simulators—see Blundell et al. (2018)—but these simulators either analyse neuron
models at a shallower level than our work does, or they support a narrow subset of
neuron models, as we explain in the following.

benefits over conventional approaches. The need for model
generality with user-provided formulae is directly addressed via
automatic code generation; but the architecture also supports
hand-optimized implementations that apply for specific types of
neurons. At the same time, reducing the complex structure of
biophysical mechanisms inside a neuron into an explicitly laid
out set of essential, model-specific calculations allows compilers
to perform large-scale optimizations. What is more, traditional
simulators perform best with specific kinds of neuron models
(e.g., multi-compartmental or point neurons) and worse with
other ones. In contrast, EDEN’s approach allows selecting the
implementation that works best for each part of the network, at
run time.

We adopted the NeuroML v2 standard (Cannon et al.,
2014) as our simulator’s modeling language. NeuroML v2 is
the emerging, standard cross-tool specification language for
general neural-network models. By following the standard, we
stay compatible with the entire NeuroML-software ecosystem:
EDEN’s simulation functionality is complemented by all the
existing model-generation and results-analysis tools, and the
ecosystem gets the most value out of EDEN as an interoperable
simulator. Furthermore, positioning the simulator as a plug-
compatible tool in the NeuroML stack allows us to focus
our efforts on EDEN’s features as a simulator (namely,
computational performance, model generality, and usability).
Finally, supporting an established modeling language makes user
adoption much easier, compared to introducing a new simulator-
specific language.

Another aspect that was taken into account in EDEN’s
design is usability. In addition to the benefits gained through
NeuroML support, EDEN addresses usability through automatic
management of multi-processing resources. This means that
EDEN can distribute processing for a simulation across the
processor cores of a personal computer–or even a computer
cluster–fully automatically. Thus, users can fully exploit their
modern computer hardware and deploy simulations of large
networks on high-performance clusters, with no additional effort.

To evaluate all aforementioned features of EDEN, we
employed: (1) qualitative benchmarks showing simulation
fidelity to the standard neural simulator NEURON; and (2)
quantitative benchmarks showing far superior simulation speed
compared to NEURON, for networks of non-trivial size. The
results of these benchmarks are expanded on in Section 3.

The contributions of this work are, thus, as follows:

• A novel neural simulator called EDEN supporting high
model generality, computational performance, and usability
by design.

• A novel model-analysis/code-generation technique that allows
extracting the required calculations from a neural-network
model, and casting them into efficient work items that can be
run in parallel to simulate the network.

• A qualitative evaluation of EDEN, demonstrating NEURON-
level fidelity, for a diverse set of neural models.

• A quantitative evaluation of EDEN, demonstrating simulation
speeds of real-world neural networks (sourced from literature)
up to close to two orders-of-magnitude faster than NEURON,
when run on an affordable, 6-core desktop computer.
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TABLE 1 | Qualitative comparison between EDEN and other state-of-the-art neural simulators: NEURON (McDougal et al., 2017), CoreNEURON (Kumbhar et al., 2019),

JLEMS (Cannon et al., 2014), BRIAN2 (Stimberg et al., 2019), GeNN (Yavuz et al., 2016), NEST (Gewaltig and Diesmann, 2007), and Arbor (Akar et al., 2019).

EDEN (Core) NEURON Arbor jLEMS BRIAN2 NEST GeNN

Supported models and features

LIF, AdEx, Izhikevich cells X X Only LIF X X X X

Custom artificial cells X X × X X Partially via NestML Partially via NineML

Highly detailed multi-compartmental

cells

X X X × Not practical × ×

Native NeuroML support X × × X × × ×

Overall support compared to EDEN Baseline X × × × × ×

Performance

Machine-wide parallelism X Manual X × Only for simple cases X X

Cluster-wide parallelism X Manual X × × X ×

Cluster-wide auto-parallelization of

detailed networks with graded

synapses

X × × × × × ×

Overall performance compared to

EDEN

Baseline × × × × X† X†

†Only for artificial-cell models that NEST and GeNN support.

1.2. Qualitative Comparison of Neural
Simulators
In Table 1, we present a qualitative comparison between our
proposed simulator EDEN, and the most popular, actively
developed simulators in the computational-neuroscience field. In
line with the scope of this article, we consider the more general-
purpose simulators that can be used in a batch-mode, brain-
modeling setting. The table consists of two parts, the top half
dealing with coverage of neuron models and features, and the
bottom half dealing with aspects of computational performance.
Figure 1 also summarizes a qualitative comparison between
the usability, range of supported models and computational
performance of the various simulators. The characteristics and
relative advantages of each simulator are further laid out in the
following paragraphs.

NEURON (McDougal et al., 2017) is the popular standard
simulator for biological and hybrid2 neural networks. It supports
the richest set of model features among neural-simulation
packages. A characteristic feature of NEURON is that everything
about the model can be changed dynamically while the model is
being simulated. This allows simulation of certain uncommon
models, but it negatively impacts the simulator’s computational
efficiency. CoreNEURON (Kumbhar et al., 2019) is a new
simulation kernel for NEURON that improves computational
performance and memory usage at the cost of losing the ability to
alter the model during simulation. It does not affect setting up the
simulator and the model, which are still performed in the same
way. Due to the underlying architectural design, the user has
to add custom communication code to allow parallel simulation
with NEURON, though there is ongoing effort to standardize and
automate the needed user code (Dura-Bernal et al., 2019).

2Neural networks with mixed populations of both artificial and biophysically
modeled neurons.

Compared to NEURON, EDEN only supports the
NeuroML gamut of models. However, EDEN has much
higher computational performance that also automatically scales
up with available processor cores and computational nodes. Also,
setting up a neural network in NEURON requires the connection
logic to be programmed in its own scripting language. This
is a cumbersome task and, what is more, NEURON’s script
interpreter is slow and non-parallel, often resulting in model
setup taking more time than the actual simulation. In contrast,
EDEN can load networks from any neural-network generation
tool that can export to NeuroML3, thus leveraging the capabilities
and computational performance of these tools.

Another simulator for biological neural networks is
Arbor (Akar et al., 2019) which aims at high performance
as well as model flexibility. Its architecture somewhat resembles
the object model used by NEURON, which facilitates porting
models, written in NEURON, to Arbor. However, compared to
NEURON, it supports a smaller set of mechanisms. Regarding
hybrid networks, modeling artificial cells is difficult; only
linear integrate-and-fire (LIF) neurons are readily supported,
and the user has to modify and rebuild the Arbor codebase
for introducing new artificial-cell types. In addition, neuron
populations connected by graded synapses cannot be distributed
across machines for parallel simulation, which restricts scalability
when running cutting-edge biological-neuron simulations.
Compared to Arbor, EDEN supports about the same range
of biophysical models but also supports all types of abstract-
neuron models, while Arbor only supports LIF abstract neurons.
This limitation prevents Arbor from supporting many hybrid
networks. There is also a difference in usability: To set up a

3Common NeuroML-compatible model-generation tools: NetPyNE (Dura-Bernal
et al., 2019), neuroConstruct (Gleeson et al., 2007), NeuroMLlite (https://github.
com/NeuroML/NeuroMLlite).
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FIGURE 1 | A relative comparison of the characteristics of EDEN and the

established neural simulators. (A) compares the simulators on the

performance and usability plane; (B) shows the ordering between simulators

regarding the level of model detail; and (C) shows the level of modeling detail

supported by each simulator.

network model, the network-generation logic must be captured
as Arbor-specific programming code. EDEN, instead, avoids
simulator-specific programming by using a cross-tool file format.

In the space of artificial-cell-based spiking neural networks
(SNNs), there are various specialized simulators in common use.
jLEMS (Cannon et al., 2014) is the reference simulator for the
LEMS side of NeuroML v2. It supports custom point-neuron
dynamics through LEMS, which itself is a hierarchical-dynamics
description language that co-evolved with NineML (Raikov
et al., 2011). It was not designed for high performance and
supports only simplified point neurons. BRIAN2 (Stimberg et al.,
2019) is a simulator originally designed for point neurons, that
focuses on usability and user productivity. It supports custom
point-neuron dynamics, written in mathematical syntax. Its
support for multi-compartmental cells is a work in progress;
currently, all compartments must have the same set of equations.
NEST (Gewaltig and Diesmann, 2007) and GeNN are general-
purpose simulators for networks of point neurons and achieve
high performance through a library of optimized codes for
specific neuron types. Setting up the network is done through
a custom programming language for NEST, and by extending
the simulator with custom C++ code for GeNN. For NEST

and GeNN, the way to add custom point-neuron types without
modifying the C++ code is by writing the neuron’s internal
dynamics in a simulator-specific language; however, this method
is not enough to capture all aspects of the model (such as multiple
pre-synaptic points on the same neuron in NEST). Compared
to abstract-cell simulators, EDEN has an advantage in model
generality, since it also supports biophysically detailed multi-
compartmental neurons, and hybrid networks of physiological
and abstract cells. Although EDEN is not as computationally
efficient as the high-end abstract-cell simulators, it readily
supports user-defined dynamics inside the cells and synapses,
whereas said high-performance simulators have to be modified
to support new cell and synapse types. EDEN also supports non-
aggregable synapses [i.e., not just types that can be aggregated
into a single instance as per (Lytton, 1996)], and any combination
of synapse types being present on any type of cell; which are also
not supported by high-performance abstract cell simulators.

An important point to stress is that, the differences in
supported model features, combined with the different model-
description languages, make it difficult to reproduce the exact
same neural network (and its output) across all simulators;
this is especially the case for biologically detailed models.
Thus, although there is much previous work on performance-
driven neural simulation, our work is one of the first to
directly compare performance with NEURON on physiological
models that are drawn from existing literature, rather than
employing synthetic ones. This further underscores the point
that EDEN is a general-purpose tool that can be readily
used with existing NeuroML models as well as in new
NeuroML projects.

In the literature, the designers of CoreNEURON and
Arbor have each reported utilizing the cores of a whole
High-Performance Computing (HPC) node, to achieve up to
an order of magnitude of speedup over NEURON. While
the models and the machines used in those cases are
not identical to ours for allowing a strict comparison, our
demonstrated speedup of 1 to nearly 2 orders of magnitude
over NEURON on a 6-core PC shows that EDEN is more
than competitive against the state of the art in terms of
computational performance. Furthermore, the fact that a regular
desktop PC has been used for achieving such speedups
makes the results highly relevant for a typical neuroscientist’s
computational resources.

2. METHODS AND MATERIALS

2.1. EDEN Overview
The architecture of EDEN can be visualized as a processing
pipeline, which is illustrated in Figure 2. The pipeline
details and the reasons for allowing EDEN to deliver
high performance, model flexibility, and usability are
explained in this section. While current neural simulators
primarily focus on either computational performance or
model generality, EDEN simultaneously achieves both
objectives with a novel approach: it generates efficient
code kernels that are tailored for the neuron models
at hand.
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FIGURE 2 | EDEN’s processing pipeline. The whole model is analyzed in order

to extract the computationally similar parts of neurons, and to generate

optimized code and data representations for them, on the fly.

EDEN performs time-driven simulation of any sort of
neural network that can be described in NeuroML. To enable
simulation of complex, and often heterogeneous, networks
with high performance, EDEN first performs model- and
workload-analysis steps so as to divide the simulation workload
into independent, parallelizable components and, subsequently,
determines efficient code and data representations for simulating
each one of them. Finally, EDEN employs automatic code
generation to convert these components to parallel-executable
tasks (called work items). Code generation boosts computational
efficiency by adapting performance-critical code to the specific
model being simulated and to the specific hardware platform
being used. Task parallelization boosts computational efficiency
even further by distributing the simulation work across multiple

CPU cores in a given computer, and across multiple computers
in a high-performance cluster.

2.2. Usability Through Native NeuroML
Support
Choosing NeuroML as EDEN’s input format allows us to focus
on our core part of high-performance numerical simulation and,
at the same time, leverage the existing NeuroML-compatible,
third-party tools for design, visualization, and analysis of
neural networks. Adopting the standard also improves the
simulator’s usability, as the end user does not need to learn one
more simulator-specific modeling language. In practice, directly
supporting the NeuroML standard also allowed us to verify the
simulator’s results against the standard NEURON simulator, for
numerous available models. As we will see in Section 3, the
same NeuroML description can be used for both simulators and
run automatically. Otherwise, porting all these models separately
to both simulators would have taken an impractical amount of
effort, making verification and comparison much more difficult
to achieve.

2.3. Performance and Flexibility Through
Code Generation
Neural models, especially biophysical ones, are commonly
described through a comprehensive, complex hierarchy of
mechanisms. Neural-simulation programmers have to consider
this cornucopia of mechanisms and their combinations so as to
form neural models. All the while, the formulations behind the
mechanisms are constantly evolving, thus, allowing for no single
set of mathematical equations to cover most (or even a few of the)
neural models.

The resulting complexity—in both setting up a model and
running the simulation algorithm—has steered general-purpose
neural-simulation engines to adopt object-oriented models of the
neural networks being run. Each type of programming object,
then, captures a respective physiological mechanism, and the
hierarchy of mechanisms in the model is represented by an
equivalent object hierarchy. By adopting NeuroML, EDEN takes
the same object-oriented approach at the model input.

Although this approach does help simplify the programming
model by mitigating the conceptual and programming
complexity of working with sophisticated models, it is
detrimental to the execution model since it is an inefficient
way to run the simulations on modern computer hardware.
The object-oriented data structure of a model in use has to be
traversed, every time the equations of the model are evaluated
and the model’s state is advanced. The traversal logic in use
enforces a certain ordering among the calculations that are
needed to advance the model’s state. Also, the object-oriented
model’s pointer-based data structures make control flow and
data-access patterns unpredictable, slowing down the processing
and memory subsystems of the computer, respectively.

For example, NEURON advances the state of the network
in successive stages: Within the scope of one parallel thread,
the processing stages of (a) evaluating current and conductivity
for all membrane mechanisms present, (b) solving the cable
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equation for all neurons, and (c) advancing the internal state
of all membrane mechanisms are performed in strict sequence.
Since each part of these three stages pertains to a specific
compartment of the network, and yet processing of these
stages for the same compartment is separated in time by
processing for the whole network, this ordering is detrimental
to data locality. In accelerator-enabled implementations of this
technique, namely CoreNEURON and Arbor, the mechanisms
with identical mathematical structure are grouped together and
executed in an even stricter sequence within the original phases of
processing. This exacerbates the impact to locality and introduces
synchronization overhead that increases with model complexity,
as parallelization is only applied across identical instances of each
mechanism type.

Now, starting from the computer-architecture part of the
problem, HPC resources are designed so that the maximum
amount of computations can be done independently and
simultaneously. Thus, fully utilizing them requires streamlined
algorithms and flat data structures. In many cases, neural-
simulation codes have been custom-tailored for the HPC
hardware at hand. Although such codes improve simulation
speed and supported network size by orders of magnitude
compared to general-purpose simulators, they make inherent
model assumptions that prevent them from supporting
other models. The result is that these manually optimized codes,
as well as the knowledge behind them, are abandoned after the
specific experiment they were developed for is concluded.

To avoid the pitfalls of these two approaches, EDEN
consciously refrains from imposing a specific executionmodel, so
that it can support both model generality and high-performance
characteristics. Both of them are simultaneously achieved
through a novel approach: efficient code kernels that are tailored
for the neuron models at hand are automatically generated, while
supporting the whole NeuroML gamut of network models. The
specific processing stages that EDEN undergoes to achieve this
(see Figure 2) are as follows:

1. Analyse all types of neurons in a given model.
2. Deduce the parts of the neural network that have a similar

mathematical structure.
3. Produce efficient code kernels, each custom-made to simulate

a different part of the network.
4. Iteratively run the code kernels to simulate the network.

This code-generation approach used by EDEN has manifold
benefits: First, the simulation can be performed without
traversing the model’s hierarchy of mechanisms at run time, since
the set of required calculations has already been determined
at setup time. Second, since the generated code contains only
the necessary calculations to simulate a whole compartment
or neuron, the compiler is given much more room for
code optimization compared to code generation for individual
mechanisms. Third, the minimal set of constraints that EDEN’s
backend places on the code of work items allows incorporating
hand-written code kernels that have been optimized for
specific neural models. This is also made possible due to the
model-analysis stage, which isolates groups of neurons and/or
compartments with an identical mathematical structure; when

a hard-coded kernel is available for a detected neuron type, it
can be employed for the specific cell population, to further boost
performance. Thus, EDEN’s model-decomposition and code-
generation architecture delivers high computational performance
for a general class of user-provided neuron models, and it also
permits extensions in both the direction of model generality and
computational performance.

For this first version of EDEN, a polymorphic kernel
generator4 that supports the full gamut of NeuroML models was
implemented. The specifics of the code kernels are customized
for each neuron type; still, the generator’s format covers any
type of neuron, whether it is a rate-based model, an integrate-
and-fire neuron or a complex biological neuron, or whether
the interaction is event-based, graded, or mixed. Thus, this
implementation provides a baseline of computational efficiency,
for all neural models. It can also work in tandem with specialized
kernels. Two ways of extending EDEN with such specialized
high-performance codes are described below.

The simplest way to integrate an existing code in EDEN is
to directly use it just for the models that the code supports.
Programming-wise, the neural network to be run is checked
whether it can be run on the new code, and if this is the case, the
original new code is generated as a work item, and the simulation
data is accordingly allocated and initialized for the model. By
running the same code on the same data, extended EDEN should
perform as well as the original EDEN code, for the supported
family of models.

Alternatively, if the specialized code applies to only a part
of the desired network, it can interface with work items from
EDEN’s general-purpose implementation (or other extensions)
for the part of the network that it does not cover. Some
modification is then necessary to make the code exchange
information (such as synaptic communication) in the same way
as the work items it is connected to, but the gains in model
generality are immediate.

Following these methods, the usefulness of the optimized
code is extended with the least possible effort, simulation can
utilize multiple computational techniques at the same time,
and the details of each technique do not affect the rest of the
EDEN codebase.

2.4. EDEN Concepts
2.4.1. Work Items
The fundamental units of work executed per each simulation step
in EDEN are called “work items.” The work items are parts of the
model that can be processed in parallel within a simulation step,
to advance the state of the simulated model. Within a time-step,
each work item is responsible for updating a small part of the
entire model. Each work item is associated with a single part of
the model data being simulated, and a single code block being
run. That code block is responsible for updating the mutable part
of its model data over time, but it may also update other parts as
well, so that it can send information to other parts of the model.
One such case is transmission of spike events to post-synaptic

4Polymorphic means that it adapts to the neuron’s structure, instead of handling
just one type.
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components. Then, data-access collision with the work item that
is assigned to the post-synaptic component is avoided by double
buffering; the work item receiving the information reads it on
the next time-step, while leaving the alternate buffer available
for other work items to write to. In the case multiple other
work items may write simultaneously, atomic memory accesses
are used.

In this first version of EDEN, each work item involves
simulating exactly one neuron, but the design allows further
variations—for example, to consolidate simple neurons in
batches, or to split large neurons in parts—as long as the
calculations for each work item are independent.

2.4.2. Code and Data Signatures
EDEN generates compact code and data representations to run
the simulation, by composition of the multiple underlying parts.
The details of how this works are explained below.

Each simulated mechanism is defined by its dynamics, the
fixed parameters and state variables of the dynamics, and
the variables through which it influences other mechanisms,
and is influenced by other mechanisms. The external variables
influencing the mechanism are called requirements, and the
values it, in turn, presents for other mechanisms to use, are called
exposures. Then, to simulate the mechanism, the required actions
are:

• to evaluate all variables involved in the dynamical equations
(called “assigned” henceforth, in EDEN as well as NEURON
parlance). This is the “evaluation” step of the simulation code.

• then, to advance the simulation’s state based on the dynamics,
and the current values of the assigned variables. This is the
“update” step of the simulation code.

The whole set of code and data for simulating a mechanism is
collectively called a signature in EDEN parlance. Examples of
code-data signatures are shown in Figure 3, for simple cases of
a post-synaptic component and an ion channel. Each of them
consists of the code for running the “evaluation” and “update”
steps (also called code signature), and the data representing
the mechanism (also called data signature). The signature
representation is used in EDEN both for simple mechanisms and
composite ones. In fact, the signatures of smaller mechanisms
are successively merged to form the signatures of higher-
order parts of the neurons, eventually forming signatures for
whole compartments or even entire neurons. The code of such
signatures is then run in parallel, in order to simulate the whole
neural network.

In order to combine the signatures representing two
mechanisms, the interfaces (i.e., requirements and exposures)
through which the mechanisms interact have to be determined.
The hierarchical structure of the provided neural models helps in
this, since it delineates the interfaces through which the “parent”
mechanism interacts with its “children,” and the “siblings”
interact with each other.

Code generation starts from the simple, closed-form
mechanisms present (for example, Hodgkin-Huxley rate
functions or plasticity factors of mechanisms). The hierarchy of

mechanisms present in a neuron is traversed, and signatures are
incrementally formed for each level of the hierarchy.

The specific steps to merge two signatures are then, in terms
of code and data:

• The “evaluation” parts of the code signature have to be placed
in a certain order, such that after the variables eachmechanism
requires are defined and evaluated before the mechanism’s
evaluation code.

• The “update” parts of the code signature can be
appended anywhere after the mechanism’s corresponding
evaluation code.

• The data signatures of the mechanisms are simply
concatenated to each other.

As signatures are generated for each higher or lower level
mechanism, an auxiliary data structure that has the same
hierarchical structure as the original object-orientedmodel is also
formed. This is called the implementation of the signature, and it
keeps track of how the conversion to signatures was performed,
for each mechanism. Relevant information includes the specific
decisions made for the generated code (like selection of ODE
integrator for the particular mechanism), and the mapping of
abstract parameters and state variables (such as the gate variable
of an ion channel, the fixed time constant of a synapse, the
membrane capacitance of a compartment, etc.) to the specific
variables allocated in the data signature. The information is
useful for:

• referring to parts of the network symbolically (like
when recording trajectories of state variables, and when
communicating data-dependencies between machines in
multi-node setups),

• initializing the data structures through the symbolic
specifications in use (such as weights of specified synapses),

• properly combining signatures, according to implementation
decisions (e.g., adjusting the update code to the integrator in
use).

2.4.3. Data Tables and Table-Offset Referencing
To achieve high performance during simulation, EDEN uses a
simplified data structure for the model. The model’s data are
structured in a set of one-dimensional arrays of numbers. These
arrays (called tables henceforth) are grouped by numerical type
(such as integral or floating-point), and mutability (whether their
values remain fixed along the simulation, or they evolve through
time). This means that each value in the model being simulated is
identified by the table it belongs to, its position in the table, and
the value’s numerical type and mutability.

The value’s location can then be encoded into an integer,
from the table’s serial number and the offset on the table.
The code generated by EDEN can use such references to
values at run time, to access data associated with other
work items. This relieves EDEN’s simulation engine from
the need to manage communication between parts of the
model with a fixed implementation. Instead, control is given
to the work items’ generated code on how to manage this
communication effectively.
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FIGURE 3 | Code and data signatures for an exponential-conductance post-synaptic component (A), and for a classic Hodgkin-Huxley sodium channel (B).

Another benefit of the table-offset referencing scheme is that
the references can be redirected to any location in the model’s
data, if need arises. This is used in particular when a model is
run on a computer cluster, where parts of the network are split
between computers. In this case, only a fraction of the model
is realized on each machine, and the data read by or written
to remote parts of the network are redirected to local mirror
buffers instead. The change is automatically applied by editing
the references in the instantiated data, hence there is no need to
change the generated code for the work items.

2.5. Implementation
The present implementation of EDEN takes as input NeuroML
and supports all neural models in the NeuroML v2 specification.
This implementation, and the code kernels it generates, can
be used as a fall-back alternative to further extensions: the
extensions can provide specialized implementations for specific
parts of the neural network, while the rest of the network is still
covered by the fully general, original implementation.

2.5.1. Structure of the Program
To begin analysis and simulation of a neural network,
its NeuroML representation, along with additional LEMS
components describing the custom neuron mechanisms present,
is loaded into an object-oriented representation.

The main steps of the process are:

1. Model analysis
2. Work-item generation through code and data signatures
3. Model simulation in the EDEN simulation engine

These steps are further described in the following sections.

2.5.2. Model Analysis and Code Generation
The first part in model analysis is to associate the types of
synapses in the network with the neuron types they are present
in. This resolves which types of neurons contain which kinds of
synaptic components, and where each kind of synapse is located
on the neuron. The same assessment is also made for the input
probes connected to each neuron, since probes are also part of
the neurons’ models.

Then, each neuron type is analyzed, to create a signature for
each kind of neuron. First, the structure of the neuron is split into
compartments, and the biophysical mechanisms applied over
abstract groups of neurite segments are made explicit against the
set of compartments. Thus, for each compartment, we get the
entire list of biophysical mechanisms existing on it. Using these
lists, the corresponding code and data signature is formed for
each individual compartment.

If the number of compartments is small, these signatures
are concatenated for all compartments present on the neuron,
into a neuron-wide signature. This way, a compact code block
is generated, with a form similar to how hand-made codes are
written for reduced compartmental neuron models. The process
is illustrated in Figure 4.

2.5.2.1. Signature Deduplication for Identical Compartments
If the number of compartments is large, it is not practical to
generate a flat sequence of code instructions for each individual
compartment. However, in practice, neuron models have less
than a few tens of distinct compartment types with different
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FIGURE 4 | The stages of the per-neuron signature synthesis process, for neurons with few (phenomenological) compartments. The neuron shown consists of three

different compartments, each containing different physiological mechanisms. The simulation code for all mechanisms is laid out in a flat format, along with their

associated data. Thus, a streamlined and compact code kernel is created for this specific type of neuron.

mathematical structure, in the most complicated models. Thus,
a different approach called signature de-duplication is employed,
as follows. In this approach, the compartments are grouped for
processing, according to their structural similarity (equivalently,
similarity of signature representation). The process is illustrated
in Figure 5.

Using the per-compartment list of mechanisms, we can
immediately deduce which compartments have the exact same
structure; which is the case when the set of mechanisms,
and thus the code and data signature representation, is the
same. The code signature for the whole neuron now has a
set of loops, one for each type of compartment. Inside the
loop, the code signature to simulate a single compartment
is expanded. Each iteration of the loop performs the work
for a different compartment with the same structure. Thus,
the data signatures are concatenated together for each
group of compartments, and the appropriate offsets are
shifted in each iteration of the loop, so that they point
to the specific instance of the per-compartment data
signature to be used each time. By generating a specific
code block for each sort of compartment, we eliminate
the computational overhead of traversing the individual
mechanisms present on each simulation step, that affects
previous general-purpose neural simulators. Finally, after the
code signatures for the work items are determined, they are
compiled to machine code, and loaded dynamically on the
running process.

2.5.3. Model Instantiation
After the model is analyzed to determine the structure of the
work items it is converted to, it is time for the work items and
their associated data to be realized in memory. The process that
we describe in the following is also illustrated on Figure 6. As
mentioned previously, in this version of EDEN, each neuron
in the network, along with the synaptic components and input
probes attached to it, is assigned to an individual work item. The
mapping of parts of the network to work items, is thus fixed.

The data signatures of the work items specify the number
of scalar variables and tables each work item uses. Thus, to
instantiate each work item, we just have to allocate the same
number of scalars and tables, and keep track of the work item
for which these blocks of memory were allocated. After the
variables are allocated for each work item instance, they are filled
in, according to the model definition. This is made possible by
the implementations of the work items, that keep track of how
model-specific references to values map to concrete data values
for each work item. Thus, the changes between different instances
in the specified model are mapped into changes in the low-level
data representation.

The scalar values for each instantiated work item are located
in contiguous slices of certain tables, which are reserved for
each type of scalar values. Other parts of a work item may not
have a fixed size every time. This is, for example, the case for
synaptic components of a given type; theymay exist inmultitudes
on a compartment of a neuron, and their number varies across
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FIGURE 5 | The stages of the per-compartment signature de-duplication process, from the abstract model to the concrete implementation. On the schematic of the

detailed neuron model, distinct compartment types are shown in different colors. The components sharing the same type are then grouped together, in terms of

simulation code and data representation. The specific mechanisms comprising the compartments and the data cells they contain are not shown here, for brevity.

instances of the neuron or compartment type. The data for these
variable-sized populations is stored in tables; one set of tables
per kind of mechanism on the same compartment. That way,
although the sizes of each set of tables may vary eventually, the
number of scalars and individual tables required for a work item
remains fixed, for all of its instances.

After allocating the scalars and the tables for the model,
what remains is to replace default scalar values with per-instance
overrides specified by the model where they exist, and to fill
in the allocated tables with their variable-sized contents. The
customized scalar values and tables pertaining to the inner
models of neurons (where the “inner model” excludes the
synapses and input probes attached to the neuron) are filled
in while running through the list of neurons specified in the
model. The synaptic connections in the network model are
also run through, and the corresponding pre- and post-synaptic
components are instantiated on the connected cells. More
specifically, on each cell, the tables representing the specified
synaptic component are extended by one entry each, with the
new entries having the values of the scalar properties of the
mechanism. The default values for these properties are provided
by the data signature of the mechanism, and customized values
(such as weight and delay of the synapse) are filled in using the
connection list in the model description.

2.5.4. Simulation Loop
After model instantiation is done, the code blocks and data
structures for the model are set up in system memory and ready
to run. Communication throughout the network is internally
managed by the code blocks, via a shared-memory model.
Double buffering is employed to allow parallel updates of the
state variables within a time-step, thus all state-variable tables are
duplicated to hold the state of the both the old and new time-step
as the latter is being calculated.

All that remains to run the simulation, is to repeat the
following steps for each simulation time-step:

• set the global “current time” variable to reflect the new step;
• execute the code for each work item in parallel, on the CPU;
• output the state variables to be recorded in the network, for the

new time-step;
• alternate which set of state variable buffers is read from and

written to, as per the common double-buffering scheme.

Parallel execution of the code kernels is managed by the
OpenMPmulti-threading library. The “dynamic” load-balancing
strategy is followed by default, so whenever a CPU thread
finishes executing a work item, it picks the next pending one.
The synchronization overhead of this load-balancing strategy is
mitigated by the relatively large computational effort to simulate
physiological models of neurons, as will be shown in Section 3.

2.5.5. Numerical Methods
The numerical integration methods that EDEN employs in
this version are simple but they are sufficient to provide
accurate simulation, as we will demonstrate in Section 3. All
calculations are done with single-precision arithmetic except
for expressions involving the amount of simulated time, which
is represented with double precision since it changes by
microseconds throughout up to hours. The state of synapses
and of most membrane mechanisms is advanced using the
Forward Euler integrator. An exception is made for the gate
variables of Hodgkin-Huxley ion channels with alpha-beta rate
(or, equivalently, tau-steady state) dynamics, where NEURON’s
cnexp integrator (i.e., Exponential Euler under the assumption
that the transition rates are fixed throughout the timestep) is
employed. To simulate the diffusion of electrical charge within
each cell, we use a linear-time, Gaussian-elimination method
that is equivalent to the Hines algorithm (Hines, 1984) used
in NEURON.
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FIGURE 6 | A schematic representation of how the extracted work item signatures are converted to low-level data structures for efficient processing. For each work

item, the set of scalars and work tables of each is appended into flat node-wide arrays, for each data type. Data types shown: CF32 = 32-bit floating-point constants,

CF64 = 64-bit integer constants, SI64 = 64-bit integer variables. The different data types for scalars and tables have been omitted for clarity in the diagram, without

loss of generality. Colors indicate different code-data signatures among work items.
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2.5.6. Running on Multi-Node Clusters
Apart from the high-performance properties implemented in
EDEN for fast simulation on a single computer, EDEN also
supports MPI-based execution on a compute cluster, so as to
further handle the large computational and memory needs of
large simulations. To distribute the simulation over multiple co-
operating computational nodes, some modifications are made to
the process described above. In the following, each co-operating
instance of EDEN is called a “node.”

At the model-instantiation stage, the nodes determine which
one will be responsible for simulating each part of the neural
network. The neurons in the network are enumerated, and
distributed evenly among nodes. To keep a small and scalable
memory footprint, in this version of EDEN, each node is
responsible for a contiguous range of the enumerated sequence
of neurons. Then, each node instantiates only the neurons it
is responsible to simulate, allocating the corresponding scalar
values and tables. The parts that pertain only to individual
neurons are also instantiated and filled in. But special care has
to be taken when instantiating synapses, since they are the way
neurons communicate with each other—and the neurons a node
is managing may communicate with other neurons, that are
managed by a different node. Thus, the instantiation of synapses
is performed in three stages:

1. an initial scan of the list of synapses, to determine which
information is needed by each node from each node during
the simulation;

2. exchange of requirement lists among nodes, so they all are
aware of which pieces of information they must send to other
nodes, during the simulation;

3. establishment of cross-node mirror buffers, and remapping
cross-node synapses so that they use these buffers, to access
the non-local neurons they involve.

To support these stages, a new auxiliary data structure is created
on each node. It is an associative array, mapping the identifiers
of peer nodes to the set of information that needs to be provided
by that node to run the local part of the simulation (called send
list from now on). A send list consists of the spike event sources
and state variables on specific locations on neurons, that the node
needs to be informed about to run its part of the simulation. The
kinds and locations for these state variables and spikes, are stored
and transmitted using a symbolic representation, that is based
on the original model description. For example, a location on a
neuron is represented by the neuron’s population and instance
identifiers, the neurite’s segment identifier, and the distance along
that segment from the proximal to the distal part. Using symbolic
representations for send lists allows each node to use the most
efficient internal data representation for its part of the model,
without requiring peer nodes to be aware of the specific data
representation being used on each node. The three stages to set up
multi-node coordination are further described in the following:

2.5.6.1. Synapse-Instantiation Stage
First, the list of synaptic connections is scanned, and synapses
connecting pairs of neurons are handled by each node according
to four different cases:

1. If a synapse connects two neurons managed on this node, it is
instantiated, and the tables are filled in just as described above,
for the single-node case.

2. If neither neuron connected by the synapse is managed by this
node, the synaptic connection is skipped.

3. If the local neuron needs to receive information from the
remote neuron (as is the case with post-synaptic neurons and
those with bi-directional synapses), then the location on the
remote neuron and type of data (e.g., spike event ormembrane
voltage), is added to the send list for the remote node. The
local neuron’s synaptic mechanism is also instantiated using
its data signature, however:

• If the synaptic mechanism is continuously tracking a
remote state variable (as is the case with graded synapses),
the table-offset reference to that variable is set with a
temporary dummy value. This entry is also tracked, to be
resolved in the final synapse fix-up stage.

• If the mechanism receives a spiking event from a remote
source (as is the case with post-synaptic mechanisms), the
mechanism receives the spike event in one of its own state
variables, instead of tracking a remote variable. (This is
the same way event-driven synapses are implemented in
the single-node case.) The state variable is used as a flag,
so custom event-based dynamics are handled internally.
Thus, this entry has to be tracked, so that its flag can be set
whenever the remote spike source sends a spiking event, at
runtime.

4. If the locally managed neuron does not need to receive
information, then is it skipped. The need for this node to send
information to other peers will be resolved in the following
send-list exchange stage.

2.5.6.2. Send-List Exchange Stage
At this point, the send lists have been determined, according to
the information each node needs from the other nodes. These
send lists are then sent to the nodes the data is needed from;
sending nodes do not have to know what they are required to
send a priori. Therefore, the algorithm described in the following
also applies to the more general problem of distributed sparse
multigraph transposition (Magalhães and Schürmann, 2020).

In the beginning of this stage, each node sends requests
to the nodes it needs data from; each request contains the
corresponding send list it has gathered. Then, from each node
it sent a request to, it awaits an acknowledgement. While nodes
are exchanging send lists, they also participate asynchronously
in a poll of whether they have received acknowledgements
for all the requests they sent. When all nodes have received
all acknowledgements, this means all send lists have been
exchanged, and the nodes can proceed to the next stage.

By using this scheme, information is transmitted efficiently in
large clusters: no information has to be exchanged between nodes
that do not communicate with each other. This is a scalability
improvement over existing methods, where the full matrix of
connectivity degrees among nodes is gathered on all nodes (Vlag
et al., 2019; Magalhães and Schürmann, 2020).
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2.5.6.3. Synapse Fix-Up Stage
After all data dependencies between nodes are accounted for,
each node allocates communication buffers to send and receive
spike and state-variable information. The buffers to receive the
required information are allocated as additional tables in the data
structures of the model. They are “mirror buffers” that allow each
node to peek into the remote parts of the network they need to.

The table-offset references that were left unresolved in the
synapse-instantiation stage because the required information was
remote, are now updated with references to the mirror buffers
for the corresponding remote nodes. This way, the components
of cross-node synapses that—were the simulation run on a single
node—would directly access the state of adjacent neurons, now
access these mirror buffers instead. The mirror buffers are, in
turn, updated on every simulation step as described in the next
section, maintaining model integrity across the node cluster.

2.5.6.4. Communication at Run-Time
After the additional steps to instantiate the network on a multi-
node setup, the nodes also have to communicate continuously
during the simulation. Each node has to have an up-to-date
picture of the rest of the network its neurons are attached to,
to properly advance its own part of the simulation. Thus, the
simulation loop is extended with two additional steps: to send
local data to other nodes that need them, and to receive all
information from other nodes it needs to proceed with the
present time step.

The nodes follow a peer-to-peer communications protocol,
which resembles the MUSIC specification (Ekeberg and
Djurfeldt, 2008). The data sent from each node to a peer per
time-step form a single message, consisting of:

• A fixed-size part, containing the values of state variables the
receiving node needs to observe.

• A variable-size part, containing the spike events that occurred
within this communication period. The contents are the
indices of the events that just fired, out of the full list of events
previously declared in the send list.

During transmission, each data message is preceded by a small
header message containing the size of the arriving message;
this is done so that the receiving node can adjust its message
buffer accordingly.

After receiving the data message, the fixed-size part is directly
copied to the corresponding mirror buffer for state variables,
while the firing events in the variable-sized list are broadcast to
the table entries that receive them. Broadcasting of firing events
is performed using the spike recipient data structure that was
created in the synapse instantiation stage.

Inter-node communications are placed in the simulation loop,
as follows:

• In the beginning of the time step, the information to be sent
to other nodes is picked from this node’s data structures, into
a packed message for each receiver. Transmission of these
packed messages begins;

• Meanwhile, the node starts receiving the messages sent by
other nodes to this one. Whenever a message arrives, it is

unpacked and the contents are sent to mirror buffers and spike
recipients in the model’s data.

• When messages from all peers for this node are received, the
node can start running the simulation code for all work items,
while its own messages are possibly still being sent;

• Before proceeding with the next simulation step, the node
waits until all messages it started sending have been fully sent;
so, then, the storage for these messages can be re-used to send
the next batch of messages.

3. RESULTS

During development of the EDEN simulator, we ran functional
and computational performance tests, using NeuroML models
from the existing literature. The functional tests were used to
ensure that the simulator properly supports the various model
features specified by NeuroML, and that its numerical techniques
are good enough, with regard to stability and numerical accuracy.

The NeuroML-based simulations used in the experiments
here were sourced from the Open Source Brain model
repository (OSB) (Gleeson et al., 2019), and from the NeuroML-
DB (Birgiolas et al., 2021). They were selected to cover a wide
range of models in common use (regarding both level of detail
and model size), and because their results clearly show various
features of neural activity, and how each simulator handles them.

The simulations for the functional tests included all neuron
models available on the NeuroML-DB and also present in the
more general ModelDB (McDougal et al., 2017), and the smaller
version of each network used in the performance tests. A visual
comparison of output trajectories for various other OSB models
is included in the Supplementary Material, in order to illustrate
some finer details of the differences between the simulators. The
performance tests were done on large neural networks in order
to evaluate EDEN’s computational efficiency and scalability, in
various realistic cases.

Both simulation accuracy and performance characteristics
were compared to the standard NeuroML simulation stack
for biophysical models: the NEURON simulator (version 7.7),
with the NeuroML-to-NEURON exporter jNeuroML (version
0.10.0). Model-porting complications were thus avoided by using
the same NeuroML model descriptions. NEURON is the most
commonly used general-purpose neural simulator, its numerical
algorithms have been proven through decades of use, and it also
enjoys the most complete NeuroML support to date (through the
jNeuroML tool).

3.1. Evaluation of Functional Correctness
3.1.1. Evaluation Through Single-Neuron Models
Each neuron model present in the NeuroML-DB and also
present in the ModelDB was individually simulated, to compare
EDEN’s results with NEURON’s in each case. The protocol used
was to stimulate each neuron with a 2 nADC current clamp on its
soma, from 10 to 90 ms of simulated time, with total simulation
time being 100 ms. A fixed timestep of 0.025 ms was used for
all simulations. The one recorded waveform for each neuron was
membrane voltage on the soma. This is one type in the array
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FIGURE 7 | Histograms of relative error under the NeuroML-DB similarity (A) and inter-spike interval (B) accuracy metrics for each NeuroML-DB neuron model. The

bins around the “<-10” and “>10” limits include all models with more than 10% of discrepancy.

of tests already used in the NeuroML-DB, to characterize the
electrophysiology of each neuron model.

The similarity metrics being assessed for EDEN’s resulting
waveforms, using NEURON’s waveforms as reference, are:

• per-cent difference in inter-spike interval (ISI), assuming a
spike threshold of−20mV ,

• the NeuroML-DB similarity metric 1 −
mean(|x−x̂|)

max(x)−min(x) , where

x, x̂ are the reference and tested waveforms. This one is
used throughout NeuroML-DB to measure the discrepancy
of NEURON’s results under different (fixed) simulation step
sizes, to determine an optimal step size that balances error with
simulation time.

In total, EDEN failed to run seven models, whereas jNeuroML
failed to run 24 models, out of 1,105 neuron models in total.
EDEN could not run said seven models because they contain
minor LEMS features it does not support at the time—though
all these models can still work with a minimal, equivalent change
to their description. We speculate that jNeuroML could not run
said 24 models because of a defect in its support for certain types
of artificial cells.

A histogram of waveform accuracy under each metric for the
specified timestep, over all neuron types, is shown on Figure 7.
(The models that either EDEN or jNeuroML could not simulate
are excluded).

We observe that the EDEN’s discrepancy against NEURON
under the NeuroML-DB similarity metric is centered around 5%,
and 99% of the models run under EDEN at <10% of waveform
error. Under the inter-spike interval metric, EDEN’s difference
with NEURON is centered around +2.5%, with 90% of models
having<±5% difference and with 98% of models having<±10%
difference in mean inter-spike interval compared to NEURON.

Regarding error in the NML-DB metric, this is typically high
for certain models with a high firing rate; as the waveforms
get out of phase this metric drops sharply, even though the
waveform of a single firing period has the same overall shape5.
Regarding the discrepancies in firing period: We compared the
mechanisms present on each neuron model with a high ISI

5This effect had been discounted in the evaluation method used in the
Rallpacks (Bhalla et al., 1992), by linearly distorting the waveforms of inter-
spike intervals to have the same nominal duration for both simulators, before
comparing.
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FIGURE 8 | Raster plots for each network used in the performance benchmarks, when run on NEURON and EDEN. Note that the input stimuli are

pseudo-randomly generated.

difference between EDEN and NEURON. These neuron models
do not share a distinct mechanism type, or other distinguishing
commonality that could explain this; nonetheless, we note all
these models originate from the Blue Brain Project collection and
they showed a low firing rate under the protocol’s clamp current.
Since these neuron models emitted few spikes, the difference
might be specific to the starting phase of regular firing, when
induced by DC current.

The full set of results with accuracy metrics and waveform
plots for each simulated model is available on Zenodo: https://
zenodo.org/record/5526323.

3.1.2. Evaluation on Neural Network Models
To assess EDEN’s functionality when simulating networks,
the result data from simulating the smaller versions of each

network used in the performance benchmark on Section 3.2 were
analyzed. Note that the enlarged versions of the GCL and cGOC
models should not be used for functional analysis, because they
have not been validated by the creators of the original models and
they serve only as a computational benchmark.

For reference, the raster plots for the networks analyzed in
the following are shown in Figure 8. We observe that in the
GCL model used for the benchmark, the granule cells did not
generate action potentials under either NEURON or EDEN;
a closer inspection of the voltage waveforms of these cells
indicated that they are over-inhibited by the synapses. Therefore,
we chose to apply the analysis on the original, smaller, single-
compartment version of the network, which is also discussed in
the Supplementary Material. The raster plot of this version of
the network is also included there.
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Since the networks are driven by random stimuli, the results
cannot be compared directly as waveforms, but through network
activity statistics. We employed the analysis methods proposed
by Gutzen et al. (2018), who used them to compare the results
generated by the SpiNNaker system and the original floating-
point arithmetic based C code, for an Izhikevich cell network.

The measured metrics are: average firing rate (simply number
of spikes divided by simulation time), local variation, mean
inter-spike interval, correlation values of the binned spike
trains with small and large temporal bins (metrics CC and
RC respectively), and eigenvalues of the correlation matrix
(computed by correlating the exact waveforms, in this work). For
each of the metrics except for eigenvalues, the effect size between
NEURON and EDEN’s results is computed as Cohen’s d, that
is the difference of mean values of the distributions, divided by
the pooled standard deviation of the two distributions. The 95%
confidence interval for each effect size is calculated using the

formula:±1.96
√

N1+N2
N1N2 + (effectSize)2

2(N1+N2−2)

The resultingmetrics for each network are shown on Figure 9.
Presentation is similar to Figure 10 of the Gutzen et al. (2018)
article.

For each of the networks, we observe the following:

• The results for the GCL network, we observe a slightly
wider distribution of average firing rates in EDEN’s results
than in NEURON’s, which is however not reflected in the
inter-spike interval metric. In contrast with the other two
networks, this one exhibits a wide range of neuron-pair
correlation coefficients, both in fine time resolution and in rate
correlation.

• The results for the M1 network are largely the same. This was
expected, since NEURON and EDEN produce very similar
results when simulating artificial cells (see also results from
various OSB models in the Supplementary Material).

• The neurons of the cGOC network exhibit periodic,
synchronized spiking. Thus all neurons exhibit the
same estimated firing rate and are concentrated around
specific values in fine temporal and rate-based correlation.
Furthermore, the short-term and rate-based correlation
indices are tightly clustered around specific values. There is
a slight but clear difference between the simulators on the
means of local variation and inter-spike interval; the effect
size is very high because the variation in these metrics is very
small across the neuron population (see the range of the in the
LV and ISI plots).

In many cases, as the effect size is estimated to be low, the
confidence interval for the monovariate metric s(firing rate,
local variation, inter-spike interval) is determined by the small
number of data points in the sample (i.e., neurons). Overall,
the quantitative analysis indicates that our simulator succeeds in
capturing the characteristics of simulated networks, much like
NEURON does.

3.2. Computational Performance Analysis
3.2.1. Overview
Beside flexibility in supported models, another distinguishing
characteristic of neural simulators is speed. To evaluate the

simulation speed EDEN offers we ran simulations of neural
networks available in NeuroML literature, on a recent cost-
effective desktop computer. We chose to run published neural
networks over synthetic benchmarks, because:

• they have been used in practice, so they are concrete examples
of what end users need; and

• existing models are usually the base for newer models, so the
insights about the former do remain relevant.

Since the original neural networks were developed with the
computing limitations of earlier years, these days they run
comfortably in a desktop computer, using a minor fraction
of system memory and within just a few minutes per run.
(Unfortunately, new network models that do push the limits of
present hardware, are still only available in heavily custom setups,
that cannot be easily ported to another data format, simulator,
or HPC cluster). To evaluate simulation performance for longer
simulation run times, and more challenging neural network
sizes, we also used enlarged versions of the original neural
networks. This was possible, because the original networks were
themselves procedurally generated, with parametric distributions
of networks and synapses.

The neural networks that were run for performance evaluation
are listed in Table 2, along with quantitative metrics for each
case. Beside these quantitative metrics, there also are substantial
qualitative differences between the models. These differences
determine both the neural functions of each network, as well as
the required computational effort to simulate each one.

3.2.2. Simulated Networks
The neural network models used were the following, sourced
from NeuroML-DB:

1. A multi-compartmental extension of the (Maex and Schutter,
1998) Cerebellar Granule Cell Layer (GCL) model (NeuroML-
DB ID: NMLNT000001).

2. An Izhikevich cell-based, multiscale model of the mouse
primary motor cortex (M1) (Dura-Bernal et al., 2017)
(NeuroML-DB ID: NMLNT001656).

3. A model of the Golgi cell network in the input layer
of the cerebellar cortex(CGoC), electrically coupled with
gap junction (Vervaeke et al., 2010) (NeuroML-DB ID:
NMLNT000070).

3.2.2.1. The GCL Network
The GCL network is based on the Maex and Schutter (1998)
model for the cerebellar granule cell layer, which includes granule
cells, Golgi cells, and mossy-fiber cells. The designers of the
GCL network benchmark extended the original GCL model to
have multi-compartmental cells; in particular, the axons and
parallel fibers of the granule cells are spatially detailed with
four compartments per cell, and Golgi cells follow the ball-
and-stick model, with 4 compartments per cell. The mossy-
fiber cells are stimulated by Poisson randomly firing synapses
and stimulate the granule cell population through AMPA and
blocking NMDA synapses. The granule cells excite the Golgi
cells through AMPA synapses, and the Golgi cells inhibit the
granule-cell population through GABAA synapses. We enlarged
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FIGURE 9 | Histograms of neural activity metrics for each network used in the performance benchmarks. FR, firing rate; LV, local variation; ISI, inter-spike interval; CC,

short-time firing correlation; RC, rate correlation; (λ), correlation eigenvalue. For each simulated network, the solid green line outlines the distribution of metric values

when using EDEN, and the overlaid dashed red line outlines the distribution when using NEURON. On the right, the effect size (ES) and its confidence interval is

shown for each applicable metric.

Frontiers in Neuroinformatics | www.frontiersin.org 17 May 2022 | Volume 16 | Article 724336

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Panagiotou et al. EDEN: A Novel Neural Simulator

TABLE 2 | The simulated networks used for performance benchmarking.

Simulation
Simulated
time (s) Steps

Compartments
per neuron Neurons

Total
compartments

Total
synapses

GCL
1 100,000 1 ∼ 4

728 2,624 7,958

GCL x10 7,280 26,240 79,825

M1 5%

1 20,000 1

527 527 15,469

M1 10% 1,065 1,065 61,538

M1 100% 10,734 10,734 5,032,223

CGoC
0.1 40,000 319

45 14,355 472

CGoC x10 450 143,550 5,410

the original GCL network, by multiplying the population size by
a factor of 10, and keeping the same per-neuron synapse density
for the various projections. Thus, the total number of synapses
was also 10 times the original.

3.2.2.2. The M1 Network
The M1 network is an Izhikevich cell-based model of the mouse
primary motor cortex, with various groups of cells intertwined
across cortical depth. There are 13 groups of cells and four
different sets of dynamics parameters among the cells. Each cell
is stimulated by an external randomly firing synapse stimulus,
and cells interact with each other through excitatory AMPA and
NMDA synapses, and inhibitory GABA synapses. All synapses
follow the stateless, double-exponential conductance model. This
model is rather recent, so in its full size, it is computationally
challenging enough to simulate, without enlarging it.

To better investigate performance characteristics, and evaluate
performance at a model scale similar to the original GCL and
CGoC networks, we generated two smaller versions of the M1
network, at “scale” values of 10 and 5%. Note that the model uses
fixed probability connectivity for the various projections between
populations, thus the number of synapses grows quadratically
with the population size.

3.2.2.3. The CGoC Network
The CGoC network models a small part (0.1 mm3) of the
Golgi cell network, in the input layer of the mouse’s cerebellar
cortex. It was used in Vervaeke et al. (2010) to investigate the
network behavior of Golgi cells, using experimental data. In
this network, the neurons communicate with each other solely
through gap junctions. Each cell also has 100 excitatory inputs
in the form of randomly firing synapses, randomly distributed
among apical dendrites.

Gap junctions have rarely been introduced in large network
models in the past. This is not because they are absent from tissue,
nor because their effects are negligible, but primarily because of
their intense computational requirements. The continuous-time
interaction between neurons that gap junctions effect requires
a large amount of state data to be transferred to simulate each
neuron in every step, while spike-based synapses need to only
transfer the firing events between neurons, whenever they occur
(rarely, compared to the number of simulation steps). As with the

GCL network, we also enlarged this network, by making neuron
count, synapse count and network volume 10 times the original.

3.2.3. A Note on Numerical Methods & Performance
In the following, computational efficiency is compared between
EDEN and NEURON (run under jNeuroML), for the same
models. We notice a disparity in per-thread efficiency between
EDEN and NEURON, and an immediate question is whether
the difference is caused by differences in the simulators’
numerical methods.

We noticed that, because of the MOD files, jNeuroML
generates in the present version, most membrane mechanisms
are simulated with the Forward-Euler integrator, as they are
under EDEN as well6. The methods EDEN uses in these
benchmark are explained in Section 2.5.5. The only clear
difference in numerical methods between NEURON and EDEN
is that EDEN uses single-precision arithmetic whereas NEURON
uses double-precision arithmetic; but this is not enough to
explain the observed disparity in simulation speed. Thus, we
expect that our simulator’s improved performance comes mostly
from a more compact control flow, improved data locality, and
reduced memory usage (since memory transfers also are a factor)
than from pure numerical efficiency.

3.2.4. Benchmark Results
The three neural networks described above—with network
sizes, simulation time and time-steps as shown on Table 2—
were run on a recent desktop PC, and simulation run time
was measured in each case. The NEURON simulator was
chosen as a baseline to compare simulation speed, because
it is the predominant simulator for biophysically detailed,
multi-compartmental neuron models. The models were run
on NEURON, using both a direct-to-NEURON export of the
networks as well as the HOC/MOD code that jNeuroML
generates automatically. Although NeuroML2 models can
be run on NEURON directly through the jNeuroML tool,
there is no published information on the computational
efficiency of simulations run through jNeuroML, compared
to running hand-written NEURON code for the same model.

6With the exception of Markov gates for ion channels. In that specific case, the
“sparse” method is employed by jNeuroML, but the kinetic scheme that is present
in cGoC cells has too few state variables to affect overall run time compared to
using a simpler method.
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By running both versions of the model, we compare EDEN’s
computational efficiency directly against NEURON, and also
evaluate experimentally and publish the first data points on
the computational efficiency of running neural networks on
NEURON through jNeuroML.

All three networks used in the benchmarks were originally
generated with a high-level model generation tool; this was
neuroConstruct for the GCL and cGoCmodels, and NetPyNE for
the M1 model. This fact also serves as an indication that model
creators prefer to focus on the pure aspects of their models, than
spend effort on the simulator-specific programming. We checked
the implementations of the networks that these tools export for
NEURON, and found that the implementations are as efficient as
a modeler would reasonably write them to be.

• For the GCL and cGoC models, the HOC and MOD code
was generated by neuroConstruct; however, we inspected the
generated code and found that it is similar to how the HOC
and MOD files are typically written in practice. The only
difference is that the HOC statements to create the network are
laid out as explicit lines, whereas on manual code loops and
procedural (or file-based) generation would have been used
to populate the network. However, once NEURON’s run()
command is run, the simulation is controlled by the hard-
coded NEURON engine, save for the NMODL mechanisms;
whose code, although machine generated, is straightforward
and efficient. As explained below, the time to initialize each
model is excluded from the measurements.

• The original M1 network was generated at runtime and loaded
into NEURON through NetPyNE, which uses the simulator’s
Python API. The MOD file for the Izhikevich cell model was
hand-written and supplied by the model creators, and the
Exp2Syn mechanism for synapses is one of NEURON’s built-
in mechanisms. This use case is thus considered to be how the
model is run directly on NEURON.

Although NEURON can employ multi-process parallelism on a
network simulation, setting up a simulation for this requires non-
trivial, simulator-specific programming code that is difficult to
keep free of errors, and possibly changes in the model’s MOD
files to allow parallel processing. NetPyNE aims to remedy this
but parallelizing a NEURON simulation still relies on non-
trivial custom programming and care by the model creator.
We explored ways to run NEURON in parallel using the
existing NeuroML tooling, but none worked correctly for our
models. Thus, NEURON was run on a single processing thread
for all simulations; this represents the use case of running
a NeuroML model on NEURON directly, without extensive
NEURON-specific modifications. EDEN was also run on a single
thread, allowing a direct comparison of intrinsic computational
efficiency of the two simulators (that is, excluding EDEN’s
performance boost from automatic parallelization).

In this work, in order to focus on the pure computational
efficiency of simulating the networks, we excluded the time
needed to set up the model and to write result data from our
measurements; we only measured the wall-clock time to run the
model over the simulated time. EDEN’s run time was measured
both when using all CPU cores of the PC and when running

on a single CPU thread. These two cases reflect different usage
scenarios of the simulation workload: the first one occurs when
an individual simulation has to be run and the second one when
a large batch of simulations has to be run, as a group. The uses and
the technical considerations for each case are explained below.

The first case is relevant when a neural network is simulated
once, and its behavior is empirically assessed by the experimenter,
who adjusts parameters interactively. This takes place in the first
exploratory steps of development, when the experimenter is still
deciding on the form and type of dynamics of the network. In
this case, a single simulation has to be run as quickly as possible,
using all available computational resources. Thus, EDEN uses all
CPU cores simultaneously to run this simulation.

The second case is relevant after the network’s form andmodel
are determined (or candidates for a more extensive evaluation).
In this case, the model’s properties are explored, by varying its
structural and physiological parameters across simulations, and
measuring high-level metrics for the behavior of the network
(such as type of firing activity and emergent correlations). To
that end, a batch of up to thousands of simulations has to be
run, in order to explore each individual point of the parameter
space. Simulations can then run on a separate CPU thread each,
in parallel. Some technical effort is required to distribute the runs
of the batch among CPU cores but this technique also allows
non-parallel simulators to use multi-core computers effectively.
Even so, this kind of parallelism has its limitations. If parameter
exploration is performed on a relatively large network, the high
memory requirements may prevent launching as many model
instances as CPU cores. In that case, it would be better to assign
multiple CPU cores per simulation. Likewise, a non-uniform
memory hierarchy (common in high-end compute nodes) could
even make it more efficient to run fewer models simultaneously,
with more cores assigned to each.

For all performance benchmarks, the machine used was a
desktop PC, with an Intel i7-8700 3.2 Ghz CPU and 32 GB of
2133 MT/S DDR4 RAM. The CPU has six physical cores and
can run up to 12 (hyper)threads simultaneously. The particular
CPU was selected to reflect the typical, current-day system
available on a researcher’s desk–rather than what is available on a
supercomputer setting, which requires substantial technical effort
to use and is often not available for day-to-day experimentation.
The OS used was Ubuntu Linux 18.04. NEURON, EDEN and the
code generated by both at runtime were all compiled using the
GNU C compiler, version 7.4.

The results for the performance benchmarks are shown in
Table 3. For each simulation in Table 2, the time to run it is
shown when running NEURON directly, NEURON through
jNeuroML, EDEN on one CPU thread, and EDEN on the
whole CPU. The corresponding speedup ratios for EDEN on
a single thread and on all threads over NEURON are also
shown on the table. Figure 10 visualizes the relative time to
run each simulation with EDEN, using one CPU thread or
the whole CPU, against the time to run the same simulation
with NEURON.

We observe that EDEN largely outperforms NEURON while
running on a single CPU thread, and even more so when
the network is simulated across all threads of the CPU. This
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TABLE 3 | Measured run time for benchmarks for NEURON on 1 thread, jNeuroML/NEURON, EDEN on 1 thread, and EDEN using all CPU threads, and respective

speedup ratios.

Benchmark
NEURON
run time (s)

jNML

run time (s)

jNML

speed ratio
EDEN run time (s) EDEN speed ratio

1 thread Full node 1 thread Full node

GCL 145.71 153.03 ×0.95 46.55 8.07 ×3.13 ×18.05

GCL x10 1,828.18 2,758.91 ×0.66 756.20 179.54 ×2.42 ×10.18

M1 5% 13.28 9.20 ×1.44 8.00 1.41 ×1.66 ×9.46

M1 10% 52.99 38.93 ×1.36 25.12 3.98 ×2.11 ×13.32

M1 100% 5,378.23 3,581.39 ×1.50 914.17 378.74 ×5.88 ×14.20

CGoC 152.69 170.36 ×0.90 14.64 2.33 ×10.43 ×65.45

CGoC x10 6,227.36 6,269.13 ×0.99 268.75 85.22 ×23.17 ×73.07

FIGURE 10 | Run time for each neural network considered, for NEURON versus jNeuroML/NEURON and versus EDEN on one CPU thread and on all CPU threads.

For each neural network, benchmark the bar height in the chart is normalized against NEURON’s run time for that benchmark.

is because EDEN was designed from the start to achieve
high computational performance, especially when running
complex, biophysically detailed neurons. In the following, we will
comment on the performance characteristics demonstrated when
running each specific neural network, and reiterate the network’s
properties that affect computational performance.

The GCL network comprises biophysically detailed cells, with
a very small number of compartments per cell. In this case, EDEN
generates fully simplified code kernels for each neuron type; the
code to simulate each individual compartment is laid out as an
explicit, flat sequence of arithmetic operations.

When running the original GCL network, EDEN runs at
3.1 × the speed of NEURON, using one CPU thread. This
level of speedup over NEURON applies when running a batch
of many small simulations; in which case, each simulation
is run on a single CPU thread for best results. By utilizing

all six cores of the CPU, simulation speed further improves
around six times, for a total of 18 × the speed of NEURON.
This shows that when a single simulation has to be run at
maximum speed, EDEN can automatically, efficiently parallelize
the computational work across multiple processor cores to
run faster. For the enlarged version of the network, single-
thread speedup using EDEN is less, to 2.4 × the simulation
speed of NEURON. Speed improves by using all threads, but
the total improvement in speed vs. running NEURON is not
as great as when running the smaller, original-size model
(×10.18 total, compared to ×27.1 previously). It could be that
the processor’s data transfer speed decreases with model size,
and limits computational throughput; however, the fact that
jNeuroML runs significantly slower than NEURON for this
network could indicate that there is an inefficiency involved in
interpreting the NeuroML2 version of themodel. At any rate, this
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relative slowdown of the NeuroML-based simulators warrants
further investigation.

The M1 network comprises Izhikevich-type artificial cells,
with dense synaptic connectivity between the neurons. In
this case, each neuron’s internal model is one Izhikevich-
cell mechanism; EDEN generates a simplified code kernel,
that simulates the neuron’s internal dynamics and synaptic
interaction. When running the 5% version of the network,
EDEN on a single CPU thread runs at 1.7 times the speed of
NEURON, and using all cores it runs at 9.5 times the speed of
NEURON. Running the larger 10% network, these performance
ratios increase to 2.1 × and 13.3 ×, respectively. Finally, when
running the full-sized version of the network, EDEN on one CPU
thread runs at 5.9x the speed of NEURON, and using all cores
it runs at 14.2 × the speed of NEURON. For the reduced-size
versions of the network, EDEN still runs faster than NEURON,
but not by as much as when running the full-sized version.
This might be because the amount of computations and data
involving these simplified neurons is smaller (also due to the
smaller number of synapses per cell, in the M1 network), which
increases the effect of parallelization overhead for EDEN. For
the full-sized network, EDEN’s relative performance improves
steadily. Another interesting observation is that all sizes of the
M1 network run significantly faster as NeuroML models under
jNeuroML/NEURON than as the original NetPyNE/NEURON
model. We speculate that this is because of the MOD file
describing the neurons; the original hand-written one contains
many additional features, calculations and WATCH statements
which are not used in this model. Compared to the original
MOD file, the one that jNeuroML generates automatically is
quite simpler.

Networks solely consisting of point neurons can already be
run with high computational performance, on specialized
simulators like NEST. However, there is the important
class of hybrid SNNs (Lytton and Hines, 2004) that mixes
physiologically-detailed and artificial cells according to the
focus of each model. Such networks have to be run with
general-purpose neural simulators, that support both types of
neuron, which then need to run in tandem. By demonstrating a
consistent high speedup factor even for artificial-cell networks
that are not its main target, EDEN shows that it can run hybrid
neural networks at a greatly increased speed, without running
into performance problems. For pure artificial-cell networks,
EDEN is still relevant for modifications that depart from the
commonly supported models, or take a lot of effort to set up
on high-performance artificial-cell simulators (e.g., require
modifying the simulator’s source code to extend model support).

The CGoC network is made up of Golgi cells, which are
modeled with hundreds of physiological compartments. Since
these cells have too many compartments to apply a flat-code
representation per cell type, as was done for the GCL network,
EDEN works differently in this case. For each type of cell,
the compartments comprising it are grouped according to the
set of physiological mechanisms that they contain. This way,
one code kernel is generated for simulating each different type
of compartment. Then, all compartments of the same type
are simulated as a group using a loop over the same code.

After computing the internal dynamics for each compartment,
the interactions between the compartments, such as the cable
equations, are also computed to complete the time-step. We
notice that, when running either the original or the 10x-enlarged
version of the CGoC network, EDEN exhibits a spectacular
increase in simulation speed compared to NEURON. When
running the original-sized network, the relative simulation speed
over NEURON is 10.4 × using one thread, and 65.5 × using all
threads. In wall-clock terms, this means that a simulation that
used to take two and a half minutes to run with NEURON, takes
14.6 s with EDEN in batch mode, and 2.3 s with EDEN in single-
simulation mode. When running the 10x-enlarged version of the
network, the relative simulation speed using NEURON is 23.2
× when using one thread, and 73.1 × when using all threads.
In this case, wall-clock run times are 1 h 44 min to run with
NEURON, vs. 4 min 29 s with EDEN in batch mode and 1
min 25 s with EDEN in single-simulation mode. The significant
improvement in speedup that EDEN exhibits when running the
cGoC network vs. the other two networks indicates that the
current implementation is best suited for large populations of
highly detailed neurons.

4. DISCUSSION

4.1. Current Neural-Simulator Challenges
Through the process of developing EDEN and our
involvement with the existing neural-modeling literature,
tools and practices, we realized the urgent need
for standards in brain modeling and reproducibility
between simulators.

From the perspective of a computer engineer, there
is an enormous learning curve in designing simulators
for biophysically-detailed neural networks. The technical
know-how on handling the differential equations of neural
physiology is scattered across past publications and program
source code and, even then, is rarely mentioned by name.
A modeling standard could help form a compendium
of all the mathematical concerns that affect simulator
design, and would allow neuroscientists and engineers to
co-operate efficiently.

As mentioned in Section 1, when working with highly
detailed neural networks, swapping among different simulators
during experimentation would take an impractical amount
of effort. This is one of the reasons why there are so
few inter-simulator comparisons of the same model in in
silico neuroscience literature and why they usually only concern
porting a custom simulation code to, or from, a general-
purpose simulator. A standardized, interoperable description
for models would remove this major obstacle and enable
cross-simulator evaluation. There do exist software that can
algorithmically generate neural networks and run them on
different simulators [examples are PyNN (Davison et al., 2009),
and also neuroConstruct via NeuroML export and jNeuroML].
The problem with them is that the model-building “recipes”
they support are few and basic. However, model creators often
use highly custom methods to construct their networks, which
prevents them from using the multi-simulator capability of tools
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to save programming effort. A solution to this conundrum may
be to use an unambiguous description for generated neural
networks, such as NeuroMLv2; then, model creators still have
to convert the networks that their custom methods generate
to the common description, but multi-simulator capability is
much easier to implement since the network to simulate is
described explicitly. Still, this approach allows combining all
types of network-building recipes with all simulation platforms,
without extra programming effort for each combination. The
related field of systems biology reveals a success story in the
CellML (Cuellar et al., 2003) and SBML (Hucka et al., 2003)
standards; however, those standards are still not sufficient for
capturing modern networks of multi-compartment neurons.

Another important aspect of upcoming neuroscience projects
is multiscale modeling; that is, studying a neural structure across
multiple levels of modeling detail. Since this often involves many
different simulators of different model types, it only becomes
practical by adopting extensive standards that capture not only
the different models but also the results of the simulation at
each level. This is necessary in order to reconcile and investigate
the different scales of modeling without writing fully custom,
one-off code for each case.

The integrated TVB modeling platform (Sanz Leon et al.,
2013) is currently the leading tool for multiscale brain
modeling and features a complete methodology for integration
of macroscopic neuroimaging data into models. However, this
methodology is mostly designed around the specific TVB
platform; there is effort to co-simulate with the NEST simulator
specifically, but it is still at an ad-hoc, proof-of-concept stage.

Besides standards, we also advocate for a more rigorous
integration of the various simulators with neuroscientific as well
as general (e.g., Python/Jupyter) workflows, which will speed up
experimental setup and enable seamless transfer of simulation
results across different platforms. This may sound obvious but
it is in fact a crucial element for real-world quick adoption and
utilization of this ensemble of platforms. NEURON, BRIAN2,
GeNN, and Arbor have already caught on to this need; that is
why they all natively support a Python interface, alternative to
their own custom languages (BRIAN2 itself is Python-native).
EDEN already offers such integration through its pyNeuroML-
compatible Python bindings7 and interoperability with the
existing NeuroML tooling infrastructure before and after the
simulation stage.

Regarding the NeuroML community, it is important to stress
the usefulness of providing simulation files along with the
published model descriptions. This is important not only to
fully record the published experiments but also to be able to
reproduce the experiments and cross-validate the results on
multiple simulators. To illustrate, we tried to evaluate EDEN
on as many NeuroML networks as possible but were only able
to find five individual, non-trivial network models in the entire
NeuroML-DB—and important simulation parameters such as
duration, time-step size, and recording probes were only available
in the original code repositories outside NeuroML-DB.

7https://pypi.org/project/eden-simulator/

Finally, from an HPC perspective, the large-network
simulation needs of modern researchers call for the use of
computer clusters. However existing simulators either offer
partial support for clusters or require advanced programming
from the end user to work. Automatic, complete support for
clusters must therefore be a development priority, which the
simulator designers are best suited to address. EDEN offers
such built-in automation and will continue improving on
its performance.

4.2. The EDEN Potential and Next Steps
The evaluation presented makes it abundantly clear that EDEN
delivers on its triple mission toward high performance, high
model generality and high usability. This first version of EDEN
was focused on ensuring that all kinds of NeuroML models are
supported, rather than optimizing the performance of a limited
subset thereof. Thus, the performance results seen in this work
form a minimum guaranteed baseline of performance, on top of
which future improvements can boost performance even further.

Even so, we showed that this performance baseline provides,
for real-world neural networks drawn from NeuroML-DB, a
speedup ratio over NEURON of 2∼23× per CPU thread
and 9∼73× in total, on an ordinary desktop PC. We also
demonstrated that no technical expertise is required for
deploying and parallelizing the simulations of small and large
networks alike, which presents a great incentive for the quick
adoption of EDEN by the neuroscientific community.

All its achievements notwithstanding, EDEN is far from a
concluded simulator. Our future plans involve work in various
directions. Below, we enumerate a few crucial ones:

1. Validate further the EDEN architecture through integrating
existing, best-in-class code kernels from the community
for special cases (Kasap and van Opstal, 2018; Miedema
et al., 2020). Characterize performance etc. on various
types of neural networks so as to determine further
performance margins.

2. Boost the EDEN general-purpose backend by porting it to
accelerator hardware, e.g., on GPUs and graph processors.
Employ graph-theory methods for problem mapping in
order to deploy EDEN on heterogeneous (e.g., CPU-GPU)
platforms and reduce communication overheads.

3. Study the structure and communication patterns of spiking
neural network models used in practice, and develop
sophisticated strategies to map large simulated networks to
computer clusters most efficiently.

4. Add further extensions to EDEN for high-end HPC
application, such as support for the SONATA data format and
for simulation checkpointing.

5. Research and refine innovative numerical integrators,
to improve computational parallelism and maintain
numerical accuracy on challenges like cable equations
and kinetic schemes.

6. Evaluate and propose extensions to EDEN and NeuroML
that enable direct interfacing with arbitrary data sources
such as video stimuli, simulated environments to
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allow training experiments, and dynamic clamps for
hybrid experimentation.

5. CONCLUSION

The large scale, fast pace and ample diversity of
in silico neuroscience necessitates simulation platforms that offer
high computational performance alloyed with reproducibility,
low complexity in model description and a wide range of
supported mechanisms. To those ends, we have developed
EDEN, a novel neural simulator that natively supports the
entire NeuroML v2 standard, manages the simulation’s technical
details as well as multi-node and multi-core cluster resources
automatically, and offers computational performance without
precedent in the scope of general-purpose neural simulators.
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