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The use of multi-site datasets in neuroimaging provides neuroscientists with more

statistical power to perform their analyses. However, it has been shown that the

imaging-site introduces variability in the data that cannot be attributed to biological

sources. In this work, we show that functional connectivity matrices derived from

resting-state multi-site data contain a significant imaging-site bias. To this aim, we

exploited the fact that functional connectivity matrices belong to the manifold of

symmetric positive-definite (SPD) matrices, making it possible to operate on them with

Riemannian geometry. We hereby propose a geometry-aware harmonization approach,

Rigid Log-Euclidean Translation, that accounts for this site bias. Moreover, we adapted

other Riemannian-geometric methods designed for other domain adaptation tasks and

compared them to our proposal. Based on our results, Rigid Log-Euclidean Translation

of multi-site functional connectivity matrices seems to be among the studied methods

the most suitable in a clinical setting. This represents an advance with respect to

previous functional connectivity data harmonization approaches, which do not respect

the geometric constraints imposed by the underlying structure of the manifold. In

particular, when applying our proposed method to data from the ADHD-200 dataset,

a multi-site dataset built for the study of attention-deficit/hyperactivity disorder, we

obtained results that display a remarkable correlation with established pathophysiological

findings and, therefore, represent a substantial improvement when compared to the

non-harmonization analysis. Thus, we present evidence supporting that harmonization

should be extended to other functional neuroimaging datasets and provide a simple

geometric method to address it.

Keywords: multi-site dataset, resting-state, functional connectivity, harmonization, Riemannian geometry,
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1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) has become
one of the leading methods to conduct research on human

brain mapping. fMRI acquisitions allow the discovery of brain
activation patterns, which help to understand the brain processes
behind cognition or task performance. A relevant paradigm of
acquisition is called resting-state fMRI, where the subject’s brain
is studied without performing any specific task. Resting-state
fMRI made possible to identify intrinsic functional connectivity
and resting-state networks in the brain (van den Heuvel
and Pol, 2010; Smitha et al., 2017), that is, distant brain
regions that exhibit a temporal correlation in their blood-
oxygen-level-dependent (BOLD) signals and are thought to
activate in a synchronous way. Moreover, resting-state functional
connectomics has provided new insights into brain organization
in disease states, since specific changes in connectivity patterns
have been directly correlated to multiple disorders (Greicius,
2008; Du et al., 2018). These alterations in connectivity are
useful to identify biomarkers or to gain more knowledge on
these neurological or psychiatric disorders. A very informative
approach to summarizing whole-brain functional connectivity
consists of the construction of functional connectivity matrices.
It is based on the parcellation of the brain into some predefined
regions of interest (ROIs) and the comparison of the BOLD time
series associated with these ROIs. Usually, this comparison is
made in terms of a pair-wise Pearson’s correlation coefficient
between ROI signals (even though partial correlations can also
be used Kim et al., 2015). After the construction of functional
connectivity matrices from a collection of subjects, one can
identify entry-wise statistically significant differences between
subsamples of these subjects (for example, patients and healthy
controls), usually by performing univariate statistical tests on
each entry separately. Therefore, one is able to spot key functional
connections that display differences according to the condition
of the subject and, hopefully, playing an important role in the
disease state.

The fact that functional connectivity matrices are constructed
using correlation coefficients makes them belong to a particular
subset of matrices called symmetric positive-definite (SPD)
matrices, which are symmetric matrices with all eigenvalues
strictly greater than zero. This set of matrices does not form
a vector space. This property implies that some conventional
Euclidean operations on SPD matrices, such as subtraction of
two SPD matrices, do not yield another element of the set
of SPD matrices. Even though one can perform Euclidean
operations with them, resulting matrices do not take into
account the underlying geometry of the space of SPD matrices.
Mathematically, the space of SPD is what is known as a
manifold. Roughly speaking, a manifold is a curved space
that locally looks like a flat (Euclidean) space. Although one
cannot perform Euclidean operations with elements (points)
of the space, there exists an extremely powerful mathematical
formalism, known as Riemannian geometry, that deals with
manifolds and allows computations respecting their underlying
geometry. Since functional connectivity matrices are SPD
matrices, it is preferable to perform operations on them that take

into account their underlying geometry, rather than applying
standard Euclidean methods (You and Park, 2021). Geometry-
aware approaches allow, for example, substantial increases in
classification performance of functional connectivity matrices
and accurate comparison of connectomes (Varoquaux et al.,
2010; Ng et al., 2014; Dodero et al., 2015; Slavakis et al., 2017).
Nevertheless, the potential of Riemannian geometric methods
has not been fully recognized yet, though their consideration
in functional studies is increasing. One remarkable contribution
to the spread of these methods has been recently made by
You and Park (You and Park, 2021), where they introduced
SPDtoolbox, a MATLAB-based toolbox that offers the possibility
of exploiting the geometry of functional connectivity matrices
in a straightforward manner. One very relevant contribution
put forward by You and Park (2021) is the proposal of a
geometry-aware permutation testing framework that allows the
identification of statistically significant differences in functional
connectivity between groups.

Given the need for large cohorts to carry out statistical
studies, together with the advent of big data and machine
learning, neuroimaging datasets have increased their size usually
by collecting data acquired at different sites. It is known
that the use of different scanners, acquisition protocols, or
processing pipelines introduces variability in the data that cannot
be attributed to the biological variability of the subjects. To
overcome this issue, the standardization of acquisition and
processing protocols plays a key role. Nevertheless, it has been
shown that some imaging-site bias remains in the data even
when standardizing protocols and pipelines (David et al., 2013).
Furthermore, from a machine learning perspective, classification
might be more difficult because unwanted variability prevents
the algorithm from learning the adequate hypothesis function
and also because the learned biased hypothesis might not have
the necessary generalization power to unseen examples, affecting
classification performance (Brain and Webb, 2002). One well-
known approach to harmonizing neuroimaging data is ComBat
(Johnson et al., 2006). Essentially, ComBat involves subtracting
batch variability by modeling it as a deviation from the estimated
influence of known covariates of the model. By taking into
account the effect of covariates, one can control for the other
sources of variability other than the batch (site) effect. In the
field of neuroimaging, the ComBat method was shown to remove
imaging-site effects in diffusion tensor imaging acquisitions and
cortical thickness studies (Fortin et al., 2017, 2018; Beer et al.,
2020). Later, ComBat was adapted to functional acquisitions and
their derived functional connectivity matrices (Yu et al., 2018).

Nevertheless, this approach does not take into account
the geometry of the space of SPD matrices and, therefore,
it cannot be considered to be operating in a geometry-
constrained manner. In fact, the proposed adaptation of
ComBat to functional connectivity matrices (Yu et al., 2018)
only considers that the resulting harmonized matrices need
to be symmetric. Nevertheless, positive-definiteness is not
enforced and, therefore, resulting matrices do not belong
in general to the original space of SPD matrices. Positive-
definiteness is a geometric constraint and precisely defines
the manifold of SPD matrices as a subspace of the space
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of symmetric matrices. Any method that operates on SPD
matrices and respects their symmetry and positive-definiteness
can be regarded as a geometry-constrained method. Although
site harmonization using Riemannian methods has not been
directly addressed, some proposals have been put forward to
deal with related procedures. In particular, there have been
previous works on the use of manifold-constrained operations to
develop domain adaptation procedures specifically for functional
data (Ng et al., 2014; Yair et al., 2019). However, in their
case, domain adaptation was performed targeting inter-session
variability (that is, differences arising from acquiring data
from the same subject in different sessions, possibly with
intervention in-between).

Our intention in this work is to use the rich formalism of
Riemannian geometry to geometrically characterize imaging-
site bias and to propose methods to remove it (at least
partially) from multi-site functional connectivity matrices. To
this aim, we will adapt two previous contributions to domain
adaptation of functional data and we will also propose a
method from our own, called Rigid Log-Euclidean Translation.
These operations will be particularized to ADHD-200 (ADHD-
200 Consortium, 2017), a multi-site dataset of resting-state
acquisitions from patients with attention-deficit/hyperactivity
(ADHD) and healthy controls (HC). Furthermore, using the
geometry-aware permutation testing algorithm proposed in You
and Park (2021), implemented in SPDtoolbox, we will analyze
the impact of imaging-site bias on the results that can be
distilled from functional connectivity matrices, and we will
correlate them with established pathophysiological findings in
ADHD. In short, we intend to provide a simple but powerful
geometrically-grounded framework for multi-site functional
connectivity matrices harmonization.

2. MATERIALS AND METHODS

2.1. Functional Connectivity Matrices From
ADHD-200
The ADHD-200 sample (ADHD-200 Consortium, 2017) is the
result of a joint international effort that provides researchers
worldwide with openly-shared resting-state and structural
acquisitions from 8 different sites, comprising 362 children
and adolescents diagnosed with ADHD and 585 typically
developing controls, along with their phenotypic data (ADHD
subtype, ADHD score, IQ, medication status, etc). In an
effort to standardize the analyses carried out with ADHD-
200, three different preprocessing pipelines for resting-state
acquisitions were proposed, being also preprocessed data made
publicly available (Bellec et al., 2017). One of this preprocessing
strategy, the Athena pipeline, was performed by Craddock
(Craddock, 2011). The relevant derived data for our present
work are the extracted ROI time courses from resting-state
acquisitions. As previously mentioned, the computation of
the Pearson’s correlation coefficient between time courses
allows the construction of functional connectivity matrices.
Craddock provided researchers with time series extracted using
different parcellation schemes. In particular, Craddock derived

specific functional parcellations for ADHD-200 data from their
resting-state acquisitions, giving rise to a parcellation into 190
ROIs (CC200).

For our present work, we have used a subset of functional
connectivity matrices constructed using the CC200 parcellation
scheme. Specifically, our dataset has consisted of functional
connectivity matrices from 80 patients with ADHD and 80 HC.
Their acquisitions have been randomly pooled (avoiding any
kind of matching in order to maximize intrinsic variability) from
four different sources: 20 ADHD/20 HC from Kennedy Krieger
Institute (KKI) (Johns Hopkins University), 20 ADHD/20 HC
from the NeuroIMAGE sample (NIM), 20 ADHD/20 HC from
New York University Child Study Center (NYU), and again 20
ADHD/20 HC from Peking University (PKG). Therefore, we
have worked in total with 160 functional connectivity matrices,
with dimensions of 190× 190.

2.2. Riemannian Geometry of SPD Matrices
Symmetric positive definite (SPD) matrices are the set of
symmetric matrices with all eigenvalues strictly greater than zero.
This property is equivalent to the requirement that, for an n × n
symmetric matrix 6 to be positive definite, xT6 x > 0 for all
non-zero x ∈ R

n. The set of SPD matrices forms a manifold,
a topological space that locally looks like Euclidean space. At
each point p of some manifold M, one can construct a tangent
space TpM, generated by the tangent vectors of curves crossing
p, which is a vector space and approximates the manifold in the
neighborhood of p. In our present case,M is themanifold of n×n
SPDmatrices, which we will denote by Sym+

n , where each point is
an SPD matrix, and one can show that at every point p ∈ Sym+

n ,
TpSym

+
n is the space of symmetric n× nmatrices, Symn.

Riemannian geometry provides a framework that allows
one to regard the manifold as a metric space. Specifically, a
Riemannian manifold is a smooth manifold equipped with a SPD
tensor field called metric tensor. The metric tensor g at every
point p ∈ M is a map

gp : TpM× TpM → R, (1)

constructed as a generalization of the canonical dot product in
Euclidean space and that can be used to characterize the geometry
of the manifold. Two other important maps in Riemannian
geometry are the exponential map expp and the logarithmic map
logp at some point p ∈ M,

expp : TpM → M, logp :M → TpM. (2)

Given a tangent vector v ∈ TpM, expp(v) results in a projection
of v onto the neighborhood of p in the manifold M by defining
a geodesic (i.e., the shortest length curve on the manifold) in
the direction of v. The logarithmic map performs the inverse
operation, mapping points in the manifold to vectors in the
tangent space of p.

Particularizing previous notions to our case, Pennec et al.
(2006) introduced one of the most used geometric Riemannian
structures on the manifold of SPD matrices, Sym+

n , the affine-
invariant Riemannian metric (AIRM). They proposed the
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following metric tensor at some point 6 ∈ Sym+
n (a SPD

matrix) applied on two tangent vectors X,Y ∈ Symn (two
symmetric matrices):

g6(X,Y) : = Tr(6−1X6−1Y), (3)

where 6−1 is the matrix inverse and Tr(·) is the usual trace
operator. Associated to this metric, the exponential map at 6

acting on a tangent vector V ∈ Symn and the logarithmic map
at 6 acting on a point 5 ∈ Sym+

n read

exp6(V) = 6
1
2 Exp(6− 1

2V6− 1
2 )6

1
2 ∈ Sym+

n , (4)

log6(5) = 6
1
2 Log(6− 1

2 56− 1
2 )6

1
2 ∈ Symn, (5)

being Exp(A) and Log(A) the exponential and logarithm
of matrix A, respectively, which can be computed after
eigenvalue decomposition A = UDUT as Exp(A) =

U exp(D) UT , Log(A) = U log(D) UT , where U is the
eigenvector matrix and D the diagonal eigenvalue matrix, and
exp(D) (log(D)) denotes the application of the exponential

(logarithmic) function to the eigenvalues. A
1
2 = Exp( 12Log(A)) is

the unique SPD square root of the SPD matrix A. Finally, under
the AIRM framework, the geodesic distance between two SPD
matrices 6 and 5 is

d2(6,5) = ||Log(6−1/2 56−1/2)||
2
F (6)

with ||A||2F =
∑

i

∑

j |Aij|
2, the (squared) Frobenius norm of a

matrix A. Arsigny et al. (2005) proposed another framework to
account for the Riemannian structure of the manifold of SPD
matrices. This framework, known as Log-Euclidean Riemannian
Metric (LERM), consists basically of embedding points of the
manifold in a Euclidean space by using the matrix logarithm
Log(·). Standard Euclidean computations can be performed
on SPD matrices’ logarithms since they have been mapped to
Euclidean space. Under LERM, the geodesic distance between
two SPD matrices 6,5 is simply

d2(6,5) = ||Log(6)− Log(5)||2F , (7)

that is, the Euclidean distance of matrix logarithms. The
computation of these distances is directly implemented
in SPDtoolbox.

A useful object in the manifold that can be constructed
given a collection of SPD matrices 61,62, ...,6N is their Fréchet
mean. The Fréchet mean is the generalization of the concept
of centroid or center of mass to more general metric spaces
other than Euclidean space, giving a sense of centrality measure.
Mathematically, the Fréchet mean of the previous set of matrices
is defined as

6 = argmin
6∈M

N
∑

i=1

d2(6,6i), (8)

that is, the SPD matrix 6 that minimizes the sum of the squared
distances from itself to the collection of matrices. The Fréchet

mean depends on the chosen distance function in the manifold
and, therefore, the Fréchet mean under LERM and AIRM, in
general, do not coincide. When considering AIRM, the Fréchet
mean has to be computed by an optimization procedure. In
Pennec (2006), the author proposed a Newton gradient descent
algorithm which, after some mean initialization, consists of
iterating the following update rule to get successive estimates
6t → 6t+1 until convergence:

6t+1 = exp6t

(

1

N

N
∑

i=1

log6t
(6i)

)

. (9)

The algorithm involves the computation of several matrix
logarithms, square roots, inverses and exponentials at each
iteration, resulting in a computationally expensive process,
especially when dealing with a large number of samples. On the
contrary, under LERM, the Fréchet mean has a closed form that
enables a very fast computation:

6 = Exp

(

1

N

N
∑

i=1

Log(6i)

)

, (10)

which reduces to the obtention of the Euclidean mean of the
matrices’ logarithms (vectors) and its projection back to the
manifold via an exponential map. Again, both Fréchet mean
computation methods are directly implemented in SPDtoolbox.

2.3. Geometry-Aware Permutation Testing
Permutation tests are non-parametric statistical tests that rely on
the randomization of the observed data to assess the statistical
significance of group differences (Nichols and Holmes, 2001). In
our case, we have collected two sets of functional connectivity
matrices, one with N+ patients with ADHD {6+

i | i = 1, ...,N+}

and the other one with N− healthy controls {6−
i | i = 1, ...,N−}.

The philosophy behind permutation testing is to make a very
large number of random permutations of the N subjects into the
two subgroups and to sample the distribution of values of some
statistic under the null hypothesis, that is, under the assumption
that the allocation of a subject into one of the two groups is
arbitrary. This procedure allows the obtention of the approximate
null distribution of the statistic and the assessment of how
extreme this observation is with respect to the null distribution
of values. Specifically, one can use the definition of p-value to
reject the null hypothesis, i.e., the probability to obtain a value for
the statistic as or more extreme than the one observed, under the
assumption that the null hypothesis is correct. Therefore, under
the permutation testing approach, the p-value is the proportion of
sampled permutations where the statistic is greater than or equal
to the originally observed statistic.

The geometry-aware algorithm proposed in You and
Park (2021) and implemented in SPDtoolbox has the
following steps:

1. Compute Fréchet mean 6
+
and 6

−
for patients with ADHD

and healthy controls, respectively, and take |6
+
− 6

−
| ≡

|6
+
− 6

−
|obs (the entry-wise absolute value of the difference

matrix, the observed statistic of the n× n entries).

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 769274

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Simeon et al. Riemannian-Geometric Harmonization of Functional Connectivity Matrices

2. For T iterations, perform permutations of the subjects of
sizes N+ and N− as previously described, recompute group
Fréchet mean, and record the value of the statistic at
iteration t, |6

+
− 6

−
|t .

3. For each entry ij, compute its corresponding p-value by
taking the ratio between the number of iterations giving a

statistic greater than or equal to (|6
+
− 6

−
|obs)ij and the total

number of iterations T.

At this point, assuming some confidence level α, one can reject

the null hypothesis for entries with p-values lower than α. It is
worth noting that the algorithm tests for statistical significance

in absolute difference and, therefore, cannot provide information
on the positive or negative character of the difference. The
output of the algorithm in our case will be a 190 × 190

matrix with p-values as entries. Nevertheless, we will not
rely on a single permutation test on the 80 ADHD/80 HC
subjects to perform our analyses. Instead, we have decided to

perform 100 separate permutation tests on 10 ADHD/10 HC
randomly sampled subjects in each experiment. The reasons
for following this approach are first, taking into account the

philosophy behind permutation testing, performing a reliable
permutation test on 80 ADHD and 80 HC is not computationally
tractable, since the number of ways of dividing 160 subjects

into two separate groups of 80 are 160!/(80! 80!) ∼ 1047

and, therefore, by no means one can sample a large enough
fraction of permutations to rely on the obtained distribution of

statistic values; second, by randomly pooling 10 ADHD/10 HC
100 times, regardless of imaging site, one can probe different
combinations of sitemembers and site influence on the variability
of the results; and third, one can assess the relevance of salient
connections and nodes by checking for coincidences between
independent permutation tests. Taken together, this treatment
allows evaluating the power of harmonization methods, in the
sense that when data is harmonized, one expects more sensitivity
(coherence, coincidences) in statistically significant results when
using randomly sampled subjects from different sites. Given
these aforementioned points, we have operated in the following
manner: we have performed 100 separate permutation tests, each
one of 1,000 iterations, on 10 ADHD/10 HC randomly sampled
subjects; after each test, we have identified the entries with p <

0.001 and declared them as significant; at this point, we have
been left with 100 binary matrices of dimensions 190× 190 (one
for each separate test) with ones in the location of significant
entries and zeros elsewhere; and, finally, we have summed these
binary matrices to obtain a symmetric 190 × 190 matrix, which
we call F, with Fij being the number of times the connection
ij has been declared significant, that could be regarded as a
2-dimensional histogram.

When working at a significance level of α = 0.001 for
each individual permutation test, we are assuming that, at
most, the probability of mistakenly declaring an entry as
statistically significant by chance is 0.001 (incorrect rejection of
the null hypothesis). However, when performing 100 separate
experiments and considering jointly their results (as in the
frequency histograms), this effect can be accumulated. As a
simplification, we can model each separate experiment as a

random Bernoulli experiment: the probability of mistakenly
declaring each entry as significant by chance in a separate
experiment is 0.001. The concatenation of several independent
Bernoulli experiments follows the binomial distribution.
Therefore, we can use the binomial distribution to compute the
probabilities for each separate entry to be declared significant
by chance once, twice, 3 times, etc. In our case, considering a
probability of 0.001 and 100 trials, the binomial distribution
predicts that in the final frequency matrix, the probability
for each entry to appear once is 0.09. That is, each entry
has a probability of 9% of appearing once in the frequency
histogram by chance, which indeed means that at this frequency
level (Fij = 1), significance is compromised. However, for
entries Fij ≥ 2, the (complementary cumulative) probability is
≈ 0.005, and for entries Fij ≥ 3, the resulting (complementary
cumulative) probability is ≈ 0.00015. As a consequence, one
can threshold the histogram matrix Fij at different frequencies
depending on the confidence that one wants to assume.

Finally, using these notions and taking into account that
the previously described procedure will be applied to different
imaging-site harmonization methods introduced in Section 2.4,
we define a simple quantity that measures the power of a method
to specifically point to some entries by accumulating counts
across the 100 separate experiments. We call this measure the
sensitivity of the method. At a given frequency n, the sensitivity
S(n) was defined as the ratio between the number of entries such
that Fij ≥ n and the number of entries such that Fij ≥ 1.

2.4. Geometry-Aware Site Harmonization
As mentioned in the Introduction, imaging site has an impact
on the acquisition of functional data and their analyses. We
show that this is indeed the case for ADHD-200, even when
using the same preprocessing pipeline (Wang et al., 2017). We
also prove that, in our case, the principal difference stems
from the biased and site-clustered distribution of connectivity
matrices in the SPD manifold. Some geometry-aware domain
adaptation approaches have been proposed, even though not
targeting imaging-site variability. We can distinguish two
different harmonizationmethods that will be analyzed separately:
matrix whitening at identity and parallel transport. When being
described, they will be adapted to our dataset of patients with
ADHD {6+

i | i = 1, ...,N+} and healthy controls {6−
i | i =

1, ...,N−} and to our imaging-site harmonization aim.

2.4.1. Matrix Whitening at Identity
Suppose our dataset can also be divided into collections of

matrices {6
(k)
i }, with k labeling the imaging site, where resting-

state data from subject i was acquired. If we denote by 6
(k)
,

the AIRM Fréchet mean of matrices obtained from site k, the
matrix whitening approach reduces to applying the following

transformation to all 6
(k)
i (Ng et al., 2014; Yair et al., 2019):

6
(k)
i → (6

(k)
)−

1
2 6

(k)
i (6

(k)
)−

1
2 . (11)

One can show that this transformation is equivalent to a
displacement of the matrices such that their Fréchet mean is
the identity matrix. To this aim, consider C ∈ GL(n), that is,
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an invertible n × n matrix. The following properties hold when
considering the AIRM framework (Yair et al., 2019):

1. The geodesic distance (6) between two SPD matrices 6 and
5 is invariant under 6 → C6CT and 5 → C5CT , i.e.,
d(C6CT ,C5CT) = d(6,5).

2. Given some Fréchet mean 6(61, ...,6N), then
6(C61C

T , ...,C6NC
T) is equivalent to C6(61, ...,6N)C

T .

Transformation (11) can be expressed as 6
(k)
i → C6

(k)
i CT

with C = (6
(k)
)−

1
2 = CT , following the last equality from the

fact that, if 6
(k)

is SPD, (6
(k)
)−

1
2 is also SPD and, therefore,

(

(6
(k)
)−

1
2
)
T

= (6
(k)
)−

1
2 . By virtue of the first property, intra-

site geodesic distances are preserved, and the Fréchet mean

becomes 6
(k)

→ (6
(k)
)−

1
2 6

(k)
(6

(k)
)−

1
2 = I, following from

the second property.
In Ng et al. (2014), authors followed this approach and applied

the logarithmic map Log(·) to project transformed SPD matrices
to the common tangent space at identity before performing
classification. To our understanding, invariance of intra-site
distances is a desirable property for harmonization since it is
essential to preserve intra-site variability, presumably coming
from biological sources (that is, disease, age, gender, medication
status, etc). However, we think that, in our setting, it might be
a priori more cautious not to remove information about the
original location of matrices in the manifold by displacing them
to the neighborhood of the identity matrix, since it could also
remove relevant clinical information.

One could also consider the use of two different 6
(k)
, one

for patients and another one for healthy controls since one
expects their Fréchet mean to be different. However, the use
of a single site Fréchet mean to perform the transformation
is based on two considerations. On the one hand, the use of
different transformations for patients with ADHD andHCwould
violate the preservation of all pair-wise distances within the
site, since the matrix C would be different depending on the
condition of the subjects. Distances among HC on one side and
distances among patients with ADHD on the other side would be
preserved, while distances between HC and patients with ADHD
would not. This fact could be regarded as the introduction of
an uncontrolled source of variability between conditions. On
the other hand, it would be desirable to have a harmonization
approach that does not depend on the availability of knowledge
about subjects’ conditions, which would be required when
using different transformations. For example, as stated in the
Introduction, domain adaptation has been proven useful when
training classifiers. Ideally, when the classifier is reliable enough,
one would like to assign the condition to a subject without
knowing it a priori. Therefore, the use of a single transformation
would allow the harmonization of the data prior to the use of
the classifier.

2.4.2. Parallel Transport
Elements from two different tangent spaces cannot be directly
compared. To compare them in an appropriate manner, one
needs to perform what is called parallel transport. In short,

parallel transport refers to transporting a tangent space at a point
along a geodesic distorting vectors of this tangent space as less
as possible. In Yair et al. (2019), the authors provide an excellent
and rigorousmathematical description of parallel transport in the
manifold of SPD matrices. For harmonization and comparison
of SPD matrices, we are interested in transporting and projecting
them to a common tangent space.

The main line of reasoning applied to our case is as follows:

1. Project matrices from a given site k to the tangent space of

their site Fréchet mean6
(k)

via logarithmicmap log
6

(k) (6
(k)
i ).

2. Parallel transport them to the tangent space of a common
reference point 60.

3. Reproject the parallel transported matrices back to the
manifold via exponential map exp60

(·).

One of the main results of Yair et al. (2019), is that all this process

can be performed by the transformation 6
(k)
i → C6

(k)
i CT with

C =
(

60(6
(k)
)
−1

)

1/2

. Therefore, properties 1 and 2 presented in
the case of matrix whitening also hold here: intra-site distances

are preserved and the Fréchet mean becomes C6
(k)
CT .

Then, one has to decide which is the appropriate reference
point 60. Ng et al. (2014) used 60 = I to compare the
classification performance between the present method and
matrix whitening at identity, although they performed parallel
transport numerically (Schild’s ladder). In this case, C = CT =

(6
(k)
)
−1/2

and the Fréchet mean reduces to I (notice that the
transformation is exactly equivalent to matrix whitening), arising
the same previously mentioned concerns about the original
location in the manifold. On the other hand, Yair et al. (2019)
suggest using as the reference point60 = 6, the Fréchet mean of

site means {6
(k)
}. This approach takes into account the original

location of SPD matrices in the manifold through the global
mean6. Right after this step, Yair et al. performmatrix whitening
using 6. We will refer to this whole process proposed by Yair
et al. as simply parallel transport (even though proper parallel
transport is the step performed after projecting to the site mean’s
tangent space and before reprojecting back to the manifold at the
reference point). Notice that the use of a single reference point
60 in our setting, both for patients with ADHD and HC, can be
justified by taking into account the same considerations from the
previous subsection.

A priori, matrix whitening and parallel transport are different
transformations. Nevertheless, one can show that under the

condition
[

6,6
(k)]

≡ 6 6
(k)

− 6
(k)

6 = 0, ∀k, that is, when
site means commute with the global mean, parallel transport and
matrix whitening are equivalent frameworks. This property is
proven in the Annex, and it will have an impact on the results
we obtain.

2.4.3. Rigid Log-Euclidean Translation
We hereby propose a method for site harmonization, which we
call Rigid Log-Euclidean Translation (RLET), that has the two
a priori desirable properties stated above: preservation of intra-
site geodesic distances, thus retaining biological variability, and
consideration of the original location of correlation matrices
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in the manifold. Site bias could also impact the distribution of
matrices around the site mean, but this would require modeling
site effects on the distribution of matrices around their mean.
The proposedmethod is therefore a geometrically-motivated first
order approximation. We will work under the LERM framework,
which allows a purely Euclidean treatment of the logarithm of
the matrices. The steps of Rigid Log-Euclidean Translation are
as follows:

1. Compute the logarithm of site Fréchet mean for all k

Log(6
(k)
) =

1

N(k)

∑

i∈(k)

Log(6
(k)
i ), (12)

where the sum runs through all subjects in site k, and N(k) is
the total number of subjects in site k.

2. Compute the logarithm of the global mean 6 defined as

Log(6) =
1

K

∑

(k)

Log(6
(k)
), (13)

with K being the number of sites.
3. Apply the following transformation to the entire collection of

matrices {6
(k)
i } given their k

Log(6
(k)
i ) → Log(6̃

(k)
i ) = Log(6)+

(

Log(6
(k)
i )−Log(6

(k)
)
)

.
(14)

4. Use the exponential map to obtain the modified (site-

harmonized) SPD matrices Exp
(

Log(6̃
(k)
i )

)

= 6̃
(k)
i .

When taking into account that after applying the logarithmic
map to the original matrices, we obtain vectors of the Euclidean
space Rn×n, the above transformation is merely a translation of

the original matrices such that transformed site means 6̃
(k)

are
identically the global mean 6. In fact, it is a rigid translation of
matrices logarithms, representing an isometry of the Euclidean
metric, and therefore preserving Euclidean distances in the
Euclidean space R

n×n. These properties are formally proven in
the Annex.

Since geodesic distances under the LERM framework are
these Euclidean distances, intra-site geodesic distances are
invariant under the proposed transformation, and the Rigid Log-
Euclidean Translation approach preserves intra-site variability.
The transformation also allows retaining information about the
original location in the manifold through the global mean. On
the other hand, one can straightforwardly modify this approach
to rigidly transport matrices to I, by removing the term Log(6)

from the transformation rule. In this case, Log(6̃
(k)
) = 0 =

Log(I),∀ k, (see Annex) and resulting relative positions between
all matrices in Euclidean space are the same as when translated
to 6. We will refer to these two approaches as RLET(6)
and RLET(I). RLET(I) can be useful to compare different
harmonization strategies at identity and to probe differences
coming uniquely from manifold location.

2.5. Pair-Wise Distances and
Low-Dimensional Embedding
Even though all the concepts presented above are geometrically
motivated, the major difficulty for bias characterization stems
from the fact that we are dealing with a very high-dimensional
space (in our case, d = n(n + 1)/2 = 190(190 + 1)/2 =

18, 145). Therefore, the extraction of insights from this space is a
challenging task. However, since our manifold is equipped with a
metric and a distance measure (i.e., the manifold is Riemannian),
we can construct a useful object that can summarize important
geometric information: the pair-wise distance matrix Dij =

d(6i,6j) between functional connectivity matrices (subjects).
In fact, this approach of using pair-wise distances or pair-
wise similarities is common in unsupervised techniques of
dimensionality reduction for visualization purposes, such as
multidimensional scaling (MDS) or t-distributed stochastic
neighbor embedding (tSNE).

We will focus on t-distributed stochastic neighbor embedding
(tSNE), since it was the method of choice in the previous
works we have adapted for site harmonization. tSNE (van der
Maaten and Hinton, 2008) is a nonlinear dimensionality
reduction technique that maps a data point in high-dimensional
space to a point in 2-dimensional or 3-dimensional Euclidean
space. Different from other nonlinear dimensionality reduction
approaches, tSNE has a probabilistic nature. Originally, the
similarity metric of the algorithm was taken to be the pair-wise
Euclidean distance between high-dimensional points, although
currently different metrics can be used depending on the task
at hand. However, the usual Euclidean distance is a good
choice in our case: by using as high-dimensional inputs the
logarithms of the matrices, the similarity measure between
two different matrices will turn out to be the LERM geodesic
distance. As a consequence, the low-dimensional embedding
and its visualization will display similarity given by the pair-
wise distribution of matrices in the manifold (under the LERM
framework) with very high probability. At this point, one is
able to assess the distribution of matrices in the manifold and,
therefore, to characterize original geometric imaging-site bias
and evaluate the effect of harmonization methods.

2.6. Functional Analysis
One can perform comparative functional analyses between
methods in terms of resting-state networks instead of specific
ROI-to-ROI connections. To this aim, we will use the Yeo’s 17-
networks atlas (Yeo et al., 2011), where the brain is parcellated
into 17 different resting-state networks. We have further reduced
the number of networks by using the following proposed
correspondence: 1 and 2 correspond to the visual network (VIS);
3, 4, and 14 to the sensorimotor network (MOT); 5 and 6 to
dorsal attention (DA); 7 to ventral attention (VA); 8, 11, 12, and
13 to frontoparietal network (FP); 9 and 10 to limbic (LIM); and
15, 16, and 17 to default mode network (DMN). However, Yeo’s
parcellation does not include important subcortical regions that
are included in our ROIs (CC200 parcellation, see Introduction).
Therefore, and taking into account the results we have obtained,
we have introduced the brain-stem (BS), the cerebellum (CRB),
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and basal ganglia (BG). In total, we are left with 10 different
functional components.

Once we have the functional parcellation of the brain, we will
assign each ROI to its corresponding functional component by
using the ROI’s coordinates. This will allow us to initially focus
our attention on inter-network and intra-network interactions
since the individual study of salient connections would be
intractable when the number of detected significant differences
in ADHD and HC connectomes is large. When thresholding
frequency matrices Fij at higher frequency levels, the number
of samples will be reduced and individual treatment of these
differences will be possible.

3. RESULTS

3.1. Pair-Wise Distances and Distribution
of Matrices
We have constructed the aforementioned pair-wise distance
matrices Dij = d(6i,6j) that retain information on
the high-dimensional distribution of the matrices in the
manifold. Specifically, we have computed pair-wise distances
for original (non-modified) matrices Dij

(0) both using AIRM
and LERM distances, harmonized matrices under Rigid Log-

Euclidean Translation (RLET(6) and RLET(I)), Dij
(RLET(6))

and Dij
(RLET(I)), using LERM distance, and matrix-whitening-

harmonized (MW), and parallel-transport-harmonized matrices
(PT), Dij

(MW) and Dij
(PT), employing AIRM distance (Figure 1).

Dij
(MW) and Dij

(PT) look identical (Figures 1C,F). This
approximate equivalence can be explained by nearly vanishing

commutators
[

6,6
(k)]

, as previously proved. We have checked
the values of these commutators and, indeed, they almost vanish,
as can be seen in Figure 2. The consequence is that, in practical
terms, in the following, we can regard PT and MW as two
equivalent frameworks.

On the other hand, we have applied tSNE to the logarithms
of original (non-harmonized) matrices, RLET(6)-harmonized
matrices, and MW-harmonized matrices, with results shown in
Figures 3, 4. Therefore, we have obtained a low-dimensional

representation of Dij
(0), Dij

(RLET(6)), and Dij
(MW), all of them

computed by means of LERM distances. RLET(I)-harmonized
matrices have not been used since, by construction, their pair-
wise distances are identical to the ones for RLET(6), and,
regarding PT-harmonized matrices, they are almost exactly
equivalent to the ones obtained using MW. The differences
that could be displayed in the visualization of RLET(I) matrices
compared to RLET(6)-harmonized ones and PT compared to
MWwould be due to the stochastic nature of the tSNE algorithm.

3.2. Numerical Assessment of
Harmonization Properties
Two harmonization properties were required from the
beginning: preservation of intra-site geodesic distances,
thus preserving biological variability (and some residual site
bias), and the imposition of a common Fréchet mean. In the
case of RLET(6), this Fréchet mean is the global mean 6, and
in the case of RLET(I) and MW, the identity matrix I. To check

that the first property is fulfilled, we have computed pair-wise

distance difference matrices Dij
(RLET(6)) − Dij

(0) (with RLET(I)

giving the same results by construction) and Dij
(MW) − Dij

(0)

(in this latter case, using Dij
(PT) would give visually the same

result, sinceDij
(PT) ≈ Dij

(MW), as proved before). We have found
that diagonal blocks (differences in intra-site distances) vanish
identically (Figures 5A,B). Regarding the second property,
we have computed on one side, pair-wise LERM distances
between site means and between the global mean and these
site means, before RLET(I) and RLET(6), and after RLET(6)
harmonization; and on the other side, pair-wise AIRM distances
between site means and global mean before MW harmonization,
pair-wise AIRM distances between site means and the identity
matrix after MW harmonization, and pair-wise LERM distances
between site means and the identity matrix after RLET(I)
(Figures 5C–F). After harmonization, these pair-wise distances
vanish identically.

3.3. Entry-Wise ADHD/HC Differences
The process of performing 100 separate experiments, described
in Section 2.3, to detect entry-wise differences, has been
applied, with the same randomly pooled subjects, to the
original, RLET(6)-harmonized, RLET(I)-harmonized, andMW-
harmonized matrices (PT has been disregarded because of its
approximate equivalence to MW). Therefore, we have obtained

four frequency matrices Fij
(0), Fij

(RLET(6)), Fij
(RLET(I)), and

Fij
(MW), respectively, which are shown in Figure 6. Results

on the sensitivity (defined also in subsection 2.3) we have

obtained for Fij
(0), Fij

(RLET(6)), Fij
(RLET(I)), and Fij

(MW) are shown
in Table 1 between parentheses, together with the number of
detected significant differences depending on their frequency of
appearance in the frequency matrices.

3.4. Intra-Network and Inter-network
Anomalies Distribution
In the following, we will refer to significant differences in
connection strength between ADHD and HC subjects as
“anomalies.” To have a global view of the distribution of
anomalies in terms of inter- and intra-network interaction,
we have constructed a 2-dimensional plot that reflects the
relative involvement of the different resting-state networks in
these interactions.

This 2-dimensional plot is a 10 × 10 matrix (one row and
one column per functional component) constructed as follows:
first, we have filled the matrix by assigning to each entry ij, the
number of anomalies connecting functional component i with
functional component j (therefore, diagonal elements represent
intra-network anomalies), with the matrix being symmetric since
we do not have a sense of directed connection; afterward, we
have normalized each row (say, for example, DMN), excluding
diagonal elements, by using the total number of inter-network
anomalies that involve the component represented by that
row (DMN); finally, in the last step, we have normalized the
diagonal by dividing each diagonal entry by the sum of all
diagonal entries (that is, the total number of intra-network
anomalies). At this point, we are left with a matrix where each
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FIGURE 1 | Pair-wise distances between functional connectivity matrices from different sites (KKI: Kennedy Krieger Institute, Johns Hopkins University; NYU: New

York University Child Study Center; PKG: Peking University; NIM: NeuroIMAGE sample). (A) Pair-wise affine-invariant Riemannian metric (AIRM) distances for

non-transformed matrices. (B) Pair-wise Log-Euclidean Riemannian metric (LERM) distances for non-transformed matrices. (C) Pair-wise AIRM distances after matrix

whitening. (D) Pair-wise LERM distances after Rigid Log-Euclidean Translation (RLET) to the global mean 6. (E) Pair-wise AIRM distances after parallel transport. (F)

Pair-wise LERM distances after RLET to the identity matrix.
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FIGURE 2 | Commutators of the global mean 6 and original site Fréchet mean {6
(k)
}. (A) [6,6

(KKI)
]; (B) [6,6

(NYU)
]; (C) [6,6

(PKG)
]; (D) [6,6

(NIM)
]. (KKI, Kennedy

Krieger Institute, Johns Hopkins University; NYU, New York University Child Study Center; PKG, Peking University; NIM, NeuroIMAGE sample).

row, excluding diagonal entries, adds up to 1, and in turn,
diagonal entries add up to 1. One has to interpret this matrix
in the following manner: when taking, for example, the row
corresponding to DMN, the entry DMN-FP is the percentage of
inter-network anomalies involving DMN that end up connected
to FP; when considering DMN-DMN, it is the percentage of
intra-network anomalies that are found within DMN. Therefore,
we have summarized in a plot, the relative contribution of
every functional component to the inter-network anomalies
involving another specific functional component. One has to
bear in mind that DMN-FP (row-column) does not have the
same interpretation as FP-DMN and, indeed, their values are
different in general (after normalizing per row, the matrix is

no longer symmetric): the number of anomalous connections
between DMN and FP is fixed, but their relative contribution
to the total number of inter-network anomalies involving DMN
and to the total number of inter-network anomalies involving FP
need not be the same.

We have plotted these matrices for the anomalies obtained
using the original, the RLET(6)-harmonized, the RLET(I)-
harmonized, and the MW-harmonized functional connectomes
(Figure 7). They have been computed with the anomalous
connections identified by thresholding their corresponding
frequency matrices at Fij ≥ 2 to have a large enough number of
samples (Table 1). Furthermore, we have computed differences
between the plots corresponding to original and RLET(6),
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FIGURE 3 | Two-dimensional embedding obtained after applying t-stochastic neighbor embedding to the logarithms of non-harmonized matrices. KKI, Kennedy

Krieger Institute, Johns Hopkins University; NYU, New York University Child Study Center; PKG, Peking University; NIM, NeuroIMAGE sample.

FIGURE 4 | (A) Two-dimensional embedding obtained after applying t-stochastic neighbor embedding to the logarithms of matrices transformed under matrix

whitening. (B) Two-dimensional embedding obtained after applying t-stochastic neighbor embedding to the logarithms of matrices transformed under Rigid

Log-Euclidean Translation to the global mean 6. KKI, Kennedy Krieger Institute, Johns Hopkins University; NYU, New York University Child Study Center; PKG,

Peking University; NIM, NeuroIMAGE sample.

between RLET(I) and MW, and between RLET(6) and RLET(I);
afterward, we have binarized the resulting difference plots at
an absolute entry-wise difference ≥ 15%, thus allowing the
detection of important changes in the distributions and assessing

harmonization and manifold location effects. These results are
shown in Figure 8.

Even though a more involved interpretation of these
results will be made in the Discussion section, we
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FIGURE 5 | (A) Difference in pair-wise AIRM distances between original matrices and matrices transformed under matrix whitening. (B) Difference in pair-wise LERM

distances between original matrices and matrices transformed under Rigid Log-Euclidean Translation (RLET). (C) Pair-wise AIRM distances between site Fréchet

means {6
(k)
} and the global mean 6. (D) Pair-wise LERM distances between site Fréchet means 6

(k)
and the global mean 6. (E) Pair-wise AIRM distances between

site Fréchet mean computed after matrix whitening and the identity matrix I. (F) Pair-wise LERM distances between site Fréchet means computed after RLET(6) and

the global mean 6. KKI, Kennedy Krieger Institute, Johns Hopkins University; NYU, New York University Child Study Center; PKG, Peking University; NIM,

NeuroIMAGE sample.
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FIGURE 6 | Frequency matrices Fij obtained by performing 100 permutation experiments with the same randomly pooled subjects, binarizing each experiment’s

p-value matrix at p < 0.001 and summing these resulting matrices for (A) original functional connectivity (FC) matrices; (B) FC matrices transformed under matrix

whitening; (C) FC matrices transformed under Rigid Log-Euclidean Translation (RLET) to the global mean 6; (D) FC matrices transformed under RLET to the identity

matrix.

highlight that discrepancy between RLET(6) and RLET(I)
signal distortions induced by relocating matrices to
the neighborhood of I, since relative positions between
matrices in Log-Euclidean space are exactly the same
by construction. Therefore, in the following, we will
focus on the comparison between non-harmonized and
RLET(6)-harmonized matrices.

3.5. RLET(6)-Harmonization Results
At this point, we focus on results at a frequency Fij ≥ 3 to allow a
more precise comparison between the results obtained from non-
harmonized and RLET(6)-harmonized matrices. In this case,

we have obtained 21 significant inter-network connections using
non-harmonized matrices; and 32 inter-network and 1 intra-
network anomalies after transforming original matrices under

the RLET(6) framework. We have represented the resulting

anomalous connectomes in Figures 9, 10.
Moreover, we have plotted two histograms, one for non-

harmonized and the other for RLET(6)-harmonized matrices,

displaying how the distribution of abnormal connections
involving particular functional components varies according

to the frequency threshold (Figure 11). When looking at the

histograms, one can see that the distribution of anomalies

according to the involved functional component is better
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TABLE 1 | The number of detected anomalies using original matrices, harmonized

matrices under Rigid Log-Euclidean Translation (RLET) to the global mean 6,

harmonized matrices under RLET to the identity matrix I, and harmonized

matrices under matrix whitening, according to the chosen frequency threshold.

Threshold Original RLET(6) RLET(I) MW

Fij ≥ 1 2,019 2,125 1753 2,274

Fij ≥ 2 188 (9.31%) 213 (10.02%) 154 (8.78%) 262 (11.52%)

Fij ≥ 3 21 (1.04%) 33 (1.55%) 14 (0.80%) 52 (2.3%)

Fij ≥ 4 2 (0.10%) 8 (0.38%) 1 (0.06%) 9 (0.40%)

Fij ≥ 5 0 (0%) 4 (0.19%) 1 (0.06%) 1 (0.04%)

Sensitivities are found between parentheses.

preserved when changing the considered frequency level in the
case of RLET(6) than in the non-harmonization approach.

4. DISCUSSION

4.1. Imaging-Site Bias
Results from pair-wise distances computation (Figure 1)
and low-dimensional embedding (Figures 3, 4) of functional
connectivity matrices show that there is an imaging-site-biased
distribution of these matrices in the manifold. In particular,
one can distinguish between an intra-site bias effect and an
inter-site bias effect. Intra-site bias is clearly visible when
looking at diagonal blocks of pair-wise distances plots: intra-site
distances are significantly different between KKI and NIM
matrices [interestingly, the NIM sample comes in its turn from
3 different imaging sites (ADHD-200 Consortium, 2017), what
could explain its large intra-site variability]. Instead, one would
expect the intrinsic biological variability to be approximately the
same across sites when the number of subjects is large enough.
Inter-site bias is reflected in the clustered distribution of matrices
in the manifold that makes it possible to clearly identify visually
the imaging site in the tSNE low-dimensional embedding (recall
that this low-dimensional embedding is, with high probability,
displaying LERM distance similarities). When harmonizing
using the three different methods, inter-site distances were
generally reduced (Figure 1), which is the expected effect of
removing site-clustering behavior.

The clustered distribution in the manifold (Figure 3) points
directly to the fact that entry-wise statistical comparisons could
not be completely reliable unless the site effect is previously
subtracted (Figure 4), since what is usually targeted in these
statistical tests are entry-wise differences. Because of the nature
of the permutation testing approach targeting these differences,
large entry-wise differences coming from the original clustered
and distant distribution of the matrices might be masking
true and more subtle biological differences, or even giving
rise to wrong salient entries. Geometry-grounded frameworks
transform the matrices’ entries in such a way that they can
still be regarded as covariances (resulting matrices belong
to the SPD manifold, as opposed to ComBat outputs, for
example), that removes (partially) multi-site effects on entry-wise
differences, and therefore that allows a more unbiased study of
the significance of these individual differences or anomalies.

Regarding the detection of significant differences, in terms of
sensitivity, RLET(I) is the harmonization method that performs

the worst (Table 1) at all frequency thresholds. Nevertheless, only
by using harmonization approaches have we reached the Fij =

5 level. On the other hand, site means transform as expected,
becoming the identity matrix I for RLET(I) and MW, and the
global mean 6 in the case of RLET(6), since pair-wise distances
vanish. Intra-site distances are also preserved as intended but, as
a consequence, intra-site bias is also retained. However, as a first
approximation to imaging-site harmonization, our aim was to
operate in the least distortive manner. One cannot know to which
extent true biological variability would be artificially altered by
modifying intra-site distances, even though it is clear that there is
an imaging-site contribution to the observed dispersion. Notice
however that when looking at Figure 4A, it seems that MW
has been able to correct differences in dispersions, as opposed
to RLET (Figure 4B). This impression is an artifact coming
from the fact that the low-dimensional embedding has been
obtained by using LERM distances, both for MW and for RLET.
MW is based on the AIRM framework and, therefore, the low-
dimensional embedding, using LERMdistances as themetric, has
not been able to capture the expected intra-site AIRM distance
preservation behavior. In fact, if one considers Figure 1, one
can see that different dispersions around the site mean have
not been corrected for MW (Figure 1C), since diagonal blocks
exhibit different average intra-site distances in the same way as
RLET-transformed ones (Figure 1D).

Figure 8 provides evidence favoring harmonization, but also
evidence for rejecting harmonization at the identity matrix.
Testing for the difference between these distribution matrices
and requiring entry-wise coincidence within ±15% is strict,
bearing in mind that we are dealing with relative contributions
of connections among and within 10 different components, and
the number of samples is considerably small. Therefore, at this
point, looking at the differences between RLET(I) and MW (only
3/100 entries display absolute differences larger than 15%), we
can claim that harmonization is indeed working in its task of
homogenizing results. However, taking into account that the
only difference between RLET(I) and RLET(6) is the location
of the Fréchet mean (relative positions between functional
connectivity matrices in the Log-Euclidean space are exactly
preserved by construction), and considering the dissimilarities
between distributions, we can affirm that location in the manifold
is important (as we had presumed in the Methods section and
motivating our construction of RLET(6)) and that transporting
matrices to the identity matrix is too distortive in our setting.
As a consequence, and given those discrepancies in anomaly
distributions between original and RLET(6) are 3-fold (9/100)
the ones observed by harmonizing with two different approaches
to identity (3/100), we have focused our attention in the following
subsection on the effect of RLET(6)-harmonization on the
original functional connectivity matrices, since these (possibly
biologically relevant) discrepancies are, at least partially, due
to harmonization.

Finally, given the results pointing to a considerably large
intra-site bias, we can propose a modification to RLET(6)

Log(6i
(k)) → Log(6̃

(k)
i )=Log(6)+λ(k)

(

Log(6
(k)
i )−Log(6

(k)
)
)

,
(15)

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 769274

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Simeon et al. Riemannian-Geometric Harmonization of Functional Connectivity Matrices

FIGURE 7 | Anomaly distribution plots according to the involved functional components obtained as described in subsection 3.4 using (A) original matrices; (B)

matrices transformed under Rigid Log-Euclidean Translation (RLET) to the global mean 6; (C) matrices transformed under matrix whitening; (D) matrices transformed

under RLET to the identity matrix. VIS, visual network; MOT, sensorimotor network; DA, dorsal attention network; VA, ventral attention network; FP, frontoparietal

network; LIM, limbic network; DMN, default mode network; BS, brain stem; CRB, cerebellum; BG, basal ganglia.

consisting on the introduction of a site-dependent rescaling
parameter λ(k) > 0, which has the effect of rescaling intra-
site distances by a factor of λ(k) while still enforcing all
site Fréchet mean to be the global mean 6. Tuning λ(k)

would allow, for example, to empirically adjust mean intra-site
distances (and, thus, intra-site variability) so that different sites
display approximately the same dispersion around 6. A first
approximation choice for λ(k) could be, therefore,

λ(k) =

1
K

∑

(k′)
1

2N(k′)

∑

i∈(k′)

∑

j∈(k′) d(6i,6j)

1
2N(k)

∑

i∈(k)

∑

j∈(k) d(6i,6j)
, (16)

that is, the ratio between the mean of all intra-site pair-wise
distances (regardless of k) and the mean of intra-site-k distances.

4.2. Abnormal Functional Connectivity
Findings
4.2.1. Large-Scale Networks in ADHD
By thresholding frequency matrices at Fij ≥ 2, one can obtain a
large enough number of anomalies to construct the distributions
shown in Figure 7. This approach enables to obtain a coarse-
grained picture of anomalous interactions and, therefore, to take
into account anomalous engagement between large-scale resting-
state networks.
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FIGURE 8 | Binarized entry-wise absolute differences greater than 15% between plots in Figure 6 for (A) original (non-harmonized) matrices and matrices

harmonized under Rigid Log-Euclidean Translation (RLET) to the global mean 6; (B) RLET to 6 and RLET to the identity matrix I harmonization approaches; (C) matrix

whitening and RLET to I harmonized matrices. VIS, visual network; MOT, sensorimotor network; DA, dorsal attention network; VA, ventral attention network; FP,

frontoparietal network; LIM, limbic network; DMN, default mode network; BS, brain stem; CRB, cerebellum; BG, basal ganglia.

Although there is a large amount of pair-wise interactions, the
most descriptive findings are obtained by considering relevant
functional components that do not have anomalous inter- or
intra-network interactions. Using non-harmonized matrices, we
have found that at Fij ≥ 2 there is an absence of intra-DA

and intra-VA anomalous connections. In the case of RLET(6)-
harmonized matrices, we see an absence of intra-VIS and
intra-VA anomalies, and an absence of DA-VA and VIS-VA
inter-network abnormal interaction. In both cases, BG engages
abnormally selectively with DMN, FP, and VIS networks. In

resting-state functional connectivity, in general, findings do not
support an involvement of VA in ADHD, even though authors

do not find this evidence to be conclusive (Castellanos and Proal,

2012). On the contrary, DA involvement in ADHD is well-
established (Dickstein et al., 2006; Rubia, 2011). The absence of
intra-DA alterations under the non-harmonization framework

could be therefore interpreted as a deficit of the framework.
Intra-VIS alterations, both hyper- and hypoactivations, have
been found in task-based settings, depending on the task (Vance
et al., 2007; Dillo et al., 2010; Schneider et al., 2010). One study
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FIGURE 9 | Anomalous connections obtained by thresholding the frequency matrix for non-harmonized matrices at Fij ≥ 3. In total, the 21 anomalous connections

are displayed. Notice the lack of anomalies involving the posterior parietal cortex and the cerebellum.

FIGURE 10 | Anomalous connections obtained by thresholding the frequency matrix for matrices harmonized under Rigid Log-Euclidean Translation to the global

mean 6 at Fij ≥ 3. The 33 detected anomalies are displayed.

found altered intra-VIS resting-state functional connectivity
by using ADHD-200 resting-state data (Kessler et al., 2014)
(correlating with results from the analysis of non-harmonized
matrices, where intra-VIS contributions are found). Authors
highlight the importance of examining carefully the impact of
the visual component in ADHD and, in particular, its relation
to attention (Castellanos and Proal, 2012). To our opinion,
given the importance (in terms of contribution to anomalies)
that RLET(6)-harmonization gives to VIS, the absence of intra-
network findings is descriptive, in the sense that it is difficult
to understand that the algorithm did not discover intra-network
anomalies because of sensitivity regarding the visual component.

4.2.2. Pathophysiology of ADHD
Although there is a growing consensus that large-scale brain
networks are involved in ADHD, the number of anomalous

connections that remain as significant when thresholding their
frequency at Fij ≥ 3 does not allow an interpretation in terms
of network interactions, but rather an interpretation in terms of
pathways, (parts of) circuits, or pair-wise relevant connections.
This interpretation makes it possible to probe the fine-grained
pathophysiology of ADHD from a functional point of view and
to correlate our findings with established results.

4.2.2.1. Prefrontal Cortex
It has been hypothesized for a long time that ADHD is a disorder
of the prefrontal cortex (PFC). The motivation underlying
the hypothesis of an involvement of PFC is that one of its
most important functions is behavioral control, the principal
impairment presented by patients with ADHD. The circuitry that
has been found to be critical in the neurobiology of ADHD is
the cortico-striatal-thalamo-cortical (CSTC) loops. These closed
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FIGURE 11 | The relative contribution of functional components to the total number of detected anomalies by thresholding frequency matrices at Fij ≥ 2 and Fij ≥ 3

corresponding to (A) the non-harmonization approach; (B) harmonization under Rigid Log-Euclidean Translation to the global mean 6. VIS, visual network; MOT,

sensorimotor network; DA, dorsal attention network; VA, ventral attention network; FP, frontoparietal network; LIM, limbic network; DMN, default mode network; BS,

brain stem; CRB, cerebellum; BG, basal ganglia.

loops transmit cortical inputs to the thalamus via the striatum,
to be reprojected back to the cortical region. Two of these loops
play a key role in ADHD: the dorsolateral prefrontal circuit, with

the dorsolateral prefrontal cortex (DLPFC) and the (dorsolateral)
caudate nucleus forming the cortico-striatal pathway, and the
orbitofrontal circuit, composed of the orbitofrontal cortex
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(OFC) and the (ventromedial) caudate nucleus pathway. The
dorsolateral prefrontal circuit is a central element in cognitive
control, and the orbitofrontal circuit is heavily implicated in
reward processing, whose impairment is thought to provoke
impulsive behavior in ADHD. On top of these ones, another
component that has been added more recently to ADHD PFC
anomalous connections is the fronto-cerebellar circuitry. The
cerebellum is thought to be involved in diverse functional
impairments of patients with ADHD, such as working memory,
attention, or the construction of temporal expectations. For
a detailed description of the involvement of these circuits in
ADHD, we refer the reader to Durston et al. (2011) and
references therein.

Remarkably, the analysis of RLET(6)-harmonized matrices
points directly to these circuits: we have found anomalous
connectivity between the right caudate nucleus and the left
OFC; between right cerebellum (VIIb) and the right frontal pole;
together with a connected chain comprising the left caudate
nucleus, the right inferior frontal gyrus pars opercularis, left
cerebellum (VIIb) and the right angular gyrus, with both right
inferior frontal gyrus pars opercularis and right angular gyrus
lying on DLPFC. Therefore, we have found evidence for 1)
anomalies in frontostriatal paths, both in the OFC and DLPFC
circuits; 2) an abnormal connectivity in a fronto-cerebellar
path (right cerebellum—right frontal pole); 3) a simultaneous
anomalous engagement of fronto-cerebellar and frontostriatal
circuits with the same cortical region, DLPFC (left cerebellum—
right angular gyrus, right inferior frontal gyrus pars opercularis—
left caudate nucleus); and 4) more specifically, a simultaneous
anomalous engagement of a fronto-cerebellar circuit and a
frontostriatal circuit involving exactly the same cortical node
(right inferior frontal gyrus pars opercularis, DLPFC), and, thus,
a precise anomalous overlap of different circuitry components.
Results of non-harmonized matrices also feature the anomalous
connection between the left caudate nucleus and the right
inferior frontal gyrus pars opercularis. In this case, we would
only have evidence for the involvement of the DLPFC circuit.
Furthermore, it is important to mention that non-harmonized
matrices have not signaled any anomaly involving cerebellar
nodes, which is undesirable given the pervasive evidence of their
implication in ADHD. In contrast, RLET(6)-harmonization
provides evidence of abnormal functional connectivity of the
cerebellum with somatomotor, default mode network, and
visual nodes, apart from the PFC ones, pointing to the multi-
dimensional association to ADHD pathophysiology.

4.2.2.2. Visual Nodes
It has been established that patients with ADHD have worse
performances when tested for visual processing speed and
visual short-term memory in comparison to matched healthy
controls (Low et al., 2018). These abnormal performances signal
a perceptual deficit and, more concretely, impairments in early
visual information processing (Alqahtani et al., 2019; Papp et al.,
2020).

One of the most remarkable differences between the
anomalies spotted using the original matrices and the RLET(6)-
harmonized ones is the importance that the analysis of the latter

matrices gives to visual network nodes, in terms of contribution
to the total number of detected anomalies. Specifically, there is
an interesting and insisting presence of anomalous connections
between visual network nodes and nodes found in the posterior
parietal cortex (PPC), belonging to the dorsal attention network
(DA). Precisely, these connections fill the void found in Figure 9.
It has been found that the interaction between the occipital cortex
and DA is involved in maintaining attention and suppressing
attention to irrelevant stimuli (Capotosto et al., 2009; Shulman
et al., 2009). Our findings signal specifically the anomalous
connection of nodes lying on the most posterior part of DA
and nodes of the visual cortex. One important pathway for
visual information processing connects these brain regions: the
dorsal stream. The dorsal stream and the ventral stream were
proposed as two routes with differentiated functions in the early
processing of visual information (Goodale andMilner, 1992): the
dorsal stream, running from the visual cortex to PPC, is typically
thought to be involved in the construction of a detailed map of
the visual field, spatial awareness, the detection and analysis of
motion and the guidance of actions and coordination in space;
on the other hand, the ventral stream, originating in the visual
cortex and leading to the temporal lobe, is proposed to be related
to visual identification and recognition.

The dorsal stream, which is tentatively being featured in our
findings, has been demonstrated with clinical and experimental
evidence to play an essential role in the ability of shifting
spatial attention, that is, to disengage attention from a location
and to engage attention to another location (Sciberras-Lim and
Lambert, 2017). Although in patients with ADHD there is a
disregulation in attentional resources allocation, it is still not
clear which dimensions of attention are affected by the disorder.
The affectation of visuospatial attention is a controversial topic
(Roberts et al., 2017), with findings pointing to opposite ways.
Many authors point to the fact that given the wide spectrum
of impairments that patients exhibit, their phenotyping by a
particular dimension of attention might not be possible (Roberts
et al., 2017). Nevertheless, what is widely accepted is that patients
with ADHD display a deficit in visuospatial working memory
(van Ewijk et al., 2013), the capacity to maintain a representation
of visuospatial information for a brief period of time (Vecera
and Rizzo, 2003). In particular, visuospatial working memory
is involved, for example, in the retrieval and manipulation of
recent images for orientation in space and for keeping track of
moving objects. As we have explained, the dorsal stream plays a
critical role in the integration of visual information to produce
the egocentric spatial map on which the subject relies onto detect
motion or to guide his/her actions in space. Therefore, there
is coherence between the impairment of visuospatial working
memory in ADHD and the tentative appearance of the dorsal
streams in our findings.

4.2.2.3. Other Relevant Anomalies
Given the coherence between the results obtained
after RLET(6)-harmonization and established ADHD
pathophysiology, we have reasons to think that default
mode network (DMN), sensorimotor (MOT), visual (VIS),
dorsal attention (DA), and frontoparietal (FP) nodes play very
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important roles in the disorder and that the right lateral occipital
cortex is a region that needs to be examined more carefully in
subsequent analyses. When thresholding the frequency matrix at
Fij ≥ 4, we are left with 8 anomalous connections. Within these
8 anomalies, we can find the aforementioned OFC-striatum
and fronto-cerebellar pathways, and 5 of them involve DMN. If
we take the maximum threshold Fij = 5, 4 of these previous 8
anomalies remain: left superior frontal gyrus (MOT) with right
superior frontal gyrus (DMN), right postcentral gyrus (MOT)
with right lateral occipital cortex superior division (DMN), right
occipital pole (VIS) with right lateral occipital cortex superior
division (FP), and right lateral occipital cortex superior division
(DMN) with right supramarginal gyrus anterior division (DA).
Interestingly, 3 out of 4 feature the same brain regions, the right
lateral occipital cortex superior division, being associated with
DMN and FP functional networks, depending on the particular
node of the region.

5. CONCLUSION

In conclusion, we have collected evidence that supports further
research on multi-site dataset harmonization when using
functional connectivity matrices. Specifically, we have shown
that the distribution of matrices in the SPD matrices manifold
is site-biased. Moreover, we have been able to discard two
adapted domain adaptation approaches and prove that our
proposal (RLET(6)) is the most reliable one in a clinical
setting. Remarkably, functional analyses of ADHD-200 data
after RLET(6)-harmonization present a high correlation with
neurobiological findings in ADHD. However, intra-site bias
was not removed and, to our point of view, this issue needs

to be addressed, possibly by using our modification of RLET
as a first approximation. It would also be valuable to use a
more extended dataset for further research and to rely on more

permutations in each permutation test to increase statistical
power. Nevertheless, given our results, we think there are
reasons for reanalyzing functional data from multi-site datasets
corresponding to other disorders, given their pervasive use in
functional neuroscience.
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