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There is a proven correlation between the severity of dementia and reduced brain
volumes. Several studies have attempted to use activity data to estimate brain volume
as a means of detecting reduction early; however, raw activity data are not directly
interpretable and are unstructured, making them challenging to utilize. Furthermore,
in the previous research, brain volume estimates were limited to total brain volume
and the investigators were unable to detect reductions in specific regions of the brain
that are typically used to characterize disease progression. We aimed to evaluate
volume prediction of 116 brain regions through activity data obtained combining
time-frequency domain- and unsupervised deep learning-based feature extraction
methods. We developed a feature extraction model based on unsupervised deep
learning using activity data from the National Health and Nutrition Examination Survey
(NHANES) dataset (n = 14,482). Then, we applied the model and the time-frequency
domain feature extraction method to the activity data of the Biobank Innovations
for chronic Cerebrovascular disease With ALZheimer’s disease Study (BICWALZS)
datasets (n = 177) to extract activity features. Brain volumes were calculated from
the brain magnetic resonance imaging of the BICWALZS dataset and anatomically
subdivided into 116 regions. Finally, we fitted linear regression models to estimate
each regional volume of the 116 brain areas based on the extracted activity features.
Regression models were statistically significant for each region, with an average
correlation coefficient of 0.990 ± 0.006. In all brain regions, the correlation was > 0.964.
Particularly, regions of the temporal lobe that exhibit characteristic atrophy in the
early stages of Alzheimer’s disease showed the highest correlation (0.995). Through
a combined deep learning-time-frequency domain feature extraction method, we could
extract activity features based solely on the activity dataset, without including clinical
variables. The findings of this study indicate the possibility of using activity data for the
detection of neurological disorders such as Alzheimer’s disease.
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INTRODUCTION

The number of patients with dementia and the associated
social burdens are rapidly increasing due to global aging (Rizzi
et al., 2014). To date, there has been no effective treatment
for recovering decreased cognitive function once dementia has
progressed. Therefore, it is essential to detect dementia as
early as soon as possible before the condition worsens and to
continuously monitor the symptoms of early dementia for timely
and proper intervention (Robinson et al., 2015). It is well known
that cognitive decline in dementia is associated with brain volume
reductions across broad regions (Jack et al., 2005; Misra et al.,
2009). Patients with pre-dementia [i.e., those with mild cognitive
impairment (MCI)] experience brain atrophy even in the early
stage of the disease, and such patients are more prone to progress
to dementia (Jack et al., 2005; Misra et al., 2009).

Currently, magnetic resonance imaging (MRI) is the most
reliable tool for identifying brain volume; however, an MRI
examination inevitably requires a deliberate decision to schedule
a costly and time-consuming visit to a hospital that is equipped
with MRI machines, followed by additional follow-up scheduling.
These limitations make early diagnosis of dementia and the
follow-up in patients in the early stages difficult. Thus, recent
studies have suggested the use of feasible alternative data
for estimating brain volume and for predicting prognoses,
supplementing the limitations of MRI-based examinations. For
one such application, studies have shown that patient physical
activity data collected from accelerometers are highly related
to brain volumes (Klaren et al., 2015; Arnardottir et al.,
2016; Tan et al., 2017; Spartano et al., 2019). In addition,
using accelerometers offers several advantages; (i) accelerometer
sensors objectively measure real-world activities of the subjects,
(ii) their use is much less costly than MRI, and (iii) they can
be used for continuous measurements. The rate of adoption
of wearable devices is also anticipated to increase steadily in
the future. However, an analytical limitation remains, despite
previous efforts showing associations between accelerometer data
and brain volume. Since activity data are typically unstructured
and not easily interpretable, classical statistical approaches
might allow us to use only intuitive, partial information in
the form of original, raw physical activity data. For instance,
previous studies have used the daily step count (Alosco et al.,
2015; Arnardottir et al., 2016) or the time spent performing
light physical activity, sedentary activity, or moderate–vigorous
physical activity (MVPA) (Klaren et al., 2015; Spartano et al.,
2019). Vast, non-linear attributes of activity data may remain
obscure; characterizing associations between information and
new features of dementia could further improve the estimation
of brain volume.

An autoencoder model can capture such invisible and non-
linear information effectively. An autoencoder is an unsupervised
deep learning model composed of an encoder and a decoder
(Kramer, 1991; Jang et al., 2020). An encoder receives high-
dimensional input data and encodes it into a low-dimensional
latent vector. The decoder receives a latent vector and outputs
that data to facilitate the reconstruction of the input data as much
as possible. Thus, only essential information is compressed in

the latent vector during the learning process of the autoencoder.
Eventually, the encoder component of an autoencoder could
be used as a feature extraction model; such models have
demonstrated reliable degree of performance in settings involving
atypical and large-scale data (Hinton and Salakhutdinov, 2006).

Additionally, previous studies have associated physical activity
data only with the total brain volume or total gray matter
content; they have not shown detailed associations with
each regional volume. However, various neurological diseases,
including dementia, exhibit differential abnormalities in regional
volumes in multiple areas. For example, even in the early stage,
Alzheimer’s disease (AD) is accompanied by atrophy in various
limbic and cingulate regions (Saykin et al., 2006; Johnson et al.,
2012). Furthermore, it is known that atrophy of these regions in
MCI patients is a prognostic factor for progression to AD within
a few years (Hämäläinen et al., 2007; Fan et al., 2008).

Thus, this study aimed to model local brain volume in
dementia patients through the analysis of meaningful physical
activity features estimated by an autoencoder model and
combined with features obtained with a time-frequency domain
extraction method. To accomplish this, we extracted the
appropriate features from physical activity data and considered
their correlation with brain volumes. Accordingly, we subdivided
the entire brain into 116 distinct regions (90 cerebral regions and
26 cerebellar regions) defined by automated anatomical labeling
(AAL) delineation (Desikan et al., 2006). We measured each
regional volume using a voxel-based morphometry (VBM) –
Diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra (DARTEL) procedure (Friston, 1994; Wright
et al., 1995; Penny et al., 2011). Subsequently, we regressed
each regional volume onto the physical activity features
provided by the autoencoder model and time-frequency domain
feature extraction.

MATERIALS AND METHODS

Recruitment
This study was approved by the Ajou University Hospital
Institutional Review Board (AJIRB-MED-EXP-17-470). Before
collecting accelerometer data (i.e., physical activity data) from
patients at Ajou University Hospital, we received their informed
consent (Biobank Innovations for chronic Cerebrovascular
disease With ALZheimer’s disease Study, BICWALZS). The other
dataset used in this study, the National Health and Nutrition
Examination Survey (NHANES), is publicly available (Centers
for Disease Control and Prevention [CDC], 2003, 2005). All data
were de-identified and used only for this retrospective study.

Study Overview
This study consisted of the following five stages: (1) we collected
and preprocessed accelerometer data from the NHANES and
BICWALZS; (2) a feature extraction model was developed based
on an unsupervised deep learning approach (i.e., an autoencoder
model) using the activity data from the NHANES dataset; (3)
using both the previously developed feature extraction model
and the traditional time-frequency domain feature extraction
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method, activity features were extracted from the BICWALZS
activity dataset; (4) individual brain volumes were calculated
from brain MRI assessments of patients enrolled in the
BICWALZS using the VBM-DARTEL procedure (Ashburner and
Friston, 2000), and the brain was subdivided into 116 regions
based on an AAL map (Desikan et al., 2006; Spartano et al.,
2019) to discover the relationship between the extracted activity
features and brain volumes, we constructed linear regression
models that estimated the total brain volume and the volumes
of the 116 regions based on the extracted activity features. More
details of the study design are described in Figure 1.

Data Sources
National Health and Nutrition Examination Survey
Dataset
The NHANES dataset includes accelerometer data, which were
collected over 4 years (2003–2006) from 14,482 individuals living
in the United States. The NHANES participants were advised to
wear a physical activity monitor for seven consecutive days and to
remove the device at bedtime. The device used in the NHANES
was the AM-7164, manufactured by ActiGraph (John and
Freedson, 2012). The device is programmed to detect and record
the intensity of acceleration, which was each summed over 1-min
epochs and stored in memory for every 1-min time interval.

Biobank Innovations for Chronic Cerebrovascular
Disease With ALZheimer’s Disease Study Dataset
The BICWALZS has collected diverse kinds of data (e.g., brain
MRI, activity data) from patients who visited a tertiary hospital
with MCI, subjective memory impairment, AD, or all other
varieties of dementia. Patients who had a brain lesion with
neuropathy, seizure, alcoholic dementia, or other psychiatric
disorders were excluded from the recruitment. Included in the
BICWALZS dataset were physical activity and brain MRI data,
as well as demographic information for 177 patients, collected in
2014–2018 at Ajou University Hospital in South Korea. Patients
provided written informed consent before data collection.

At the first medical examination, brain MRI was conducted;
immediately afterward, patients received an accelerometer and
were instructed to wear it, even during sleep. The accelerometer
used in the study was the Fitmeter, manufactured by FitNLife
(Kim et al., 2014). Due to battery problems associated with the
device, participants were required to visit the hospital every
2 weeks to replace the device. The average length of time the
device was worn by each subject in the study was 24.6 days.
Detailed information about the accelerometers and the MRI
parameters for the NHANES and BICWALZS datasets are
provided in Supplementary Table 1.

Data Processing
Accelerometer
We preprocessed two activity datasets according to the following
procedure. First, the data formats of the two databases were
transformed into the same format. Because the NHANES activity
data were collected in 1-week lengths, at 1-min intervals, and
as 1-axis acceleration values, only the first 1-week dataset of the
BICWALZS was utilized, and the triaxial accelerometer data were

aggregated into a single vector by applying a vector magnitude
formula and summing over each 1-min interval. Subsequently,
the activity data from the two data sources were normalized via
standard normalization.

As a result, each record from the NHANES and BICWALZS
consisted of 1,440 values per day, with each value representing
the amount-of-activity value over 1 min. Next, we eliminated
the activity data collected during the nighttime (9:00 p.m.
to 9:00 a.m.) because the participants in the NHANES were
recommended not to wear the accelerometer at bedtime (Centers
for Disease Control and Prevention [CDC], 2005). Finally, we
excluded the days for which missing values were present over
more than 30 consecutive minutes.

Preprocessing of Magnetic Resonance Imaging Data
To extract the regional gray matter volumes (rGMV), VBM
analysis was performed using the VBM-DARTEL procedure
in Statistical Parametric Mapping (SPM) software, version 12
(SPM121, Wellcome Trust Centre for Neuroimaging, London,
United Kingdom) (Friston, 1994; Wright et al., 1995; Penny et al.,
2011). No abnormalities due to motion and/or other artifacts
were found on the T1-weighted images following inspection
by a well-trained physician. T1-weighted image preprocessing
included the following: (i) gray matter segmentation based on a
standard tissue probability map provided by SPM, (ii) creation of
a study-specific template, spatial normalization using DARTEL
to normalize individual images to the DARTEL template, and
modulation to adjust for signal changes in volumes during spatial
normalization, and (iii) spatial smoothing of the gray matter
partitions using a Gaussian kernel (6 mm full-width at half
maximum). After the preprocessing, rGVMs were extracted by
averaging the values of the 116 brain regions according to the
AAL atlas (Desikan et al., 2006). To minimize the effects of
potential nuisance covariates, we regressed out the linear effects
of age, sex, total intracranial volume, and years of education from
each of the rGMV values.

Extraction of Activity Characteristics
Since the activity data were 1-dimensional data measured
continuously over time, a 1-dimensional convolutional
autoencoder was adopted to reflect the temporal characteristics
of the activity data (Hinton and Salakhutdinov, 2006; Figure 2).

The basic structure and initial hyperparameter values were
based on our previous model (Jang et al., 2020). The model
development was conducted based on the NHANES activity
dataset, which was randomly divided into portions at ratios of
8:1:1 for use as a training set, a validation set, and a test set,
respectively. The autoencoder was trained using the training
set, and the hyperparameters were tuned using the validation
set. Root-mean-square error (RMSE) was adopted as the cost
function. The Adam optimization algorithm was used as the
optimizer, along with the ReLU activation function.

After model development, we extracted the latent vector from
the BICWALZS activity dataset using the encoder portion of
the autoencoder. All channels in the extracted latent vector

1http://www.fil.ion.ucl.ac.uk/spm/
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FIGURE 1 | Schematic overview of the study. Accelerometer data from the NHANES and BICWALZS were collected and preprocessed. Using an unsupervised
deep learning approach, the feature extraction model was developed using the activity data in the NHANES dataset; subsequently, activity features were extracted
from the BICWALZS activity dataset using the developed feature extraction model together with the time-frequency domain feature extraction model. Finally, linear
regression models that estimated the volumes of 116 regions based on the extracted activity features were constructed. NHANES, National Health and Nutrition
Examination Survey dataset; BICWALZS, Biobank Innovations for chronic Cerebrovascular disease With ALZheimer’s disease Study; MRI, magnetic resonance
imaging; AAL, automated anatomical labeling.

were averaged to create 60 activity features. When one patient
had recorded data over several days, the overall average of the
extracted activity features from each day was employed as the
representative value of the activity features.

The overview of the autoencoder-based feature extraction
is described in Figure 2. Detailed information on the selected
autoencoder model is described in Supplementary Table 2,
and the detailed results of the visualization are described in
Supplementary Figure 1.

To extract time-frequency features, this study additionally
applied the short-time Fourier transform (STFT) which was
performed by convolving a short-time squared window function
with non-stationary assumed activity time series. Each STFT
window was Fourier-transformed with the following parameters:
total time points = 720 (inter-sample interval = 1 min);

sampling frequency = 0.0167 (1 sample per 1 min); and
window size = 60 min. For this, we used a MATLAB function,
“spectrogram.m,” with default options and estimated magnitude
for each frequency and averaged them over all time points. To
avoid redundant information over all frequencies, we grouped all
frequencies’ indices (= 128) to 64 with the same bins and again
averaged the averaged magnitudes within each.

Association Analysis Between Activity
Features and Brain Volume
Brain Region Level Analysis
To estimate the association between activity features and regional
brain volume, cross-sectional values for the 116 regional brain
volumes (dependent variables) were linearly projected onto all
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FIGURE 2 | Development of the autoencoder model. An autoencoder consists of an encoder that receives input data and compresses the information into a latent
feature, and a decoder that receives the compressed latent feature and restores the original input in the direction that minimizes the RMSE. In this study, after
autoencoder training using the NHANES data, a latent vector was obtained from the activity dataset of the BICWALZS by applying the encoder portion of the
autoencoder and averaging across channels to obtain 60 activity features. RMSE, root mean squared error; NHANES, National Health and Nutrition Examination
Survey; BICWALZS, Biobank Innovations for chronic Cerebrovascular disease With ALZheimer’s disease Study.

activity features (independent variables). Backward elimination
procedures were used to select for the meaningful features in
each regression model separately (Gheyas and Smith, 2010).
Subsequently, we extracted each regression model’s r-squared
values and calculated the Pearson correlation coefficient between
the estimated brain volume from the regression model and the
actual brain volume.

Association estimates (i.e., regression coefficients) from
regression models were considered significant at a P value < 0.05.
To address multiple comparison issues when assessing the
significance of 116 regression models, the Benjamini-Hochberg
Procedure was employed to control for the false discovery
rate (FDR), and only models with an FDR of < 0.05 were
considered statistically significant. Regression models with an
FDR value > 0.05 were considered statistically insignificant and
were excluded from the analysis.

To compare our deep learning-based activity features
characteristics with those of features derived by traditional
frequency domain feature extraction method, we fitted and
compared two regression models: (1) one employing both deep
learning-based features and frequency domain features; (2) one
based only on the frequency domain features.

Lobe Level Analysis
We also grouped 116 individual regions based on brain lobes
according to the AAL atlas (Desikan et al., 2006). As a result,
each region was classified as belonging to the limbic, temporal,
parietal, occipital, frontal, subcortical, central, or cerebellar lobe.
The list of regions grouped by each lobe is summarized in
Multimedia Supplementary Table 3.

The distributions of the regional correlations within each lobe
were illustrated using violin plots, and we tabulated the average

regional correlation coefficients and the average r-squared values
within each lobe.

Software Tools
In our study, the scripts used for the preprocessing of the
accelerometer data were written in Python version 3.7 using
the scikit-learn and statsmodel Python packages. We used the
PyTorch framework to construct a deep learning model. For
visualization, the Matplotlib and Seaborn Python packages were
used. All statistical analyses relating to the brain MRI data
were performed using MATLAB (MathWorks, Sherborn, MA,
United States) based custom software.

RESULTS

After preprocessing, the NHANES dataset comprised 25,858 day-
long sets of physical activity data from 9,236 individuals, whereas
the BICWALZS dataset comprised 528 day-long sets of data from
132 individuals.

Because the NHANES dataset was based on data collected
from the general population, in contrast with the BICWALZS
dataset, which was generated from patients with dementia-related
symptoms, the demographic characteristics were different.
Individuals in the BICWALZS dataset were older, with a
lower body mass index and had a dementia-related diagnosis.
Detailed baseline characteristics for each dataset are summarized
in Table 1.

Consistency Between the Estimated and
Actual Brain Volumes
In each regional analysis, mean Pearson correlation coefficient
in all areas was 0.990 (mean r-squared value 0.979), with
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TABLE 1 | Baseline characteristics of the two datasets.

Characteristics NHANES dataset (n = 14,482) BICWALZS dataset (n = 177) P values

Age (years), mean (SD) 39.04 (22.27) 74.07 (7.05) <0.001

Sex

Male, n (%) 7,055 (48.71) 56 (31.6)

Female, n (%) 7,427 (51.28) 121 (68.3)

Weight (kg), mean (SD) 75.26 (21.73) 59.03 (10.04) <0.001

Height (cm), mean (SD) 166.01 (11.72) 156.96 (8.33) <0.001

BMI (kg/m2), mean (SD) 27.03 (6.56) 22.66 (7.19) <0.001

Device Actigraph AM-7164 (uniaxial) FitNLife Fitmeter (triaxial)

Education (years), mean (SD) – 9.14 (4.56) –

Main diagnosis at time of visit

Subjective memory loss, n (%) – 18 (10.2) –

Mild cognitive impairment, n (%) – 89 (50.3) –

Alzheimer’s disease, n (%) – 47 (26.6) –

Subcortical vascular dementia, n (%) – 14 (8.9) –

Frontotemporal dementia, n (%) – 4 (2.2) –

Other, n (%) – 4 (2.2)

MMSE score, mean (SD) – 23.17 (6.33) –

CDR score, mean (SD) – 0.76 (0.48) –

GDS score, mean (SD) 5.53 (4.45)

NHANES, National Health and Nutrition Examination Survey dataset; BICWALZS, Biobank Innovations for chronic Cerebrovascular disease With ALZheimer’s disease
Study; BMI, body mass index; SD, standard deviation; MMSE, Mini-Mental State Examination, CDR, Clinical Dementia Rating, GDS, Global Deterioration Scale.

all values > 0.964. Four of five regions showing the highest
correlations were located in the temporal lobe: the right
superior/middle temporal gyrus and left inferior/middle
temporal gyrus (Figure 3). The mean correlation coefficient for
those five regions was 0.998, and the mean r-squared value for
the five estimation models was 0.996. When both deep learning-
based features and time-frequency domain features were used,
the mean Pearson correlation coefficient was significantly greater
than that when only time-frequency domain features were used
(0.990 vs. 0.860).

To address the multiple comparison problem, the Benjamini-
Hochberg Procedure was employed to control for the FDR. The
FDR values were calculated for each of the 116 correlations.
Consequently, it was observed that the FDR was < 0.05 in all
the regression models. The correlation coefficients values for each
region are detailed in Supplementary Table 4.

We also examined the correlations between the actual and
expected volumes at a larger spatial scale at the lobe level.
Each lobe showed a consistent level of correlation. The highest
correlation was observed in the temporal lobe (r = 0.995),
followed by the occipital (r = 0.994), frontal (r = 0.991), and
parietal and cerebellar (r = 0.99) lobes (Table 2 and Figure 4).

DISCUSSION

In this study, we attempted to extract meaningful features from
patients’ physical activity data using a deep learning model, and
we showed that these data could be used for predicting brain
volume. Consequently, we generated a statistically significant
brain volume estimation model for 116 regions, which were

anatomically subdivided according to the AAL atlas. The mean
correlation between the actual and estimated volumes of the
regression models for these 116 regions was 0.990.

In the lobe-scale analysis performed combining deep learning
and frequency features, the temporal lobe demonstrated the
highest mean correlation (0.995), followed by the occipital
(0.994), and the frontal, parietal, and cerebellar lobes. Our
approach showed an excellent prediction performance for all
brain lobes (mean correlation ≥ 0.984 at least).

While the numbers of patients with dementia and MCI are
rapidly increasing due to recent changes in the proportions of
aging populations, only a fraction of patients with MCI progress
to clinical AD (Visser et al., 2006; Mitchell, 2009). According
to two community-based studies, over a third of MCI patients
recovered normal cognition (Larrieu et al., 2002; Ganguli et al.,
2004), although examining the risk of dementia progression
in the early stage of cognitive dysfunction can still lead to
appropriate intervention. Brain atrophy in limbic regions, such
as the hippocampus, parahippocampal gyrus, and amygdala,
is known to be a significant predictor of progression to AD
(Korf et al., 2004; DeCarli et al., 2007), and brain MRI is the
current gold standard for examining brain atrophy; however,
due to the expense and medical device requirements, continuous
MRI monitoring is difficult, as is early detection because brain
MRI does not typically occur before signs of the disease begin
manifesting. Therefore, a cost-effective, continuous, and easily
accessible alternative screening tool is required.

The correlation between brain volume atrophy and the
amount of brain activity has already been studied (Colcombe
et al., 2006; Ploughman, 2008), and the increasingly widespread
use of wearable devices has made it easier to measure such

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2022 | Volume 16 | Article 795171

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-16-795171 March 3, 2022 Time: 17:1 # 7

Park et al. Activity Features and Brain Volume

FIGURE 3 | Scatter plots of five regions with the highest correlation between the actual and estimated volumes. Five regions include the right superior/middle
temporal gyrus, left inferior/middle temporal gyrus, and left middle occipital gyrus. For all subfigures, the y-axis represents the actual brain volume and the x-axis
represents the estimated brain volume based on the linear regression model generated from the features extracted from the activity data. STG, superior temporal
gyrus; MTG, middle temporal gyrus; MOG, middle occipital gyrus; ITG, inferior temporal gyrus; L/R, left/right hemisphere.

TABLE 2 | Correlation between actual and expected volumes for each lobe.

Deep learning + Time-frequency domain features Time-frequency domain features only P value† P value‡

Lobe Number of
regions (excluded

regions)

Mean correlation
(SD)

Mean r2 value
(SD)

Number of
regions (excluded

regions)

Mean correlation
(SD)

Mean r2 value
(SD)

Central 8 (2) 0.989 (0.01) 0.979 (0.01) 8 (0) 0.804 (0.09) 0.654 (0.13) 0.006 0.002

Cerebellum 18 (0) 0.99 (0) 0.979 (0.01) 18 (0) 0.799 (0.04) 0.64 (0.07) <0.001 <0.001

Frontal 24 (0) 0.991 (0) 0.982 (0.01) 24 (0) 0.896 (0.02) 0.803 (0.04) <0.001 <0.001

Insula 2 (0) 0.987 (0) 0.974 (0.01) 2 (0) 0.914 (0) 0.835 (0) 0.034 0.043

Limbic 14 (0) 0.986 (0.01) 0.973 (0.01) 14 (0) 0.867 (0.03) 0.753 (0.05) <0.001 <0.001

Occipital 14 (0) 0.994 (0) 0.989 (0) 14 (0) 0.899 (0.03) 0.81 (0.06) <0.001 <0.001

Parietal 10 (0) 0.99 (0) 0.98 (0.01) 10 (0) 0.883 (0.02) 0.779 (0.03) <0.001 <0.001

Subcortical 10 (0) 0.984 (0.01) 0.969 (0.01) 10 (0) 0.809 (0.05) 0.657 (0.08) <0.001 <0.001

Temporal 8 (0) 0.995 (0) 0.991 (0.01) 8 (0) 0.918 (0.02) 0.843 (0.03) <0.001 <0.001

†Difference in mean correlation (t-test). ‡Difference in mean r2 (t-test). †,‡Adjusted by Bonferroni correction.

activity accurately. Most commercial smartwatches can now be
purchased for less than 500 USD, which is cheaper than the cost
of a single MRI examination, and there is a huge demand for
the purchase of such devices, even without the need for medical
care. In addition, because mobile devices can monitor the subjects

continuously in real-time, they have some inherent and unique
advantages compared with conventional screening tools (e.g.,
MRI or survey) for detecting dementia.

Our findings suggest that deep learning-based and time-
frequency domain features independently provide meaningful
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FIGURE 4 | Violin plot showing the distribution of the correlations between the actual and estimated volumes by region within each lobe. We present two results:
from combining deep learning and frequency features (A), and from frequency features solely (B). The X-axis shows the lobe defined according to the automated
anatomical labeling (AAL) atlas, whereas the Y-axis shows the correlation coefficients for each lobe. The broader sections of the violin plot represent a higher
probability, whereas the thinner sections represent a lower probability. The thick black bar in the center represents the interquartile range, whereas the thin black line
represents 1.5 times the interquartile range.

information on brain volume. We observed performance
improvement for brain volume prediction when using both deep
learning-based features and time-frequency domain features. In
addition, using an external dataset to train the deep learning-
based features increased the generalizability power of the model.
As both autoencoder model structure (Supplementary Table 2)
and data are open access, any researcher will be able to extract the
same activity features used in this study and repurpose them for
their own research.

Several brain volume estimation studies have been conducted
using an accelerometer. For example, Arnardottir et al.
studied the association between changes in brain structure and
accelerometer-measured physical activity (Arnardottir et al.,
2016), and Spartano et al. (2019) investigated the association
between accelerometer-measured low-intensity physical activity
and brain volume. Tan et al. (2017) also studied the relationship
between physical activity and brain volume, particularly in a
region specific to dementia, the hippocampus. However, these
previous studies used simple statistics like total daily activity
as the representative measure of the activity features, making it
difficult to utilize the temporal, non-linear pattern of the activity
data. Also, the brain volume estimations have been limited to
estimating the total brain volume or the volumes of only a few

regions. Crucially, previous models have had to use dozens of
clinical variables to estimate brain volume, making these methods
ill-suited for out-of-hospital mobile environments where it is
difficult to obtain clinical information.

Unlike previous studies, we solely employed activity features
that were extracted by an unsupervised deep learning model and
a time-frequency domain feature extraction model to estimate
brain volumes. Although we did not include clinical information
in our model, it demonstrated good performance in estimating
brain volumes; we thus believe that our feature extraction
method captures information intrinsic to activity data that
contributed to this performance. Recently, several studies have
been successful in estimating clinical information that was not
explicitly provided, such as in the prediction of valve disease or
hyperkalemia using deep learning in electrocardiogram studies
(Galloway et al., 2019; Kwon et al., 2020). This supports the
hypothesis that hidden but clinically meaningful information
may exist in bio-signals, and these patterns could be analyzed
with deep learning methods (Yoon et al., 2020).

We were the first to develop statistically significant estimation
models for the volume of 116 brain regions. At the lobe level, the
estimation power for temporal lobe atrophy, which is associated
with memory and executive functions, as well as with MCI and
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AD (Guillozet et al., 2003; Nho et al., 2012), was the highest
among all the lobes. To develop a reliable screening test, further
detailed studies of brain sub-regions are needed.

One of the strengths of this study was that it was based
on multi-centered, multinational datasets. The United States
NHANES dataset, based on data collected from the general
population, was used for training, and the Korean tertiary center
dataset, based on patients with cognitive dysfunction, was used
for validating the model externally. This strategy showed that
the conclusion based on the extracted activity features in our
model could be generalized across data from different nations
and populations.

Assessments of cognitive function in the BICWALZS
confirmed that the model developed in the study was able
to detect the reduced volume of brain regions using physical
activity patterns, even in those in the early stage of dementia.
In this population, 60.5% of subjects had complained only of
subjective memory loss or MCI. The average Mini-Mental State
Examination (MMSE) score in these subjects was 23.17, which
was close to the 24-point cut-off used as the general boundary
for dementia screening (Kang et al., 1997). In patients with
dementia, the Clinical Dementia Rating (CDR) score was 0.76 on
average, which is considered to be indicative of mild dementia
(Morris, 1991).

There were some limitations to this study that should be
addressed. Firstly, although we adopted a deep learning method
for generating the feature extraction model, a classical linear
regression model was employed in the estimation process
using activity features because we could not secure a large
enough sample size to allow us to apply the deep learning
approach. Secondly, the low number of subjects hindered our
ability to test the brain volume estimation model using an
independent dataset. Therefore, this study focused on evaluating
the usefulness of assessing those features by estimating the
correlations between the expected and actual brain volumes.
To improve the performance of the brain volume estimation
method and to ensure its generalizability, we could apply the
latest machine learning developments, such as the use of a deep
neural network and conduct a test with an external dataset in a
future study with a larger patient sample size. Third, we did not
collect MRI images and activity data serially for a long period.
Therefore, further study with time-series data is required to
discover whether our approach could be effective in detecting and
monitoring changes of brain volume.

In conclusion, the results of this study suggest that
activity features from activity data can be successfully used
to estimate brain volume changes, even in patients with mild
neurodegenerative symptoms. Because our model relied solely
on the activity features extracted from accelerometer data,
we could minimize the requirement for clinical information.
We expect that our model will contribute to the detection of

dementia or other brain volume-related diseases, especially in a
mobile environment.
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