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Rhythmic neural activity, so-called oscillations, plays a key role in neural information
transmission, processing, and storage. Neural oscillations in distinct frequency bands
are central to physiological brain function, and alterations thereof have been associated
with several neurological and psychiatric disorders. The most common methods to
analyze neural oscillations, e.g., short-time Fourier transform or wavelet analysis,
assume that measured neural activity is composed of a series of symmetric prototypical
waveforms, e.g., sinusoids. However, usually, the models generating the signal,
including waveform shapes of experimentally measured neural activity are unknown.
Decomposing asymmetric waveforms of nonlinear origin using these classic methods
may result in spurious harmonics visible in the estimated frequency spectra. Here, we
introduce a new method for capturing rhythmic brain activity based on recurrences
of similar states in phase-space. This method allows for a time-resolved estimation
of amplitude fluctuations of recurrent activity irrespective of or specific to waveform
shapes. The algorithm is derived from the well-established field of recurrence analysis,
which, in comparison to Fourier-based analysis, is still very uncommon in neuroscience.
In this paper, we show its advantages and limitations in comparison to short-time Fourier
transform and wavelet convolution using periodic signals of different waveform shapes.
Furthermore, we demonstrate its application using experimental data, i.e., intracranial
and noninvasive electrophysiological recordings from the human motor cortex of one
epilepsy patient and one healthy adult, respectively.

Keywords: oscillations, waveform, recurrence analysis, nonlinear time series analysis, wavelet, rhythmic neural
activity

INTRODUCTION

During the last two decades, neural oscillations have gained increasing attention as a fundamental
mechanism of neural communication (Buehlmann and Deco, 2010; Palmigiano et al., 2017).
Neural oscillations are defined as temporally recurring patterns of neuronal activity, also referred
to as periodic and rhythmic activity. Oscillations mainly represent synchronized input to
neural ensembles consisting of thousands of cells (Buzsáki and Draguhn, 2004). The spatial
specificity of recorded activity mainly depends on the measurement device used, with, e.g.,
surface electrocorticography covering a much broader scale than, e.g., invasive local field potential
recordings (LFPs). Classically, oscillatory activity in the human brain is subdivided into five
frequency bands: delta (<4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma
(>30 Hz) (Buzsáki and Draguhn, 2004). A wide range of physiological processes in the animal and
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human brain is associated with fluctuations of oscillations
in distinct frequency bands, e.g., such as deep sleep (delta
oscillations, Amzica and Steriade, 1998), long-term memory,
and inhibitory top-down control (theta oscillations, Oehrn
et al., 2018), attention and local inhibition (alpha oscillations,
Bollimunta et al., 2011), and motor control (beta oscillations,
Engel and Fries, 2010). Furthermore, alterations in distinct
frequency bands occur in neurological and psychiatric diseases,
e.g., changes in beta band activity during Parkinson’s disease
(Kühn et al., 2006; de Hemptinne et al., 2013; Little and Brown,
2014) and theta activity during essential tremor (Schnitzler et al.,
2009; Pedrosa et al., 2012). Nowadays, neuroscientists commonly
use wavelet analysis for the quantification of oscillatory activity
(van Vugt et al., 2007; Hramov et al., 2015) and Fourier-
based analysis tools, such as multitapering or short-time
Fourier transformation (van Drongelen, 2018). While being
computational efficient, these methods have certain limitations
that one needs to consider during interpretation. Classical
Fourier and wavelet analysis usually implicitly assume that the
analyzed signal is a superposition, i.e., summation of stationary
sinusoidal or wavelet-shaped components. However, Fourier
transformation of a non-periodic or non-sinusoidal signal may
be difficult to interpret. While it is theoretically possible to
deconstruct any non-periodic signal into a series of infinite
sinusoidals using the Fourier transform, one has to be careful
not to overinterpret frequency components, which arise due to
the decomposition of a non-periodic non-sinusoidal signal into
periodic sinusoidals (Gebber et al., 1999; Lozano-Soldevilla et al.,
2016). Thus, the question arises which frequency components do,
indeed, carry meaningful information, and which are redundant
or even artificial.

The rationale behind using Fourier-based methods is the
basic assumption that most electrophysiologically recorded data,
e.g., from electroencephalography (EEG) or LFPs, represent the
summed activity of large neuronal populations (Franaszczuk and
Blinowska, 1985; Buzsáki and Draguhn, 2004). However, despite
few attempts at data-driven modeling of specific waveforms
(Lewis et al., 2012; Sherman et al., 2016), most often, the
signal-generating mechanisms and models and the prototypical
waveform shapes of neuronal activity are unknown (Cole
and Voytek, 2017). In recent years, waveform shapes have
gained increasing interest in the neuroscientific community [for
reviews, see Jones (2016) and Cole and Voytek (2017)]. Several
studies revealed stereotypical variants of classic frequency bands,
which deviated from the sinusoidal waveform shape, e.g., the
sensorimotor “mu rhythm,” which is a variation of an alpha wave
(Tiihonen et al., 1989; Arroyo et al., 1993; Muthukumaraswamy
et al., 2004; Debnath et al., 2019) or motor cortical beta activity
with a saw tooth shape (Cole et al., 2017). This non-sinusoidal
rhythmic activity is functionally relevant. In Parkinson’s disease,
asymmetric beta waves have been associated with the pathological
state and shown to become more symmetric with successful
treatment, i.e., deep brain stimulation (Cole et al., 2017). While
waveform shape is increasingly recognized to carry meaningful
physiological information, there is still a lack of tools, which
specifically quantify non-sinusoidal activity. While recently,
algorithms to characterize waveform shapes have been proposed,

methods to incorporate non-sinusoidal activity into frequency
analysis are still lacking (Cole et al., 2017; Escobar Sanabria
et al., 2017; Pullon et al., 2019). Using classic approaches like
Fourier analysis on asymmetric signals leads to the generation
of harmonics in the respective spectra, which can be falsely
interpreted as meaningful physiological or pathological activity.
This is particularly true for measures of coupling, e.g., phase-
amplitude coupling where non-sinusoidal signals may lead to
spurious results (Lozano-Soldevilla et al., 2016; Yeh et al., 2016).

Here, we introduce a parsimonious way to analyze rhythmic
activity that is not based on assumptions regarding waveform
shapes. In this approach, we quantify recurrence periods and
amplitudes of similar dynamic states based on the established
framework of recurrence analysis (Webber and Marwan, 2015).
Similar to amplitude or power in Fourier or wavelet analysis,
recurrence amplitudes quantify the energy content of the
analyzed time series as a function of their (recurrence) frequency.
We derive a new algorithm for the estimation of a time-resolved
recurrence amplitude spectrum and demonstrate its advantages
and limitations in comparison to classic approaches, in particular
in regard to non-sinusoidal signals. For this purpose, we use
artificial data with known ground truth, as well as real intracranial
as well as noninvasive brain recordings from the human motor
cortex of one epilepsy patient and one healthy adult, respectively.

MATERIALS AND METHODS

Basic Definitions
For the remainder of this paper, let xt be the realizations of
stochastic variables Xt at time t, generating a stochastic process
X. Normal case letters indicate scalar valued observations, while
bold letters indicate d-dimensional vector-valued states. A state is
defined as a collection of past mostly independent or temporally
uncorrelated variables Xt−1t, which are sufficient to predict the
present observation Xt. States can be reconstructed using Takens’
delay-embedding theorem (Takens, 1981) by time shifting the
scalar time series X (d-1) times by a factor τ = 1t.

xdx
t = [xt−(dx−1)τ, xt−(dx−2)τ, . . . xt−τ, xt]

T, (1)

with T indicating the transpose of the vector. The dimension d
represents the minimum number of degrees of freedom necessary
to sufficiently describe the process X.

The collection of all realized states xt is defined as the state
space of process X (Kantz and Schreiber, 2005). For example,
a perturbed frictionless pendulum creates a closed trajectory
in a two-dimensional phase-space spanned by the variables
position and velocity.

Assuming the process X to be Markovian, i.e., stochastic
with finite memory, the dimension d and the delay τ can be
reconstructed from univariate time series using Ragwitz criterion
(Ragwitz and Kantz, 2002) or a combination of the false nearest
neighbor algorithm (Hegger and Kantz, 1999) and the auto-
mutual information (Fraser and Swinney, 1986) (for details, see
Supplementary Methods).
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Quantification of Recurrent States
In the following, we will derive an algorithm to estimate the
average time-dependent recurrence amplitudes per recurrence
frequency of dynamical states. The aim is to derive an estimator
to quantify energy distribution of electrophysiological signals as
a function of time and frequency similar to short-time Fourier
transform (STFT) but based on the concept of recurrent states
in phase-space. The idea is that a method based on phase-space
observables should be specifically able to quantify high-order
oscillations, which are made possible by the combination of
uncorrelated succeeding time points to state variables. Thus,
this approach might be less redundant in comparison to classic
approaches. For this, we will first explain estimation of recurrence
periods and recurrence probabilities, which will then be followed
by the concept of recurrence amplitudes. Finally, the average

recurrence amplitude is calculated by combining the concepts
of recurrence probabilities and recurrence amplitudes. Temporal
resolution will be introduced by estimating average recurrence
amplitudes by using a sliding window.

Frequency Estimation: The Recurrence
Period
A state xt+1t is defined to be recurrent after 1t time steps, if it
is within a neighborhood Uε of Xt with radius ε (Eckmann et al.,
1987):

xdx
t+1t ∈ Uε(xdx

t ) (2)

For infinitely small neighborhoods, i.e., ε → 0, xt+1t
is periodic with period 1t, if 1t is the same for all t
(Little et al., 2007). All recurrences of an arbitrarily high

FIGURE 1 | Examples of recurrence plots. At each time i, each black dot indicates a spatial recurrence at time j. Parallel lines indicate periodic activity. Recurrence
plots show characteristic patterns, depending on the system’s qualitative dynamics: (A) Random white noise. (B) Sinusoid with a period of 100 samples. (C) A
recurrence plot of a classic deterministic nonlinear system, i.e., the Lorenz system (Lorenz, 1963).

FIGURE 2 | Estimation of recurrence periods. (A) A closed local trajectory in phase-space. A reference point (green) is tracked in time until it reenters its spatial
neighborhood (yellow circle) with radius ε. In this example, the recurrence period is equal to 14, as it takes 14 samples (blue) until the trajectory reenters the
neighborhood. The recurrence amplitude a is estimated as the maximum distance of the recurrence trajectory. Increasing the neighborhood by a multiple of the
state-to-state distance (gray dashed circle) reduces the recurrence period by a multiple of two samples. (B) Example estimation of recurrence amplitudes using the
maximum norm. Recurrence amplitude of 5 s of a 20-Hz periodic signal with an amplitude of two. (C) Example estimation of recurrence probabilities for a
non-periodic but highly recurrent deterministic system, i.e., the classic Lorenz system (Lorenz, 1963). The plot shows the recurrence probabilities of each period T.
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dimensional phase-space may be represented by calculating a
two-dimensional binary recurrence matrix (Marwan et al., 2007):

Mt,t+1t = 2(ε−||xt−xt+1t||) (3)

2 is the Heaviside step function and ||.|| is the Euclidean
distance norm:

||xt − xt+1t|| =

√√√√ dx∑
i = 1

(
xi,t − xi,t+1t

)2
, (4)

where xi is the ith component of phase-space vectors. If (ε-||xt-
xt+1t||) is negative 2 is 0 else 1. This recurrence matrix M
can be graphically represented by a recurrence plot, where ones
are represented by black dots, i.e., recurrences of time i at time
j (Figure 1).

Depending on the system’s local dynamics, the recurrence
plot depicts different motifs. Parallel diagonal lines indicate
periodicity and determinism, while vertical lines appear due to
laminar, i.e., unchanging behavior. White corners arise because
of slow drifts or non-stationarity, and isolated dots most often
indicate stochastic behavior (Eckmann et al., 1987; Marwan et al.,
2007). The recurrence period T of any closest temporal neighbor
xt+1t of xt within a spatial neighborhood Uε may be estimated as
the difference (Little et al., 2007; Ngamga et al., 2007):

T = (t+1t− ρ)− (t+ γ), (5)

where γ is the difference in samples between xt and xt, first leaving
Uε, and ρ is the sample difference between xt, reentering Uε and
xt+1t (Figure 2A). This is equivalent to estimating the number
of vertically aligned, adjacent zeros in the recurrence matrix or
the sample length of vertical white lines in the recurrence plot for
segments greater than one (see Figure 1B). Excluding consecutive
recurrence points (i.e., with period one) has been suggested by
Gao (1999) as some of them represent tangential motion instead
of the dynamics of the system. Such recurrence periods have
been labeled as second type to distinguish them from the original
Poincaré recurrence periods (Poincaré, 1890). Subsequently, T is
estimated this way for each state.

Recurrence Probability
By estimating the recurrence period T for all phase-space vectors,
it is possible to calculate a histogram R (T), where the bin number
is equal to the longest recurrence period Tmax. The recurrence
probability may thus be estimated by normalizing R(T) by the
total number of recurrence periods (Figure 2C; Little et al., 2007).
As noisy experimental data may lead to a high number of short-
period recurrences, it is useful to calculate P(T) for a predefined
range of T (Tmin–Tmax):

P (T) =
R(T)∑Tmax

i = Tmin
R(i)

, T = Tmin...Tmax (6)

Amplitude Estimation
As can be seen in Figure 2A, recurrent systems form closed
or nearly closed trajectories in phase-space. Here, the energy is

contained in the phase-space volume of each recurrent state. In
reference to our example, the phase-space portrait would increase
in size, if the pendulum would be moved with a greater amplitude.
Thus, a reasonable approximation of the amplitude of each period
would be to estimate its maximum diameter in phase-space.

a (T) =

q∑
k = 1

max||xi − xj|| · q−1,∀i, j ∈ {1...n} (7)

with q being the number of recurrences per T, i.e., how often a
recurrence of duration T has occurred, i and j being the sample
indices of the kth recurrence, and n being the number of samples
per recurrence (see Figure 2A).

This may be repeated for each recurrent trajectory per
recurrence period T and subsequently averaged (Figure 2B). The
average over all recurrences per T is taken here to avoid a bias
toward rare recurrences with large maximum diameters, which
might occur due to measurement noise. A similar approach has
been previously described for the detection of synchronization
for non-phase-coherent and non-stationary data by Romano
et al. (2005). Finally, we weighted each estimated mean amplitude
by its recurrence probability to get an average for each recurrence
frequency bin. This is equivalent to estimating the expected value
of the amplitude for every recurrence frequency:

A(T) = P(T) · a(T) (8)

This is done to negate the effect of noise on recurrence
amplitude estimation. Rare occurrences of high-amplitude
recurrences in the vicinity of the “true” recurrence frequency
will thus get diminished if their recurrency probability is lower
than the “true” recurrence frequency (for a comparison with
unweighted recurrence amplitudes, see Section “Comparison

FIGURE 3 | Spatially resolved recurrence probability. The plot shows
recurrence probabilities P(T) of 50 s of a 3-Hz signal (+8% STD white noise) as
a function of periods T = 1–5,000 samples and increasing neighborhood sizes
ε = 1–300. ε is represented in % of the standard deviation of the raw time
series. The arrow indicates the noise floor.
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between recurrence estimation, Fourier transform and
wavelet transform”).

Time-Resolved Recurrence Amplitude
In neuroscientific research, it is often of interest to analyze
spectral activity changes relative to some intervention, e.g., some
stimulus or response. For this purpose, methods like STFT or
wavelet transform estimate power spectral density as a function
of time (Hramov et al., 2015). Similarly, the recurrence amplitude
spectrum may be estimated for n short overlapping time windows
wn of definite length:

P (T, wn) =
R(T, wn)∑Tmax

i = Tmin
R(i, wn)

, T = Tmin...Tmax (9)

The length of each time window determines the maximum
resolvable recurrence period and should thus be chosen with
respect to the minimum frequency of interest.

Influence of Neighborhood ε on
Recurrence Estimation
The recurrence probability is an estimate of the probability of a
recurrence occurring after T time steps. The estimation of P(T)
is dependent on ε. For experimental data, a too small choice
of ε would result in many empty neighborhoods and thus in a
high degree of statistical errors due to measurement noise. If
ε is chosen too large, recurrences are not local anymore, and
recurrence periods are underestimated. The recurrence period
gets approximately underestimated by two samples for every

FIGURE 4 | A recurrence amplitude spectrum. The recurrence amplitude spectrum of a compound signal of three 33-Hz oscillatory signals of different shapes is
shown. The first 5 s is composed of a sine wave, the next 5 s of a sawtooth wave, and the last 5 s of a rectangle wave. (A) Raw unweighted amplitudes. (B) Raw
amplitudes were weighted with their respective probability densities. (C) Short-time Fourier transform of the same signal. Window length was set to 1 s with a 50%
overlap. Note the spurious harmonics for the nonlinear waveform shapes, i.e., rectangle (5–10 s) and sawtooth shape (10–15 s). (D) Wavelet transform of the signal.
Wavelet width was set to 30. Note the spurious harmonics for the nonlinear waveform shapes, i.e., rectangle (5–10 s) and sawtooth shape (10–15 s).

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2022 | Volume 16 | Article 800116

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-16-800116 March 1, 2022 Time: 16:9 # 6

Weber and Oehrn A Recurrence Amplitude Spectrum

increase of ε by a multiple q of the state-to-state distance
|| xt+1-xt|| (e.g., see the gray dashed circle in Figure 2A). Thus,
the number recurrence times of period T in R gets added to bins
of lower periods:

Rerr (T,εerr) ≈ R(Terr)

Terr
(
q,εerr

)
≈ T−2q, (10)

with
εerr ≈ ε + q · ||xt+1 − xt||, (11)

To better understand the influence of the parameter ε on
recurrences, P(T) may be estimated over a wide range of
neighborhood-sizes, resulting in a spatially resolved recurrence
period spectrum (SREPS). In the SREPS, one would expect to
find three regions of interest, depending on ε. For very small
ε, the SREPS is governed by statistical errors and a uniform
distribution across all T. For very high ε, the distribution of P(T)
is heavily shifted to small T with only few state vectors, leaving
and reentering any neighborhood, with the extreme case of a
neighborhood size fully engulfing the phase-space. If the signal
contains any oscillatory activity, slowly shifting, but continuous
“spectral” peaks occur in the intermediate range of ε. As stated
above, the best estimate of the recurrence period may thus be

found at the crossing of the continuous spectral peaks and the
noise regime for low ε (Figure 3).

Comparison Between Recurrence
Estimation, Fourier Transform, and
Wavelet Transform
In Figure 4, we demonstrate the raw (Figure 4A) and a weighted
recurrence amplitude spectrum (Figure 4B) using an artificial
signal of three signals of different concatenated waveform shapes,
each with a length of 5 s, a frequency of 33 Hz and an
amplitude of two: (1) a sinusoid, (2) a sawtooth wave and (3)
a rectangle wave. While the frequency resolution succeedingly
decreases for the three waveform types using the raw amplitude
spectrum, it stays nearly the same for the weighted spectrum.
However, the amplitude of the rectangle curve is slightly under-
and its frequency slightly overestimated. Using the weighted
amplitude spectrum increased the frequency resolution for the
non-sinusoidal signals. For comparison with classic approaches,
we analyzed the same signal with STFT (Figure 4C) and wavelet
analysis (Figure 4D). For the recurrence amplitude spectrum
and the short-time Fourier spectrum, we used 50% overlapping
windows of 600-ms lengths. For wavelet analysis, we used 30
cycles in order to approximate the window length for the

FIGURE 5 | Sensitivity to time-frequency transitions and multiple high-order frequencies. (A) Comparison of a time-resolved recurrence amplitude spectrum (Ai) with
short-time Fourier transform (Aii) and wavelet transform (Aiii) using a concatenated signal of five 3-s segments with increasing frequencies (14, 33, 41, 52, and
67 Hz). (B) Comparison of a time-resolved recurrence amplitude spectrum (Bi) with a time-independent recurrence spectrum proposed by Zbilut and Marwan (2008)
(Bii) and the Fourier transform of the autocorrelation function (Biii) of 40,000 samples of the Belousov–Zhabotinsky chemical reaction. The period-3 orbit between
the frequencies of 0.3 and 0.4 can only be detected in panels (Bi,Bii). Frequencies were normalized to the fundamental period of the system at 125 samples.
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other methods (1 s). For STFT and wavelet analysis, spurious
harmonics can be seen for the non-sinusoidal waveform shapes in
addition to the true frequency at 33 Hz. In contrast, the weighted
recurrence amplitude spectrum shows only one spectral peak at a
relatively narrow frequency band.

In order to test the sensitivity of the recurrence amplitude
spectrum to time-frequency transitions, we concatenated five 3 s
signals of increasing frequencies (14, 33, 41, 52, and 67 Hz)
and compared results with short-time Fourier transform and
wavelet transform (Figure 5A). We used the same parameters
as before, i.e., a window length of 1,000 samples with a 50%
overlap for recurrence amplitudes and STFT and 30 cycles
for the wavelet transform. The five different frequencies were
reliably detected with all three methods. However, the sharp
transitions of segments led to broadband power increases in
the STFT and wavelet transform, which could not be observed
in the recurrence amplitude spectrum. For both, wavelet and
recurrence spectrum higher frequencies led to a worse frequency
resolution, although the differences between frequencies for the
latter were much smaller.

Zbilut and Marwan (2008) have previously proposed a similar
but time-independent, recurrence-based amplitude spectrum.

However, the main difference to our proposed estimator is that
Zbilut and Marwan combine recurrence analysis with Fourier
transform. For this, they apply the Fourier transform to the
generalized autocovariance function derived from recurrence
quantification to estimate a recurrence-based power spectrum.
They demonstrate their method using a time series of the
nonlinear Belousov–Zhabotinsky chemical reaction. Here, we
used 40,000 samples of the same dataset to compare our proposed
method to Zbilut’s and Marwan’s estimator as well as to a
Fourier transform of the standard autocorrelation of the time
series (Figure 5B). According to Lathrop and Kostelich, the
system’s attractor exhibits a main periodic orbit with a period of
approximately 125 samples, as well as a period-2 and period-3
orbit at about 250 and 375 samples, respectively. Similar to Zbilut
and Marwan, we normalized frequencies to the period-1 orbit
(125 samples) and used an embedding dimension d = 3 and a
delay τ = 124. We used a window size of 2,000 samples with a 50%
overlap for the time-resolved recurrence amplitude spectrum.
The generalized autocorrelation function was estimated using the
nta_recurrenceplot.m function of the NoLiTiA-Toolbox (Weber
and Oehrn, 2021). The period-1 and period-2 could be reliably
detected with all three methods. However, the period-2 orbit

FIGURE 6 | Influence of white noise on recurrence amplitude estimation. Increasing white noise levels between 0 and 10% of the raw signal’s amplitude was added
to a compound signal composed of three waveform shapes: 33-Hz sinusoid (0–5 s), a 33 Hz sawtooth wave (5–10 s), and a 33 Hz rectangle wave (10–15 s). (A) 0%
white noise. (B) 2% white noise. (C) 4% white noise. (D) 6% white noise. (E) 8% white noise. (F) 10% white noise. Subharmonics appear with increasing noise levels.
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was estimated at a slightly lower frequency for the recurrence
amplitude spectrum in comparison to both other methods (0.35
vs. 0.67). The period-3 orbit at approximately 0.32 could only
be shown with Zbilut’s and Marwan’s method and our proposed
estimator. Interestingly, the period-3 orbit exhibits a double peak
in the spectrum of both methods, which has not been shown
in Zbilut’s and Marwan’s original study in which they used only
1,000 samples of the time series.

Influence of Measurement Noise
Measurement noise in electrophysiological recordings is typically
in the range between 2 and 7% of physiological amplitudes
(Ryynänen et al., 2004). To test the influence of measurement
noise on recurrence amplitude estimation we thus added
increasing uniform white noise levels from 0 to 10% of the
signal’s amplitude to the same test signal described in Section
“Comparison between recurrence estimation, Fourier transform
and wavelet transform” (Figure 6). Neighborhood-size ε was set
ad hoc at 10% STD. The added noise leads to the occurrence
of subharmonics for all three signal types. For the sinusoid
and sawtooth wave, spurious subharmonics at 16.4 and 11 Hz
first occur at 2% noise (Figure 6B). With increasing noise
levels, increasingly more subharmonics can be detected in the
spectrum (Figures 6C,D). Finally, starting at 8 Hz subharmonics
at 16.4 and 11 Hz can also be detected for the rectangle wave
(Figures 6E,F). In contrast to Fourier-based methods, white
noise does not increase the baseline power but, instead, leads
to the detection of subharmonics. This is because immediate
recurrences of the original signal might get randomly missed with
increasing noise levels but get still detected after n periods.

Waveform-Specific Filter
While the proposed estimator is independent of waveform, it
is possible to tailor it to distinct waveform shapes. For this, we
introduce a gain factor to the amplitude estimation step, which
is simply the Pearson correlation of the waveform shape of each
recurrence and a scaled template waveform ζ.

a (T) =

q∑
k = 1

max||xi − xj|| · Gα
· q−1,∀i, j ∈ {1...n} (12)

with α being chosen arbitrary and G being the gain factor:

G(k) = max
(

COV (x, ζm)

σxσζm

)
, m = ζm...ζm+T, (13)

with cov being the covariance, σ being the variance, and ζm
being the template waveform from sample m to m + T. For
perfectly matching waveforms, the gain is unity, and, thus, the
amplitude estimation is unaffected (Figure 7). In Figure 7, we
used the same artificial signal as in Figure 4 and analyzed it
using waveform templates of a sinusoid (Figure 7A), sawtooth
(Figure 7B), and rectangle shape (Figure 7C), respectively. The
exponent α determines the strength of the gain factor and thus
how much specific waveform shapes are filtered. In this example,
it was set to five. Figure 7 demonstrates that using specific
waveforms as filters successfully attenuates power of time series

with non-matching shapes. However, attenuation is not perfect,
and the specificity of the filtering seems to be dependent on
the specific shape template as can be seen, e.g., for the sine-
wave filter (Figure 7A), where residual power can be detected
for the sawtooth and, to a higher degree, for the rectangle wave.
Thus, while sine-wave and sawtooth-wave filters attenuate each
other rather well, the effect is smaller for the rectangle-wave
filter. A possible explanation might be that the rectangle-wave
shares features with both, the sine-wave and the sawtooth-wave,
in that it has a similar symmetry as the former and rather sharp
transitions like the latter.

Implementation and Workflow
The proposed method is implemented in the nta_windrecfreq.m
function of the NoLiTiA-Toolbox (Weber and Oehrn, 2021).
NoLiTiA is a free, open-source MATLAB Toolbox with methods
from dynamical systems theory, information theory, and
recurrence analysis. Most functions require two input arguments:
(1) time series data and (2) a configuration structure containing
parameters for estimation. The most important parameters for
nta_windrecfreq.m are summarized in Table 1.

nta_windrecfreq.m is a wrapper function, which
iteratively calls nta_recurrenceplot.m for each time window
and subsequently averages the overlapping segments.
nta_recurrenceplot.m is the main function, which embeds
the time series in phase-space, estimates neighbor distances,
generates the recurrence matrices, estimates recurrence
probabilities, and finally estimates amplitudes, which get
weighted by their respective probabilities (see Figure 8). The
most important helper functions include nta_amutibin.m
and nta_fnn.m, which both optimize embedding delay and
dimension, respectively, nta_phasespace.m, which embeds
the time series and nta_neighsearch.mex64, which estimates
distances of all neighbors in phase-space. The latter was
implemented as a mex-file to reduce computation time.

An example script to call nta_windrecfreq.m is depicted
in Figure 9. Setting cfg.tau and cfg.dim to zero optimizes
both embedding parameters automatically. At a sampling rate
of cfg.fs = 1,000 Hz, a window length of cfg.window = 600
samples allow for a minimum resolvable recurrence frequency
of 1.67 Hz. cfg.window should be chosen according to the
minimum frequency intended to analyze. However, increasing
the window length also reduces the temporal resolution of
recurrence amplitude estimation. Thus, cfg.window is always a
compromise between minimum resolvable recurrence frequency
and temporal resolution. The parameter cfg.en defines the
neighborhood size in % of the STD of the input time series. Since
the neighborhood size should ideally cover the measurement
noise, a good starting point for cfg.en is a range between 50
and 100% of the time series’ STD. There is no general consensus
on how to define ε for experimental data and, as such, data
should only be interpreted in the light of transparent reporting.
An extensive documentation on all parameters and all functions
and subfunctions can be found in the documentation of the
NoLiTiA-toolbox1 or by the standard MATLAB help function.

1https://nolitia.com/download
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FIGURE 7 | A recurrence amplitude spectrum with templates. The recurrence amplitude spectrum of a compound signal of three 33-Hz oscillatory signals of
different shapes and a waveform-dependent gain is shown. The first 5 s is composed of a sine wave, the next 5 s of a sawtooth wave, and the last 5 s of a rectangle
wave. Shown are the raw unweighted amplitudes. (A) Five cycles of a sine wave were used as a shape template. (B) Five cycles of a sawtooth wave were used as a
shape template. (C) Five cycles of a rectangle wave were used as a shape template. α was always set to 5. Window length was set to 1 s with a 50% overlap.

TABLE 1 | Main input parameters for nta_windrecfreq.m.

Parameter Description Input type Default

cfg.tau Embedding delay τ for phase-space reconstruction integer number 0 (automatic optimization using
auto-mutual information)

cfg.dim Embedding dimension d for phase-space reconstruction Integer number 0 (automatic optimization using false
nearest neighbors algorithm)

cfg.en Neighborhood-size ε in % STD of the time series Integer number 5 (5%)

cfg.metric Distance norm used to estimate distances in phase-space String (“euclidean”/“maximum”) maximum (maximum norm)

cfg.window Length of sliding window w in ms integer number 1/10 of data length

cfg.fs Sampling frequency fs of time series integer number −

cfg.amplitudes Estimate amplitudes (yes/no) integer number (0/1) 1 (yes)

cfg.minmaxRecPD Minimum and maximum recurrence periods to consider vector (start end) [0 0] (consider all possible periods)

cfg.db Export amplitudes in decibel (yes/no) integer number (0/1) 1 (yes)

cfg.outp Export amplitudes either as magnitude or power string (“amp”/“pow”) “amp” (magnitude)

STD, standard deviation; ms, milliseconds.
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FIGURE 8 | Workflow of the implemented algorithms in nta_wind_recfreq.m.
After time series data and the configuration structure are passed to
nta_recfreq.m, it iteratively calls nta_recurrenceplot.m to estimate recurrence
amplitudes for each shifted time window.

Example Application
While the recurrence amplitude spectrum might be estimated for
all types of oscillatory activity, it is particularly suited for the
analysis of electrophysiological neural activity. Thus, we briefly
demonstrate its application using intracranial brain recordings
from the motor cortex of one epilepsy patient. The patient
received a 48 electrode electrocorticography (ECoG) grid for
diagnostic purposes. Electrodes were localized by co-registration
of preoperative MRI and postoperative CT scans using the
FieldTrip toolbox (Oostenveld et al., 2011; Figure 10A). As
oscillatory activity in the motor cortex has been well characterized

FIGURE 9 | An example script to call nta_wind_recfreq.m. For description of
parameters, see Table 1.

in previous studies, we selected three electrodes located on the
precentral gyrus, i.e., the motor cortex (two medial electrodes
in the proximity of the hand area and one lateral electrode).
Anatomical selection was based on the AAL atlas implemented
in FieldTrip (Tzourio-Mazoyer et al., 2002; Figure 10A). We
recorded electrophysiological data by means of the Neurofax-
system of Nihon Kohden (Nihon Kohden, Rosbach, Germany)
at a sampling rate of 1,000 Hz. The patient participated in a study
where he was asked to press a button on a standard computer
keyboard (n = 96 trials). To minimize edge effects occurring after
convolution with a wavelet kernel, we segmented the data into
relatively large time intervals of 4 s before until 4 s after the
response onset and discarded 1 s on each end of the segment after
wavelet convolution. We removed line-noise, visually rejected
artifacts, and performed trend correction. We performed a
response-locked data analysis, i.e., neural data are analyzed
time locked to the patient’s button press. To this end, we used
the nta_wind_recfreq.m function implemented in the NoLiTiA-
Toolbox and compared results to classic time-frequency analysis,
i.e., wavelet convolution, in order to analyze power in different
frequency bands. We used window lengths of 600 samples
(=0.6 s, parameter: cfg.window) and a 50% overlap for the time-
resolved estimation of recurrence amplitudes (Figures 10Bi–Di,
colorbar and axis labels shown in Figure 10E). Phase-space
parameters, i.e., dimension d and delay τ were optimized for
each time window using false nearest-neighborhood algorithm
and auto-mutual information, respectively (parameters: cfg.dim
and cfg.tau were both set to zero). Neighborhood size was
chosen ad hoc at 70% of the standard deviation of each
time series (parameter: cfg.en). For comparison with classic
methods, we used a combined wavelet (for frequencies, 3–
30 Hz) and multitaper approach (for frequencies above 30 Hz;
Figures 10Bii–Dii, colorbar and axis labels shown in Figure
10E), as suggested for better frequency resolution and frequently
adopted in the literature (van Vugt et al., 2007). To this end, we
convolved the data with a continuous complex Morlet wavelet
with seven cycles. From the wavelet-transformed signal, we
extracted power values between 3 and 30 Hz in 1 Hz steps (lower
frequencies are difficult to estimate using wavelet convolution in
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short time windows). For the multi-taper analysis, we used eight
tapers and a sliding 600 ms time window centered at 1-ms steps.
Both spectra were normalized, using the complete time period
as the baseline.

To complement this analysis, we also analyzed the data set
of one healthy adult who was recorded with noninvasive EEG.
Similar to the first data set, the proband was asked to press
a button on a standard computer keyboard (n = 190 trials).
For analysis, we used three electrodes in the left hemispheric
primary motor area (FCC3h, FCC5h, C1, Figure 11). All analysis
parameters were the same as for the invasive EEG electrodes.

Both study protocols were approved by the medical Ethics
Committee Marburg and conducted in accordance with the latest
version of the Declaration of Helsinki.

RESULTS

Invasive Recording
Using combined multitaper-wavelet analysis, we found a
desynchronization around the button press (∼−1–0 ms), ranging
across frequency bands delta to beta (∼3–32 Hz) in all three
electrodes (Figures 10Bii–Dii). After the motor response (∼1 s
post-response), we observed an enhancement in activity in this
broad spectrum approximately 1 s after the response. This so-
called rebound activity occurred in a broad frequency range
from delta to low gamma with it, being most prominent in
the beta band of electrode two. This beta rebound is a well-
described phenomenon in the motor cortex during motor tasks
(Crone et al., 1998; Pfurtscheller and Da Lopes Silva, 1999;
Jurkiewicz et al., 2006; Miller et al., 2007). Recurrence analysis
showed a more specific beta desynchronization and rebound for
electrode two, which was also more narrowband. In contrast to
wavelet analysis, we additionally found a broad gamma activation
during the button press, which was most prominently followed
by a gamma desynchronization in electrode two but also visible
in electrodes one and three to a lesser degree. In contrast,
recurrence analysis did hardly reveal any changes in the theta
band. Taken together, recurrence analysis was more sensitive for
broad band high frequency activity that was not detected by
wavelet convolution.

Noninvasive Recording
Analysis of the noninvasive recordings provided similar results as
for the invasive recordings. In all three electrodes, a pronounced
beta rebound between 0 and 2 s post button-press could be
observed, both with the combined multitaper-wavelet approach
and recurrence analysis. However, the effect was stronger using
the multitaper-wavelet approach. For both methods, the beta
desynchronization around the button press was much weaker in
comparison to the invasive recordings. Again, for the recurrence
analysis, a stronger gamma activation can be observed around the
button press (Figure 11).

Statistical Analysis
Results of the recurrence analysis of the invasive recordings were
statistically tested using a similar approach as described, e.g., in

de Hemptinne et al. (2015) for cross-frequency coupling, which,
similar to time-resolved recurrence amplitudes, is also a two-
dimensional measure (i.e., time vs. frequency for former and
frequency of phase vs. frequency of amplitude for latter measure).
For both measures, the aim is to statistically validate hotspots
of their respective two-dimensional distributions. For this, we
averaged recurrence amplitudes trial-wise over five different
combinations of frequencies and time intervals and compared
these averages to their respective baseline activities using a two-
sided paired Student’s T-test at an alpha level of 5% (Bonferroni
corrected). The baseline data consisted of the temporal average
of the complete trial, which was subsequently expanded to its
original duration. The extracted combinations of frequencies and
time intervals include late delta-theta (3–8 Hz, 1 to 2 s), early
beta (13–30 Hz, −3 to −2 s), mid beta (13–30 Hz, −0.5 to 0.5 s),
late beta (13–30 Hz, 0.5 to 2 s), and mid gamma (30–100 Hz,
−0.5 to 0.5 s, Figure 12A). For Channel 1, late delta/theta power
and mid gamma power were both larger than the baseline (late
delta/theta: p = 0.008, mid gamma: p < 0.001, Figure 12B). For
Channel 2 late delta/theta, early beta, late beta, and mid gamma
power were increased, while mid beta power was decreased in
comparison to the baseline (late delta/theta: p < 0.001, early
beta: p < 0.001, mid beta: p < 0.001, late beta: p = 0.0098, mid
gamma: p < 0.001, Figure 12C). All other comparisons were
non-significant (p > 0.055; for multitaper-wavelet results, see
Supplementary Figure 1).

DISCUSSION

Here, we introduce a new method to analyze oscillatory activity
in neural systems. We validated our approach with synthetic
data and demonstrated its application with real experimental
invasive EEG data of one epilepsy patient and noninvasive EEG
data of one healthy adult. Using artificial data, we show that the
power estimates resulting from our method are more frequency
specific for non-sinusoidal waveforms and are not associated
with spurious harmonics visible in the estimated frequency
spectra. However, by applying specific waveform templates, we
demonstrated that our method is also able to detect specific
shapes if necessary. Using human EEG recordings from the motor
cortex of one epilepsy patient and one healthy adult, we showed
that recurrence analysis compares to conventional methods, such
as wavelet analysis and Fourier transformation, in detecting
movement-related oscillatory activity in the motor cortex.

With both methods, we found beta desynchronization in the
motor cortex around the button press followed by a beta rebound
(Salmelin et al., 1995; Jurkiewicz et al., 2006; Parkes et al., 2006).
Both methods indicate that this effect is spatially specific, as
it was most prominent in one of the two medial electrodes in
proximity of the hand area of the primary motor cortex. This
was validated by statistical analysis, which showed that the beta
rebound using recurrence analysis was only significantly different
from the baseline in Channel 2.

Furthermore, recurrence analysis was more sensitive for
detecting broad band gamma activity in Channels one and two,
which is thought to represent multi-unit activity rather than
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FIGURE 10 | Example application on real invasive EEG data. (A) Selected electrodes in the motor area of one patient with epilepsy. The blue area indicates the
precentral gyrus located with the AAL atlas in FieldTrip. (Bi–Di) Recurrence analysis of three example electrodes. Plots have been convolved with a 5 × 5 smoothing
kernel for visualization purposes. (Bii–Dii) Corresponding combined multitaper-wavelet analysis of the same electrodes. All power values were normalized with
respect to the total power of the analyzed time window. (E) Colorbar and axis labels for Subfigures (B–D).

FIGURE 11 | Example application on noninvasive EEG data. (A) Selected electrodes in the motor area of one healthy adult. (Bi–Di) Recurrence analysis of three
example electrodes. (Bii–Dii) Corresponding combined multitaper-wavelet analysis of the same electrodes. All power values were normalized with respect to the
total power of the analyzed time window. (E) Colorbar and axis labels for Subfigures (B–D).

narrowband oscillations (Leszczyński et al., 2020). Recurrence
estimation was seemingly less sensitive for theta and delta
oscillations revealed by wavelet analysis, although statistical
differences could still be detected for Channels one and two. In
contrast to beta activity in electrode two, theta/delta was more

broadband in all three electrodes for wavelet analysis and much
more narrowband for recurrence analysis. It is possible that this
activity does not represent true oscillatory or recurrent activity
but, rather, local non-stationarities or drifts, which can hardly
be detected with recurrence analysis. This is because states of
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FIGURE 12 | Statistical comparisons of recurrence amplitudes with baseline activity of invasive recordings. (A) An example recurrence amplitude plot, indicating the
time-frequency intervals extracted for statistical analysis. (B) Statistical comparisons for Channel 1 (two-sided paired Student’s T-test, Bonferroni corrected).
(C) Statistical comparisons for Channel 2. (D) Statistical comparisons for Channel 3. Asterisks indicate significant differences (∗∗p < 0.01, ∗∗∗p < 0.001).

local non-stationarities, even if they are oscillatory, do not come
sufficiently close to each other after the full period to enter their
respective neighborhoods.

Despite their fundamental differences in estimation
procedures, it is evident that classic methods (i.e., wavelets
and taper) and our proposed approach capture recurrent
neural activity, which validates both methodological concepts
from different angles. However, discussing the mathematical
equivalence of recurrence analysis and classic methods is beyond
the scope of this study and should be analyzed in future research.

Classically, neural oscillatory activity is analyzed using
methods derived from Fourier transform. Using these methods,
time series get decomposed into prototypical waveforms or
“wavelets” e.g., sinusoids. While this approach is justified by
the understanding that, e.g., EEG activity is a summation or
superposition of thousands of synchronously active cells (Buzsáki
and Draguhn, 2004), interpretation of spectral estimation may be

limited in some cases. This is because the generating models of
neural activity and thus the basal waveform shape are most often
unknown. Decomposing an asymmetric or nonlinear waveform
into a series of sinusoids results in an infinite number of spurious
harmonics (as demonstrated in Figures 4C,D), which may be
misinterpreted as independent oscillatory activity. Thus, for such
nonlinear signals, classic techniques may generate a high degree
of redundant information. Note, however, that wavelet analysis
is in theory capable of redundantly quantifying non-sinusoidal
oscillations by applying special mother wavelets, e.g., like the
Daubechies wavelets (Zhang et al., 2016). However, one drawback
is that using a specific mother wavelet would still restrict
analysis to one specific waveform shape and would also require
prior knowledge, while recurrence-based methods may detect
unspecified arbitrary shapes. It is also still very uncommon to use
any other mother wavelet than the Morlet wavelet for oscillatory
analysis, although few studies exist that used other types to detect
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recurring spiking events in the EEG (Milton, 1994; Grubov et al.,
2017). The problem of nonsinusoidal waveform shape has been
especially demonstrated for connectivity measures, i.e., cross-
frequency coupling (Lozano-Soldevilla et al., 2016; Yeh et al.,
2016). Occurrences of nonlinear signals in electrophysiology are
increasingly recognized to be commonly present in physiological
(Arroyo et al., 1993; Gebber et al., 1999; Muthukumaraswamy
et al., 2004; Lozano-Soldevilla et al., 2016) and pathological states
(Cole et al., 2017). The physiological meaning of waveform shape,
however, is still insufficiently understood (Cole and Voytek,
2017). One prominent example of a nonsinusoidal oscillation
is the cortical mu-rhythm, which is composed of an alpha
and a beta component, together resulting in an arc-shaped
wave. Source reconstruction studies hint at a superposition of
alpha and beta oscillations originating from different cortical
regions, which are responsible for the generation of the mu-
wave (Hari and Salmelin, 1997; van Wijk et al., 2012). Whether
or not Mu can, indeed, be redundantly described as a single
oscillatory phenomenon may be further investigated using
recurrence amplitude estimation in future studies but is beyond
the scope of this study.

The approach applied in this study utilizes the concept of
recurrences in phase-space. The probability of a state recurrence
as a function of its period has been frequently studied (Gilmore,
1993; Romano et al., 2005; Little et al., 2007; Webber and
Zbilut, 2007; Zou et al., 2007). Our method builds upon this by
also estimating amplitudes, i.e., energy content of a recurrence
by estimating the phase-space volume of the recurrence.
Additionally, by windowing the estimation procedure, it is
also possible to calculate a time-resolved recurrence amplitude
spectrum, similar to STFT or wavelet analysis. The major
difference to Fourier-based techniques is that time series are not
fitted to basal waveforms in a “model-based” kind of way. Instead,
it is quantified after what time the system reassumes a previous
state, independent of the specific waveform in between these
recurrences. Thus, as has been demonstrated in this study, simple
asymmetric waveforms can be described more parsimoniously,
without any spurious harmonics (Figures 4A,B). The most
extreme example of this is a rhythmic idealized Dirac pulse,
which has unity power over all frequencies in Fourier space
(Beerends, 2006) but can be parsimoniously represented with
recurrence-based methods. Thus, another possible application
of our proposed method might be analysis of spike train or
electromyography data (EMG). The problems regarding the
analysis of the latter with Fourier-based methods are widely
recognized, which is why EMG data are often additionally
preprocessed by, e.g., extracting the Hilbert envelope or taking
the absolute value (Myers et al., 2003). These preprocessing
steps may, however, lead to spurious results, depending on
further analysis (McClelland et al., 2012; Negro et al., 2015).
We could also demonstrate that our estimator could reliably
detect sharp time-frequency transitions in a similar manner as
STFT and wavelet transform (Figure 5A). However, while STFT
and wavelet transform exhibited broadband power increases
at the transitions between different frequency segments, the
recurrence amplitude spectrum lacked these broadband peaks.
The explanation for this is the same as the one above, concerning

the Dirac pulse, as sharp transitions can only be represented in
Fourier space by infinite harmonics, which necessarily result in
spurious broadband power increases.

Our proposed estimator is not the first study on a
recurrence amplitudes spectrum. Zbilut and Marwan (2008)
proposed an estimator, which combines the so-called generalized
autocovariance with Fourier transformation. In their study, they
could demonstrate superiority of their method in comparison
to classic Fourier analysis by showing that only their estimator
could detect all main periodic orbits in a nonlinear system.
Here, we used the same dataset to compare our method with
Zbilut’s and Marwan’s estimator as well as with a classic Fourier-
based power spectrum (Figure 5B). We could demonstrate that
both our estimator and Zbilut’s and Marwan’s method could
detect all three periodic orbits, while classic Fourier analysis
detected only two of three frequencies. Thus, our estimator is
sensitive to periodic oscillations of nonlinear systems with the
additional advantage of being time resolved. While an advantage
of Zbilut’s and Marwan’s estimator is a much smoother spectrum,
a disadvantage might be the possibility that spurious harmonics
might still occur, if the estimated generalized autocovariance is
discrete or has sharp transitions.

Although neuroscience is among the main fields of application
for recurrence-based methods, they are still scarcely applied in
comparison to classic Fourier-based approaches to oscillatory
analysis. Examples include classification of mild cognitive
impairment (Timothy et al., 2017), multiple sclerosis (Carrubba
et al., 2019) or emotional states (Khodabakhshi and Saba,
2020). One possible reason for this might be the number of
parameters that need to be adjusted. While the algorithm is
not parametric, i.e., not model based per se, the estimation
procedure may be sensitive to several key parameters due to the
finiteness of measured data. These most prominently include the
neighborhood-size ε and the embedding parameters d and τ.
For perfectly periodic recurrences and infinitely precise sampled
data, the neighborhood size may be chosen arbitrarily small.
However, for experimental data, ε should be ideally chosen to
barely engulf most of recurrent states. If the neighborhood size
is chosen too large, recurrence periods get underestimated for
every multiple of the sampling frequency. If ε is chosen slightly
too small, recurrences might be missed. This may result in
“harmonics,” i.e., multiples of recurrence periods appearing in
the spectrum, as recurrences missed in one period might get
detected in the next one (as can be seen in Figures 3, 6). However,
as our algorithm weights amplitudes by their probability of
occurrences, few missed recurrences do not severely impact the
overall spectrum. In the case that ε is chosen much too small,
all meaningful recurrences might be missed and the spectrum
gets dominated by measurement noise. The choice of ε thus
depends on experimental data. However, it is important to note
that, for real experimental data, there is no true neighborhood
size as neural systems are hardly ever perfectly periodic. For
intermediate ranges of ε, recurrence spectra are rather stable and
frequencies should only slowly shift (Figure 3). From a practical
point of view, it is convenient to approximate the measurement
noise as the standard deviation of the electrophysiological signal
(Ryynänen et al., 2004). Thus, a good starting point for ε might
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be at 100% standard deviation, which might be successively
reduced if no drastic qualitative changes appear in the spectrum
(e.g., subharmonics). Nevertheless, when reporting results,
neighborhood and embedding parameters should always be
reported for reproducibility. One possible approach to optimize
neighborhood size is to estimate the recurrence amplitude
spectrum as a function of ε and visually identify the noise regime
for small neighborhood sizes (Figure 3). However, as this might
be quite computationally demanding, it suffices to estimate the
non-time resolved spectrum for a subsample of the data. This is
justified if the variance of noise is static over time. The subset
should be chosen long enough to cover the longest recurrence
period of interest.

Of similar importance is an appropriate embedding of the
measured data in phase-space. If the embedding dimension is
too low, points, which are far away from each other, might
get projected into close proximity. Thus, the time in between
might be spuriously characterized as a specific recurrence
period. On the other hand, if the embedding dimension is too
high, estimation of recurrence periods becomes increasingly
computational demanding and neighboring points difficult to
detect due to the increasing spaces between points, otherwise
known as “curse of dimensionality.” The embedding delay is
important for spreading out the phase-space volume. A delay,
which is too small, would result in all points laying on the first
intersect and thus no closed trajectories to measure. For our
algorithm we used the well-established false-nearest neighbors
algorithm (Hegger and Kantz, 1999) for the optimization of the
embedding dimension and the auto-mutual information for the
embedding delay (Fraser and Swinney, 1986). However, other
techniques like, e.g., the Ragwitz-algorithm, are also frequently
reported to optimize embedding parameters (Ragwitz and Kantz,
2002; Lindner et al., 2011; Weber et al., 2020). By automatically
optimizing d and τ, we effectively eliminate these parameters,
which makes the estimation procedure much easier to apply. This
procedure is well established and implemented in many toolboxes
utilizing the concept of phase-space analysis (Lindner et al., 2011;
Lizier, 2014; Donges et al., 2015).

Similar to Fourier-based techniques, the window size should
be chosen according to the smallest frequency of interest. For
example, a window with a length of 1,000 samples at a sampling
rate of 1,000 Hz would allow for the detection of precisely
one recurrence at 1 Hz. However, to reliably detect recurrences
at a given frequency, the window length should be chosen
at a multiple of the desired frequency, e.g., three times the
period of interest.

One limitation of the recurrence analysis is that it is, by design,
not able to decompose a linear superposition of sine waves.
The difference between recurrence-based and Fourier-based
techniques is that the latter transforms the signal parametrically
to the frequency domain, which is orthogonal to the time
domain. In contrast, recurrence-based methods track higher
order state recurrences within a given time window. Both
approaches have distinct advantages and disadvantages. While
the Fourier-based methods are able to parametrically decompose
a superposition of oscillations, they introduce redundancy if
either the rhythmic activity is not perfectly periodic or if it

is nonlinear. While they are similar, both approaches differ in
what questions they ultimately want to answer. For Fourier-
based approaches, one intends to find out which composition
of sinusoids forms the signal in question. If the original signal
is already an artificial superposition of sinusoids to begin with,
Fourier-based methods are optimally suited for analysis. On the
other side, recurrence-based methods use a more data-driven
approach in that they directly track recurring patterns in the time
domain. We thus propose to apply the demonstrated technique
complementary in conjunction with classic approaches, e.g., to
discern possible spurious harmonics.

In this study, we introduced a new time-resolved technique
to measure amplitudes of oscillatory signals in a waveform-
independent manner. This method estimates the energy of
recurrent activity by measuring distances of closed trajectories in
phase-space, which are subsequently weighted by their respective
probability densities. Using artificial data, we demonstrated
that the measure generates less spurious harmonics due to
nonlinear waveform shapes in comparison to classic techniques
like Fourier Transform. Furthermore, the analysis of intracranial
and noninvasive data indicates that recurrence analysis might be
better suited to estimate higher frequency activity than congenital
methods, such as wavelet analysis or the Fourier transform.
In addition, we showed that recurrence analysis can be used
to specifically analyze signals with defined waveform shapes.
In summary, the proposed measure might be well suited to
complement classic frequency techniques, especially when the
analyzed signals are of nonlinear origin.
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