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Electroencephalography (EEG)-based diagnosis of psychiatric diseases using machine-
learning approaches has made possible the objective diagnosis of various psychiatric
diseases. The objective of this study was to improve the performance of a resting-
state EEG-based computer-aided diagnosis (CAD) system to diagnose post-traumatic
stress disorder (PTSD), by optimizing the frequency bands used to extract EEG features.
We used eyes-closed resting-state EEG data recorded from 77 PTSD patients and 58
healthy controls (HC). Source-level power spectrum densities (PSDs) of the resting-state
EEG data were extracted from 6 frequency bands (delta, theta, alpha, low-beta, high-
beta, and gamma), and the PSD features of each frequency band and their combinations
were independently used to discriminate PTSD and HC. The classification performance
was evaluated using support vector machine with leave-one-out cross validation.
The PSD features extracted from slower-frequency bands (delta and theta) showed
significantly higher classification performance than those of relatively higher-frequency
bands. The best classification performance was achieved when using delta PSD
features (86.61%), which was significantly higher than that reported in a recent study
by about 13%. The PSD features selected to obtain better classification performances
could be explained from a neurophysiological point of view, demonstrating the promising
potential to develop a clinically reliable EEG-based CAD system for PTSD diagnosis.

Keywords: machine-learning technique, classification, computer-aided diagnosis, resting-state
electroencephalogram (EEG), slow-frequency EEG oscillation, post-traumatic stress disorder (PTSD)

Frontiers in Neuroinformatics | www.frontiersin.org 1

April 2022 | Volume 16 | Article 811756


https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.811756
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2022.811756
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.811756&domain=pdf&date_stamp=2022-04-26
https://www.frontiersin.org/articles/10.3389/fninf.2022.811756/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

Shim et al.

Low-Frequency EEG-Based CAD for PTSD

INTRODUCTION

Post-traumatic stress disorder (PTSD) is a psychiatric disorder
caused by experiencing or witnessing traumatic events (Yehuda,
2002), and PTSD patients are diagnosed through interview
with clinical experts based on the Diagnostic and Statistical
Manual of Mental Disorders, 5th Edition (DSM-5, note that
all abbreviations were summarized in Supplementary Table 1)
(Friedman et al., 2011). Post-traumatic stress disorder patients
generally show a high rate of comorbidity with other mental
illnesses, which leads to confusion of diagnosis (Ginzburg et al.,
2010; Elhai et al., 2011; Gros et al, 2012). According to a
previous study, 73.3% of veteran PTSD patients had comorbid
anxiety disorders (e.g., general, panic, and social anxiety disorder)
(Magruder et al., 2005). Another study reported that 68% of
veteran PTSD patients met the criteria for major depressive
disorder (MDD) (Grubaugh et al.,, 2010). These results imply
that when interviewing with clinical experts, if PTSD patients
hide their traumatic histories or symptoms, they could be
misdiagnosed as other mental diseases with high probability.
Thus, it is necessary to introduce a PTSD diagnosis tool to
compliment the diagnostic failure rate of traditional diagnosis
(Sumpter and McMillan, 2005).

In recent years, the machine-learning-based computer-aided
diagnosis (CAD) system has received increased attention, due
to its ability to predict the state of neuropsychiatric diseases
using objective neurophysiological biomarkers (McBride et al,,
2011; Mitra et al, 2016; Vergara et al, 2017, 2018). Early
CAD systems developed for those suffering from traumatic
events have used neuroimaging-based features for its diagnosis,
but they have focused on patients with traumatic brain injury
(TBI), rather than PTSD (McBride et al., 2011; Mitra et al.,
2016; Vergara et al, 2017, 2018). For example, Mitra et al,
achieved 68% classification accuracy when differentiating TBI
from healthy controls (HC) using diffusion tensor imaging
(DTI) features (Mitra et al., 2016), meanwhile, Vergara et al,,
reported a classification accuracy of 84% when differentiating
TBI patients from HC using DTI and functional magnetic
resonance imaging (fMRI)-based features (Vergara et al., 2017).
However, although both TBI and PTSD are developed by
traumatic events, TBI and PTSD should be studied independently
because the cause and characteristics of TBI and PTSD are
totally different, in that TBI patients are troubled with physical
brain damage, while PTSD patients suffer from mental problems
(Bryant, 2011).

A few studies have attempted to differentiate PTSD patients
from HC using neuroimaging-based features. Rangaprakash et al.
(2017) achieved 81% classification accuracy when classifying
PTSD patients and HC using effective connectivity network
features extracted from resting-state fMRI data. In addition,
Zhang et al, introduced a classification model for PTSD
diagnosis using magnetoencephalographic (MEG) connectomes,
and reported the performance of an area-under-the-curve (AUC)
value of 0.9 (Zhang et al., 2020). However, while fMRI and MEG
have shown the potential to differentiate PTSD patients from HC,
due to their high cost and low portability, they are not usable in
practice for both clinicians and patients (Wienbruch et al., 2006).

To overcome the mentioned limitations, electroencephalogram
(EEG) could be an adequate alternative neuroimaging tool for the
diagnosis of PTSD patients (Chen, 2001).

Electroencephalogram (EEG) is more portable than other
neuroimaging tools, such as fMRI and MEG (Chen, 2001), and
is also suitable to investigate dynamic neuronal changes due to its
high-temporal resolution (Saletu et al., 1991; Burle et al., 2015).
In particular, since abnormal neuronal changes in psychiatric
patients reflect their pathophysiology (Newson and Thiagarajan,
2019), they could be used for the diagnosis of various psychiatric
diseases (Orru et al, 2012). Therefore, many researchers have
introduced EEG-based CAD systems for the diagnosis of various
psychiatric disorders, and achieved promising classification
accuracies when differentiating psychiatric disorders from HC
(Orru et al., 2012). Recently, we introduced 2 EEG-based CAD
systems to assist the accurate diagnosis of PTSD patients (Shim
etal., 2019; Kim Y. W. et al., 2020).

In our previous study, we attempted to classify PTSD
patients and HC using P300 event-related potential (ERP)
based on machine-learning technique (Shim et al., 2019), and
obtained a classification accuracy of 80% in differentiating
2 groups. Although we achieved acceptable classification
accuracy, the previous study was limited in terms of its
usability; PTSD patients were required to perform an auditory
attention task to evoke P300 activation even though they
generally have difficulty in concentrating on an attention-
related task. To overcome this limitation, resting-state EEG
could be an appropriate alternative because no effort is
required to record resting-state EEG from PTSD patients;
also, resting-state EEG reflects the pathophysiological traits
of PTSD patients (McFarlane et al, 2005; Veltmeyer et al,
2006). Recently, we investigated the possibility of using resting-
state EEG to distinguish PTSD patients from HC, where we
employed 2 types of source-level features: (i) power spectrum
densities (PSDs) and (ii) network indices based on graph
theory (Kim Y. W. et al, 2020). We confirmed that PSD
features showed significantly higher classification accuracy
than network features, and obtained a maximum classification
accuracy of 73.09%.

The objective of this study was to enhance the performance of
classifying PTSD patients from HC by optimizing the frequency
band used for extracting PSD features from resting-state EEG.
Our previous study (Kim Y. W. et al., 2020) did not consider a
delta-frequency band of 1-4 Hz even though slow EEG waves
were closely related to the typical endophenotypes of PTSD
patients (McFarlane et al., 2005; Veltmeyer et al., 2006; Newson
and Thiagarajan, 2019), and an optimization of frequency bands
was also not performed using traditional 6 frequency bands
(delta, theta, alpha, low-beta, high-beta and gamma) in terms
of classification performance. Therefore, in this study, we aimed
to optimize PSD frequency bands by introducing the delta band
and investigating all possible combinations of the 6 frequency
bands in order to increase the classification performance between
PTSD patients and HC. Furthermore, we investigated the
neurophysiological meanings of most discriminable features
selected to obtain the best classification performance, thereby
contributing to the development of a reliable CAD system to
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assist the diagnosis of PTSD patients. The main highlights of our
contributions are briefly listed below:

i) Optimization of resting-state EEG-based features for
assisting diagnosis of PTSD patients.

ii) Significant improvement of classification performance as
compared to a recent study by about 13%.

iii) Interpretation of useful features selected to attain the best
classification performance from a neurophysiological point
of view, thereby providing the basis to develop a reliable
CAD system for PTSD diagnosis.

MATERIALS AND METHODS

Participants
Seventy-seven PTSD patients aged between 20 and 60 years and
58 HC aged between 23 and 60 years were recruited for this
study from the Psychiatry Department of Inje University Ilsan
Paik Hospital (see Table 1 for detailed demographic data). The
patients’ diagnosis by a board-certified psychiatrist was based
on the Diagnostic and Statistical Manual of Mental Disorders,
4th edition (DSM-IV) Axis I Psychiatric Disorders. Patients
were excluded if they accorded with the following criteria: (1)
abnormality of the central nervous system, (2) medical histories
of alcohol or drug abuse, (3) intellectual disability, (4) history
of head injuries with loss of consciousness and experience
with electrical therapy (e.g., electroconvulsive therapy, ECT),
and (5) psychotic symptoms lasting for at least 24 h. HC was
recruited from the local community through local newspapers
and posters. Individuals without any psychiatric medical history
were recruited for HC. If the HC was taking or had taken any
kinds of psychotropic medication, they were excluded from the
study. The study protocol was approved by the Institutional
Review Board of Inje University Ilsan Paik Hospital (2015-09-
018), and all participants provided written informed consent.
Three psychiatric symptoms of PTSD patients were evaluated
by clinical experts. Impact of Event Scale-Revised (IES-R) (Weiss,
2007) was used to determine whether the patients had PTSD
or not by evaluating the response severity of traumatic events.

TABLE 1 | Demographic data of post-traumatic stress disorder (PTSD) patients
and healthy controls (HC). The p-values represent significant differences
between the two groups.

PTSD HC p-value
Cases (N) 77 58
Gender (male/female) 28/49 30/28 0.082
Age (years) Range 40.92 + 11.93 39.98 + 11.63 0.646
20-60 23-60
Education 13.51 £ 2.80 14.45 + 3.37 0.120
IES-R 51.34 £ 21.71
BDI 26.99 + 13.13
BAI 29.48 + 15.44

IES-R, Impact of Event Scale-Revised; BAI, Beck Anxiety Inventory; BDI, Beck
Depression Inventory. The p-values are obtained using an independent t-test for
age and education, and chi-squared test for gender.

Beck Anxiety Inventory (BAI) (Beck and Steer, 1990) and Beck
Depression Inventory (BDI) (Beck et al., 1996) were used to
check anxiety symptom and depression symptom, respectively
(Table 1). Three types of psychotropic medications were
prescribed to the patients based on patients’ clinical symptoms
examined by clinical experts: antidepressants for depressive
symptoms [selective serotonin reuptake inhibitors (n = 67),
venlafaxine (n = 10)], antipsychotics for psychotic symptoms
[aripiprazole (n = 5), quetiapine (n = 17)], and sedative-hypnotics
for anxiety symptoms [lorazepam (n = 37), clonazepam (n = 27),
diazepam (n = 15), and alprazolam (n = 35)]. All patients
received combined psychotropic medications as follows: (1)
antidepressant, antipsychotics, and sedative-hypnotics (n = 32);
(2) antidepressant and antipsychotics (n = 12); (3) antidepressant
and sedative-hypnotics (n = 33).

Electroencephalogram Recording and
Preprocessing

Resting-state EEG data used in this study were the same as
presented in our previous study (Shim et al., 2017), where we
only investigated disrupted brain networks and the relationships
between network indices and symptoms of PTSD patients.
Resting-state EEG data were recorded with a band-pass filter of
1-100 Hz for 5 min with eyes closed (sampling rate: 1,000 Hz),
for which 64 Ag/AgCl scalp electrodes were evenly mounted on
the scalp according to the extended international 10-20 system
[NeuroScan SynAmps2 (Compumedics United States, El Paso,
TX, United States); references: M1 and M2]. To reduce both
external and internal artifacts of EEG data, a series of pre-
processing approaches were applied to raw EEG data. Firstly,
external artifacts, such as electrocardiography (ECG) and eye-
related artifacts (e.g., eyes blinks and horizontal movements),
were removed using established mathematical procedures based
on regression approach (Semlitsch et al., 1986), and other gross
artifacts (e.g., if electrodes showed amplitudes higher than 200
V) were rejected by visual inspection. To correct the baseline,
the DC offset of EEG channels was removed by subtracting
the average values of EEG data from each time point for each
channel. The baseline corrected EEG data were then band-pass
filtered between 1 and 55 Hz using a third order Butterworth IIR
filter to remove high-frequency external artifacts, and they were
epoched with a length of 4.096 s. Epochs were rejected if they
contained significant physiological artifacts (& 100 wV) at any
electrode (Kim et al., 2019), and 10 artifact-free epochs extracted
for each subject were used for further analysis, as in previous
studies (Gudmundsson et al., 2007; Shim et al., 2017). Since a
previous study reported that a total of 40 s epoch is sufficient
to obtain reliable results of quantifying resting-state EEG data,
we used 10 epochs (40.96 s) to extract classification features from
resting-state EEG (Gudmundsson et al., 2007).

Source-Level Power Spectrum Densities

Feature Extraction

Because related studies reported the superiority of source-level
features as compared to sensor-level features (Shim et al., 2016,
2019; Kim J. et al., 2020) as well as of PSD features as compared
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to network features in terms of classification performance (Kim
Y. W. et al, 2020), we used source-level PSD features for the
classification of PTSD patients from HC. To estimate the source-
level time series, a lead-field matrix was computed using a
three-layer (inner skull, outer skull, and scalp) boundary element
method (BEM) model, which was constructed from the standard
head model (Colin 27) using the OpenMEEG toolbox (Gramfort
et al., 2010). An inverse operator was created using a weighted
minimum-norm estimation (WMNE) algorithm implemented in
Brainstorm toolbox (Tadel et al., 2011). A time-series of source
activities at 15,000 cortical vertices was estimated for every time
point using the EEG data created by concatenating 10 artifact-
free EEG epochs to improve computational efficacy (Kang et al.,
2018). After computing current source densities, representative
source signals at 68 regions of interests (ROIs) based on the
Desikan-Killiany atlas were estimated using the 1% component
of principal component analysis (PCA) (Dimitriadis et al., 2018).
We excluded 18 ROIs that showed statistical difference between
2 groups (PTSD vs. HC) in terms of the variance explained by
the 1 PC because in this case the 1% PCs of 2 groups did
not similarly explain the variance of original data (independent
t-test; Bonferroni corrected p < 0.05). Therefore, the source
signals at the remaining 50 ROIs were used for further data
analysis, and the source signals of each ROI was epoched into
4.069 s. Supplementary Table 2 provides the name of all 68
ROIs, their corresponding variances explained by the 1 PCs,
and statistical test results, respectively. Time-varying source-level
PSDs were then estimated by a complex Morlet-Wavelet method
using “ft_freqanalysis” Matlab function implemented in Fieldtrip
toolbox (Oostenveld et al,, 2011). A crucial input parameter
“cgf.width” in “ft_freqanalysis” was set as 3 to appropriately
determine a wavelet width (= cfg.width/frequency/pi) according
to the recommendation of the Fieldtrip guideline, thereby
guaranteeing the accurate estimation of PSDs for all frequencies
with the EEG epoch of 4.096 s. The Morlet-wavelet transform
with a sinusoidal wave modified by a Gaussian shape was applied
to the source-level time series of each ROIL Source-level PSDs
of each ROI were independently quantified by averaging time-
varying PSDs in 6 frequency bands, i.e., delta [1-4 Hz], theta
[4-8 Hz], alpha [8-12 Hz], low-beta [12-22 Hz], high-beta [22-
30 Hz], and gamma [30-55Hz]. Note that the beta-frequency
band was divided into 2 sub-bands: low-beta [12-22 Hz] and
high-beta [22-30 Hz] bands (Kim et al., 2018; Shim et al., 2018).
30 PSD feature sets were finally constructed by integrating the
PSD features of different frequency bands (Table 2).

Classification

30 PSD feature sets were independently tested to evaluate the
performance of classifying PTSD patients and HC, thereby
finding an optimal combination of PSD frequency bands with
respect to classification performance. To this end, classification
performances were evaluated using the features by sequentially
eliminating recursive features from all features for each feature
set using sequential backward selection (SBS) method (Garcia-
Laencina et al., 2014). The classification accuracy was evaluated
using a linear support vector machine (SVM) classifier (Orru
etal., 2012; Alimardani et al., 2018) with a 10-fold cross validation

TABLE 2 | Thirty power spectrum density (PSD) feature sets constructed by
combining different frequency bands and the number of features for each feature
set. Fifty features were extracted for each frequency band.

Frequency bands The number of features

D, TA LB HB G
D+TD+AD+LB D+HB,D+G,
T+AT+LB T+HBT+GA+LB,
A+HB,A+ G LB+ HB,LB+G,
HB + G

D+T+A T+A+LB A+LB+HB,
IB+HB+ G
D+T+A+ LB T+A+LB+HB,
A+LB+HB+G
D+T+A+LB+HB 50 ROIs x 5 frequency bands = 250
D+T+A+1B+HB+G 50 ROIs x 6 frequency bands = 300

D, delta; T, theta; A, alpha; LB, low-beta; HB, high-beta; G, gamma.

50 ROIs x 1 frequency band = 50
50 ROIs x 2 frequency bands = 100

50 ROIs x 3 frequency bands = 150

50 ROIs x 4 frequency bands = 200

method to prevent overestimate classification performance and
improve computation efficacy for each of the 30 feature sets (Kim
Y. W. et al.,, 2020). Note that we also tested 2 other machine-
learning classifiers, Random Forest and AdaBoost, as well as 3
deep learning classifiers based on convolutional neural network
(CNN), shallow ConvNet (Schirrmeister et al., 2017), EEGNet
(Lawhern et al., 2018), and a 13 layers-based deep CNN (Acharya
et al., 2018), but we only report SVM results due to its superior
classification performance as compared to the other classifiers. In
this study, the number of subjects (sample size) in each group was
imbalanced (PTSD - 77 and HC - 58), which could lead to biased
classification performances. To complement the effect of the
imbalance sample size on classification, we employed 2 strategies:
(1) a cost-sensitive SVM classifier that modifies the weight of
margin penalty proportional to sample size and (2) a balanced
classification accuracy [sensitivity + specificity)/2]. Moreover,
we evaluated the receiver operating characteristics (ROC) curve
and the area under the ROC (AUC) as another performance
measure (Long et al, 2017). In addition, to investigate what
features (ROIs) were most importantly used for classification,
SVM coefficients were evaluated for each ROI (Bosilj et al.,
2018) when maximum classification accuracies were obtained
for 2 best feature sets extracted from delta and theta frequency
bands. Since different features were selected within each cross-
validation loop, the absolute values of SVM coefficients were
averaged for each of the ROIs selected across cross validation,
and they were normalized between 0 and 1. Then, we visualized
the ROIs with different sizes and colors along with PSD features
where the size of ROIs was proportional to SVM coefficients.
A higher SVM coeflicient (lager circle) means higher importance
in terms of classification based on which neurophysiological
interpretation is possible (Bosilj et al., 2018). Figure 1 represents
the flowchart of this study.

RESULTS

Classification Accuracy

Figures 2A,B show the maximum classification accuracies of
each frequency band and the corresponding ROC curves with
AUC values, respectively: delta: 86.61% with 0.93 (AUC); theta:
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FIGURE 1 | Flowchart of machine-learning-based classification approach.
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82.06% with 0.86; alpha: 72.79% with 0.80; low-beta: 69.36%
with 0.79; high-beta: 54.50% with 0.56; and gamma: 50.00% with
0.56 (see Supplementary Table 3 for the balanced classification
accuracies of all feature sets). The delta and theta feature
sets only showed acceptable classification performance for a
practical binary classification system (> 70%) (Perelmouter
and Birbaumer, 2000; Hwang et al., 2014). The combinatory
feature set of delta and theta features showed almost same
classification performance with the delta feature set (86.39%).
Other combinatory feature sets, including the delta feature set,
also showed comparable classification performance with the delta
feature set, e.g., 86.17% for delta + alpha, delta 4 low-beta, and
delta + high-beta, and 85.96% for delta 4 theta 4 alpha + low-
beta. Note that no feature sets outperformed the delta feature set
in terms of classification performance (Supplementary Table 3).

Spatial Power Spectrum Density

Distribution and Important Features

Figure 3 presents the spatial PSD distributions of delta and
theta bands, respectively, and ROIs selected when achieving
the maximum classification accuracies. Overall, the PSDs of
PTSD patients were considerably reduced, as compared to

those of HC (first and second columns of Figure 3). Red
circles represent the important ROIs that have SVM coefficients
over the upper bound of 95% confidence interval (mean + 2
standard deviation) and blue circles indicates the other selected
ROIs. Most of the selected ROIs were overlapped between
the 2 frequency bands and they were located in the fronto-
temporal area.

DISCUSSION

In the present study, we investigated the optimal PSD frequency
bands to improve the performance of a resting-state EEG-
based CAD system to assist the diagnosis of PTSD patients
using machine-learning technique. The classification accuracies
of the lower frequency PSD feature sets (delta and theta) were
significantly higher than those of the relatively higher frequency
PSD feature sets (alpha, low-beta, high-beta, and gamma). The
best classification performance was obtained when using delta
PSDs (86.61% and AUC - 0.93). The features that were selected
to attain the best classification accuracy were closely related to the
neurophysiological characteristics of PTSD patients, which will
be discussed in detail.
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Delta
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0.1 EEENNTT 0.3

FIGURE 3 | Spatial PSD distributions for each group (first and second column) with respect to the frequency band, and the ROls selected when achieving the
maximum classification accuracy for each frequency band (third column). Red circles represent the important ROIs that have SVM coefficients over the upper bound
of 95% confidence interval and blue circles indicate the other selected ROls. The size of circles is proportional to SVM coefficients.

Source-Level Power Spectrum Density
Features for the Classification of

Post-traumatic Stress Disorder Patients
It has been well documented that the results of sensor-level
analysis would be distorted and smeared by volume conduction
effects due to different tissue conductivities (van den Broek
et al., 1998), and thereby sensor-level analysis could not be
used to accurately extract neuronal information (Babiloni et al.,
1997). The introduction of source-level analysis could redeem the
weaknesses of sensor-level analysis (Michel et al., 2004). In fact,
many researchers have utilized source-level features to develop
CAD systems to assist the diagnosis of psychiatric disorders.
For example, previous EEG and MEG studies showed higher
classification accuracies when using source-level features than
sensor-level features to differentiate schizophrenia patients from
HC (Shim et al., 2016; Kim J. et al., 2020), PTSD patients from
HC (Shim et al.,, 2019; Kim Y. W. et al., 2020), and PTSD patients
from major depressive disorder patients (Shim et al, 2019).
Therefore, in this study, we only considered source-level features
to classify PTSD patients from HC rather than using sensor-level
analysis, and achieved reasonable classification performance.
Power spectrum densities (PSDs) have been mainly used
as a classification feature type to develop a CAD system
to assist in the diagnosis of psychiatric patients (Cassani
et al., 2018; Radenkovi¢ and Lopez, 2019) because distinct and
abnormal PSD patterns were shown in psychiatric disorders,
as compared to HC (Newson and Thiagarajan, 2019); these
abnormal PSD patterns were also related to genetic traits of
psychiatric disorders (Venables et al., 2009). PTSD patients
also showed altered PSD patterns compared to HC; PTSD
patients revealed significantly diminished PSDs in delta and
theta bands (McFarlane et al., 2005; Veltmeyer et al., 2006;
Newson and Thiagarajan, 2019). Moreover, the diminished PSDs
in slow-frequency bands significantly correlated with patients’

symptom scores (Clinician-Administered PTSD scale, CAPS)
(Veltmeyer et al., 2006), indicating that the altered PSD patterns
would reflect the pathophysiology of PTSD patients, such as
re-experiencing and arousal (Veltmeyer et al., 2006). Abnormal
PSD patterns of PTSD patients were also clearly observed in
this study (Figure 3), and they played an important role in
classifying PTSD patients from HC. However, unfortunately, we
did not find any significant relationship between the PSD features
used to obtain a relatively high performance (i.e., 18 features
for delta band and 35 features for theta band) and symptom
scores (i.e., IES-R, BAIL, and BDI) in this study. This would be
because these features were selected from a machine learning
perspective for better classification; low frequency PSD features
for each group (PTSD and HC) were separately grouped with
a discriminable distance (i.e., relatively high PSD values for
HC vs. low PSD values for PTSD, as shown in Figure 3), but
which does not guarantee that the low frequency PSD features of
PTSD patients are necessarily correlated with neuropsychological
estimates (e.g., symptom scores). Note that the discriminable
low frequency PSD features were selected by comparing those
of PTSD patients and HC, but symptom scores were acquired
only from PTSD patients. Because of the mentioned reason,
the low frequency PSD features of PTSD patients did not seem
to be proportional to symptom scores even though the low
frequency PSD features can be used for the discrimination of
PTSD patients from HC. In order to find a certain feature set
that is directly correlated with neuropsychological estimates,
regression should be used instead of classification by focusing
on only PTSD data, but which would be beyond the scope
of this study, focusing on the discrimination of 2 groups.
Nevertheless, it is important to investigate neuropsychological
traits using objective neurophysiological biomarkers in order to
improve the understanding of neural mechanism in psychiatric
disorders. Therefore, we will keep going to develop a new
feature-based CAD system that can provide both the accurate
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diagnosis of psychiatric patients in terms of machine learning
and the understanding of neurophysiological traits in terms of
neuroscience by adopting other EEG-based metrics, such as
effective connectivity and complexity measures.

Crucial Role of Slow Brain Waves

In the present study, the best classification performance was
obtained when using delta PSD features. The best classification
performance obtained in this study (86.61%) was considerably
higher than that of our previous PTSD study by approximately
13% (Kim Y. W. et al,, 2020). Unlike the previous study, we
used delta PSD features when differentiating PTSD patients
and HC, which mainly led to the relatively higher classification
accuracy. Moreover, when using theta PSD features, a reasonable
classification accuracy of 82.06% was also achieved, which was
also higher than that of the previous study (Kim Y. W. et al,,
2020). The performance improvement would be caused by the
distinct characteristics of slow EEG waves of PTSD patients in the
delta and theta frequency bands. Many previous studies reported
that slow EEG waves were a typical endophenotype of PTSD
patients (Franke et al., 2016; Sheerin et al., 2018; Newson and
Thiagarajan, 2019). As mentioned above, PTSD patients showed
significantly decreased delta and theta PSDs compared to HC,
and the decreased slow-frequency PSDs were closely associated
with their altered symptoms, such as arousal and numbing
(Franke et al., 2016; Sheerin et al., 2018). That is, due to the
distinct pathological traits of slow EEG waves in PTSD patients,
the present study could significantly improve the classification
performance for the diagnosis of PTSD patients, compared to that
of our previous study (Kim Y. W. et al., 2020).

Spatial Distribution of Power Spectrum
Density Features

All PSD features selected when attaining maximum classification
accuracies for delta and theta bands were extracted from
fronto-temporal areas, such as frontal pole, opercular, anterior
cingulate gyrus, superior temporal gyrus, and temporal pole
(third column of Figure 3). The mean PSD values of each
ROI of the mentioned fronto-temporal areas were significantly
smaller in PTSD patients than those in HC. According to
previous studies, the frontal regions, including the frontal pole
and opercular part of the inferior frontal area, are involved in
emotion regulation processing (Grecucci et al., 2013; Bramson
et al, 2019) and temporal areas are significantly related to
rumination symptom of PTSD patients (Ferdek et al., 2016);
PTSD patients showed significantly reduced brain activation in
both brain areas in resting-state (Rabe et al., 2006), as shown
in this study. Therefore, it is neurophysiologically plausible
to obtain better classification performance for PTSD diagnosis
when using PSD features extracted from fronto-temporal areas.
This also indicates that employing only fronto-temporal areas
might be sufficient to implement a reliable CAD system for
PTSD diagnosis, thereby facilitating the development of a more
clinically practical CAD system.

In this study, we used EEG data measured in resting state
during which default mode network (DMN) or salience network

is more active than the task period (Choi et al., 2021), and thus
DMN might be usefully used for PTSD diagnosis. We investigated
the ROIs selected when the maximum classification accuracy
was obtained using delta PSD features, and found that 16 of
18 DMN ROIs were selected together with 2 other ROIs, i.e.,
entorhinal and para hippocampal areas. Both entorhinal and
para hippocampal areas are known to be related to clinical
symptoms in PTSD patients, such as altered cognitive function
and disrupted memory (Kerr et al,, 2007). This result means
that it is necessary to use the features extracted from the ROIs
related to neuropsychological traits of patients together with
those related to current brain state (resting state in this study)
to obtain a relatively high diagnosis accuracy.

Machine Learning Approach With
Interpretable Electroencephalogram

Biomarkers

In recent years, machine learning approaches have received
increasing attention in the development of an EEG-based CAD
system to assist the accurate diagnosis of psychiatric disorders
(Bzdok and Meyer-Lindenberg, 2018; Fazel and O’Reilly, 2020;
Rutherford, 2020; Koutsouleris et al., 2021). In particular, it
is important to use neurophysiologically interpretable EEG
biomarkers in the development of an EEG-based CAD system to
improve its reliability, as in deep learning (Sturm et al., 2016). In
this study, we introduced low frequency EEG features that were
closely associated with the neurophysiological characteristics
of PTSD patients (Franke et al., 2016; Vergara et al., 2017;
Newson and Thiagarajan, 2019), and thereby not only the
proposed low frequency EEG biomarkers could significantly
improve the performance of the CAD system, but also they were
neurophysiologically interpretable. To evaluate the potential of
low frequency EEG features for the performance improvement
of the CAD system, we used a traditional machine learning
approach using PSDs as features and SVM as a classifier, and
the improved classification accuracy of 86.61% would not be
still enough to be used in clinics. Even though we also used 3
different CNN-based deep learning algorithms for the diagnosis
of PTSD patients as mentioned in the method section, we
could not obtain a comparable classification accuracy to that
obtained using the SVM approach (73.13% for Shallow ConvNet,
76.15% for EEGNet, and 77.03% for 13-Layers CNN). This result
would be derived due to a relatively small number of samples
(data amount) used in deep learning algorithms; traditional
machine-learning models show better performance than that of
deep learning models with relatively small samples (Kumar and
Manash, 2019). Therefore, we will keep trying to improve the
diagnosis accuracy by introducing more advanced algorithms,
such as data augmentation to compensate a small number of
samples in our future studies (Wang et al., 2018), thereby
developing a clinically usable CAD system for PTSD patients.

Limitations

First, since all recruited PTSD patients were on medication, we
could not control the compounding effects from medications. It
has been reported that EEG characteristics can be changed by
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medications. For example, antipsychotics increased slow waves,
such as delta and theta (Amann et al., 2003), antidepressants
modified alpha patterns (Bruder et al, 2008), and sedative-
hypnotics enhanced low frequency power (< 15 Hz) (Ferri et al.,
2017). All psychotic medications tend to increase PSD values
in particular for relatively low frequency bands, but delta and
theta PSDs for PTSD patients were still significantly lower than
those of HC, as shown in Figure 3. Therefore, it could be
reasonably thought that delta and theta PSDs of PTSD patients
could be increased by medications, but which did not reach
those of HC. Thereby, significant difference between two groups
was still kept in terms of low frequency PSD values, and they
were used as key features for accurate diagnosis. Our previous
study also used same types of medications used in this study, i.e.,
antipsychotics, antidepressants, and sedative-hypnotics (Kim Y.
W. et al., 2020). Because patients recruited in the previous study
were independent from those recruited in the present study, it
is impossible to directly compare the results of the two studies.
However, assuming that similar medication impacts occurred
on EEG characteristics due to using same types of medications
for both groups of PTSD patients, it can be reasonably thought
that the enhanced classification performance in this study would
be caused by using optimal PSD features as compared to the
previous study, not medication effects. Further studies should
follow with drug-naive PTSD patients to accurately investigate
the medication impact on the development of an EEG-based
CAD system, which can also allow for PTSD diagnosis at
initial screening stages. Second, even though we controlled other
psychiatric illness, we did not control comorbid depression.
Third, we used a total of 40.96-s EEG data measured using
64 electrodes for data analysis (e.g., source estimation). It was
reported that reliable source signal estimation can be possible
using the EEG data acquired from more than 60 channels (Michel
etal., 2004), and also reliable resting-state EEG data analysis with
a data length of more than 40 s (Gudmundsson et al., 2007).
However, since it is obvious that use of longer EEG data measured
from a high-density EEG system with more channels (e.g., > 128)
can allow for more reliable EEG data analysis, including source
imaging (Haartsen et al., 2020), using such the high-density EEG
data is necessary to improve the reliability and accuracy of EEG
data analysis in future studies. Fourth, PTSD patients showed
different EEG characteristics according to gender. For example,
female patients showed enhanced alpha asymmetry than female
HC (Metzger et al., 2004), while male patients showed decreased
source activities in theta band and decreased alpha PSD as
compared to male HC (Joki¢-begi¢ and Begi¢, 2003; Todder
et al,, 2012). Therefore, diagnostic performance could be further
improved by considering gender-specific EEG features, which
would be one of the interesting future topics.

CONCLUSION

We investigated optimal PSD frequency bands to improve
the classification performances of a resting-state EEG-based
CAD system for precise PTSD diagnosis. Low-frequency PSD
features in delta and theta frequency bands showed significantly

higher classification performances than relatively high-frequency
PSD features (alpha, low-beta, high-beta, and gamma), and
the best classification performance (86.61% and AUC of 0.93)
was obtained when using delta PSD features. In addition,
most meaningful features were extracted from fronto-tempora
areas, which coincided with the neurophysiological findings of
previous EEG-based PTSD studies. Although the present study
showed relatively high classification performances between PTSD
patients and HC, there is still room to improve the classification
performance by introducing novel feature extraction and
classification methods based on deep learning algorithms, which
could be interesting future research topics.
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