
TECHNOLOGY AND CODE
published: 15 February 2022

doi: 10.3389/fninf.2022.823056

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2022 | Volume 16 | Article 823056

Edited by:

Ivan V. Zaletel,

University of Belgrade, Serbia

Reviewed by:

Long Yang,

University of California, Los Angeles,

United States

Daniele Linaro,

Politecnico di Milano, Italy

*Correspondence:

Samuel Garcia

samuel.garcia@crns.fr

Alessio P. Buccino

alessio.buccino@bsse.ethz.ch

Received: 26 November 2021

Accepted: 11 January 2022

Published: 15 February 2022

Citation:

Garcia S, Sprenger J, Holtzman T and

Buccino AP (2022) ProbeInterface: A

Unified Framework for Probe Handling

in Extracellular Electrophysiology.

Front. Neuroinform. 16:823056.

doi: 10.3389/fninf.2022.823056

ProbeInterface: A Unified Framework
for Probe Handling in Extracellular
Electrophysiology

Samuel Garcia 1*, Julia Sprenger 2, Tahl Holtzman 3 and Alessio P. Buccino 4*

1Centre de Recherche en Neuroscience de Lyon, CNRS, Lyon, France, 2 Institut de Neurosciences de La Timone, CNRS &

Aix-Marseille University, Marseille, France, 3Cambridge Neurotech, Cambridge, United Kingdom, 4Department of Biosystems

Science and Engineering, ETH Zurich, Zurich, Switzerland

Recording neuronal activity with penetrating extracellular multi-channel electrode arrays,

more commonly known as neural probes, is one of the most widespread approaches to

probe neuronal activity. Despite a plethora of available extracellular probe designs, the

time-consuming process of mapping of electrode channel order and relative geometries,

as required by spike-sorting software is invariably left to the end-user. Consequently, this

manual process is prone to mis-mapping mistakes, which in turn lead to undesirable

spike-sorting errors and inefficiencies. Here, we introduce ProbeInterface, an

open-source project that aims to unify neural probe metadata descriptions by removing

the manual step of probe mapping prior to spike-sorting for the analysis of extracellular

neural recordings. ProbeInterface is first of all a Python API, which enables

users to create and visualize probes and probe groups at any required complexity

level. Second, ProbeInterface facilitates the generation of comprehensive wiring

description in a reproducible fashion for any specific data-acquisition setup, which

usually involves the use of a recording probe, a headstage, adapters, and an acquisition

system. Third, we collaborate with probe manufacturers to compile an open library of

available probes, which can be downloaded at run time using our Python API. Finally,

with ProbeInterface we define a file format for probe handling which includes

all necessary information for a FAIR probe description and is compatible with and

complementary to other open standards in neuroscience.

Keywords: extracellular electrophysiology, open source software (OSS), neural probes, Python (programming

language), reproducibility

1. INTRODUCTION

Recording neural signals from extracellular electrodes is one of the most widely used techniques
to probe neural activity. When electrodes are inserted in the extracellular space of the brain, they
pick up the electrical signals generated by neurons, both in the form of action potentials (referred
to as spikes) and local field potentials, considered to be the localized sum of extracellular supra- and
sub-threshold activity. Since Hubel andWiesel, in 1957, performed the first extracellular recording
using a tungsten microwire (Hubel and Wiesel, 1962), there has been continuous development
of neural probe manufacturing technologies aimed at improving usability, spatial resolution, and
overall yield of neurons recorded simultaneously. In the 1970’s, the first silicon probes where
developed, in whichmetal electrodes are encapsulated in silicon-based shanks (Wise et al., 1970). In
the 1980’s, researchers started to bundle multiple microwires in tetrodes to improve the separation

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.823056
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.823056&domain=pdf&date_stamp=2022-02-15
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:samuel.garcia@crns.fr
mailto:alessio.buccino@bsse.ethz.ch
https://doi.org/10.3389/fninf.2022.823056
https://www.frontiersin.org/articles/10.3389/fninf.2022.823056/full

Garcia et al. ProbeInterface

of signals originating from different neurons. In 1990’s the Utah
array was developed, with 96 electrodes arranged in a grid-
pattern; the pioneering technology is still among the most widely
used neural probe types for clinical Brain Machine Interface
applications. Following this fast-paced development driven by
innovations in micro-fabrication techniques, the neuroscience
community can now choose from a wide variety of commercially
available neural probes tailored to a variety of experimental
applications (Hong and Lieber, 2019).

Following the acquisition of an extracellularly recorded signal,
it is very common, if not essential for some applications, to
extract single neuron activity from the raw signal. This process is
referred to as spike sorting (Buccino et al., 2020). Recent methods
for spike sorting make use of the geometric arrangement of
the electrodes on a probe in order to improve the separability
of spikes from each of the different single units (Pachitariu
et al., 2016; Chung et al., 2017; Jun et al., 2017; Diggelmann
et al., 2018; Yger et al., 2018; Lee et al., 2020). For example,
when using tetrodes, spike sorting is usually performed tetrode-
wise because the distance between different tetrodes precludes
recording the same spike on multiple tetrodes. Similarly, when
using silicon probes or recent high-density micro-electrode
arrays (Frey et al., 2009; Jun et al., 2017), spike sorters can
utilize the geometry of the probe to model the spatial location
and extent of individual neuron spike signals, thereby improving
spike sorting performance.

Currently, however, it is in most cases left to the end user
to correctly retrieve the mapping information for their probe
from the vendor, to parse the geometric information into file
formats that are specific to their chosen spike sorter (e.g., a .prb
file for Klusta, Spyking CIRCUS, a .mat file for Kilosort and
Ironclust, etc.), and to properly verify that the wiring between
each recording electrode and the acquired signal is consistent and
correct. This last step can be quite tedious and error-prone as
most probes require connection to the data-acquisition system
via headstages and / or adapters which result in a re-ordering of
the signals.

In order to address these issues and to make probe
handling less error-prone and more reproducible, we
introduce ProbeInterface, a Python package for
unified and standardized probe handling in neuroscience.
ProbeInterface is first of all a Python API (Application
Programming Interface) that enables users to define, visualize,
and use probe definitions for their data analysis. Second,
ProbeInterface comes with a probe library that was built in
concert with Cambridge Neurotech, which is one of the major
vendors of extracellular neural probes. Users can download any
available probe model from the ProbeInterface library
(https://gin.g-node.org/spikeinterface/probeinterface_library) in
a single line of code. Third, ProbeInterface allows users to
quickly describe the correct wiring between the probe and the
recording device through a series of commonly used adapters
and headstages. Finally, ProbeInterface comes with a
JSON-based file format that carries all relevant metadata about
the probe, including the geometry of the electrode (position,
shape, size), the intrinsic channel indices, the size of the silicon
shanks, and more.

FIGURE 1 | Overview of ProbeInterface objects. Each recording site is a

Contact. Several contacts make up a Shank, which is a region of the probe

with multiple contacts. A Probe can consist of multiple shanks (two in this

figure). Finally, several Probe objects can be combined into a ProbeGroup.

2. OVERVIEW OF PROBEINTERFACE

ProbeInterface describes neural probes in terms of the
following core concepts (Figure 1):

• Contact: a Contact is a recording site with information about
its position, shape, size, and additional optional metadata (e.g.,
material, coating, impedance).

• Shank: a Shank represents a region of the probe with
multiple contacts. As many probes can have multiple
shanks, the Shank object adds a shank_id index to
each contact.

• Probe: a Probe is a collection of shanks. Probes further add a
unique contact_id to each contact, which represents the
internal channel naming provided, for example, by the probe
manufacturers. Additionally, Probe objects can also provide
information about the overall probe shape, which can be used
for plotting or modeling purposes.

• ProbeGroup: a ProbeGroup is a collection of multiple
probes used in an experiment connected to the same
acquisition device.

These simple concepts allow us to comprehensively describe any
collection of probes used in an electrophysiology experiment and
to provide essential probe information to data analysis tools in a
standardized fashion.

3. GETTING STARTED WITH
PROBEINTERFACE

ProbeInterface is a lightweight Python package that can be
installed from the Python Package Index (PyPI) (https://pypi.
org/project/probeinterface/):

>>> pip install probeinterface

Frontiers in Neuroinformatics | www.frontiersin.org 2 February 2022 | Volume 16 | Article 823056

https://gin.g-node.org/spikeinterface/probeinterface_library
https://pypi.org/project/probeinterface/
https://pypi.org/project/probeinterface/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Garcia et al. ProbeInterface

The source code is open and available on GitHub (https://
github.com/SpikeInterface/probeinterface) and an extensive
documentation with several examples is available on the
documentation page (https://probeinterface.readthedocs.io).
In this manuscript we are referring to ProbeInterface
version 0.2.6. A notebook to generate the figures can be found
at https://spikeinterface.github.io/blog/probeinterface-paper-
figures/.

In the following sections, we will show some example use
cases using ProbeInterface to create ProbeGroup objects
from scratch, to retrieve available commercial probes from the
ProbeInterface library, and to wire a group of probes to a
specific device, also termed channel mapping.

3.1. Creating a Probe Configuration From
Scratch
Let us first assume that we are using a custom probe design
developed by a collaborator. The probe has two shanks and in our
experiment we use two of these probes in different brain regions.

We can start by importing the packages we need, including
ProbeInterface:

import numpy as np
import matplotlib.pyplot as plt

from probeinterface import Probe, ProbeGroup

We can next define the position of each contact. In our toy
example, let us assume that each shank has two columns of 8
contacts, so that each probe has 32 contacts:

create contact positions
positions = np.zeros((32, 2))
positions[:, 0] = [0] * 8 + [50] * 8 + [200] * 8 +

[250] * 8
positions[:, 1] = list (range (0, 400 , 50)) * 4

create an empty probe object with coordinates in um
probe0 = Probe(ndim= 2, si_units= 'um')
set contacts
probe0.set_contacts(positions=positions,

shapes= 'circle' ,
shape_params={ 'radius' : 10})

create probe shape (optional)
polygon = [(- 20, 480), (- 20, - 30), (20, - 110),

(70, - 30), (70, 450), (180 , 450),
(180 , - 30), (220 , - 110),
(270 , - 30), (270 , 480)]

probe0.set_planar_contour(polygon)

Now that we created our first probe probe0, we can add a
second probe with the same design, but at a different location.
The two probes need to be aggregated into a probe group:

duplicate the probe and move it horizontally
probe 1 = probe 0.copy()
move probe by 600 um in x direction
probe 1.move([600 , 0])

Create a probegroup
probegroup = ProbeGroup()
probegroup.add_probe(probe 0)
probegroup.add_probe(probe 1)

Finally, we can visualize the newly created probe group using
the ProbeInterface plotting module (the output figure
is Figure 2).

from probeinterface.plotting import plot_probe_group

fig, ax = plt.subplots()
plot_probe_group(probegroup, ax=ax)

3.2. Using the Probe Library
In most cases, neuroscientists use commercially available neural
probes. While manufacturers provide the necessary information
to use their probes, the probe metadata are typically provided
as non-standardized and highly vendor-specific catalogs. During
the initial design and implementation of ProbeInterface,
we collaborated with one of the major vendors of silicon
probes (Cambridge Neurotech, UK) to gather, curate, and
distribute most of their available probe designs in a standardized
and easy-to-access format. In addition, we are in contact
with other vendors (NeuroNexus Technologies, USA, ATLAS
Neuroengineering, Belgium) and we have started porting some of
their probe designs into ProbeInterface. We have produced
a library of probes that is hosted and maintained on the GIN
platform (https://gin.g-node.org/spikeinterface/probeinterface_
library). From the Python API, users can retrieve any available
probes as a ProbeInterface Probe object from the above-
mentioned vendors with a single line of code.

In the following example, a Cambridge Neurotech probe
(ASSY-156-P-1) and a NeuroNexus probe (A1x32-Poly3-10mm-
50-177) are retrieved from the probe library, combined into a
probe group, and visualized:

import matplotlib.pyplot as plt

from probeinterface import (Probe, ProbeGroup,
get_probe)

from probeinterface.plotting import plot_probe_group

probe0 = get_probe('cambridgeneurotech' ,
'ASSY-156-P-1')

probe1 = get_probe('neuronexus' ,
'A1x32-Poly3-10mm-50-177')

probe1.move([1000 , 100])

probegroup = ProbeGroup()
probegroup.add_probe(probe 0)
probegroup.add_probe(probe 1)

fig, ax = plt.subplots()
plot_probe_group(probegroup, ax=ax)

Figure 3 shows the output figure, containing the Cambridge
Neurotech probe on the left (64 channels distributed over four
shanks with 16 contacts each) and the NeuroNexus probe on the
right (32 channels organized in three columns of 10, 12, and 10
contacts). Once probe models are downloaded, they are cached
by ProbeInterface and do not need to be downloaded again.

3.3. Wiring Probes to an Acquisition Device
The last section showed how to retrieve commonly used probe
models as ProbeInterface objects from the probe library.

Frontiers in Neuroinformatics | www.frontiersin.org 3 February 2022 | Volume 16 | Article 823056

https://github.com/SpikeInterface/probeinterface
https://github.com/SpikeInterface/probeinterface
https://probeinterface.readthedocs.io
https://spikeinterface.github.io/blog/probeinterface-paper-figures/
https://spikeinterface.github.io/blog/probeinterface-paper-figures/
https://gin.g-node.org/spikeinterface/probeinterface_library
https://gin.g-node.org/spikeinterface/probeinterface_library
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Garcia et al. ProbeInterface

FIGURE 2 | Probe configuration created from scratch. Visualization of the probe group created in Section 3.1. The probe group is made of two identical probes

spaced by 600µm in the x direction. Each probe contains 32 channels, split in two shanks with 16 contacts each.

FIGURE 3 | Probes downloaded from the probe library. Visualization of the probe group created in Section 3.2 including a Cambridge Neurotech probe

(ASSY-156-P-1 – left) and a NeuroNexus device (A1x32-Poly3-10mm-50-177 – right).

However, there is still a required step in order to map the
recorded signals to the probe contacts: wiring.

While each contact has a specific contact_id representing
the channel identity with respect to the probe, the final ordering
of the channels is usually shuffled when probes are connected to
an acquisition device via headstages and connectors. This is why
probes need to be wired to a device.

If the channel mapping to the acquisition system for a
certain probe and configuration is known, it can be directly
connected to the probe configuration. In this example,
we first retrieve a Cambridge Neurotech ASSY-156-P-1
probe object (same probe shown in Figure 3— left)
and we then manually set the device indices using our
known mapping.

Frontiers in Neuroinformatics | www.frontiersin.org 4 February 2022 | Volume 16 | Article 823056

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Garcia et al. ProbeInterface

FIGURE 4 | Wiring a probe to an acquisition device. When a probe is wired to a device, each contact is assigned a device_channel_index, which indicates

to which recorded trace it corresponds to. For each contact, the text shows both the contact id (e.g., id21) and the device channel index (e.g., dev27).

from probeinterface import get_probe

get probe from library
manufacturer = 'cambridgetneurotech'
probe_name = 'ASSY-156-P-1'
probe = get_probe(manufacturer, probe_name)

map channels to device indices
mapping_to_device = [

47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36,
35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12,
11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52,
51, 50, 49, 48]

probe.set_device_channel_indices(mapping_to_device)

In this case, for example, the first contact of the probe will be
mapped to the device index 47, the second to 46, and so on.

Alternatively, we provide a set of available and common
pathways that allows automatic mapping of probes to connected
devices. For example, the ASSY-156-P-1 probe by Cambridge
Neurotech usually comes with an “ASSY-156” connector. This is
interfaced to an Intan headstage with 64 channels (“RHD2164”)
and then connected to the acquisition system, such as an
Intan acquisition board or the Open Ephys device (Siegle
et al., 2017). For this standard mapping, we can directly use a
ProbeInterface pathway.

from probeinterface import Probe, get_probe

get probe from library
manufacturer = 'cambridgeneurotech'
probe_name = 'ASSY-156-P-1'
probe = get_probe(manufacturer, probe_name)

set device indices with a pathway
probe.wiring_to_device('ASSY-156>RHD2164')
plotting.plot_probe(probe, with_device_index= True ,

with_contact_id= True ,
title= False)

After mapping the probe, each contact is assigned a
device_channel_index which uniquely associates the
channel to the recorded traces. In Figure 4, we show a zoomed
in view of the bottom part of the first two shanks of the probe,
with each contact labeled with its contact id and device channel
index. The bottom left channel of the first shank (contact
id 21) is now wired to the 28th recorded signal (0-index).
Clearly, this information is very relevant for every downstream
analysis. Note that probe groups can be wired similarly
using the set_global_device_channel_indices()
function.

As new probes, headstages, and connectors are developed
and adopted by the community, the number of available
pathways in ProbeInterface will grow. We encourage the
neuroscience community to contribute to this open-source
project and validate existing and add new pathways as they
become available.

4. FILE FORMAT AND I/O

While there are some existing file formats to describe neural
probes for data analysis, mainly related to spike sorting, these are
limited to the minimal information needed for signal processing
and are therefore incomplete. As an example, the .prb file,
used by Klusta (Rossant et al., 2016) and Spyking-CIRCUS (Yger
et al., 2018) to provide probe information for the spike sorting
pipeline, only contains information about the locations of the
contacts and their channel group. While these two pieces of
information are probably enough for spike sorting, additional
characteristics are relevant for other applications. For example,
when computing extracellular signals from biophysically detailed
neuronal models, in order to model the spatial extent of each
recording site, information about the shape and the size of the
electrodes is also required (Hagen et al., 2018; Buccino and
Einevoll, 2020).

Frontiers in Neuroinformatics | www.frontiersin.org 5 February 2022 | Volume 16 | Article 823056

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Garcia et al. ProbeInterface

Given these limitations, we therefore introduce a flexible
description based on the established JSON format. The
ProbeInterface description of a Probe is an attempt to
include all relevant information about the probe(s) used in
an experiment. The JSON implementation allows easy access
by existing frameworks in different programming languages,
from spike sorting tools to visualization and modeling packages.
ProbeInterface includes multiple features to ensure its
long-term usability and flexibility.

First, a ProbeInterface file includes the version of
the ProbeInterface package, to ensure reproducibility of
the analysis.

{
"specification" : "probeinterface" ,
"version" : " 0. 2. 6" ,
"probes" : [

{
...

}
]

}

Second, the probes field allows to specify multiple probes
in the same file (i.e. a probe group). This feature allows to
describe multiple probes recorded with the same acquisition
device, as modern acquisition systems support a growing number
of probes. Each entry of the probes list must contain the
following required fields:

ndim: number of dimensions (2 or 3)

si_units: units for the positions (um, mm, etc.)

annotations: free-text field. It can contain the name of the
probe, themanufacturer, a description, and more

contact_positions: list of 2D or 3D positions (depending
on the ndim of the probe contacts)

contact_shapes: shapes of the electrodes. It can be
circle, square, or rect. This field can be either a
single string (in this case all contacts share the same shape)
or a list of shapes with the same length as the number of
contacts (this allows one to describe probes with different
electrode shapes)

contact_shape_params: this field specifies parameters
for the contact shapes. Similarly to contact_shapes,
it can be a single dictionary (all contacts have the same
shape) or a list of dictionaries with the same length of the
number of contacts. The shape parameters are radius for
the circle, width for the square, and width and
height for the rect shapes.

In addition to these mandatory fields, other fields can be
optionally specified. These include:

contact_plane_axes: orientation of the contacts. This
field gives the possibility to describe the orientation of
each contact. For example, a square or a rectangular

contact can be rotated with respect to the probe. The
contact_plane_axes represents the 2D or 3D axes
(depending on ndim) parallel to the sides of the contact
(note that this only holds for rectangular and square
contacts, given the symmetry of circular sites).

probe_planar_contour: this field allows to specify the
contour of the probe. It contains a list of 2D or 3D points
(depending on ndim) that describe the vertices of the probe
contour.

device_channel_indices: when the probe(s) are wired
to a device, this field contains the device indices.

shank_ids: this field contains the shank index for each
contact (in case of a multi-shank probe, such as the one
shown in Figure 3 - right).

ProbeInterface also implements an I/O module to read
from and write to other file formats that describe probes. Several
newly developed configurable probes, e.g. Neuropixels (Jun et al.,
2017), can be set to record from different probe configurations
and the output file [for Neuropixels a SpikeGLX format (Karsh)]
contains this information. In this case, a probe object can be
loaded directly from the acquired file:

from probeinterface.io import read_spikeglx

load probe from SpikeGLX file
probe = read_spikeglx('path-to-spikeglx.meta')

Similarly, ProbeInterface can automatically load a probe
object from Maxwell Biosystems files1, a MEArec simulator file
(Buccino and Einevoll, 2020), a .prb file, a Neurodata Without
Borders (NWB) file (Teeters et al., 2015; Rübel et al., 2021), and
an electrophysiology Brain Imaging Data Structure (BIDS) file
(Gorgolewski et al., 2016).

In addition, each Probe or ProbeGroup object can also be
written to a ProbeInterface file, a .prb file, and an ephys
BIDS file set.

5. INTEGRATION WITH SPIKEINTERFACE

SpikeInterface2 is an open-source framework to unify
extracellular electrophysiology analysis and spike sorting
(Buccino et al., 2020). Since version 0.90, ProbeInterface
is integrated into SpikeInterface, and this allows users
to directly attach a Probe or ProbeGroup object
to a SpikeInterface recording object. Internally, the
ProbeInterface layer is used to provide spike sorters
with the necessary probe information for sorting and
for visualization purposes. This example shows how to
register a Probe object into SpikeInterface and to run
a spike sorter, e.g., Tridesclous (Garcia and Pouzat,
2015):

from probeinterface import Probe, get_probe

1MaxWell Biosystems. Available online at: https://www.mxwbio.com/
2https://spikeinterface.readthedocs.io/en/latest/

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2022 | Volume 16 | Article 823056

https://www.mxwbio.com/
https://spikeinterface.readthedocs.io/en/latest/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Garcia et al. ProbeInterface

import all spikeinterface modules
import spikeinterface.full as si

get probe from library and wire to the Intan
headstage

manufacturer = 'cambridgeneurotech'
probe_name = 'ASSY-156-P-1'
probe = get_probe(manufacturer, probe_name)
probe.wiring_to_device('ASSY-156>RHD2164')

load Intan recording
recording = si.read_intan('path-to-intan-file.rhd')

attach probe to recording and visualize it
recording_with_probe = recording.set_probe(probe)
si.plot_probe_map(recording_with_probe)

run spike sorting
sorting = si.run_tridesclous(recording_with_probe)

plot raster of spike sorted data
si.plot_rasters(sorting)

If the Probe object contains multiple shanks or a ProbeGroup
is used instead of a Probe object, the user can optionally choose
to use this information to assign channels to different groups by
using the by_shank=True or the by_probe=True options
of the set_probe() function, respectively. This enables spike
sorting to be performed separately for each group, as spikes from
the same neuron are not expected to appear on different shanks
or probes.

6. DISCUSSION

We present ProbeInterface, a lightweight and user-
friendly Python framework to standardize the description
and handling of neural probe mapping for subsequent
data analysis. After introducing the main concepts of the
ProbeInterface framework (Figure 1), we demonstrate
how the Python API can be used to create a probe
configuration from scratch (Figure 2) and to retrieve a
commercial probe from the ProbeInterface public
library (Figure 3). Finally, we describe the file format used
by ProbeInterface and how it can interface with other
available file formats.

Probe description and handling in neuroscientific
experiments is far from standardized. The plethora of available
probes, connectors, headstages, and acquisition system makes
each experimental setup unique. Arising from this, current
analysis frameworks mainly start from raw signals, taking the
steps that go from the probe to the acquisition system for granted.
With ProbeInterface we aim to improve standardization
and reproducibility starting from the underlying signal pathway
from probe to computer. By providing an enhanced description
of neural probes and automatic mapping between contact and
device indices we facilitate the use of this important information
by analysis tools. In fact, aspects of the probe design, e.g., the
size and shape of the electrodes, the material, the impedance
and coating, arguably influence the quality of the signals and it
is, therefore, important to track and include this information

in the processing pipeline and data sharing. By collaborating
with Cambridge Neurotech, one of the major vendors of
neural probes for extracellular electrophysiology, we provide a
readily available and validated library of over 100 neural probe
designs. We envision that other companies and research groups
developing probes will contribute to this open library in the
near future.

The information about the probe configuration is
essential for spike sorting, which is a required and delicate
processing step to extract single-neuron activity from
extracellular signals. In this regard, ProbeInterface can
facilitate a standardized description of probe information
among available sorters, which currently require tool-
specific files and configurations to describe the neural
probes. ProbeInterface is already integrated in
SpikeInterface (Buccino et al., 2020) (version>0.90),
allowing to directly load a ProbeInterface object into a
processing pipeline. The integration with SpikeInterface,
which internally supports over 10 spike sorting frameworks, is
a first important step in the direction of standardizing probe
handling in neuroscience and we foresee that other analysis
tools will adopt ProbeInterface to describe and handle
probe information.

Finally, in addition to standardization of probe handling
for analysis pipelines, we are in the process of integrating
ProbeInterface objects as extensions to standard file
formats employed across the neuroscience community, including
Neurodata Without Borders (NWB) (Teeters et al., 2015;
Rübel et al., 2021) and Brain Imaging Data Structure (BIDS)
(Gorgolewski et al., 2016) formats. Standardized data formats
in neuroscience are arguably improving reproducibility and
facilitating data sharing and ProbeInterface integration
contributes an user-friendly and comprehensive way to add
probe information to these files.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found at: https://github.com/SpikeInterface/
probeinterface.

AUTHOR CONTRIBUTIONS

SG and AB conceptualized the design and the project. SG, JS,
and AB developed the software. TH contributed to the probe
library. AB wrote the initial draft of the manuscript. SG, JS, TH,
and AB revised and approved the final version of the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the ETH Zurich Postdoctoral
Fellowship 19-2 FEL-17 (AB) and by the French Agence
Nationale de la Recherche, under project 19-DATA-0021-01 (JS).

Frontiers in Neuroinformatics | www.frontiersin.org 7 February 2022 | Volume 16 | Article 823056

https://github.com/SpikeInterface/probeinterface
https://github.com/SpikeInterface/probeinterface
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Garcia et al. ProbeInterface

REFERENCES

Buccino, A. P., and Einevoll, G. T. (2020). Mearec: a fast and customizable

testbench simulator for ground-truth extracellular spiking activity.

Neuroinformatics 19:1–20. doi: 10.1007/s12021-020-09467-7

Buccino, A. P., Hurwitz, C. L., Garcia, S., Magland, J., Siegle, J. H., Hurwitz, R., et al.

(2020). Spikeinterface, a unified framework for spike sorting. Elife 9:e61834.

doi: 10.7554/eLife.61834

Chung, J. E., Magland, J. F., Barnett, A. H., Tolosa, V. M., Tooker, A. C., Lee K.

Y., et al. (2017). A fully automated approach to spike sorting. Neuron 95,

1381–1394. doi: 10.1016/j.neuron.2017.08.030

Diggelmann, R., Fiscella, M., Hierlemann, A., and Franke, F. (2018). Automatic

spike sorting for high-density microelectrode arrays. J. Neurophysiol. 120,

3155–3171. doi: 10.1152/jn.00803.2017

Frey, U., Egert, U., Heer, F., Hafizovic, S., and Hierlemann, A. (2009).

Microelectronic system for high-resolution mapping of extracellular

electric fields applied to brain slices. Biosens. Bioelectron. 24, 2191–2198.

doi: 10.1016/j.bios.2008.11.028

Garcia, S., and Pouzat, C. (2015). Tridesclous. Available online at: https://github.

com/tridesclous/tridesclous

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff,

E. P., et al. (2016). The brain imaging data structure, a format for organizing

and describing outputs of neuroimaging experiments. Sci. Data 3, 1–9.

doi: 10.1038/sdata.2016.44

Hagen, E., Næss, S., Ness, T. V., and Einevoll, G. T. (2018). Multimodal

modeling of neural network activity: computing lfp, ecog, eeg, and meg

signals with lfpy 2.0. Front. Neuroinf. 12:92. doi: 10.3389/fninf.2018.

00092

Hong, G., and Lieber, C. M. (2019). Novel electrode technologies for neural

recordings. Nat. Rev. Neurosci. 20, 330–345. doi: 10.1038/s41583-019-0140-6

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.

doi: 10.1113/jphysiol.1962.sp006837

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B.,

et al. (2017). Fully integrated silicon probes for high-density recording of neural

activity. Nature 551, 232. doi: 10.1038/nature24636

Karsh, B. SpikeGLX. Available online at: https://billkarsh.github.io/SpikeGLX/

Lee, J., Mitelut, C., Shokri, H., Kinsella, I., Dethe, N., Wu, S., et al. (2020). Yass: yet

another spike sorter applied to large-scale multi-electrode array recordings in

primate retina. bioRxiv.

Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M., Harris, K. D., Lee,

D. D., et al. (2016). “Fast and accurate spike sorting of high-channel count

probes with kilosort,” in Advances in Neural Information Processing Systems,

4448–4456.

Rossant, C., Kadir, S. N., Goodman, D. F., Schulman, J., Hunter, M. L., Saleem,

A. B., et al. (2016). Spike sorting for large, dense electrode arrays.Nat. Neurosci.

19, 634. doi: 10.1038/nn.4268

Rübel, O., Tritt, A. J., Ly, R., Dichter, B. K., Ghosh, S. S., Niu, L., et al. (2021).

The neurodata without borders ecosystem for neurophysiological data science.

bioRxiv.

Siegle, J. H., López, A. C., Patel, Y. A., Abramov, K., Ohayon, S., and Voigts, J.

(2017). Open ephys: an open-source, plugin-based platform for multichannel

electrophysiology. J. Neural Eng. 14:045003. doi: 10.1088/1741-2552/aa5eea

Teeters, J. L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B., et al.

(2015). Neurodata without borders: creating a common data format for

neurophysiology. Neuron 88, 629–634. doi: 10.1016/j.neuron.2015.10.025

Wise, K. D., Angell, J. B., and Starr, A. (1970). An integrated-circuit approach

to extracellular microelectrodes. IEEE Trans. Biomed. Eng. BME-17, 238–247.

doi: 10.1109/TBME.1970.4502738

Yger, P., Spampinato, G. L., Esposito, E., Lefebvre, B., Deny, S., Gardella, C.,

et al. (2018). A spike sorting toolbox for up to thousands of electrodes

validated with ground truth recordings in vitro and in vivo. Elife 7:e34518.

doi: 10.7554/eLife.34518

Conflict of Interest: TH is the founder and CEO of Cambridge Neurotech.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Garcia, Sprenger, Holtzman and Buccino. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 8 February 2022 | Volume 16 | Article 823056

https://doi.org/10.1007/s12021-020-09467-7
https://doi.org/10.7554/eLife.61834
https://doi.org/10.1016/j.neuron.2017.08.030
https://doi.org/10.1152/jn.00803.2017
https://doi.org/10.1016/j.bios.2008.11.028
https://github.com/tridesclous/tridesclous
https://github.com/tridesclous/tridesclous
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.1038/s41583-019-0140-6
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1038/nature24636
https://billkarsh.github.io/SpikeGLX/
https://doi.org/10.1038/nn.4268
https://doi.org/10.1088/1741-2552/aa5eea
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.1109/TBME.1970.4502738
https://doi.org/10.7554/eLife.34518
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	ProbeInterface: A Unified Framework for Probe Handling in Extracellular Electrophysiology
	1. Introduction
	2. Overview of ProbeInterface
	3. Getting Started With ProbeInterface
	3.1. Creating a Probe Configuration From Scratch
	3.2. Using the Probe Library
	3.3. Wiring Probes to an Acquisition Device

	4. File Format and I/O
	5. Integration With SpikeInterface
	6. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

