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Mean-field theory of neuronal networks has led to numerous advances in our analytical

and intuitive understanding of their dynamics during the past decades. In order to

make mean-field based analysis tools more accessible, we implemented an extensible,

easy-to-use open-source Python toolbox that collects a variety of mean-field methods

for the leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox

(NNMT) in its current state allows for estimating properties of large neuronal networks,

such as firing rates, power spectra, and dynamical stability in mean-field and linear

response approximation, without running simulations. In this article, we describe how the

toolbox is implemented, show how it is used to reproduce results of previous studies, and

discuss different use-cases, such as parameter space explorations, or mapping different

network models. Although the initial version of the toolbox focuses on methods for leaky

integrate-and-fire neurons, its structure is designed to be open and extensible. It aims to

provide a platform for collecting analytical methods for neuronal network model analysis,

such that the neuroscientific community can take maximal advantage of them.

Keywords: mean-field theory, (spiking) neuronal network, integrate-and-fire neuron, open-source software,

parameter space exploration, (hybrid) modeling, python, computational neuroscience

1. INTRODUCTION

Biological neuronal networks are composed of large numbers of recurrently connected neurons,
with a single cortical neuron typically receiving synaptic inputs from thousands of other neurons
(Braitenberg and Schüz, 1998; DeFelipe et al., 2002). Although the inputs of distinct neurons
are integrated in a complex fashion, such large numbers of weak synaptic inputs imply that
average properties of entire populations of neurons do not depend strongly on the contributions
of individual neurons (Amit and Tsodyks, 1991). Based on this observation, it is possible to
develop analytically tractable theories of population properties, in which the effects of individual
neurons are averaged out and the complex, recurrent input to individual neurons is replaced by
a self-consistent effective input (reviewed, e.g., in Gerstner et al., 2014). In classical physics terms
(e.g., Goldenfeld, 1992), this effective input is called mean-field, because it is the self-consistent
mean of a field, which here is just another name for the input the neuron is receiving. The term
self-consistent refers to the fact that the population of neurons that receives the effective input is the
same that contributes to this very input in a recurrent fashion: the population’s output determines
its input and vice-versa. The stationary statistics of the effective input therefore can be found in a
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self-consistent manner: the input to a neuron must be set exactly
such that the caused output leads to the respective input.

Mean-field theories have been developed for many different
kinds of synapse, neuron, and network models. They have been
successfully applied to study average population firing rates
(van Vreeswijk and Sompolinsky, 1996, 1998; Amit and Brunel,
1997b), and the various activity states a network of spiking
neurons can exhibit, depending on the network parameters
(Amit and Brunel, 1997a; Brunel, 2000; Ostojic, 2014), as well as
the effects that different kinds of synapses have on firing rates
(Fourcaud and Brunel, 2002; Lindner, 2004; Schuecker et al.,
2015; Schwalger et al., 2015; Mattia et al., 2019). They have
been used to investigate how neuronal networks respond to
external inputs (Lindner and Schimansky-Geier, 2001; Lindner
and Longtin, 2005), and they explain why neuronal networks
can track external input on much faster time scales than a single
neuron could (van Vreeswijk and Sompolinsky, 1996, 1998).
Mean-field theories allow studying correlations of neuronal
activity (Sejnowski, 1976; Ginzburg and Sompolinsky, 1994;
Lindner et al., 2005; Trousdale et al., 2012) and were able
to reveal why pairs of neurons in random networks, despite
receiving a high proportion of common input, can show low
output correlations (Hertz, 2010; Renart et al., 2010; Tetzlaff
et al., 2012; Helias et al., 2014), which for example has important
implication for information processing. They describe pair-wise
correlations in network with spatial organization (Rosenbaum
and Doiron, 2014; Rosenbaum et al., 2017; Dahmen et al.,
2022) and can be generalized to correlations of higher orders
(Buice and Chow, 2013). Mean-field theories were utilized to
show that neuronal networks can exhibit chaotic dynamics
(Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky,
1996, 1998), in which two slightly different initial states can
lead to totally different network responses, which has been
linked to the network’s memory capacity (Toyoizumi and
Abbott, 2011; Schuecker et al., 2018). Most of the results
mentioned above have been derived for networks of either
rate, binary, or spiking neurons of a linear integrate-and-
fire type. But various other models have been investigated
with similar tools as well; for example, just to mention a
few, Hawkes processes, non-linear integrate-and-fire neurons
(Brunel and Latham, 2003; Fourcaud-Trocmé et al., 2003;
Richardson, 2007, 2008; Grabska-Barwinska and Latham, 2014;
Montbrió et al., 2015), or Kuramoto-type models (Stiller and
Radons, 1998; van Meegen and Lindner, 2018). Additionally,
there is an ongoing effort showing that many of the results
derived for distinct models are indeed equivalent and that
those models can be mapped to each other under certain
circumstances (Ostojic and Brunel, 2011; Grytskyy et al., 2013;
Senk et al., 2020).

Other theories for describing mean population rates in
networks with spatially organized connectivity, based on taking
a continuum limit, have been developed. These theories, known
as neural field theories, have deepened our understanding of
spatially and temporally structured activity patterns emerging in
cortical networks, starting with the seminal work by Wilson and
Cowan (1972, 1973), who investigated global activity patterns,
and Amari (1975, 1977), who studied stable localized neuronal

activity. They were successfully applied to explain hallucination
patterns (Ermentrout and Cowan, 1979; Bressloff et al., 2001), as
well as EEG and MEG rhythms (Nunez, 1974; Jirsa and Haken,
1996, 1997). The neural field approach has been used to model
working memory (Laing et al., 2002; Laing and Troy, 2003),
motion perception (Giese, 2012), cognition (Schöner, 2008), and
more; for extensive reviews of the literature, we refer the reader
to Coombes (2005), Bressloff (2012), and Coombes et al. (2014).

Clearly, analytical theories have contributed to our
understanding of neuronal networks and they provide a
plethora of powerful and efficient methods for network
model analysis. Comparing the predictions of analytical
theories to simulations, experimental data, or other theories
necessitates a numerical implementation applicable to various
network models, depending on the research question. Such
an implementation is often far from straightforward and at
times requires investing substantial time and effort. Commonly,
such tools are implemented as the need arises, and their reuse
is not organized systematically and restricted to within a
single lab. This way, not only are effort and costs spent by the
neuroscientific community duplicated over and over again, but
also are many scientists deterred from taking maximal advantage
of those methods although they might open new avenues for
investigating their research questions.

In order to make analytical tools for neuronal network
model analysis accessible to a wider part of the neuroscientific
community, and to create a platform for collecting well-tested
and validated implementations of such tools, we have developed
the Python toolbox NNMT (Layer et al., 2021), short for
Neuronal Network Mean-field Toolbox. We would like to
emphasize that NNMT is not a simulation tool; NNMT is
a collection of numerically solved mean-field equations that
directly relate the parameters of a microscopic network model
to the statistics of its dynamics. NNMT has been designed
to fit the diversity of mean-field theories, and the key features
we are aiming for are modularity, extensibility, and a simple
usability. Furthermore, it features an extensive test suite to ensure
the validity of the implementations as well as a comprehensive
user documentation. The current version of NNMT mainly
comprises tools for investigating networks of leaky integrate-and-
fire neurons as well as somemethods for studying binary neurons
and neural field models. The toolbox is open-source and publicly
available on GitHub.1

In the following, we present the design considerations that
led to the structure and implementation of NNMT as well as
a representative set of use cases. Section 2 first introduces its
architecture. Section 3 then explains its usage by reproducing
previously published network model analyses from Schuecker
et al. (2015), Bos et al. (2016), Sanzeni et al. (2020), and Senk et al.
(2020). Section 4 compares NNMT to other available toolboxes
for neuronal network model analysis, discusses its use cases from
a more general perspective, indicates current limitations and
prospective advancements of NNMT, and explains how new tools
can be contributed.

1https://github.com/INM-6/nnmt
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A

B

C

FIGURE 1 | Structure and workflows of the Neuronal Network Mean-field Toolbox (NNMT). (A) Basic workflow: individual mean-field based analysis methods are

implemented as functions, called _tools(), that can be used directly by explicitly passing the required arguments. (B) Model workflow: to facilitate the handling of

parameters and results, they can be stored in a model class instance, which can be passed to a tool(), which wraps the basic workflow of the respective

_tool(). (C) Structure of the Python package. In addition to the tool collection (red frame), containing the tools() and the _tools(), and pre-defined model

classes, the package provides utility functions for handling parameter files and unit conversions, as well as software aiding the implementation of new methods.

� �
1 # basic workflow
2 result = nnmt.<submodule>.<_tool>(∗args, ∗∗kwargs)
3

4 # model workflow
5 my_model = nnmt.models.<model>(
6 <network_params>, <analysis_params>)
7 result = nnmt.<submodule>.<tool>(my_model)
� �

Listing 1: The two modes of using NNMT: In the basic
workflow (top), quantities are calculated by passing all required
arguments directly to the underscored tool functions available
in the submodules of NNMT. In the model workflow (bottom),
a model class is instantiated with parameter sets and the model
instance is passed to the non-underscored tool functions which
automatically extract the relevant parameters.

2. WORKFLOWS AND ARCHITECTURE

What are the requirements a package for collecting analytical
methods for neuronal network model analysis needs to fulfill?
To begin with, it should be adaptable and modular enough
to accommodate many and diverse analytical methods while
avoiding code repetition and a complex interdependency of
package components. It should enable the application of the
collected algorithms to various network models in a simple and

transparent manner. It should make the tools easy to use for
new users, while also providing experts with direct access to
all parameters and options. Finally, the methods need to be
thoroughly tested and well documented.

These are the main considerations that guided the
development of NNMT. Figures 1A,B illustrate how the
toolbox can be used in to two different workflows, depending
on the preferences and goals of the user. In the basic workflow
the individual method implementations called tools are directly
accessed, whereas the model workflow provides additional
functionality for the handling of parameters and results.

2.1. Basic Workflow
The core of NNMT is a collection of low-level functions that
take specific parameters (or pre-computed results) as input
arguments and return analytical results of network properties.
In Figure 1A, we refer to such basic functions as _tools(),
as their names always start with an underscore. We term this
lightweight approach of directly using these functions the basic
workflow. The top part of Listing 1 demonstrates this usage;
for example, the quantity to be computed could be the mean
firing rate of a neuronal population and the arguments could be
parameters which define neuron model and external drive. While
the basic workflow gives full flexibility and direct access to every

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 835657

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Layer et al. Neuronal Network Mean-Field Toolbox

parameter of the calculation, it remains the user’s responsibility
to insert the arguments correctly, e.g., in the right units.

2.2. Model Workflow
The model workflow is a convenient wrapper of the basic
workflow (Figure 1B). A model in this context is an object that
stores a larger set of parameters and can be passed directly
to a tool(), the non-underscored wrapper of the respective
_tool(). The tool() automatically extracts the relevant
parameters from the model, passes them as arguments to the
corresponding core function _tool(), returns the results, and
stores them in the model. The bottom part of Listing 1 shows
how a model is initialized with parameters and then passed to a
tool() function.

Models are implemented as Python classes and can be
found in the submodule nnmt.models. We provide the
class nnmt.models.Network as a parent class and a few
child classes which inherit the generic methods and properties
but are tailored to specific network models; custom models
can be created straightforwardly. The parameters distinguish
network parameters, which define neuron models and network
connectivity, and analysis parameters; an example for an analysis
parameter is a frequency range over which a function is
evaluated. Upon model instantiation, parameter sets defining
values and corresponding units are passed as Python dictionaries
or yaml files. The model constructor takes care of reading
in these parameters, computing dependent parameters from
the imported parameters, and converting all units to SI units
for internal computations. Consequently, the parameters passed
as arguments and the functions for computing dependent
parameters of a specific child class need to be aligned. This
design encourages a clear separation between a concise set of base
parameters and functionality that transforms these parameters
to the generic (vectorized) format that the tools work with.
To illustrate this, consider the weight matrix of a network
of excitatory and inhibitory neuron populations in which all
excitatory connections have the same weight and all inhibitory
ones another weight. As argument one could pass just a tuple of
two different weight values and the corresponding model class
would take care of constructing the full weight matrix. This
happens in the example presented in Section 3.2.2: The parameter
file network_params_microcircuit.yaml contains the
excitatory synaptic weight and the ratio of inhibitory to excitatory
weights. On instantiation, the full weight matrix is constructed
from these two parameters, following the rules defined in
nnmt.models.Microcircuit.

When a tool() is called, it checks whether the provided
model object contains all required parameters and previously
computed results. Then the tool() extracts the required
arguments, calls the respective_tool(), and caches and returns
the result. If the user attempts to compute the same property
twice, using identical parameters, the tool() will retrieve the
already computed result from the model’s cache and return that
value. Results can be exported to an HDF5 file and also loaded.

Using the model workflow instead of the basic workflow
comes with the initial overhead of choosing a suitable
combination of parameters and a model class, but has the

advantages of a higher level of automation with built-in
mechanisms for checking correctness of input (e.g., regarding
units), reduced redundancy, and the options to store and load
results. Both modes of using the toolbox can also be combined.

2.3. Structure of the Toolbox
The structure of the Python package NNMT is depicted in
Figure 1C. It is subdivided into submodules containing the
tools (e.g., nnmt.lif.exp, or nnmt.binary), the model
classes (nnmt.models), helper routines for handling parameter
files and unit conversions, as well as modules that collect
reusable code employed in implementations for multiple neuron
models (cf. Section 4.4). The tools are organized in a modular,
extensible fashion with a streamlined hierarchy. To give an
example, a large part of the currently implemented tools apply
to networks of leaky integrate-and-fire (LIF) neurons, and they
are located in the submodule nnmt.lif. The mean-field theory
for networks of LIF neurons distinguishes between neurons with
instantaneous synapses, also called delta synapses, and those
with exponentially decaying post-synaptic currents. Similarly,
the submodule for LIF neurons is split further into the two
submodules nnmt.lif.delta and nnmt.lif.exp. NNMT
also collects different implementations for computing the same
quantity using different approximations or numerics, allowing
for a comparison of different approaches.

Apart from the core package, NNMT comes with an extensive
online documentation,2 including a quickstart tutorial, all
examples presented in this paper, a complete documentation of
all tools, as well as a guide for contributors.

Furthermore, we provide an extensive test suite that validates
the tools by checking them against previously published results
and alternative implementations where possible. This ensures
that future improvements of the numerics do not break the tools.

3. HOW TO USE THE TOOLBOX

In this section, we demonstrate the practical use of NNMT by
replicating a variety of previously published results. The examples
presented have been chosen to cover a broad range of common
use cases and network models. We include analyses of both
stationary and dynamic network features, as mean-field theory
is typically divided into two parts: stationary theory, which
describes time-independent network properties of systems in a
stationary state, and dynamical theory, which describes time-
dependent network properties. Additionally, we show how to use
the toolbox to map a spiking to a simpler rate model, as well as
how to perform a linear stability analysis. All examples, including
the used parameter files, are part of the online documentation.2

3.1. Installation and Setup
The toolbox can be either installed using pip:

pip install nnmt

or by installing it directly from the repository,
which is described in detail in the online

2https://nnmt.readthedocs.io/
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documentation. After the installation, the module can
be imported:

import nnmt

3.2. Stationary Quantities
3.2.1. Response Nonlinearities
Networks of excitatory and inhibitory neurons (EI networks,
Figure 2A) are widely used in computational neuroscience
(Gerstner et al., 2014), e.g., to show analytically that a
balanced state featuring asynchronous, irregular activity emerges
dynamically in a broad region of the parameter space (van
Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000; Hertz,
2010; Renart et al., 2010). Remarkably, such balance states emerge
in inhibition dominated networks for a variety of neuron models
if the indegree is large, K≫ 1, and the weights scale as J ∝ 1/

√
K

(Sanzeni et al., 2020; Ahmadian and Miller, 2021). Furthermore,
in a balanced state, a network responds linearly to external
input in the limit K → ∞ (van Vreeswijk and Sompolinsky,
1996, 1998; Brunel, 2000; Sanzeni et al., 2020; Ahmadian and
Miller, 2021). How do EI networks of LIF neurons respond to
external input at finite indegrees? Sanzeni et al. (2020) uncover
five different types of nonlinearities in the network response
depending on the network parameters. Here, we show how to use
the toolbox to reproduce their result (Figures 2B–F).

The network consists of two populations, E and I, of identical
LIF neurons with instantaneous (delta) synapses (Gerstner et al.,
2014). The subthreshold dynamics of the membrane potential Vi

of neuron i obeys

τmV̇i = −Vi + RIi , (1)

where τm denotes the membrane time constant, R the membrane
resistance, and Ii the input current. If the membrane potential
exceeds a threshold Vth, a spike is emitted and the membrane
voltage is reset to the reset potential V0 and clamped to this value
during the refractory time τr. After the refractory period, the
dynamics continue according to Equation (1). For instantaneous
synapses, the input current is given by

RIi(t) = τm
∑

j

Jij
∑

k

δ(t − tj,k − dij) , (2)

where Jij is the synaptic weight from presynaptic neuron j to
postsynaptic neuron i (with Jij = 0 if there is no synapse),
the tj,k are the spike times of neuron j, and dij is a synaptic
delay (in this example dij = d for all pairs of neurons). In
total, there are NE and NI neurons in the respective populations.
Each neuron is connected to a fixed number of randomly chosen
presynaptic neurons (fixed in-degree); additionally, all neurons
receive external input from independent Poisson processes with
rate νX. The synaptic weights and in-degrees of recurrent and
external connections are population-specific:

J =
(
JEE −JEI
JIE −JII

)
, Jext =

(
JEX
JIX

)
,

K =
(
KEE KEI

KIE KII

)
, Kext =

(
KEX

KIX

)
. (3)

All weights are positive, implying an excitatory external input.
The core idea of mean-field theory is to approximate the

input to a neuron as Gaussian white noise ξ (t) with mean
〈ξ (t)〉 = µ and noise intensity 〈ξ (t)ξ (t′)〉 = τmσ 2δ(t − t′). This
approximation is well-suited for asynchronous, irregular network
states (van Vreeswijk and Sompolinsky, 1996, 1998; Amit and
Brunel, 1997b). For a LIF neuron driven by such Gaussian white
noise, the firing rate is given by (Siegert, 1951; Tuckwell, 1988;
Amit and Brunel, 1997b)

φ(µ, σ ) =
(

τr + τm
√

π

∫ Ṽth(µ,σ )

Ṽ0(µ,σ )
es

2
(1+ erf(s))ds

)−1

, (4)

where the rescaled reset- and threshold-voltages are

Ṽ0(µ, σ ) =
V0 − µ

σ
, Ṽth(µ, σ ) =

Vth − µ

σ
. (5)

The first term in Equation (4) is the refractory period and the
second term is the mean first-passage time of the membrane
voltage from reset to threshold. The mean and the noise intensity
of the input to a neuron in a population a ∈ {E, I}, which control
themean first-passage time through Equation (5), are determined
by (Amit and Brunel, 1997b)

µa = τm(JaEKaEνE − JaIKaIνI + JaXKaXνX) , (6)

σ 2
a = τm(J

2
aEKaEνE + J2aIKaIνI + J2aXKaXνX) , (7)

respectively, where each term reflects the contribution of one
population, with the corresponding firing rates of the excitatory
νE, inhibitory νI, and external population νX. Note that we use the
letters i, j, k, . . . to index single neurons and a, b, c, . . . to index
neuronal populations. Both µa and σa depend on the firing rate
of the neurons νa, which is in turn given by Equation (4). Thus,
one arrives at the self-consistency problem

νa = φ(µa, σa) , (8)

which is coupled across the populations due to Equation (6) and
Equation (7).

Our toolbox provides two algorithms to solve Equation (8):
(1) Integrating the auxiliary ordinary differential equation
(ODE) ν̇a = −νa + φ(µa, σa) with initial values νa(0) =
νa,0 using scipy.integrate.solve_ivp (Virtanen et al.,
2020) until it reaches a fixed point ν̇a = 0, where Equation (8)
holds by construction. (2) Minimizing the quadratic deviation∑

a

[
νa − φ(µa, σa)

]2
, using the least squares (LSTSQ) solver

scipy.optimize.least_squares (Virtanen et al., 2020)
starting from an initial guess νa,0. The ODE method is robust
to changes in the initial values and hence a good first choice.
However, it cannot find self-consistent solutions that correspond
to an unstable fixed point of the auxiliary ODE (note that the
stability of the auxiliary ODE does not indicate the stability of
the solution). To this end, the LSTSQ method can be used. Its
drawback is that it needs a good initial guess, because otherwise
the found minimum might be a local one where the quadratic

deviation does not vanish,
∑

a

[
νa − φ(µa, σa)

]2
> 0, and which
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A B C

D E F

FIGURE 2 | Response nonlinearities in EI-networks. (A) Network diagram with nodes and edges according to the graphical notation proposed by Senk et al.

(in press). (B–F) Firing rate of excitatory (blue) and inhibitory (red) population for varying external input rate νX . Specific choices for synaptic weights (J, Jext ) and

in-degrees (K, Kext ) lead to five types of nonlinearities: (B) saturation-driven nonlinearity, (C) saturation-driven multi-solution, (D) response-onset supersaturation,

(E) mean-driven multi-solution, and (F) noise-driven multi-solution. See Figure 8 in Sanzeni et al. (2020) for parameters.

accordingly does not correspond to a self-consistent solution,
νa 6= φ(µa, σa). A prerequisite for both methods is a numerical
solution of the integral in Equation (4); this is discussed in
Section A.1 in the Appendix.

The solutions of the self-consistency problem Equation (8)
for varying νX and fixed J, Jext, K , and Kext reveal the
five types of response nonlinearities (Figure 2). Different
response nonlinearities arise through specific choices of
synaptic weights, J and Jext, and in-degrees, K and Kext,
which suggests that already a simple EI-network possesses
a rich capacity for nonlinear computations. Whenever
possible, we use the ODE method and resort to the LSTSQ
method only if the self-consistent solution corresponds to an
unstable fixed point of the auxiliary ODE. Combining both
methods, we can reproduce the first columns of Figure 8 in
Sanzeni et al. (2020), where all five types of nonlinearities
are presented.

In all cases, we chose appropriate initial values νa,0 for
either method. Note that an exploratory analysis is necessary if
the stability properties of a network model are unknown, and
potentially multiple fixed points are to be uncovered because
there are, to the best of our knowledge, no systematic methods
in d > 1 dimensions that provide all solutions of a nonlinear
system of equations.

In Listing 2, we show a minimal example to produce
the data shown in Figure 2B. After importing the function
that solves the self-consistency Equation (8), we collect the
neuron and network parameters in a dictionary. Then, we
loop through different values for the external rate νX and
determine the network rates using the ODE method, which
is sufficient in this example. In Listing 2 and to produce
Figure 2B, we use the basic workflow because only one isolated
tool of NNMT (nnmt.lif.delta._firing_rates()) is

� �
1 import numpy as np
2 from nnmt.lif.delta import _firing_rates
3

4 params = dict(
5 # membrane and refractory time constants (in s)
6 tau_m=20.∗1e-3, tau_r=2.∗1e-3,
7 # relative reset and threshold potentials (in V)
8 V_0_rel=10.∗1e-3, V_th_rel=20.∗1e-3,
9 # recurrent and external weights (in V)
10 J=np.array([[0.2, -1.6], [0.2, -1.4]])∗1e-3,
11 J_ext=np.array([0.2, 0.2])∗1e-3,
12 # recurrent and external in-degrees
13 K=np.array([[400, 100], [400, 100]]),
14 K_ext=np.array([1600, 800]),
15 # set the method for the fixpoint finder
16 fixpoint_method=’ODE’,
17 # initial guess for the firing rate
18 nu_0=(0, 0))
19

20 # determine self-consistent rates (in 1/s)
21 nu_ext = np.linspace(1, 100, 50) # external rates (in 1/s)
22 nu_E, nu_I = np.zeros_like(nu_ext), np.zeros_like(nu_ext)
23 for i, nu_X in enumerate(nu_ext):
24 nu_E[i], nu_I[i] = _firing_rates(nu_ext=nu_X,
25 ∗∗params)
� �

Listing 2: Example script to produce the data shown in
Figure 2B using the ODE method (initial value νa,0 = 0 for
population a ∈ {E, I}).

employed, which requires only a few parameters defining the
simple EI-network.

3.2.2. Firing Rates of Microcircuit Model
Here we show how to use the model workflow to calculate
the firing rates of the cortical microcircuit model by Potjans
and Diesmann (2014). The circuit is a simplified point
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A

B

FIGURE 3 | Cortical microcircuit model by Potjans and Diesmann (2014).

(A) Network diagram (only the strongest connections are shown as in Figure 1

of the original publication). Same notation as in Figure 2A. (B) Simulation and

mean-field estimate for average population firing rates using the parameters

from Bos et al. (2016).

neuron network model with biologically plausible parameters,
which has been recently used in a number of other works:
for example, to study network properties such as layer-
dependent attentional processing (Wagatsuma et al., 2011),
connectivity structure with respect to oscillations (Bos et al.,
2016), and the effect of synaptic weight resolution on activity
statistics (Dasbach, Tetzlaff, Diesmann, and Senk, 2021); to
assess the performance of different simulator technologies
such as neuromorphic hardware (van Albada et al., 2018)
and GPUs (Knight and Nowotny, 2018; Golosio et al., 2021); to
demonstrate forward-model prediction of local-field potentials
from spiking activity (Hagen et al., 2016); and to serve as a
building block for large-scale models (Schmidt et al., 2018).

The model consists of eight populations of LIF neurons,
corresponding to the excitatory and inhibitory populations of
four cortical layers: 2/3E, 2/3I, 4E, 4I, 5E, 5I, 6E, and 6I (see
Figure 3A). It defines the number of neurons in each population,
the number of connections between the populations, the single
neuron properties, and the external input. Simulations show that
the model yields realistic firing rates for the different populations
as observed in particular in the healthy resting-state of early
sensory cortex (Potjans and Diesmann, 2014, Table 6).

In contrast to the EI-network model investigated in
Section 3.2.1, the neurons in the microcircuit model have
exponentially shaped post-synaptic currents: Equation (2) is
replaced by Fourcaud and Brunel (2002)

τsR
dIi

dt
(t) = −RIi(t)+ τm

∑

j

Jij
∑

k

δ(t − tj,k − dij) , (9)

with synaptic time constant τs. Note that Jij is a measure in
volts here. As discussed in Section 3.2.1, in mean-field theory the
second term, representing the neuronal input, is approximated
by Gaussian white noise. The additional synaptic filtering leads
to the membrane potential (Equation 1) receiving colored noise
input. Fourcaud and Brunel (2002) developed a method for
calculating the firing rate for this synapse type. They have shown
that, if the synaptic time constant τs is much smaller than the
membrane time constant τm, the firing rate for LIF neurons with
exponential synapses can be calculated using Equation (4) with
shifted integration boundaries

Ṽcn,0(µ, σ ) = Ṽ0(µ, σ )+
α

2

√
τs

τm
,

Ṽcn,th(µ, σ ) = Ṽth(µ, σ )+
α

2

√
τs

τm
, (10)

with the rescaled reset- and threshold-voltages from Equation (5)
and α =

√
2 |ζ (1/2)| ≈ 2.07, where ζ (x) denotes the Riemann

zeta function; the subscript cn stands for “colored noise”.
The microcircuit has been implemented as an NNMT

model (nnmt.models.Microcircuit). We here use the
parameters of the circuit as published in Bos et al. (2016) which
is slightly differently parameterized than the original model (see
Table A1 in the Appendix). The parameters of the model are
specified in a yaml file, which uses Python-like indentation and
a dictionary-style syntax. List elements are indicated by hyphens,
and arrays can be defined as nested lists. Parameters with units
can be defined by using the keys val and unit, whereas unitless
variables can be defined without any keys. Listing 3 shows an
example of how some of the microcircuit network parameters
used here are defined. Which parameters need to be provided in
the yaml file depends on the model used and is indicated in their
respective docstrings.

Once the parameters are defined, a microcircuit model is
instantiated by passing the respective parameter file to the model
constructor; the units are automatically converted to SI units.
Then the firing rates are computed. For comparison, we finally
load the simulated rates from Bos et al. (2016):

# create the network model using a network parameter yaml
# file
microcircuit = nnmt.models.Microcircuit(

’network_params_microcircuit.yaml’)
# calculate firing rates
firing_rates = nnmt.lif.exp.firing_rates(microcircuit)
# load simulated results
simulated_firing_rates = \

nnmt.input_output.load_h5(’Bos2016_rates.h5’)[’rates’]

The simulated rates have been obtained by a numerical network
simulation (for simulation details see Bos et al., 2016) in which
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� �
1 # membrane time constant
2 tau_m:
3 val: 10.0
4 unit: ms
5

6 # neuron numbers
7 N:
8 - 20683
9 - 5834
10 - 21915
� �

Listing 3: Some microcircuit network parameters defined in a
yaml file. A dictionary-like structure with the keys val (value)
and unit is used to define the membrane time constant, which
is the same across all populations. The numbers of neurons in
each population are defined as a list. Only the numbers for the
first three populations are displayed.

the neuron populations are connected according to the model’s
original connectivity rule: “random, fixed total number with
multapses (autapses prohibited)”, see Senk et al. (in press) as a
reference for connectivity concepts. The term multapses refers
to multiple connections between the same pair of neurons
and autapses are self-connections; with this connectivity rule
multapses can occur in a network realization but autapses are
not allowed. For simplicity, the theoretical predictions assume
a connectivity with a fixed in-degree for each neuron. Dasbach
et al. (2021) show that simulated spike activity data of networks
with these two different connectivity rules are characterized by
differently shaped rate distributions (“reference” in their Figures
3d and 4d). In addition, the weights in the simulation are
normally distributed while the theory replaces each distribution
by its mean; this corresponds to the case Nbins = 1 in Dasbach
et al. (2021). Nevertheless, our mean-field theoretical estimate of
the average population firing rates is in good agreement with the
simulated rates (Figure 3B).

3.3. Dynamical Quantities
3.3.1. Transfer Function
One of the most important dynamical properties of a neuronal
network is how it reacts to external input. A systematic way to
study the network response is to apply an oscillatory external
input current leading to a periodically modulated mean input
µ(t) = µ+ δµRe

(
eiωt

)
(cf. Equation 6), with fixed frequency ω,

phase, and amplitude δµ, and observe the emerging frequency,
phase, and amplitude of the output. If the amplitude of the
external input is small compared to the stationary input, the
network responds in a linear fashion: it only modifies phase
and amplitude, while the output frequency equals the input
frequency. This relationship is captured by the input-output
transfer function N (ω) (Brunel and Hakim, 1999; Brunel et al.,
2001; Lindner and Schimansky-Geier, 2001), which describes the
frequency-dependent modulation of the output firing rate of a
neuron population

ν(t) = ν + Re
(
N (ω) δµ eiωt

)
.

Note that in this section we only study the linear response to a
modulation of the mean input, although in general, a modulation
of the noise intensity (Equation 7) can also be included (Lindner
and Schimansky-Geier, 2001; Schuecker et al., 2015). The transfer
functionN (ω) is a complex function: Its absolute value describes
the relative modulation of the firing rate. Its phase, the angle
relative to the real axis, describes the phase shift that occurs
between input and output. We denote the transfer function
for a network of LIF neurons with instantaneous synapses in
linear-response approximation as

N (ω) =
√
2ν

σ

1

1+ iωτm

8′
ω

∣∣
√
2Ṽth√
2Ṽ0

8ω|
√
2Ṽth√
2Ṽ0

, (11)

with the rescaled reset- and threshold-voltages Ṽ0 and Ṽth as

defined in Equation (5) and 8ω(x) = e
x2

4 U
(
iωτm − 1

2 , x
)
using

the parabolic cylinder functions U
(
iωτm − 1

2 , x
)
as defined

in (Abramowitz and Stegun, 1974, Section 19.3) and (Olver
et al., 2021, Section 12.2). 8′

ω denotes the first derivative by
x. A comparison of our notation and the transfer function
given in Schuecker et al. (2015, Equation 29) can be found in
Section A.2.1 in the Appendix.

For a neuronal network of LIF neurons with exponentially
shaped post-synaptic currents, introduced in Section 3.2.2,
Schuecker et al. (2014, 2015) show that an analytical
approximation of the transfer function can be obtained by
a shift of integration boundaries, akin to Equation (10):

Ncn (ω) =
√
2ν

σ

1

1+ iωτm

8′
ω

∣∣
√
2Ṽcn,th√
2Ṽcn,0

8ω|
√
2Ṽcn,th√
2Ṽcn,0

. (12)

To take into account the effect of the synaptic dynamics, we
include an additional low-pass filter:

Ncn,s (ω) = Ncn (ω)
1

1+ iωτs
. (13)

If the synaptic time constant is much smaller than the
membrane time constant (τs ≪ τm), an equivalent expression
for the transfer function is obtained by a Taylor expansion
around the original boundaries (cf. Schuecker et al. 2015,
Equation 30). The toolbox implements both variants and offers
choosing between them by setting the argument method of
nnmt.lif.exp.transfer_function to either shift
or taylor.

Here, we demonstrate how to calculate the analytical “shift
version” of the transfer function for different means and noise
intensities of the input current (see Figure 4) and thereby
reproduce Figure 4 in Schuecker et al. (2015).

The crucial parts for producing Figure 4 using NNMT are
shown in Listing 4 for one example combination of mean and
noise intensity of the input current. Instead of using the model
workflow with nnmt.lif.exp.transfer_function,
we here employ the basic workflow, using
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A B

FIGURE 4 | Colored-noise transfer function Ncn of LIF model in different regimes. (A) Absolute value and (B) phase of the “shift” version of the transfer function as a

function of the log-scaled frequency. Neuron parameters are set to Vth = 20mV, V0 = 15mv, τm = 20ms, and τs = 0.5ms. For given noise intensities of input

current, σ = 4mV (solid line) and σ = 1.5mV (dashed line), the mean input µ is chosen such that firing rates ν = 10Hz (black) and ν = 30Hz (gray) are obtained.

nnmt.lif.exp._transfer_function directly. This
allows changing the mean input and its noise intensity
independently of a network model’s structure, but requires
two additional steps: First, the necessary parameters
are loaded from a yaml file, converted to SI units and
then stripped off the units using the utility function
nnmt.utils._convert_to_si_and_strip_units.
Second, the analysis frequencies are defined manually. In this
example we choose logarithmically spaced frequencies, as we
want to plot the results on a log-scale. Finally, the complex-
valued transfer function is calculated and then split into its
absolute value and phase. Figure 4 shows that the transfer
function acts as a low-pass filter that suppresses the amplitude of
high frequency activity, introduces a phase lag, and can lead to
resonance phenomena for certain configurations of mean input
current and noise intensity.

The replication of the results from Schuecker et al. (2015)
outlined here is also used in the integration tests of the toolbox.
Note that the implemented analytical form of the transfer
function by Schuecker et al. (2015) is an approximation for
low frequencies, and deviations from a simulated ground truth
are expected for higher frequencies (ω/2π & 100Hz at the
given parameters).

3.3.2. Power Spectrum
Another frequently studied dynamical property is the power
spectrum, which describes how the power of a signal is
distributed across its different frequency components, revealing
oscillations of the population activity. The power is the Fourier
transformed auto-correlation of the population activities (c.f. Bos
et al. 2016, Equations 16-18). Linear response theory on top
of a mean-field approximation, allows computing the power,
dependent on the network architecture, the stationary firing

rates, and the neurons’ transfer function (Bos et al., 2016). The
corresponding analytical expression for the power spectra of
population a at angular frequency ω is given by the diagonal
elements of the correlation matrix

Pa(ω) = Caa(ω)

=
[(
1−M̃d(ω)

)−1
diag (ν ⊘ n)

(
1−M̃d(−ω)

)−T
]
aa

,

(14)

with ⊘ denoting the elementwise (Hadamard) division, the
effective connectivity matrix M̃d(ω) = τmNcn,s(ω) · J ⊙ K ⊙
D(ω), where the dot denotes the scalar product, while⊙ denotes
the elementwise (Hadamard) product, the mean population
firing rates ν, and the numbers of neurons in each population
n. The effective connectivity combines the static, anatomical
connectivity J ⊙ K , represented by synaptic weight matrix J

and in-degree matrix K , and dynamical quantities, represented
by the transfer functions Ncn,s,a (ω) (Equation (13)), and the
contribution of the delays in (Equation 13), represented by their
Fourier transformed distributions Dab(ω) (cf. Bos et al. 2016,
Equations 14, 15).

The modular structure in combination with the model
workflow of this toolbox permits a step-by-step calculation of
the power spectra, as shown in Listing 5. The inherent structure
of the theory is emphasized in these steps: After instantiating
the network model class with given network parameters, we
determine the working point, which characterizes the statistics of
the model’s stationary dynamics. It is defined by the population
firing rates, the mean, and the standard deviation of the input
to a neuron of the respective population. This is necessary for
determining the transfer functions. The calculation of the delay
distribution matrix is then required for calculating the effective
connectivity and to finally get an estimate of the power spectra.
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FIGURE 5 | Power spectra of the population spiking activity in the adapted cortical microcircuit from Bos et al. (2016). The spiking activity of each population in a 10 s

simulation of the model is binned with 1ms resolution and the power spectrum of the resulting histogram is calculated by a fast Fourier transform (FFT; light gray

curves). In addition, the simulation is split into 500ms windows, the power spectrum calculated for each window and averaged across windows (gray curves). Black

curves correspond to analytical prediction obtained with NNMT as described in Listing 5. The panels show the spectra for the excitatory (top) and inhibitory (bottom)

populations within each layer of the microcircuit.

Figure 5 reproduces Figure 1E in Bos et al. (2016) and shows the
spectra for each population of the adjusted version (see Table A1
in the Appendix) of the microcircuit model.

The numerical predictions obtained from the toolbox
largely coincide with simulated data taken from the original
publication (Bos et al., 2016) and reveal dominant oscillations
of the population activities in the low-γ range around
63Hz. Furthermore, faster oscillations with peak power around
300Hz are predicted with higher magnitudes in the inhibitory
populations 4I, 5I, and 6I.

The deviation between predicted and simulated power spectra
seen at ∼ 130Hz in population 2/3E could be a harmonic of the
correctly predicted, prominent 63Hz peak; a non-linear effect not
captured in linear response theory. Furthermore, the systematic
overestimation of the power spectrum at large frequencies is
explained by the limited validity of the analytical approximation
of the transfer function for high frequencies.

3.3.3. Sensitivity Measure
The power spectra shown in the previous section exhibit
prominent peaks at certain frequencies, which indicate
oscillatory activity. Naturally, this begs the question: which
mechanism causes these oscillations? Bos et al. (2016) expose the
crucial role that the microcircuit’s connectivity plays in shaping
the power spectra of this network model. They have developed a
method called sensitivity measure to directly relate the influence
of the anatomical connections, especially the in-degree matrix,
on the power spectra.

The power spectrum of the a-th population Pa(ω) receives a
contribution from each eigenvalue λb of the effective connectivity

matrix, Pa(ω) ∝ 1/
(
1− λb(ω)

)2
. Such a contribution

consequently diverges as the complex-valued λb approaches
1 + 0i in the complex plane, which is referred to as the
point of instability. This relation can be derived by replacing
the effective connectivity matrix M̃d(ω) in Equation (14) by
its eigendecomposition. The sensitivity measure leverages this
relationship and evaluates how a change in the in-degree
matrix affects the eigenvalues of the effective connectivity
and thus indirectly the power spectrum. Bos et al. (2016)
introduce a small perturbation αcd of the in-degree matrix, which
allows writing the effective connectivity matrix as M̂ab(ω) =
(1+ αcdδcaδdb) M̃ab(ω), where we dropped the delay subscript
d. The sensitivity measure Zb,cd(ω) describes how the b-th
eigenvalue of the effective connectivity matrix varies when the
cd-th element of the in-degree matrix is changed

Zb,cd(ω) =
∂λb(ω)

∂αcd

∣∣∣∣
αcd=0

=
vb,cM̃cdub,d

vT
b
· ub

, (15)

where
∂λb(ω)
∂αcd

is the partial derivative of the eigenvalue with

respect to a change in connectivity, vT
b
and ub are the left and

right eigenvectors of M̃ corresponding to eigenvalue λb(ω).
The complex sensitivity measure can be understood in terms

of two components: Z
amp
b

is the projection of the matrix Zb

onto the direction in the complex plane defined by 1 − λb(ω);
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A B

FIGURE 6 | Sensitivity measure at low-γ frequency and corresponding power spectrum of microcircuit with adjusted connectivity. (A) Sensitivity measure of one

eigenmode of the effective connectivity relevant for low-γ oscillations. The sensitivity measure for this mode is evaluated at the frequency where the corresponding

eigenvalue is closest to the point of instability 1+ 0i in complex plane. Z
amp
b (ω) (left subpanel) visualizes the influence of a perturbation of a connection on the peak

amplitude of the power spectrum. Z
freq
b (ω) (right subpanel) shows the impact on the peak frequency. Non-existent connections are masked white. (B) Mean-field

prediction of power spectrum of population 4I with original connectivity parameters (solid line), 5% increase (dashed line) and 10% increase (dotted line) in connections

K4I→4I. The increase in inhibitory input to population 4I was counteracted by an increase of the excitatory external input Kext→4I to maintain the working point.

it describes how, when the in-degree matrix is perturbed, the
complex-valued λb(ω) moves toward or away from the instability
1 + 0i, and consequently how the amplitude of the power

spectrum at frequency ω increases or decreases. Z
freq
b

is the
projection onto the perpendicular direction and thus describes
how the peak frequency of the power spectrum changes with the
perturbation of the in-degree matrix. For a visualization of these
projections, refer to Figure 5B in Bos et al. (2016).

The toolbox makes this intricate measure accessible by
supplying two tools: After computing the required working
point, transfer function, and delay distribution, the tool
nnmt.lif.exp.sensitivity_measure computes the
sensitivity measure at a given frequency for one specific
eigenvalue. By default, this is the eigenvalue which is closest to
the instability 1 + 0i. To perform the computation, we just need
to add one line to Listing 5:

sensitivity_dict = nnmt.lif.exp.sensitivity_measure(
microcircuit, frequency)

The result is returned in form of a dictionary that
contains the sensitivity measure and its projections. The
tool nnmt.lif.exp.sensitivity_measure_all_
eigenmodes wraps that basic function and calculates the
sensitivity measure for all eigenvalues at the frequency for which
each eigenvalue is closest to instability.

According to the original publication (Bos et al., 2016), the
peak around 63Hz has contributions from one eigenvalue of the
effective connectivity matrix. Figure 6 shows the projections of
the sensitivity measure at the frequency for which this eigenvalue
is closest to the instability, as illustrated in Figure 4 of Bos
et al. (2016). The sensitivity measure returns one value for each
connection between populations in the network model. For Z

amp
b

a negative value indicates that increasing the in-degrees of a
specific connection causes the amplitude of the power spectrum
at the evaluated frequency to drop. If the value is positive,

the amplitude is predicted to grow as the in-degrees increase.

Similarly, for positive Z
freq
b

the frequency of the peak in the power

spectrum shifts toward higher values as in-degrees increase, and

vice versa. Themain finding in this analysis is that the low-γ peak

seems to be affected by excitatory-inhibitory loops in layer 2/3

and layer 4.
To decrease the low–γ peak in the power spectrum, one could

therefore increase the 4I to 4I connections (cp. Figure 6A):

# 5 percent increase
K_new = microcircuit.network_params[’K’].copy()
K_new[3,3] = 1001 # originally 953
K_ext_new = microcircuit.network_params[’K_ext’].copy()
K_ext_new[3] = 2034 # originally 1900
microcircuit_new = microcircuit.change_parameters(

{’K’: K_new, ’K_ext’: K_ext_new})

and calculate the power spectrum as in Listing 5 again to

validate the change. Note that a change in connectivity

leads to a shift in the working point. We are interested in

the impact of the modified connectivity on the fluctuation

dynamics at the same working point and thus need to

counteract the change in connectivity by adjusting the external
input. In the chosen example this is ensured by satisfying

J4I→4I1K4I→4Iν4I = −Jext→4I1Kext→4Iνext, which yields
1Kext→4I = − J4I→4I1K4I→4Iν4I

Jext→4Iνext
.

If several eigenvalues of the effective connectivity matrix
influence the power spectra in the same frequency range,

adjustments of the connectivity are more involved. This is

because a change in connectivity would inevitably affect all

eigenvalues simultaneously. Further care has to be taken because
the sensitivity measure is subject to the same constraints as

the current implementation of the transfer function, which
is only valid for low frequencies and enters the sensitivity
measure directly.
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� �
1 # load parameters in custom units
2 params = nnmt.input_output.load_val_unit_dict_from_yaml(
3 ’Schuecker2015_parameters.yaml’)
4

5 # convert parameters to SI units
6 nnmt.utils._convert_to_si_and_strip_units(params)
7

8 # define the analysis frequencies
9 frequencies = np.logspace(
10 params[’f_start_exponent’],
11 params[’f_end_exponent’],
12 params[’n_freqs’])
13 # add the zero frequency
14 frequencies = np.insert(frequencies, 0, 0.0)
15 omegas = 2 ∗ np.pi ∗ frequencies
16

17 # extract necessary parameters from params dictionary
18 mean_input = params[’mean_input’]
19 ... # here we leave out similar statements
20

21 # calculate the transfer function
22 transfer_function = nnmt.lif.exp._transfer_function(
23 mu, sigma,
24 tau_m, tau_s, tau_r,
25 V_th_rel, V_0_rel,
26 omegas,
27 method=’shift’,
28 synaptic_filter=False)
29

30 # calculate properties plotted in Schuecker et al. (2015)
31 absolute_value = np.abs(transfer_function)
32 phase = np.angle(transfer_function) / 2 / np.pi ∗ 360
� �

Listing 4: Example script for computing a transfer
function shown in Figure 4 using the method of shifted
integration boundaries.

3.4. Fitting Spiking to Rate Model and
Predicting Pattern Formation
If the neurons of a network are spatially organized and connected
according to a distance-dependent profile, the spiking activity
may exhibit pattern formation in space and time, including wave-
like phenomena. Senk et al. (2020) set out to scrutinize the non-
trivial relationship between the parameters of such a network
model and the emerging activity patterns. The model they use
is a two-population network of excitatory E and inhibitory
I spiking neurons, illustrated in Figure 7. All neurons are of
type LIF with exponentially shaped post-synaptic currents. The
neuron populations are recurrently connected to each other and
themselves and they receive additional external excitatory Eext
and inhibitory Iext Poisson spike input of adjustable rate as shown
in Figure 7A. The spatial arrangement of neurons on a ring
is illustrated in Figure 7B and the boxcar-shaped connectivity

profiles in Figure 7C.
In the following, we consider a mean-field approximation of

the spiking model with spatial averaging, that is a time and space

continuous approximation of the discrete model as derived in
Senk et al. (2020, Section E. Linearization of spiking network
model). We demonstrate three methods used in the original
study: First, Section 3.4.1 explains how a model can be brought
to a defined state characterized by its working point. The working
point is given by the mean µ and noise intensity σ of the input
to a neuron, which are both quantities derived from network

� �
1 # create network model microcircuit
2 microcircuit = nnmt.models.Microcircuit(
3 network_params=’Bos2016_network_params.yaml’,
4 analysis_params=’Bos2016_analysis_params.yaml’)
5

6 # calculate working point for exponentially shaped post-
synaptic currents

7 nnmt.lif.exp.working_point(microcircuit, method=’taylor’)
8 # calculate the transfer function
9 nnmt.lif.exp.transfer_function(microcircuit,
10 method=’taylor’)
11 # calculate the delay distribution matrix
12 nnmt.network_properties.delay_dist_matrix(microcircuit)
13 # calculate the effective connectivity matrix
14 nnmt.lif.exp.effective_connectivity(microcircuit)
15 # calculate the power spectra
16 power_spectra = nnmt.lif.exp.power_spectra(microcircuit)
� �

Listing 5: Example script to produce the theoretical prediction
(black lines) shown in Figure 5B.

A

B C

FIGURE 7 | Illustrations of spiking network model by Senk et al. (2020).

(A) Excitatory and inhibitory neuronal populations randomly connected with

fixed in-degree and multapses allowed (autapses prohibited). External

excitatory and inhibitory Poisson drive to all neurons. Same notation as in

Figure 2A. (B) One inhibitory and four excitatory neurons per grid position on

a one-dimensional domain with periodic boundary conditions (ring network).

(C) Normalized, boxcar-shaped connection probability with wider excitation

than inhibition; the grid spacing is here 10−3 mm. For model details and

parameters, see Tables II–IV of Senk et al. (2020); the specific values given in

the caption of their Figure 6 are used throughout here.

parameters and require the calculation of the firing rates. With
the spikingmodel in that defined state, Section 3.4.2 thenmaps its
transfer function to the one of a rate model. Section 3.4.3 finally
shows that this working-point dependent rate model allows for
an analytical linear stability analysis of the network accounting
for its spatial structure. This analysis can reveal transitions to
spatial and temporal oscillatory states which, when mapped back
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to the parameters of the spiking model, may manifest in distinct
patterns of simulated spiking activity after a startup transient.

3.4.1. Setting the Working Point by Changing

Network Parameters
With network and analysis parameters predefined in yaml files,
we set up a networkmodel using the examplemodel classBasic:

space_model = nnmt.models.Basic(
network_params=’Senk2020_network_params.yaml’,
analysis_params=’Senk2020_analysis_params.yaml’)

Upon initialization the given parameters are automatically
converted into the format used by NNMT’s tools. For instance,
relative spike reset and threshold potentials are derived from
the absolute values, connection strengths in units of volt are
computed from the post-synaptic current amplitudes in ampere,
and all values are scaled to SI units.

We aim to bring the network to a defined state by fixing the
working point but also want to explore if the procedure of fitting
the transfer function still works for different network states.
For a parameter space exploration, we use a method to change
parameters provided by the model class and scan through a
number of different working points of the network. To obtain the
required input for a target working point, we adjust the external
excitatory and inhibitory firing rates accordingly; NNMT uses a
vectorized version of the equations given in Senk et al. (2020,
Appendix F: Fixing the working point) to calculate the external
rates needed:

# relative to spike threshold (in V)
mu = 10. ∗ 1e-3; sigma = 10. ∗ 1e-3
nu_ext = nnmt.lif.exp.external_rates_for_fixed_input(

space_model, mu_set=mu, sigma_set=sigma)
space_model = space_model.change_parameters(

changed_network_params={’nu_ext’: nu_ext})

The implementation uses only one excitatory and one inhibitory
Poisson source to represent the external input rates which
typically originate from a large number of external source
neurons. These two external sources are connected to the
network with the same relative inhibition g as used for the
internal connections. The resulting external rates for different
choices of (µ, σ) are color-coded in the first two plots of
Figure 8A. The third plot shows the corresponding firing rates of
the neurons, which are stored in the results of the model instance
when computing the working point explicitly:

nnmt.lif.exp.working_point(space_model)

Although the external rates are substantially higher than the
firing rates, since a neuron is recurrently connected to hundreds
of neurons, the total external and recurrent inputs are of the
same order.

3.4.2. Parameter Mapping by Fitting the Transfer

Function
We map the parameters of the spiking model to a corresponding
rate model by, first, computing the transfer function Ncn,s given
in Equation (13) of the spiking model, and second, fitting the
simpler transfer function of the rate model, for details see
Senk et al. (2020, Section F. Comparison of neural-field and
spiking models). The dynamics of the rate model can be written

as a differential equation for the linearized activity ra with
populations a, b ∈ {E, I} :

τ
d

dt
ra(t) = −ra(t)+

∑

b

wbrb(t − d) (16)

with the delay d; τ is the time constant and wb are the unitless
weights that only depend on the presynaptic population. The
transfer function is just the one of a low-pass filter, NLP =
1/ (1+ λτ), where λ is the frequency in Laplace domain. The
tool to fit the transfer function requires that the actual transfer
function Ncn,s has been computed beforehand and fits NLPw to
τmNcn,s · J ⊙ K for the same frequencies together with τ , w, and
the combined fit error η:

nnmt.lif.exp.transfer_function(space_model)
nnmt.lif.exp.fit_transfer_function(space_model)

The absolute value of the transfer function is
fitted with non-linear least-squares using the solver
scipy.optimize.curve_fit. Figure 8B illustrates
the amplitude and phase of the transfer function and its fit for a
few (µ, σ) combinations. The plots of Figure 8C show the fitted
time constants, the fitted excitatory weight, and the combined fit
error. The inhibitory weight is proportional to the excitatory one
in the same way as the post-synaptic current amplitudes.

3.4.3. Linear Stability Analysis of Spatially Structured

Model With Delay
Sections 3.4.1 and 3.4.2 considered a mean-field approximation
of the spiking model without taking space into account.
In the following, we assume a spatial averaging of the
discrete network depicted in Figure 7 and introduce the spatial
connectivity profiles pa(x). Changing Equation (16) to the
integro-differential equation

τ
∂

∂t
ra(x, t) = −ra(x, t)+

∑

b

wb

∫ ∞

−∞
pb(x− y)rb(y, t − d) dy

(17)

yields a neural field model defined in continuous space x.
This model lends itself to analytical linear stability analysis,
as described in detail in Senk et al. (2020, Section A. Linear
stability analysis of a neural-field model). In brief, we analyze
the stability of a fixed-point solution to this differential equation
system which, together with parameter continuation methods
and bifurcation analysis, allows us to determine points in
parameter space where transitions from homogeneous steady
states to oscillatory states can occur. These transitions are given
as a function of a bifurcation parameter, here the constant
delay d, which is the same for all connections. The complex-
valued, temporal eigenvalue λ of the linearized time-delay system
is an indicator for the system’s overall stability and can serve
as a predictor for temporal oscillations, whereas the spatial
oscillations are characterized by the real-valued wave number k.
Solutions that relate λ and k with the model parameters are given
by a characteristic equation, which in our case reads (Senk et al.,
2020, Equation 7):

λB(k) = −
1

τ
+

1

d
WB

(
c
(
k
) d

τ
e
d
τ

)
, (18)
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A

C

B

FIGURE 8 | Network parameters and mean-field results from scanning through different working points. Working point (µ, σ) combines mean input µ and noise

intensity of input σ . (A) External excitatory νext, E and inhibitory νext, I Poisson rates required to set (µ, σ) and resulting firing rates ν. (B) Transfer function Ncn,s of

spiking model and fitted rate-model approximation with low-pass filter for selected (µ, σ) (top: amplitude, bottom: phase). (C) Fit results (time constants τ and

excitatory weights wE) and fit errors η. The inhibitory weights are wI = −gwE with g = 5. Star marker in panels (A) and (C) denotes target working point (10, 10) mV.

Similar displays as in Senk et al. (2020, Figure 5).

with the time constant of the rate model τ , the multi-valued
Lambert WB function3 on branch B (Corless et al., 1996),
and the effective connectivity profile c

(
k
)
, which combines the

weights wb and the Fourier transforms of the spatial connectivity
profiles. Note that the approach generalizes from the boxcar-
shaped profiles used here to any symmetric probability density
function. NNMT provides an implementation to solve this
characteristic equation in its linear_stability module
using the spatialmodule for the profile:

import nnmt.spatial as spatial
import nnmt.linear_stability as linstab

connectivity = (
W_rate ∗ spatial._ft_spatial_profile_boxcar(

k_wavenumber,
space_model.network_params[’width’]))

eigenvalue = (
linstab._solve_chareq_lambertw_constant_delay(

branch_nr, tau_rate,
space_model.network_params[’delay’],
connectivity))

Figure 9A shows that the computed eigenvalues come for the
given network parameters in complex conjugate pairs. The
branch with the largest real part is the principal branch (B = 0).
Temporal oscillations are expected to occur if the real part of

3The Lambert WB function is defined as z = WB (z) eWB(z) for z ∈ C and has

infinitely many solutions, numbered by the branches B.

the eigenvalue on the principal branch becomes positive; the
oscillation frequency can then be read off the imaginary part
of that eigenvalue. In this example, the largest eigenvalue λ∗

on the principal branch has a real part that is just above zero.
There exists a supercritical Hopf bifurcation and the delay as the
bifurcation parameter is chosen large enough such that the model
is just beyond the bifurcation point separating the stable from the
instable state. The respective wave number k∗ is positive, which
indicates spatial oscillations as well. The oscillations in both time
and space predicted for the rate model imply that the activity
of the corresponding spiking model might exhibit wave trains,
i.e., temporally and spatially periodic patterns. The predicted
propagation speed of the wave trains is given by the phase velocity
Im [λ∗] /k∗.

To determine whether the results obtained with the ratemodel
are transferable to the spiking model, Figure 9B interpolates
the analytical solutions of the rate model [α = 0, evaluating
Equation (18)] to solutions of the spiking model (α = 1,
accounting for the transfer function Ncn,s), which can only
be computed numerically. Thus, the parameter α interpolates
between the characteristic equations of these two models which
primarily differ in their transfer function; for details see Senk
et al. (2020, Section F.2 Linear interpolation between the transfer
functions). Since the eigenvalues estimated this way show only
little differences between rate and spiking model, we conclude
that predictions from the rate model should hold also for the
spiking model in the parameter regime tested. Following the
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A B

FIGURE 9 | Linear stability analysis of spatially structured network model.

(A) Analytically exact solution for real (top) and imaginary (bottom) part of

eigenvalue λ vs. wavenumber k using rate model derived by fit of spiking

model at working point (µ, σ) = (10, 10) mV. Color-coded branches of

Lambert WB function; maximum real eigenvalue (star marker) on principal

branch (B = 0). (B) Linear interpolation between rate (α = 0) and spiking

model (α = 1) by numerical integration of Senk et al. (2020, Equation 30) (solid

line) and by numerically solving the characteristic equation in Senk et al. (2020,

Equation 29) (circular markers). Star markers at same data points as in (A).

Similar displays as in Senk et al. (2020, Figure 6).

argument of Senk et al. (2020), the predicted pattern formation
could next be tested in a numerical simulation of the discrete
spiking network model. Their Figure 7c for the delay d = 1.5ms
shows such results with the same parameters as used here; this
figure also illustrates transitions from homogeneous states to
oscillatory states by changing the delay (panels b, c, and e).

4. DISCUSSION

Mean-field theory grants important insights into the dynamics
of neuronal networks. However, the lack of a publicly available
numerical implementation for most methods entails a significant
initial investment of time and effort prior to any scientific
investigations. In this paper, we present the open-source toolbox
NNMT, which currently focuses on methods for LIF neurons but
is intended as a platform for collecting standard implementations
of various neuronal network model analyses based on mean-
field theory that have been thoroughly tested and validated by
the neuroscientific community (Riquelme and Gjorgjieva, 2021).
As use cases, we reproduce known results from the literature:
the non-linear relation between the firing rates and the external
input of an E-I-network (Sanzeni et al., 2020), the firing rates of
a cortical microcircuit model, its response to oscillatory input,
its power spectrum, and the identification of the connections

that predominantly contribute to the model’s low frequency
oscillations (Schuecker et al., 2015; Bos et al., 2016), and pattern
formation in a spiking network, analyzed by mapping it to a
rate model and conducting a linear stability analysis (Senk et al.,
2020).

In the remainder of the discussion, we compare NNMT to
other tools suited for network model analysis. We expand on
the different use cases of NNMT and also point out the inherent
limitations of analytical methods for neuronal network analysis.
We conclude with suggestions on how new tools can be added to
NNMT and how the toolbox may grow and develop in the future.

4.1. Comparison to Other Tools
There are various approaches and corresponding tools that can
help to gain a better understanding of a neuronal network
model. There are numerous simulators that numerically solve the
dynamical equations for concrete realizations of a networkmodel
and all its stochastic components, often focusing either on the
resolution of single-neurons, for example NEST (Gewaltig and
Diesmann, 2007), Brian (Stimberg et al., 2019), or Neuron (Hines
and Carnevale, 2001), or on the population level, for example
TheVirtualBrain (Sanz Leon et al., 2013). Similarly, general-
purpose dynamical system software like XPPAUT (Ermentrout,
2002) can be used. Simulation tools, like DynaSim (Sherfey
et al., 2018), come with enhanced functionality for simplifying
batch analysis and parameter explorations. All these tools yield
time-series of activity, and some of them even provide the
methods for analyzing the generated data. However, simulations
only indirectly link a model’s parameters with its activity: to
gain an understanding of how a model’s parameters influence
the statistics of their activity, it is necessary to run many
simulations with different parameters and analyze the generated
data subsequently.

Other approaches provide a more direct insight into a model’s
behavior on an abstract level: TheVirtualBrain and the Brain
Dynamics Toolbox (Heitmann et al., 2018), for example, allow
plotting a model’s phase space vector field while the parameters
can be changed interactively, allowing for exploration of low-
dimensional systems defined by differential equations without
the need for simulations. XPPAUT has an interface to AUTO-
07P (Doedel and Oldeman, 1998), a software for performing
numerical bifurcation and continuation analysis. It is worth
noting that such tools are limited to models that are defined
in terms of differential equations. Models specified in terms
of update rules, such as binary neurons, need to be analyzed
differently, for example using mean-field theory.

A third approach is to simplify the model analytically and
simulate the simplified version. The simulation platformDiPDE4

utilizes the population density approach to simulate the statistical
evolution of a network model’s dynamics. Schwalger et al. (2017)
start from a microscopic model of generalized integrate-and-
fire neurons and derive mesoscopic mean-field population
equations, which reproduce the statistical and qualitative
behavior of the homogeneous neuronal sub-populations.
Similarly, Montbrió et al. (2015) derive a set of non-linear

4http://alleninstitute.github.io/dipde
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differential equations describing the dynamics of the rate
and mean membrane potentials of a population of quadratic
integrate-and-fire (QIF) neurons. The simulation platform
PyRates (Gast et al., 2019) provides an implementation of this
QIF mean-field model, and allows simulating them to obtain the
temporal evolution of the population activity measures.

However, mean-field and related theories can go beyond
such reduced dynamical equations: they can directly link model
parameters to activity statistics, and they can even provide access
to informative network properties that might not be accessible
otherwise. The spectral bound (Rajan and Abbott, 2006) of the
effective connectivity matrix in linear response theory (Lindner
et al., 2005; Pernice et al., 2011; Trousdale et al., 2012) is an
example of such a property. It is a measure for the stability of the
linearized system and determines, for example, the occurrence
of slow dynamics and long-range correlations (Dahmen et al.,
2022). Another example is the sensitivity measure presented in
Section 3.3.3, which directly links a network model’s connectivity
with the properties of its power spectrum. Thesemeasures are not
accessible via simulations. They require analytical calculation.

Similarly, NNMT is not a simulator. NNMT is a collection
of mean-field equation implementations that directly relate a
model’s parameters to the statistics of its dynamics or to other
informative properties. It provides these implementations in
a format that makes them applicable to as many network
models as possible. This is not to say that NNMT does not
involve numerical integration procedures; solving self-consistent
equations, such as in the case of the firing rates calculations in
Section 3.2.1 and Section 3.2.2, is a common task, and a collection
of respective solvers is part of NNMT.

4.2. Use Cases
In Section 3, we present concrete examples of how to apply some
of the tools available. Here, we revisit some of the examples
to highlight the use cases NNMT lends itself to, as well as
provide some ideas for how the toolbox could be utilized in
future projects.

Analytical methods have the advantage of being fast, and
typically they only require a limited amount of computational
resources. The computational costs for calculating analytical
estimates of dynamical network properties like firing rates, as
opposed to the costs of running simulations of a network model,
are independent of the number of neurons the network is
composed of. This is especially relevant for parameter space
explorations, for which many simulations have to be performed.
To speed up prototyping, a modeler can first perform a parameter
scan using analytical tools from NNMT to get an estimate of
the right parameter regimes and subsequently run simulations
on this restricted set of parameters to arrive at the final model
parameters. An example of such a parameter scan is given in
Section 3.2.1, where the firing rates of a network are studied as
a function of the external input.

Additionally to speeding up parameter space explorations,
analytical methods may guide parameter space explorations in
another way: namely, by providing an analytical relation between
network model parameters and network dynamics, which allows
a targeted adjustment of specific parameters to achieve a desired

network activity. The prime example implemented in NNMT is
the sensitivity measure presented in Section 3.3.3, which provides
an intuitive relation between the network connectivity and the
peaks of the power spectrum corresponding to the dominant
oscillation frequencies. As shown in the final part of Section 3.3.3,
the sensitivity measure identifies the connections which need to
be adjusted in order to modify the dominant oscillation mode
in a desired manner. This illustrates a mean-field method that
provides a modeler with additional information about the origin
of a model’s dynamics, such that a parameter space exploration
can be restricted to the few identified crucial model parameters.

A modeler investigating which features of a network model
are crucial for the emergence of certain activity characteristics
observed in simulationsmight be interested in comparingmodels
of differing complexity. The respective mappings can be derived
in mean-field theory, and one variant included in NNMT, which
is presented in Section 3.4, allows mapping a LIF network to a
simpler rate network. This is useful to investigate whether spiking
dynamics is crucial for the observed phenomenon.

On a general note, which kind of questions researchers pursue
is limited by and therefore depends on the tools they have
at hand (Dyson, 2012). The availability of sophisticated neural
network simulators for example has lead to the development of
conceptually new and more complex neural network models,
precisely because their users could focus on actual research
questions instead of implementations. We hope that collecting
useful implementations of analytical tools for network model
analysis will have a similar effect on the development of new tools
and that it might lead to new, creative ways of applying them.

4.3. Limitations
As a collection of analytical methods, NNMT comes with
inherent limitations that apply to any toolbox for analytical
methods: it is restricted to network, neuron, and synapse models,
as well as observables, for which a mean-field theory exists, and
the tools are based on analytical assumptions, simplifications,
and approximations, restricting their valid parameter regimes
and their explanatory power, which we expand upon in the
next paragraphs.

Analytical methods can provide good estimates of network
model properties, but there are limitations that must be
considered when interpreting results provided by NNMT:
First of all, the employed numerical solvers introduce
numerical inaccuracies, but they can be remedied by changing
hyperparameters such as integration step sizes or iteration
termination thresholds. More importantly, analytical methods
almost always rely on approximations, which can only be justified
if certain assumptions are fulfilled. Typical examples of such
assumptions are fast or slow synapses, or a random connectivity.
If such assumptions are not met, at least approximately, and
the valid parameter regime of a tool is left, the corresponding
method is not guaranteed to give reliable results. Hence, it is
important to be aware of a tool’s limitations, which we aim to
document as thoroughly as possible.

An important assumption of mean-field theory is
uncorrelated Poissonian inputs. As discussed in Section 3.2.1,
asynchronous irregular activity is a robust feature of inhibition
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dominated networks, and mean-field theory is well-suited to
describe the activity of such models. However, if a network
model features highly correlated activity, or strong external
input common to many neurons, approximating the input by
uncorrelated noise no longer holds and mean-field estimates
become unreliable.

In addition to the breakdown of such assumptions, some
approaches, like linear response theory, rely on neglecting higher
order terms. This restricts the tools’ explanatory power, as they
cannot predict higher order effects, such as the presence of higher
harmonics in a network’s power spectrum. Addressing these
deficiencies necessitates using more elaborate analyses, and users
should be aware of such limitations when interpreting the results.

Finally, a specific limitation of NNMT is that it currently only
collects methods for LIF neurons. However, one of the aims of
this paper is to encourage other scientists to contribute to the
collection, and we outline how to do so in the following section.

4.4. How to Contribute and Outlook
A toolbox like NNMT always is an ongoing project, and there are
various aspects that can be improved. In this section, we briefly
discuss how available methods could be improved, what and how
new tools could be added, as well as the benefits of implementing
a new method with the help of NNMT.

First of all, NNMT in its current state is partly vectorized
but the included methods are not parallelized, e.g., using
multiprocessing or MPI for Python (mpi4py). Vectorization
relies on NumPy (Harris et al., 2020) and SciPy (Virtanen
et al., 2020), which are thread-parallel for specific backends, e.g.,
IntelMKL. With the tools available in the toolbox at the moment,
run-time only becomes an issue in extensive parameter scans, for
instance, when the transfer function needs to be calculated for
a large range of frequencies. To further reduce the runtime, the
code could be made fully vectorized. Alternatively, parallelization
of many tools in NNMT is straightforward, as many of them
include for loops over the different populations of a network
model and for loops over the different analysis frequencies. A
third option is just-in-time compilation, as provided by Numba
(Lam et al., 2015).

Another aspect to consider is the range of network models a
tool can be applied to. Thus far, the toolbox primarily supports
arbitrary block structured networks. Future developments could
extend the class of networks to even more general models.

Due to the research focus at our lab, NNMT presently mainly
contains tools for LIF neurons in the fast synaptic regime and
networks with random connectivity. Nonetheless, the structure
of NNMT allows for adding methods for different neuron types,
like for example binary (Ginzburg and Sompolinsky, 1994)
or conductance-based neurons (Izhikevich, 2007; Richardson,
2007), as well as more elaborate network models. Another
way to improve the toolbox is adding tools that complement
the existing ones: As discussed in Section 4.3, many mean-
field methods only give valid results for certain parameter
ranges. Sometimes, there exist different approximations for the
same quantity, valid in complementary parameter regimes. A
concrete example is the currently implemented version of the
transfer function for leaky integrate-and-fire neurons, based

on Schuecker et al. (2015), which gives a good estimate for
small synaptic time constants compared to the membrane time
constant τs/τm≪1. A complementary estimate for τs/τm≫1 has
been developed by Moreno-Bote and Parga (2006). Similarly, the
current implementation of the firing rates of leaky integrate-and-
fire neurons, based on the work of Fourcaud and Brunel (2002),
is valid for τs/τm ≪ 1. Recently, van Vreeswijk and Farkhooi
(2019) have developed a method accurate for all combinations
of synaptic and membrane time constants.

In the following, we explain how such implementations
can be added and how using NNMT helps implementing
new methods. Clearly, the implementations of NNMT help
implementing methods that build on already existing ones. An
example is the firing rate for LIF neurons with exponential
synapses nnmt.lif.exp._firing_rates() which wraps
the calculation of firing rates for LIF neurons with delta synapses
nnmt.lif.delta._firing_rates(). Additionally, the
toolbox may support the implementation of tools for other
neuron models. As an illustration, let us consider adding the
computation of themean activity for a network of binary neurons
(included in NNMT 1.1.0). We start with the equations for the
mean input µa, its variance σ 2

a , and the firing rates m (Helias
et al., 2014, Equations 4, 6, and 7)

µa (m) =
∑

b

KabJabmb ,

σ 2
a (m) =

∑

b

KabJ
2
abmb (1−mb) , (19)

ma (µa, σa) =
1

2
erfc

(
2a − µa√

2σa

)
,

with indegree matrix Kab from population b to population a,
synaptic weight matrix Jab, and firing-threshold2a. The sum

∑
b

may include an external population providing input to themodel.
This set of self-consistent equations has the same structure as
the self-consistent equations for the firing rates of a network
of LIF neurons, Equation (8): the input statistics are given as
functions of the rate, and the rate is given as a function of
the input statistics. Therefore, it is possible to reuse the firing
rate integration procedure for LIF neurons, providing immediate
access to the two different methods presented in Section 3.2.1.
Accordingly, it is sufficient to implement Equation (19) in a new
submodule nnmt.binary and apply the solver provided by
NNMT to extend the toolbox to binary neurons.

The above example demonstrates the benefits of collecting
analytical tools for network model analysis in a common
framework. The more methods and corresponding solvers
the toolbox comprises, the easier implementing new methods
becomes. Therefore, contributions to the toolbox are highly
welcome; this can be done via the standard pull request
workflow on GitHub (see the “Contributors guide” of the
official documentation of NNMT2). We hope that in the future,
many scientists will contribute to this collection of analytical
methods for neuronal network model analysis, such that, at some
point, we will have tools from all parts of mean-field theory
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of neuronal networks, made accessible in a usable format to
all neuroscientists.

DATA AVAILABILITY STATEMENT

Publicly available datasets were used in this study, and the
corresponding sources are cited in the main text. The toolbox’s
repository can be found at https://github.com/INM-6/nnmt, and
the parameter files used in the presented examples can be found
in the examples section of the online documentation https://
nnmt.readthedocs.io/en/latest/.

AUTHOR CONTRIBUTIONS

HB and MH developed and implemented the code base and
the initial version of the toolbox. ML, JS, and SE designed
the current version of the toolbox. ML implemented the
current version of the toolbox, vectorized and generalized
tools, developed and implemented the test suite, wrote the
documentation, and created the example shown in Section
3.2.2. AM improved the numerics of the firing rate integration
(Methods) and created the example shown in Section 3.2.1. SE
implemented integration tests, improved the functions related
to the sensitivity_measure, and created the examples
shown in Section 3.3. JS developed and implemented the tools

used in Section 3.4 and created the respective example. ML, JS,
SE, AM, and MH wrote this article. All authors approved the
submitted version.

FUNDING

This project has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and
Innovation under Specific Grant Agreement Nos. 720270 (HBP
SGA1), 785907 (HBP SGA2), and 945539 (HBP SGA3), has been
partially funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 368482240/GRK2416, and has
been partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 491111487. This
research was supported by the Joint Lab “Supercomputing and
Modeling for the Human Brain”.

ACKNOWLEDGMENTS

We would like to thank Jannis Schuecker, who has contributed
to the development and implementation of the code base and the
initial version of the toolbox, and Angela Fischer, who supported
us designing Figure 1. Additionally, we would also like to thank
our reviewers for the thorough and constructive feedback, which
lead to significant improvements.

REFERENCES

Abramowitz, M., and Stegun, I. A. (1974). Handbook of Mathematical Functions:

With Formulas, Graphs, and Mathematical Tables (New York: Dover

Publications).

Ahmadian, Y., and Miller, K. D. (2021). What is the dynamical regime

of cerebral cortex? Neuron 109, 3373–3391. doi: 10.1016/j.neuron.2021.

07.031

Amari, S.-I. (1975). Homogeneous nets of neuron-like elements. Biol. Cybern. 17,

211–220. doi: 10.1007/BF00339367

Amari, S.-I. (1977). Dynamics of pattern formation in lateral-inhibition type neural

fields. Biol. Cybern. 27, 77–87. doi: 10.1007/bf00337259

Amit, D. J., and Brunel, N. (1997a). Dynamics of a recurrent network of spiking

neurons before and following learning. Netw. Comp. Neural Sys. 8, 373–404.

doi: 10.1088/0954-898x_8_4_003

Amit, D. J. and Brunel, N. (1997b). Model of global spontaneous activity and local

structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7,

237–252. doi: 10.1093/cercor/7.3.237

Amit, D. J., and Tsodyks, M. V. (1991). Quantitative study of attractor neural

network retrieving at low spike rates I: substrate–spikes, rates and neuronal

gain. Network 2, 259. doi: 10.1088/0954-898X_2_3_003

Bos, H., Diesmann, M., and Helias, M. (2016). Identifying anatomical origins

of coexisting oscillations in the cortical microcircuit. PLOS Comput. Biol. 12,

e1005132. doi: 10.1371/journal.pcbi.1005132

Braitenberg, V. and Schüz, A. (1998). Cortex: Statistics and Geometry of Neuronal

Connectivity, 2nd Edn. Berlin: Springer-Verlag.

Bressloff, P. C. (2012). Spatiotemporal dynamics of continuum neural fields. J.

Phys. A 45, 033001. doi: 10.1088/1751-8113/45/3/033001

Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., and Wiener, M. C.

(2001). Geometric visual hallucinations, euclidean symmetry and the functional

architecture of striate cortex. Phil. Trans. R. Soc. B 356, 299–330. doi: 10.1098/

rstb.2000.0769

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and

inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208. doi: 10.1023/

a:1008925309027

Brunel, N., Chance, F. S., Fourcaud, N., and Abbott, L. F. (2001). Effects

of synaptic noise and filtering on the frequency response of spiking

neurons. Phys. Rev. Lett. 86, 2186–2189. doi: 10.1103/physrevlett.86.

2186

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of integrate-

and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671. doi: 10.

1162/089976699300016179

Brunel, N., and Latham, P. (2003). Firing rate of the noisy quadratic integrate-

and-fire neuron. Neural Comput. 15, 2281–2306. doi: 10.1162/089976603322

362365

Buice, M. A., and Chow, C. C. (2013). Beyond mean field theory:

statistical field theory for neural networks. J. Stat. Mech. 2013, P03003.

doi: 10.1088/1742-5468/2013/03/P03003

Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biol.

Cybern. 93, 91–108. doi: 10.1007/s00422-005-0574-y

Coombes, S., bei Graben, P., Potthast, R., and Wright, J. (2014). Neural Fields.

Theory and Applications. Berlin; Heidelberg: Springer-Verlag.

Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E.

(1996). On the lambert w function. Adv. Comput. Math. 5, 329–359. doi: 10.

1007/BF02124750
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A. APPENDIX

A.1. Siegert Implementation
Here, we describe how we solve the integral in Equation (4)
numerically in a fully vectorized manner. The difficulty in
Equation (4), φ(µ, σ ) = 1/[τr + τm

√
πI(Ṽ0, Ṽth)] where

Ṽ0 = Ṽ0(µ, σ ) and Ṽth = Ṽth(µ, σ ) are determined
by either Equation (5) or Equation (10), is posed by
the integral

I(Ṽ0, Ṽth) =
∫ Ṽth

Ṽ0

es
2
(1+ erf(s))ds. (A1)

This integral is problematic due to the multiplication of es
2
and

1 + erf(s) in the integrand which leads to overflow and loss of
significance.

To address this, we split the integral into different
domains depending on the sign of the integration
variable. Furthermore, we use the scaled complementary
error function

erf(s) = 1− e−s2erfcx(s) (A2)

to extract the leading exponential contribution. Importantly,
erfcx(s) decreases monotonically from erfcx(0) = 1 with
power law asymptotics erfcx(s) ∼ 1/(

√
πs), hence it does

not contain any exponential contribution. For positive s, the
exponential contribution in the prefactor of erfcx(s) cancels

the es
2
factor in the integrand. For negative s, the integrand

simplifies even further to es
2
(1 + erf(−s)) = erfcx(s) using

erf(−s) = −erf(s). In addition to erfcx(s), we employ the
Dawson function

D(s) = e−s2
∫ s

0
er

2
dr (A3)

to solve some of the integrals analytically. The Dawson
function has a power law tail, D(s) ∼ 1/(2s); hence, it
also does not carry an exponential contribution. Both erfcx(s)
and the Dawson function are fully vectorized in SciPy
(Virtanen et al., 2020).

Any remaining integrals are solved using Gauss–Legendre
quadrature (Press et al., 2007). By construction, Gauss–Legendre
quadrature of order k solves integrals of polynomials up to degree
k on the interval [−1, 1] exactly. Thus, it gives very good results if
the integrand is well approximated by a polynomial of degree k.
The quadrature rule itself is

∫ b

a
f (s)ds ≈

b− a

2

k∑

i=1

wif

(
b− a

2
ui +

b+ a

2

)
, (A4)

where the ui are the roots of the Legendre polynomial of order
k and the wi are appropriate weights such that a polynomial of
degree k is integrated exactly. We use a fixed order quadrature for
which Equation (A4) is straightforward to vectorize to multiple
a and b. We determine the order of the quadrature iteratively
by comparison with an adaptive quadrature rule; usually, a small
order k = O(10) already yields very good results for an erfcx(s)
integrand.

Inhibitory Regime
First, we consider the case where lower and upper bound of
the integral are positive, 0 < Ṽ0 < Ṽth. This corresponds
to strongly inhibitory mean input. Expressing the integrand in
terms of erfcx(s) and using the Dawson function, we get

Iinh(Ṽ0, Ṽth) = 2eṼ
2
thD(Ṽth)− 2eṼ

2
0D(Ṽ0)−

∫ Ṽth

Ṽ0

erfcx(s)ds.

The remaining integral is evaluated using Gauss–Legendre
quadrature, Equation (A4). We extract the leading contribution

eṼ
2
th from the denominator in Equation (4) and arrive at

φ(µ, σ ) =
e−Ṽ2

th

τre
−Ṽ2

th + τm
√

π
(
e−Ṽ2

th Iinh(Ṽ0, Ṽth)
) . (A5)

Extracting eṼ
2
th from the denominator reduces the latter

to 2τm
√

πD(Ṽth) and exponentially small correction terms
(remember 0 < Ṽ0 < Ṽth becauseV0 < Vth), thereby preventing
overflow.

Excitatory Regime
Second, we consider the case where lower and upper bound of
the integral are negative, Ṽ0 < Ṽth < 0. This corresponds
to strongly excitatory mean input. In this regime, we change
variables s → −s to make the domain of integration positive.
Using erf(−s) = −erf(s) as well as erfcx(s), we get

Iexc(Ṽ0, Ṽth) =
∫ |Ṽ0|

|Ṽth|
erfcx(s)ds.

Thus, we evaluate Equation (4) as

φ(µ, σ ) =
1

τr + τm
√

π
∫ |Ṽ0|
|Ṽth|

erfcx(s)ds
. (A6)

In particular, there is no exponential contribution involved in this
regime.

Intermediate Regime
Last, we consider the remaining case Ṽ0 ≤ 0 ≤ Ṽth. We split the
integral at zero and use the previous steps for the respective parts
to get

Iinterm(Ṽ0, Ṽth) = 2eṼ
2
thD(Ṽth)+

∫ |Ṽ0|

Ṽth

erfcx(s)ds.

Note that the sign of the second integral depends on whether
|Ṽ0| > Ṽth (+) or not (−). Again, we extract the leading

contribution eṼ
2
th from the denominator in Equation (4) and

arrive at

φ(µ, σ ) =
e−Ṽ2

th

τre
−Ṽ2

th + τm
√

π
(
e−Ṽ2

th Iinterm(Ṽ0, Ṽth)
) . (A7)

As before, extracting eṼ
2
th from the denominator prevents

overflow.
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Deterministic Limit
The deterministic limit σ → 0 corresponds to |Ṽ0|, |Ṽth| → ∞
for both Equation (5) and Equation (10). In the inhibitory and the
intermediate regime, we see immediately that φ(µ, σ → 0) → 0

due to the dominant contribution e−Ṽ2
th . In the excitatory regime,

we use the asymptotics erfcx(s) ∼ 1/(
√

πs) to get

I(Ṽ0, Ṽth) →
∫ |Ṽ0|

|Ṽth|

1
√

πs
ds =

1
√

π
ln

|Ṽ0|
|Ṽth|

.

Inserting this into Equation (4) yields

φ(µ, σ ) →





1

τr+τm ln
µ−V0
µ−Vth

if µ > Vth

0 otherwise
, (A8)

which is the firing rate of a leaky integrate-and-fire neuron
driven by a constant input (Gerstner et al., 2014). Thus, this
implementation also tolerates the deterministic limit of a very
small noise intensity σ .

TABLE A1 | Microcircuit Parameters.

Symbol Value (Potjans and

Diesmann, 2014)

Value (Bos

et al., 2016)

Description

K4E,4I 795 675 In-degree from 4I to 4E

K4E,ext 2100 1780 External in-degree to 4E

D(ω) none truncated

Gaussian

Delay distribution

de ± δde 1.5± 0.75ms 1.5± 1.5ms Mean and standard

deviation of excitatory

delay

di ± δdi 0.75± 0.375ms 0.75±
0.75ms

Mean and standard

deviation of inhibitory

delay

Parameter adaptions used here are introduced by Bos et al. (2016) compared to original

microcircuit model. Kij denotes the in-degrees from population j to population i. The delays

in the simulated networks were drawn from a truncated Gaussian distribution with the

given mean and standard deviation. The mean-field approximation of the microcircuit by

Potjans and Diesmann (2014) assumes the delay to be fixed at the mean value, which is

specified in the toolbox by setting the parameter delay_dist to none.

A.2. Transfer Function Notations
In Section 3.3.1 we introduce the analytical form of the
transfer function implemented in the toolbox. Schuecker
et al. (2015), derive a more general form of the transfer
function, which includes a modulation of the variance
of the input. Here we compare the notation used in
Equation (11) to the notation used in Schuecker et al. (2015, Eq.
29).

Schuecker et al. (2015) define the modulations of input mean
and variance as

µ(t) = µ + ǫµ eiωt , (A9)

σ 2(t) = σ 2 +Hσ 2 eiωt ,

and introduce the transfer function in terms of its influence on
the firing rate

ν(t)/ν0 = 1+ n (ω) eiωt ,

where ν0 is the stationary firing rate. Here the transfer
function n (ω) includes contributions of both the modulation
of the mean nG(ω) ∝ ǫ and the modulation of the
variance nH(ω) ∝ H. We write the modulation of the
mean as

µ(t) = µ + δµ eiωt ,

implying that δµ corresponds to ǫµ in Equation (A9). As we
only consider the modulation of the mean, the firing rate can be
rewritten as

ν(t) = ν + N (ω) δµ eiωt ,

where we moved the stationary firing rate ν to the right hand
side and included it in the definition of the transfer function
N (ω). In the main text we emphasize that µ(t) and ν(t) are
physical quantities by only considering the real part of complex
contributions. Additionally, we swap the voltage boundaries in
Equation (11), introducing a canceling sign change in both
the numerator and the denominator. This reformulation was
chosen to align the presented formula with the implementation in
the toolbox.
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