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Cognitive tasks engage multiple brain regions. Studying how these regions interact is

key to understand the neural bases of cognition. Standard approaches to model the

interactions between brain regions rely on univariate statistical dependence. However,

newly developed methods can capture multivariate dependence. Multivariate pattern

dependence (MVPD) is a powerful and flexible approach that trains and tests multivariate

models of the interactions between brain regions using independent data. In this article,

we introduce PyMVPD: an open source toolbox for multivariate pattern dependence.

The toolbox includes linear regression models and artificial neural network models

of the interactions between regions. It is designed to be easily customizable. We

demonstrate example applications of PyMVPD using well-studied seed regions such

as the fusiform face area (FFA) and the parahippocampal place area (PPA). Next,

we compare the performance of different model architectures. Overall, artificial neural

networks outperform linear regression. Importantly, the best performing architecture

is region-dependent: MVPD subdivides cortex in distinct, contiguous regions whose

interaction with FFA and PPA is best captured by different models.
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1. INTRODUCTION

Cognitive processes recruit multiple brain regions. Understanding which of these regions interact,
and what computations are performed by their interactions, remains a fundamental question
in cognitive neuroscience. In an effort to answer this question, a large literature has used
measures of the statistical dependence between functional responses in different brain regions. The
most widespread approach adopted in this literature—“functional connectivity”—computes the
correlation between the timecourses of responses in different brain regions, and has been applied
to both resting state fMRI and task-based fMRI (Horwitz et al., 1992; Friston, 1994; Greicius et al.,
2003; Schaefer et al., 2018). Other approaches, such as Granger Causality (Granger, 1969; Goebel
et al., 2003) and Dynamic Causal Modeling (Friston et al., 2003), have been developed to investigate
the directionality of interactions.

In a separate literature, researchers studying the content of neural representations have
developed techniques that leverage the multivariate structure of activity patterns (multivariate
pattern analysis—MVPA) to decode information from fMRI data (Norman et al., 2006), and to
study the similarity between the responses to different stimuli (Kriegeskorte et al., 2008). The
success of MVPA has inspired the development of multivariate approaches to study the statistical
dependence between brain regions (Anzellotti and Coutanche, 2018; Basti et al., 2020).
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One approach, “Informational Connectivity,” computes the
trial-by-trial decoding accuracy for a given categorization in
multiple regions, and correlates the decoding accuracy achieved
with data from one region with the accuracy achieved with
the other region across trials (Coutanche and Thompson-Schill,
2013). Another approach uses multivariate distance correlation
to capture the statistical dependence between regions (Geerligs
et al., 2016)—thanks to this strategy, it can also be applied to
resting state studies, in which different conditions that can be
categorized are not available.

Among multivariate approaches to study the interactions
between brain regions, multivariate pattern dependence (MVPD,
Anzellotti et al., 2017a; Li et al., 2019) is unique in that it
trains and tests models of the interactions between brain regions
using independent subsets of data, evaluating out-of-sample
generalization. Like multivariate distance correlation, MVPD can
be applied to both task data and resting state data. Additionally,
MVPD can flexibly use a variety of models of dependence,
with the potential to incorporate regularization, and to capture
linear, as well as non-linear, interactions between brain regions.
Of course, the use of holdout data for model evaluation has
been previously adopted for applications outside the field of
connectivity—indeed, it is also used in MVPA (Haxby et al.,
2001; Haynes and Rees, 2006), and it has an even longer history
in machine learning (see for instance Lachenbruch and Mickey,
1968). Similarly, the use of multivariate methods is also present
in MVPA, and has a longer history in Science (Pearson, 1903).

Given the complex nature of the MVPD, a dedicated toolbox
can provide researchers with a more accessible entry point to
adopt this method. Several toolboxes have been developed for
MVPA (Hanke et al., 2009; Hebart et al., 2015; Oosterhof et al.,
2016; Treder, 2020), these toolboxes played an important role
for the diffusion of MVPA analyses (as evidenced by the many
times they have been cited). Here, we introduce a freely available
open-source toolbox for MVPD, developed in Python: PyMVPD.
The toolbox offers a set of functions for performing MVPD
analyses, organized around a simple workflow. It also includes
example Python scripts for several MVPD models, including
linear regression models that were used in previous MVPD
publications (Anzellotti et al., 2017a; Li et al., 2019), and new
models based on artificial neural networks. The models are
accompanied by algorithms that can be used to evaluate their
performance. PyMVPD scripts have been designed so that they
can be easily customized, enabling users to expand the toolbox to
address their needs.

The full PyMVPD toolbox (including the artificial neural
network models) requires a working installation of PyTorch. The
use of CUDA and general purpose graphics processing units
(GPGPUs) is recommended. For users who might not need
artificial neural networks, we also make available a lite version
of the toolbox, that does not require PyTorch. Both versions of
PyMVPD can be installed with PyPI.

In the remainder of the article, a brief technical introduction
to MVPD is followed by a description of PyMVPD
implementation and the analysis workflow (Figure 1). Next,
the algorithms are validated by analyzing a publicly available
dataset—the StudyForrest dataset (Sengupta et al., 2016).

Finally, the performance of different types of models is assessed,
comparing the predictive accuracy of linear regression and
artificial neural networks.

2. METHODS

2.1. MVPD
Multivariate pattern dependence (MVPD) is a novel technique
that analyzes the statistical dependence between brain regions
in terms of the multivariate relationship between their patterns
of response. Compared with traditional methods used for
connectivity analysis, MVPD has two main advantages
(Anzellotti et al., 2017a). First, MVPD preserves the fine-
grained information that can be lost by spatially averaging
in mean-based univariate connectivity. By doing so, MVPD
improves sensitivity as compared to univariate methods such
as standard functional connectivity (Anzellotti et al., 2017a).
This choice is motivated by the success of multivariate analysis
methods developed outside the field of connectivity (MVPA,
Haxby et al., 2001; Haynes and Rees, 2006; Norman et al., 2006).
Second, MVPD is trained and tested with independent subsets
of data. As a consequence, it is resilient to overfitting: in MVPD
it is not sufficient for a model of the interactions between two
regions to provide a good fit for a set of data, the model also
has to generate accurate predictions for a separate set of data
that was not used to tune the model’s parameters (the “testing”
data). This is a key feature of MVPD: it guarantees a more
stringent test of the interactions between brain regions. Note that
however this procedure does not remove the need for denoising
methods: some sources of noise can produce shared effects across
multiple regions. A previous study investigated the effectiveness
of different denoising techniques for MVPD (Li et al., 2019);
among the techniques tested, CompCor (Behzadi et al., 2007)
was the most effective, therefore we used CompCor for denoising
in this study.

Due to the use of separate sets of data for training and
testing, MVPD benefits from fMRI datasets that include multiple
experimental runs within each participant. This way, there is
a sufficient amount of data to train the models, even after
holding some out for testing. The amount of training data within
a participant affects the model’s ability to generate accurate
predictions for the testing data. For this reason, datasets that
include a very short amount of data within each participant (e.g.,
a 5-min resting state scan) are not well-suited for this type of
analysis—in this respect, MVPD is similar to multivariate pattern
analysis (MVPA).

The number of participants needed for MVPD analysis might
vary depending on the brain regions that are being investigated.
In previous studies, numbers of participants similar to the
ones used for MVPA have produced robust results (Anzellotti
et al., 2017a; Li et al., 2019). Based on these considerations,
in the present work we used the StudyForrest dataset (Hanke
et al., 2016), a publicly available dataset that has been used in
several MVPA studies. As compared to large datasets used in
functional connectivity (such as the Human Connectome Project
dataset, Smith et al., 2013), the number of participants in the
StudyForrest dataset is relatively small (14 subjects for analysis),
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FIGURE 1 | PyMVPD workflow. Analyzing data with the PyMVPD toolbox consists of three steps: (1) analysis specification; (2) data loading; and (3) analysis execution.

In step 1, users are required to specify the functional data, masks for both the predictor and the target region, as well as the type of MVPD model to perform the

following analyses. These details can be specified by editing the Python script run_MVPD.py. Next, users can proceed with step 2, which loads neuroimaging data

and converts it to a suitable format. Finally, step 3 runs the MVPD model and generates the analysis results, which are saved in a user-specified directory.

but StudyForrest includes over 2 h of data for each individual
participant, making it ideal for MVPD.

The logic of MVPD is as follows. Suppose that we want to
calculate the statistical dependence between two brain regions.
MVPD will learn a function that, given the response pattern in
one region (the “predictor” region), generates a prediction of
the response pattern in the other (the “target” region). Let us
consider an fMRI scan with m experimental runs. We denote
the multivariate timecourses in the predictor region by X1, ...,Xm.
Each matrix Xi is of size nX × Ti, where nX is the number of
voxels in the predictor region, and Ti is the number of timepoints
in the experimental run i. Analogously, Y1, ...,Ym denote the
multivariate timecourses in the target region, where each matrix
Yi is of size nY × Ti, and nY is the number of voxels in the
target region.

As a first step, the data is split into a training subset and
a test subset. It is important that the training and test subsets
are independent. Since fMRI timeseries are characterized by
temporal autocorrelation, it is best to not use timepoints from
one run for training and adjacent timepoints from the same
run for testing. A common approach is to use leave-one-run-out
cross-validation: this is the approach implemented by default in
the PyMVPD toolbox. For each choice of an experimental run i,
data in the remaining runs is concatenated as the training set

Di = {(X1,Y1), ..., (Xi−1,Yi−1), (Xi+1,Yi+1), ..., (Xm,Ym)},

while data Di = {(Xi,Yi)} in the left-out run i is used as the
test set.
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For convenience, we will denote with Xtrain and Ytrain the
concatenated training data in the predictor region and in the
target region, respectively. The training data is used to learn a
function f such that

Ytrain = f (Xtrain)+ Etrain,

where Etrain is the error term. In the current implementation,
the response pattern in the target region at a given time is
predicted from the response pattern in the predictor region at the
same time. However, models that integrate the responses in the
predictor region across multiple timepoints are a straightforward
extension. Once the function f has been estimated, we use it to
generate predictions of the responses in the target region Ŷtest

given the responses in the predictor region during the test run:

Ŷtest = f (Xtest).

Finally, the accuracy of the prediction is computed. In the
PyMVPD toolbox, we provide a measure of predictive accuracy
by calculating the voxelwise proportion of variance explained.
For each voxel j in the target region, variance explained is
calculated as:

varExpl(j) = 1−
var[Ytest(j)− Ŷtest(j)]

var[Ytest(j)]
,

where Ŷ are the predicted voxelwise timecourses. The values
varExpl(j) are then averaged across voxels in the target region and
across cross-validation runs to obtain a single measure varExpl.
In addition, the PyMVPD toolbox is designed to allow for
customized measures of accuracy (more details will be provided
in the following sections).

2.2. The PyMVPD Toolbox
PyMVPD is a Python-based toolbox that implements the
MVPD analysis pipeline. This software package is freely
available at https://github.com/sccnlab/PyMVPD.git. Artificial
neural network models are built using PyTorch—for users who
are only interested in linear regression models, or who would like
to avoid the complexities of a PyTorch installation, we have also
provided a lite version (PyMVPD_LITE) at https://github.com/
sccnlab/PyMVPD_LITE.git, for which PyTorch is not required.
PyMVPD is based on a simple workflow that consists of
three steps: analysis specification, data loading, and analysis
execution, with the latter step including the following sub-steps:
dimensionality reduction (if requested), model estimation, and
model evaluation. Models are trained and tested using k-fold
cross validation (where k is a parameter specified by the user).

2.2.1. Preliminaries
Prior to MVPD analysis, the fMRI data at hand should
have already undergone standard preprocessing steps, such
as registration, normalization and denoising. Denoising is an
essential component of preprocessing: measures of statistical

dependence are susceptible to noise (Ciric et al., 2017). The
preprocessed fMRI data should be in NIfTI file format. Next, the
user should create brain masks of the predictor region (“ROI 1”)
and the target region (“ROI 2”), also in NIfTI file format.

2.2.2. Step 1—Analysis Specification
During analysis specification, the user enters all necessary
information to perform the analysis into the script
“run_MVPD.py”. Information is organized into two variables:
“inputinfo”, and “params”. The variable “inputinfo” contains
the paths to the input data as well as the locations to which the
results will be saved (the complete list of required values can
be found here https://github.com/sccnlab/PyMVPD#required-
input-information). The variable “params” contains all details
about the analysis, including the type of cross-validation (e.g.,
leave-k-run-out), the type of dimensionality reduction chosen
(if any), the number of dimensions selected, the type of model
of statistical dependence, and other hyperparameters of the
model (for example, the amount of regularization for regularized
regression models, or the neural network architecture for
neural network models). We include an overview of the key
options available in the Section 2.2.4. A complete description
of all parameters would not fit within the limits of this article,
therefore it is reported at this page: https://github.com/sccnlab/
PyMVPD#list-of-model-parameters (along with the default
values for each parameter). Since all parameters for the analysis
are specified by the user in step 1, before the analysis is launched,
and all results and logs are automatically saved to a user-specified
folder, PyMVPD jobs can be launched on computer clusters as
batch jobs, without the need to use interactive jobs.

2.2.3. Step 2—Data Loading
The second step of PyMVPD is the loading and processing of
input data. Before running the chosenMVPDmodel, values from
the functional data are extracted using masks specified in step
1, and transformed into numpy arrays in preparation for the
following analyses. To accomplish this step, the user can execute
the line of code data_loading.load_data(inputinfo).

2.2.4. Step 3—Analysis Execution
Once the analysis details have been specified and the data
is loaded, the third step executes the analysis, estimating the
statistical dependence between brain regions and reporting the
accuracy of predictions in independent data. To perform step
3, users can call the function model_exec.MVPD_exec(inputinfo,
params), which will estimate the MVPD model, compute the
model’s performance, and save the results to the folder specified
in step 1.

It is important to note that during the implementation
of PyMVPD, users only need to interface with the analysis
specification script in the first analysis step (e.g., run_MVPD.py).
Then, the following two analysis steps will run automatically and
the users are not required to interface with any of them. This
default setting makes it easier to run the toolbox on computer
clusters.

Logging information is saved as a text file named by
“TIMESTAMP_log.txt” under the directory where users specify

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 835772

https://github.com/sccnlab/PyMVPD.git
https://github.com/sccnlab/PyMVPD_LITE.git
https://github.com/sccnlab/PyMVPD_LITE.git
https://github.com/sccnlab/PyMVPD#required-input-information
https://github.com/sccnlab/PyMVPD#required-input-information
https://github.com/sccnlab/PyMVPD#list-of-model-parameters
https://github.com/sccnlab/PyMVPD#list-of-model-parameters
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Fang et al. Multivariate Pattern Dependence Toolbox

to save results in the first analysis step. The log file contains
information about input data that have been used for the analysis,
MVPD model parameters, and the version of the toolbox.

To ensure the toolbox is installed properly and to verify
it works, we have included tests for users to run before
performing formal analyses. Users can find the test script
“run_MVPD_test.py” under the exp/ folder. The test script
attempts to replicate on the user’s machine the analyses in our
manuscript that used FFA as seed using data from subject sub-01,
and calculates for each of the five example models the correlation
between the variance explained values we obtained and the values
obtained with the user’s installation across the whole brain. If
the correlation values are below 0.95 for any of the model types,
the test script returns a warning notifying the user that the
results they obtained do not match the benchmarks, specifying
which of the models produced results that differed from our
reference results. The results of the tests are saved in the folder
exp/testresults/, so that the tests can be executed as a batch script
on a computer cluster.

Since executing all analyses can take a substantial amount
of time, in addition to the “run_MVPD_test.py” script we have
included scripts to test individual models. This way, users can
test just the type of model they are interested in using. These tests
for individual models are also included in the exp/ folder, with
the names “run_MVPD_PCA_LR.py”, “run_MVPD_L2_LR.py”,
“run_MVPD_NN_1layer.py”, “run_MVPD_NN_5layer.py”, and
“run_MVPD_NN_5layer_dense.py”. In future extensions of the
toolbox, we plan to introduce more finer-grained tests for
individual functions.

Below, we provide an overview of the available options
for the different stages of analysis execution (dimensionality
reduction, model estimation, model evaluation). Users can select
what options to use for their analysis by editing the file
“run_MVPD.py” (as noted in the Section 2.2.4).

2.2.4.1. Dimensionality Reduction
The PyMVPD toolbox offers the option to perform
dimensionality reduction on the input data before estimating
models of statistical dependence. Dimensionality reduction
can be desirable because reducing the dimensionality of
the input data leads to a corresponding reduction in the
number of parameters of the models, mitigating the risk
of overfitting. Two dimensionality reduction approaches
are included in the toolbox: principal component analysis
(PCA), implemented with sklearn.decomposition.PCA, and
independent component analysis (ICA), implemented with
sklearn.decomposition.FastICA. In the current implementation
of the toolbox, the number of dimensions needs to be entered
manually by the user (the default value is 3), but the toolbox
is designed to accommodate custom dimensionality reduction
functions, offering the possibility to include a nested cross-
validation approach for the selection of the number of
dimensions (this option may be implemented as a core part of
the toolbox in future releases). In particular, for applications in
which the choice of the number of dimensions has meaningful
theoretical implications, we recommend implementing a custom
PCA function that uses Minka’s MLE algorithm to select the

number of dimensions based on the data. For some model types,
dimensionality reduction might not offer additional benefits.
In particular, when using artificial neural network models,
the neural networks can themselves perform dimensionality
reduction as needed—the desired amount of dimensionality
reduction can be regulated by choosing the appropriate size of
the hidden layer (or layers). Hidden layers with a smaller number
of hidden nodes correspond to greater data compression.

2.2.4.2. Model Estimation
2.2.4.2.1. Linear Regression Models Linear regression attempts to
model the relationship between a dependent variable and one
or more explanatory variables by fitting a linear function to
observed data. Specifically, we view the multivariate timecourses
in the predictor region X as the explanatory variable and the
multivariate timecourses in the target region Y as the dependent
variable. The MVPD mapping f can be modeled with multiple
linear regression

Ytrain = BtrainXtrain + Etrain,

where Btrain is the vector of parameters and Etrain is the error
vector.

A large number of parameters as compared to a relatively
small dataset can lead regression models to overfit the data.
That is, the model learns a function that corresponds too
closely to the particular training set and therefore fails to
fit unseen data, resulting in poor predictive accuracy during
testing. To mitigate this issue, we provide the option to choose
either Lasso or Ridge regularization, setting “params.reg_type” to
either “Lasso” or “Ridge”. The strength of regularization can be
either set manually using the parameter “params.reg_strength”
(the default value is 0.001), or automatically thanks to the
use of nested cross-validation (Golub et al., 1979). When
choosing to set the regularization parameter manually, it is of
fundamental importance to decide the value of the parameter
a-priori. Performing the analysis with multiple choices of the
regularization parameter and selecting the one that yields the
best results is a form of circular analysis, and will lead to false
positive inflation. To perform automatic selection, we offer the
option to use Ridge regularization determining the regularization
parameter with a nested cross-validation loop. This can be
achieved setting “params.reg_type” to “RidgeCV”. By default, the
optimal regularization value is chosen among 0.001, 0.01, and 0.1,
users can specify a different set of regularization values to test by
setting the parameter “params.reg_strength_list”. However, it is
important to note that automatic selection of the regularization
parameter may lead to longer computation times for the analyses.

2.2.4.2.2. Neural Network Models In addition to linear regression
models, we introduce an extension of MVPD in which the
statistical dependence between brain regions can be modeled
using artificial neural networks. In this approach, themultivariate
patterns of response in the predictor region are used as the
input of a neural network trained to generate the patterns of
response in the target region. In PyMVPD, all neural network
models are trained using stochastic gradient descent (SGD) on
a mean square error (MSE) loss by default. Batch normalization
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is applied to the inputs of each layer. Additionally, users should
set the following hyperparameters for the chosen neural network:
number of hidden units in each layer, number of layers, learning
rate, weight decay, momentum, mini-batch size, and number
of epochs for training. We provide standard fully-connected
feedforward neural network architectures (“NN_standard”) and
fully-connected feedforward neural network architectures with
dense connections (“NN_dense”, Huang et al., 2017) for
users to choose. Both architectures only consist of linear
connections between layers without introducing non-linear
activation functions. Users are welcome to build their own neural
network models with customized functions.

Note that functional MRI data has temporal dependencies.
That is, the amount of response in a voxel in a volume
acquired at a given timepoint is not entirely independent
of the amount of response in that voxel in the previous
timepoint. This non-independence can potentially affect models
of the interactions between brain regions, including standard
functional connectivity as well as MVPD. In order to mitigate
the effect of non-independence, the neural network models in
PyMVPD adopt a strategy borrowed from deep Q-learning.
In deep Q-learning there is a similar problem: the actions
taken by a reinforcement learning agent, the resulting states of
the environment, and the rewards are non-independent across
adjacent timepoints. To mitigate this problem, actions and the
resulting states are logged to a “replay memory”; the policy
network is then trained on a batch sampled randomly from the
replay memory, so that the actions, states and rewards in each
batch are more independent (see Fan et al., 2020). PyMVPD
neural network models use the same strategy: each training
batch contains datapoints collected at a randomly sampled set
of timepoints. As a consequence, the set of datapoints within
a batch are more independent than if they had been sampled
consecutively.

2.2.4.2.3. Searchlight Analysis Previous MVPD studies included
searchlight-based analyses (Anzellotti et al., 2017a). The results
of searchlight analyses can be contingent on the use of a sphere
as the searchlight shape, and on the choice of a particular radius.
To avoid this, we recommend usingmulti-output models instead:
users interested in mapping the statistical dependence between
one region and the rest of the brain can use a whole-brain mask
as the target region (as we have done in the present work).

2.2.4.3. Model Evaluation
To measure the predictive accuracy of the MVPD model after
execution, we included code to calculate variance explained
following two different approaches. In one approach, the variance
explained values are left unthresholded, and thus can range
between−∞ and 1. This can be helpful to identify cases in which
there is a clear mismatch between the target and the prediction.
However, since negative values of variance explained are difficult
to interpret in terms of their neuroscientific implications, and
since very negative outliers in individual participants can conceal
voxels with positive variance explained in most participants, we
additionally implemented a function to set negative variance

explained to zero, indicating that the model failed to predict the
responses in a given voxel for a given participant.

Notably, even when setting negative values of the variance
explained to zero, the variance explained approach is more
stringent than computing Pearson correlation between the model
predictions and the observations. For example, in the presence of
predictions thatmatch the observations in terms of their patterns,
but show a large difference in the means, Pearson correlation
would be very high, while variance explained would be zero.

Statistical significance can be computed by performing a
permutation test on the unthresholded variance explained values.
Alternatively, phase resampling of the responses in the target
of prediction could be used to construct the null distribution
(see Liu and Molenaar, 2016). In addition, comparisons between
the predictive accuracy of different predictor regions or different
types of models can be done using non-parametric statistical
tests on the differences between their proportions of variance
explained (thresholded or unthresholded). This was the approach
we adopted in the experimental application of PyMVPD in this
article.

We assessed the statistical significance across participants
with statistical non-parametric mapping (Nichols and Holmes,
2002) using the SnPM13 software, using FWE-correction at the
voxel level to control for multiple comparisons (http://warwick.
ac.uk/snpm). More specifically, to identify significant differences
between two models, we first computed the average variance
explained across cross-validation iterations for each voxel and
for each model, and then we computed differences between
these averages for the two models, obtaining one difference
map for each participant. Finally, these difference maps were
entered in SnPM13 following the steps described in this
tutorial: https://warwick.ac.uk/fac/sci/statistics/staff/academic-
research/nichols/software/snpm/man/exnew, and significance
was computed selecting the option “MultiSub: One Sample t-test
on diffs/contrasts”. When computing statistical significance, it is
important to consider the spatial autocorrelation of fMRI data:
the measurements from nearby voxels tend to be correlated.
Some types of correction for multiple comparisons (e.g., cluster
correction) can be susceptible to spatial autocorrelation, when
using such methods, underestimating the spatial autocorrelation
may lead to excessively liberal statistical thresholds. When there
is not complete confidence that spatial autocorrelation can be
correctly estimated, we recommend using thresholds corrected
at the voxel level.

Importantly, if negative values of variance explained are
set to zero, the use of standard statistical tests (such as t-
tests) to establish significance can lead to exceedingly liberal
thresholds. Recent work has investigated in depth this problem
in the context of classification accuracy (Allefeld et al.,
2016; Hirose, 2021), introducing new statistics that can be
used to address this issue. Future work may lead to the
development of approaches to implement FWE correction
for these statistics, making it possible to apply them to
whole-brain analyses controlling for multiple comparisons.
In the meantime, we recommend either using raw variance
explained values (without setting negative values to zero), or
performing statistical tests on subtractions between the variance
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explained values obtained with different model types or different
brain regions.

2.3. Application to Experimental fMRI Data
2.3.1. Data Acquisition and Preprocessing
As a demonstration of the use of PyMVPD, we analyzed fMRI
data of 15 participants (age range 21–39 years, mean 29.4
years, 6 females) watching a movie, from the publicly available
StudyForrest dataset (http://studyforrest.org). Functional data
were collected on a whole-body 3 Tesla Philips Achieva dStream
MRI scanner equipped with a 32 channel head coil. The BOLD
fMRI responses at the resolution of 3×3×3 mm were acquired
using a T2∗-weighted echo-planar imaging sequence. Complete
details can be found in Hanke et al. (2016).

The dataset includes a movie stimulus session, collected
while participants watched the 2-h audio-visual movie “Forrest
Gump”. The movie was cut into eight segments, and each
segment lasted approximately 15 min. All eight segments
were presented to participants in chronological order in eight
separate functional runs. Additionally, the dataset includes an
independent functional localizer that can be used to identify
category-selective regions (Sengupta et al., 2016). During the
category localizer session, participants viewed 24 unique gray-
scale images from each of six stimulus categories: human faces,
human bodies without heads, small artifacts, houses, outdoor
scenes, and phase scrambled images. Each participant was
presented with four block-design runs and a one-back matching
task.

All fMRI data was preprocessed using fMRIPrep (https://
fmriprep.readthedocs.io/en/latest/index.html). Anatomical
images were skull-stripped with ANTs (http://stnava.github.
io/ANTs/), and segmented into gray matter, white matter, and
cerebrospinal fluid using FSL FAST. Functional images were
corrected for head movement with FSL MCFLIRT (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT), and were subsequently
coregistered to their anatomical scan with FSL FLIRT. Data
of one participant was excluded because it could not pass the
fMRIPrep processing pipeline. For the remaining 14 participants,
we removed noise from the data with CompCor (Behzadi et al.,
2007) using 5 principal components extracted from the union
of cerebrospinal fluid and white matter. Regions of no interest
for the cerebrospinal fluid and white matter were defined
individually for each participant.

2.3.2. ROI Definition
In each individual participant, seed regions of interest (ROIs)
in the fusiform face areas (FFA) as well as the parahippocampal
place areas (PPA) were defined using the first block-design run
from the functional localizer. We performed whole-brain first
level analyses on each participant’s functional data by applying a
standard general linear model with FSL FEAT (Woolrich et al.,
2001). Next, we identified the peak voxels with the highest t-
values for the contrast between the preferred category and other
categories (i.e., FFA contrast: faces> bodies, artifacts, scenes, and
scrambled images; PPA contrast: scenes > faces, bodies, artifacts,
and scrambled images). We generated spheres of 9 mm radius
centered in the peaks. Finally, the voxels within spheres from the

left and right hemispheres were combined, and the 80 voxels with
the highest t-values were selected (this is a common choice in
neuroimaging studies, see Skerry and Saxe, 2014; Kliemann et al.,
2018).

We additionally created a group-average gray matter mask
using the gray matter probability maps generated during
preprocessing, with a total of 53,539 voxels, that was used as the
target of prediction.

2.3.3. PyMVPD Analysis
Using the PyMVPD toolbox, we estimated the multivariate
pattern dependence between each ROI (FFA/PPA) and the gray
matter using five example MVPD models: L2_LR, PCA_LR,
NN_1layer, NN_5layer, and NN_5layer_dense. L2_LR is a
linear regression model with Ridge (L2) regularization. The
regularization strength was set to be 0.001. PCA_LR is a linear
regression model that applies dimensionality reduction on input
data with PCA using three principal components. NN_1layer
andNN_5layer are fully-connected feedforward neural networks
derived from the “NN_standard” architecture with one hidden
layer and five hidden layers, respectively. Under the “NN_dense”
architecture, NN_5layer_dense is a fully-connected feedforward
neural network with dense connections and five hidden layers.
For all the neural network models, we set the number of hidden
units in each hidden layer to be 100. Each network was trained
with a batch size of 32, a learning rate of 0.001, and a momentum
of 0.9 with no weight decay.

For both FFA and PPA, we took the 80 voxels in the seed
ROI as the predictor region, and the 53,539 voxels in the gray
matter as the target region. For each MVPD model, 7 of the 8
movie runs were used for training, and the remaining run was
used for testing. This leave-one-run-out procedure was repeated
8 times by leaving aside each possible choice of the left-out run.
We then calculated the variance explained for each voxel in the
target region with all five MVPD models in the left-out data.

The proportion of variance explained for each seed region
and model was computed for each voxel in gray matter, negative
values of variance explained were set to 0. Next, we compared
the overall predictive accuracy in each pair of MVPD models.
For each participant, the proportion of variance explained by
each model was averaged across all voxels in the gray matter,
and across all cross-validation folds. The difference between the
average variance explained by the two models was computed
for each participant, and the significance was assessed with a
one-tailed t-test across participants—p-values were Bonferroni
corrected for all 20 comparisons (since one-tailed tests were used,
comparisons in both directions were counted in the correction).

In addition to testing the models’ overall predictive accuracy,
we sought to compare their accuracy at the level of individual
voxels. First, we performed a voxelwise comparison of neural
network models vs. linear regression models. To do this,
for each voxel, we calculated the average variance explained
across neural network (NN) models, and we subtracted the
average variance explained across linear regression (LR) models.
We computed statistical significance across participants with
statistical non-parametric mapping using the SnPM13 software,
obtaining pseudo-t statistics for each voxel. Then, we identified
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voxels where neural network models significantly outperformed
linear regression models, at a familywise error (FWE) corrected
threshold of p < 0.05 (voxelwise FWE-correction was used).
Next, we performed finer-grained analyses, focusing on the better
performing NN models. In particular, we tested all pairwise
comparisons between individual NN models. As in the previous
analysis, significance was computed using SnPM13, using a
voxelwise FWE-corrected threshold of p < 0.05. We used
Bonferroni correction to control for the number of multiple
comparisons.

Even in regions where different models are not significantly
different, qualitative differences might reveal large-scale patterns
that could help users in the selection of a particular model.
Given this consideration, we aimed to provide a qualitative
evaluation of the relative performance of different models across
the brain. To this end, for each voxel in the gray matter,
we first selected the model yielding the highest proportion of
variance explained in that voxel (averaged across participants)
and specified that model as the best model for that voxel.
Then, we obtained a conservative measure of the extent to
which the model outperformed the other models by calculating
the lowest t-value among all comparisons between the best
model and all other models. As these results are qualitative
in nature, they are shown in the Supplementary Material

(Supplementary Figure 6).

3. RESULTS

In line with previous studies using MVPD (Anzellotti et al.,
2017a), our implementation of PyMVPD identified the expected
patterns of statistical dependence between FFA and PPA and
other brain regions (see Figure 2A for a visualization of the seed
regions in one representative participant). Across multiple model
types, when using FFA as seed, regions showing high variance
explained included other face-selective regions, and when using
PPA as seed, regions showing high variance explained included
other scene selective regions (Supplementary Figures 1–5, peak
coordinates for face-selective regions and scene-selective regions
were determined with Neurosynth, https://www.neurosynth.
org/). In subsequent analyses, we focused on comparing the
performance of different models, first in terms of their overall
accuracy (averaged across the entire brain), and then at the level
of individual voxels.

3.1. Comparing the Average Performance
of Different Models
To compare the overall predictive accuracy across different
MVPD models, the proportion of variance explained for each
model was averaged across the whole brain. Then, we performed
pairwise comparisons among all five example models. For each
pair of models, we subtracted the variance explained varExpl of
one model from that of another one. This procedure yielded a
difference value for each participant, and we conducted a one-
sample one-tailed t-test on the difference values across all 14
participants using SnPM. All p-values were Bonferroni corrected

for 20 multiple comparisons. Results are shown in Figure 2B as
difference matrices for FFA and PPA, respectively.

Overall, models based on artificial neural networks
outperformed standard linear regression models. Linear
regression based on principal component analysis (PCA_LR)
showed the worst predictive accuracy while NN_5layer_dense

proved to be the best predicting model. More precisely, using
FFA as seed region, L2_LR showed a significantly higher
average variance explained than PCA_LR [t(13) = 6.05, p =
0.0004 corrected]. Both NN_1layer and NN_5layer significantly
outperformed PCA_LR in terms of average variance explained
[NN_1layer: t(13) = 6.27, p = 0.00028 corrected; NN_5layer:
t(13) = 6.46, p = 0.00022 corrected]. NN_5layer_dense revealed
a significantly higher average variance explained than L2_LR

[t(13) = 7.72, p < 0.0002 corrected] and PCA_LR [t(13) = 6.37,
p = 0.00024 corrected]. Using PPA as seed region, all the other
models showed significantly better predictive performance than
PCA_LR [L2_LR: t(13) = 6.55, p < 0.0002 corrected; NN_1layer:
t(13) = 5.79, p = 0.00062 corrected; NN_5layer: t(13) = 5.49, p =
0.00104 corrected; NN_5layer_dense: t(13) = 6.68, p < 0.0002
corrected]. In addition, NN_5layer_dense also significantly
outperformed L2_LR, NN_1layer and NN_5layer [L2_LR:
t(13) = 6.30, p = 0.00028 corrected; NN_1layer: t(13) = 3.45,
p = 0.04308 corrected; NN_5layer: t(13) = 3.73, p = 0.02522
corrected]. The rest of the pairwise comparisons did not show
significant differences across participants (p > 0.05 corrected).

3.2. Comparing the Performance of
Different Models at the Level of Individual
Voxels
To further understand the relative accuracy of different models
in different brain regions, we tested the relative performance
of neural network models (NN) to the performance of linear
regression (LR) models. In particular, we averaged the variance
explained for each voxel across the three NNmodels (NN_1layer,
NN_5layer,NN_5layer_dense), and the two LR models (L2_LR,
PCA_LR), respectively. Given the higher predictive accuracy of
NN models over LR models when averaged across the whole
brain (Figure 2B), we also expected NN models to outperform
LR models in several brain regions. We tested this hypothesis by
calculating the difference in predictive accuracy between average
NN and LR models for each voxel in each participant, and
then computed the statistical significance across participants. As
expected, the resulting SnPM t-map shown in Figure 3 revealed
a large portion of the gray matter that was better predicted by
the average NN models rather than the average LR models using
FFA or PPA as seed region. NN models did not achieve higher
predictive accuracy in the seed regions—this is to be expected,
since a very simple model such as the identity function would
be sufficient in these regions. By contrast, responses in the other
category-selective regions (i.e., face-selective regions: OFA, STS,
ATL; scene-selective regions: RSC, TOS) were better predicted by
the average NN models over the average LR models when using
the seed region of the matching category (Figure 3).

Next, we investigated in more detail the relative voxel-
wise predictive accuracy among the three NN models. To do
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FIGURE 2 | (A) Seed regions. Example seed regions for one representative participant. The fusiform face areas (FFA) are shown in red, and the parahippocampal

place areas (PPA) are shown in blue. Individual ROIs per participant were defined based on first-level t-maps, identifying 9 mm spheres centered on the peaks for the

preferred category, and selecting the top 80 voxels with highest t-values within the spheres. (B) Comparison between different MVPD models. For each seed predictor

region (left: FFA; right: PPA), we plotted the difference matrix of t-values across the five example MVPD models. As a measure of overall predictive accuracy, the

average proportion of variance explained varExpl was computed across the whole brain for each model per participant. For each pair of models, we subtracted the

varExpl of one model from another one, obtaining the pairwise difference values. Finally, we conducted a one-tailed t-test on the difference values across all 14

participants. The corresponding t-values were entered into the difference matrix, indicating the extent to which one model outperformed another one in terms of the

overall predictive accuracy using the seed region as the predictor. Stars above t-values indicate the statistical significance (***p < 0.001; **p < 0.01; *p < 0.05;

Bonferroni-corrected).

this, we calculated the difference values of variance explained
between each pair of NN models (6 pairs in total). Statistical
significance was computed using SnPM and all p-values
were Bonferroni corrected for 6 multiple comparisons. Due
to controlling for multiple comparisons both across voxels
(with a FWE-corrected voxelwise threshold determined
with SnPM) and across multiple model comparisons (thus
further dividing the threshold by 6), this analysis is very
stringent. Nonetheless, the analysis did reveal some loci
of significant differences between the models (Figure 4).
Using FFA as seed region, the insula was significantly better
predicted by NN_5layer over NN_5layer_dense (Figure 4A),
and a region in left parietal cortex was significantly better
predicted by NN_5layer over NN_1layer (Figure 4B).
Using PPA as seed region, a region in the cerebellum
showed significant higher predictive accuracy by NN_1layer

than NN_5layer, by NN_5layer_dense than NN_1layer,

and by NN_5layer_dense than NN_5layer. Additional,
smaller loci showing significant differences are reported in

Supplementary Table 1 (FFA) and Supplementary Table 2

(PPA).

Finally, since qualitative differences that do not pass

significance might still be helpful for users interested in choosing
a model, we generated a map that visualizes the best performing

model for each voxel, and the extent to which the best

model outperforms the other models (Supplementary Figure 6).
Specifically, we assigned different colors to each model (L2_LR:

green; PCA_LR: blue; NN_1layer: red; NN_5layer: yellow;
NN_5layer_dense: purple). The color of each voxel was set to the
color of the model that performed best at predicting that voxel’s
responses, and the color’s saturation was set proportionally to the

lowest t-value from all pairwise comparisons between models. In
other words, more saturated colors appear in voxels for which the
difference between the best model and the runner-up model is
greater. Together, the voxelwise analyses revealed that there isn’t
a single best model for all voxels, instead, different voxels are best
predicted by different models.

4. DISCUSSION

In this article, we have introduced PyMVPD, a Python-based
toolbox for multivariate pattern dependence (MVPD). MVPD
is a novel technique that investigates the statistical relationship
between the responses in different brain regions in terms of
their multivariate patterns of response (Anzellotti et al., 2017a).
Previous studies have shown that this approach brings higher
sensitivity in detecting statistical dependence than standard
functional connectivity (Anzellotti et al., 2017a,b). However,
given the complex nature of the analysis, the implementation
of MVPD can be an obstacle to its wider application. PyMVPD
enables researchers to perform complex MVPD analyses with
a few lines of easily readable Python code, therefore, it
makes MVPD more accessible to a broader community of
researchers.

PyMVPD provides users with a flexible analysis framework
to study the multivariate statistical dependence between brain
regions. Users can choose whether or not to use dimensionality
reduction, and if dimensionality reduction is selected, PyMVPD
offers a choice between principal component analysis (PCA) and
independent component analysis (ICA). Furthermore, PyMVPD
permits the use of a variety of models to study the multivariate
statistical dependence between brain regions. In addition to
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FIGURE 3 | Comparison between neural network (NN) models and linear regression (LR) models. Statistical t-maps computed across subjects from the voxelwise

difference between the average variance explained predicted by three NN models (NN_1layer, NN_5layer, NN_5layer_dense), and the average variance explained

predicted by two LR models (L2_LR, PCA_LR) with FFA (top) and PPA (bottom) as predictor ROIs, respectively. The SnPM threshold corrected at p < 0.05 FWE is

3.78 using FFA as predictor and is 3.65 using PPA as predictor.

FIGURE 4 | Comparison between MVPD neural network (NN) models. Statistical t-maps computed across subjects from the pairwise difference between the variance

explained predicted by three neural network models (NN_1layer, NN_5layer, NN_5layer_dense) with FFA (A) and PPA (B) as predictor ROIs, respectively. The

SnPM p-values were Bonferroni corrected for all 6 comparisons. We showed interesting brain regions that were better predicted by one NN model than the other NN

model at p < 0.05 FWE after Bonferroni correction. The full NN model comparison results can be found in Supplementary Table 1 (FFA) and

Supplementary Table 2 (PPA).
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the standard linear regression models that have proven to be
effective in the previous literature (Anzellotti et al., 2017a),
we make artificial neural networks available for connectivity
research through an integration with PyTorch. The artificial
neural network version of MVPD implemented in PyTorch is
introduced for the first time in this article. We demonstrate
that the neural network implementations of MVPD outperform
the previously published version based on PCA in most brain
regions. Example code is provided for three neural network
architectures. In addition, users can choose other architectures
with different numbers of hidden units and of layers by changing
the parameter settings. For applications that require models
beyond the family of options already available in PyMVPD, the
toolbox is designed so that it is straightforward to program
custom architectures and to integrate themwith the other scripts.

In the experimental applications described in this work, we
tested PyMVPD using the StudyForrest dataset, with the FFA and
PPA as seed regions. The results revealed interactions between
these seed regions and the rest of the brain during movie-
watching, following a pattern that is consistent with the previous
literature. Category-selective peaks identified with Neurosynth
fell within the MVPD maps for the corresponding category.
Overall, artificial neural networks outperformed linear regression
models in terms of the predictive accuracy for statistical
dependence. Importantly, this is not a trivial consequence of
the fact that the artificial neural networks are more complex. In
fact, MVPD trains and tests models with independent subsets of
the data, and models with more parameters do not necessarily
perform better at out-of-sample generalization.

Interestingly, no single model outperformed all others
in every voxel. In particular, the NN_5layer outperformed
other models at predicting responses in the insula and
parietal regions using the FFA seed as predictor. By contrast,
NN_5layer_dense outperformed other models at predicting
cerebellar responses given PPA inputs. A qualitative analysis
revealed large, contiguous cortical regions in which one model
type outperformed the others (Supplementary Figure 6). Taken
together, these results indicate that the statistical dependence
between different sets of regions might be best characterized by
different models. Why would this be the case? It is expected that
the interactions between different sets of brain regions implement
different kinds of computations. For example, the computations
implemented by the interaction between the fusiform face
area (FFA) and the occipital face area (OFA)—hypothesized
to be upstream of FFA in a hierarchy of visual processing—
are likely to be different from the computations implemented
by the interaction between the FFA and frontal cortex regions
involved in attention. We hypothesize that such differences in
the underlying computations could lead to differences in terms
of which neural network architectures yield the best models of
between-region interactions.

The present results have broader implications for the study of
statistical dependence between brain regions: in the literature on
brain connectivity, the focus has been largely placed on whether
or not two brain regions interact. However, a key direction for
future research consists in investigating not only whether two
regions interact, but also how they interact. The observation

that the statistical dependence between the seed regions and
different voxels were best captured by different models suggests
that PyMVPD could be used to make progress in this direction.

To pursue goals such as this, PyMVPD is designed to
be easily customized and extended. In addition to the five
example models (i.e., L2_LR, PCA_LR, NN_1layer, NN_5layer,
NN_5layer_dense) implemented in this article, PyMVPD allows
users to build their ownMVPDmodels with customized function
components as well as evaluation metrics, making this toolbox an
ideal environment to compare the predictive accuracy of different
types of models to study the interactions between brain regions.

Installing the full version of PyMVPD requires a working
installation of PyTorch, installed compatibly with the version of
the CUDA drivers of the GPUs. For users who prefer to avoid
this step and do not need to use the neural networks, we make
available the LITE version of PyMVPD, that includes only the
linear regression models, and does not require PyTorch. The
LITE version can be also installed using the Python Package
Index (with “pip”).

The toolbox offers a variety of different models that can
be used to characterize the interactions between brain regions.
The selection of a model among the available options can be
based on multiple considerations. First, in this study, we found
that artificial neural network models were more accurate than
the PCA-based linear regression and the L2 linear regression
overall. For this reason, when analyzing a comparable amount
of data, and when maximum accuracy is needed, we recommend
using artificial neural networks. However, models using artificial
neural networks require a working Pytorch installation, and the
additional accuracy they offer might not be needed for some use
cases. In addition, it is essential to note that there is a trade-off
between model complexity and model fit: more complex models
may not perform well when the amount of data is limited. For
this reason, when a smaller number of volumes is available for
training, we recommend using the L2 linear regression (Ridge
Regression) model, as it offers the additional flexibility of setting
the regularization parameter appropriately for the amount of
data available. We also note that the optimal model choice may
depend not only on the amount of available data, but also on
the amount of noise in the data. For this reason, in cases where
maximizing the accuracy is essential, we recommend using data
from a small subset of participants to test and compare multiple
different model choices. The best performing model can then
be used to analyze data from the left-out participants. To avoid
circularity in the analyses, it is essential to ensure that the data
used to select the optimal model are not later reused to estimate
the variance explained by that model.

Together with both versions of PyMVPD, we provide
step-by-step tutorials on how to calculate MVPD using the
toolbox (https://github.com/sccnlab/PyMVPD/blob/main/
exp/PyMVPD_Tutorial.ipynb, https://github.com/sccnlab/
PyMVPD_LITE/blob/main/exp/PyMVPD_LITE_Tutorial.
ipynb). The tutorials are written with Jupyter Notebook, and
include sample data as well as the option to plot one’s results side
by side with the results we computed. This will make it easier
for users to check that the toolbox was installed correctly and to
confirm that the results match with those we obtained.
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Despite the several options available in PyMVPD, the
toolbox still has several limitations. For example, functions
to automatically select the optimal number of dimensions
from the data when using dimensionality reduction have not
yet been implemented. In addition, while PyMVPD offers a
variety of neural network architectures, including standard
feedforward neural networks and DenseNets, other architectures
(such as ResNets) are not available, and would require users
to develop their own custom code, which can be integrated
with the rest of the toolbox. Importantly, we note that the
scope of the toolbox is restricted to multivariate analyses
of statistical dependence based on MVPD, and as such it
does not include other multivariate measure of statistical
dependence, univariate measures of statistical dependence
such as functional connectivity, nor other multivariate
analyses such as decoding or representational similarity
analysis. For such analyses, there are several other existing
toolboxes that can be used. In particular, users interested in
univariate analyses of connectivity may use the Conn toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012) or GraphVar
(Kruschwitz et al., 2015), and users interested in multivoxel
pattern analysis (MVPA), including multivariate decoding
and representational similarity analysis, may use the PyMVPA
toolbox (Hanke et al., 2009), the CoSMoMVPA toolbox
(Oosterhof et al., 2016), or “the decoding toolbox” (tdt, Hebart
et al., 2015).

A common criticism of methods based on artificial neural
networks is that they operate as a black box: it can be
difficult to interpret how the neural networks work in
terms of cognitively relevant dimensions. Fortunately, an
increasing number of techniques are being developed to
improve the interpretability of artificial neural networks (Zhang
and Zhu, 2018; Li et al., 2021). While additional work will
be needed to integrate these techniques with MVPD, the
current MVPD framework based on artificial neural networks
already offers the benefit of more sensitive detection of
statistical dependence as compared to regularized regression,
and the opportunity to compare the performance of different
model architectures.

The present study focused on the FFA and PPA as
seed regions because they have been studied in depth in
previous literature. Future studies can extend our results,
investigating the application of PyMVPD to other seed
regions. The current implementation of PyMVPD is based
on simultaneous prediction: responses in the target region at
a given time are predicted from responses in the predictor
region at the same time. However, other researchers could
take advantage of the customization options to use the
responses in multiple timepoints in the predictor region to
predict the responses in the target region at each timepoint.
Finally, the models of statistical dependence implemented by
PyMVPD are deterministic. Multivariate probabilistic models
that capture the distribution of uncertainty in predictions are

in principle possible, but would require large amounts of data
for training.

Although PyMVPD was specifically developed for fMRI
analysis, the generic design of the framework makes it widely
applicable to other data acquisition modalities (i.e., EEG, MEG)
across a variety of domains of brain imaging research. We hope
that this toolbox removes some of the barriers to the adoption
of MVPD, and facilitates the diffusion of multivariate analyses of
the interactions between brain regions.
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