
ORIGINAL RESEARCH
published: 11 May 2022

doi: 10.3389/fninf.2022.837549

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 837549

Edited by:

Ludovico Minati,
Tokyo Institute of Technology, Japan

Reviewed by:

Justin Wozniak,
Argonne National Laboratory (DOE),

United States
David Phillip Nickerson,

The University of Auckland,
New Zealand

*Correspondence:

Jasper Albers
j.albers@fz-juelich.de

Received: 16 December 2021
Accepted: 11 March 2022
Published: 11 May 2022

Citation:

Albers J, Pronold J, Kurth AC,
Vennemo SB, Haghighi Mood K,
Patronis A, Terhorst D, Jordan J,

Kunkel S, Tetzlaff T, Diesmann M and
Senk J (2022) A Modular Workflow for

Performance Benchmarking of
Neuronal Network Simulations.
Front. Neuroinform. 16:837549.
doi: 10.3389/fninf.2022.837549

A Modular Workflow for Performance
Benchmarking of Neuronal Network
Simulations
Jasper Albers 1,2*, Jari Pronold 1,2, Anno Christopher Kurth 1,2, Stine Brekke Vennemo 3,

Kaveh Haghighi Mood 4, Alexander Patronis 4, Dennis Terhorst 1, Jakob Jordan 5,

Susanne Kunkel 3, Tom Tetzlaff 1, Markus Diesmann 1,6,7 and Johanna Senk 1

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain
Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 RWTH Aachen University, Aachen,
Germany, 3 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway, 4 Jülich Supercomputing
Centre (JSC), Jülich Research Centre, Jülich, Germany, 5Department of Physiology, University of Bern, Bern, Switzerland,
6Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany, 7Department of Psychiatry, Psychotherapy
and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany

Modern computational neuroscience strives to develop complex network models to

explain dynamics and function of brains in health and disease. This process goes

hand in hand with advancements in the theory of neuronal networks and increasing

availability of detailed anatomical data on brain connectivity. Large-scale models that

study interactions between multiple brain areas with intricate connectivity and investigate

phenomena on long time scales such as system-level learning require progress

in simulation speed. The corresponding development of state-of-the-art simulation

engines relies on information provided by benchmark simulations which assess the

time-to-solution for scientifically relevant, complementary network models using various

combinations of hardware and software revisions. However, maintaining comparability of

benchmark results is difficult due to a lack of standardized specifications for measuring

the scaling performance of simulators on high-performance computing (HPC) systems.

Motivated by the challenging complexity of benchmarking, we define a generic workflow

that decomposes the endeavor into unique segments consisting of separate modules.

As a reference implementation for the conceptual workflow, we develop beNNch: an

open-source software framework for the configuration, execution, and analysis of

benchmarks for neuronal network simulations. The framework records benchmarking

data and metadata in a unified way to foster reproducibility. For illustration, we measure

the performance of various versions of the NEST simulator across network models

with different levels of complexity on a contemporary HPC system, demonstrating how

performance bottlenecks can be identified, ultimately guiding the development toward

more efficient simulation technology.

Keywords: spiking neuronal networks, benchmarking, large-scale simulation, high-performance computing,

workflow, metadata

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.837549
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.837549&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.albers@fz-juelich.de
https://doi.org/10.3389/fninf.2022.837549
https://www.frontiersin.org/articles/10.3389/fninf.2022.837549/full

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

1. INTRODUCTION

Past decades of computational neuroscience have achieved a
separation between mathematical models and generic simulation
technology (Einevoll et al., 2019). This enables researchers to
simulate different models with the same simulation engine,
while the efficiency of the simulator can be incrementally
advanced and maintained as a research infrastructure. Increasing
computational efficiency does not only decrease the required
resources of simulations, but also allows for constructing
larger network models with an extended explanatory scope
and facilitates studying long-term effects such as learning.
Novel simulation technologies are typically published together
with verification—evidence that the implementation returns
correct results—and validation—evidence that these results are
computed efficiently. Verification implies correctness of results
with sufficient accuracy for suitable applications as well as a
flawless implementation of components confirmed by unit tests.
For spiking neuronal network simulators, such applications are
simulations of network models which have proven to be of
relevance for the field. In a parallel effort, validation aims at
demonstrating the added value of the new technology for the
community. To this end, the new technology is compared to
previous studies on the basis of relevant performance measures.

Efficiency is measured by the resources used to achieve
the result. Time-to-solution, energy-to-solution and memory
consumption are of particular interest. For the development of
neuromorphic computing systems, efficiency in terms of low
power consumption and fast execution is an explicit design goal:
simulations need to be able to cope with limited resources, for
example, due to hardware constraints. Real-time performance,
meaning that simulated model time equals wall-clock time,

is a prerequisite for simulations interacting with the outer
world, such as in robotics. Even faster, sub-real-time simulations

enable studies of slow neurobiological processes such as brain

development and learning, which take hours, days, or more
in nature. High-performance computing (HPC) benchmarking

studies usually assess the scaling performance of the simulation
architecture by incrementally increasing the amount of employed
hardware resources (e.g., compute nodes). In weak-scaling
experiments, the size of the simulated networkmodel is increased
proportionally to the computational resources, which keeps
the workload per compute node fixed if the simulation scales
perfectly. Scaling neuronal networks, however, inevitably leads
to changes in the network dynamics (van Albada et al., 2015b).
Comparisons between benchmarking results obtained at different
scales are therefore problematic. For network models of natural
size describing the correlation structure of neuronal activity,
strong-scaling experiments (in which the model size remains
unchanged) are more relevant for the purpose of finding the
limiting time-to-solution. For a formal definition of strong and
weak scaling refer to page 123 of Hager and Wellein (2010) and
for pitfalls in interpreting the scaling of network simulation code
see van Albada et al. (2014). When measuring time-to-solution,
studies distinguish between different phases of the simulation, in
the simplest case between a setup phase of network construction
and the actual simulation phase of state propagation. Such

benchmark metrics not only depend on the simulation engine
and its options for time measurements (see, e.g., Jordan et al.,
2018; Golosio et al., 2021), but also on the network model. The
simulated activity of a model may not always be stationary over
time, and transients with varying firing rates are reflected in the
computational load. For an example of transients due to arbitrary
initial conditions see Rhodes et al. (2019), and for an example
of non-stationary network activity, refer to the meta-stable state
of the multi-area model described by Schmidt et al. (2018a).
Studies assessing energy-to-solution need to specify whether only
the power consumption of the compute nodes is considered or
interconnects and required support hardware are also accounted
for (van Albada et al., 2018).

The omnipresence of benchmarks in studies on simulation
technology demonstrates the relevance of efficiency. The
intricacy of the benchmarking endeavor, however, not only
complicates the comparison between these studies, but also
reproducing them. Neuroscientific simulation studies are already
difficult to reproduce (Crook et al., 2013; McDougal et al., 2016;
Rougier et al., 2017; Gutzen et al., 2018; Pauli et al., 2018;
Gleeson et al., 2019), and benchmarking adds another layer
of complexity. Reported benchmarks may differ not only in
the structure and dynamics of the employed neuronal network
models, but also in the type of scaling experiment, soft- and hard-
ware versions and configurations, as well as in the analysis and
presentation of the results. Figure 1 illustrates the complexity of
benchmarking experiments in simulation science and identifies
five main dimensions: “Hardware configuration”, “Software
configuration”, “Simulators”, “Models and parameters”, and
“Researcher communication”. The following presents examples
specific to neuronal network simulations, demonstrating the
range of each of the five dimensions.

Different simulators, some with decades of development,
allow for large-scale neuroscientific simulations (Brette
et al., 2007). We distinguish between simulators that run
on conventional HPC systems and those that use dedicated
neuromorphic hardware. Prominent examples of simulators for
networks of spiking point-neurons are NEST (Morrison et al.,
2005b; Gewaltig and Diesmann, 2007; Plesser et al., 2007; Helias
et al., 2012; Kunkel et al., 2012, 2014; Ippen et al., 2017; Kunkel
and Schenck, 2017; Jordan et al., 2018; Pronold et al., 2021, 2022)
and Brian (Goodman and Brette, 2008; Stimberg et al., 2019)
using CPUs; GeNN (Yavuz et al., 2016; Knight and Nowotny, 2018,
2021; Stimberg et al., 2020; Knight et al., 2021) and NeuronGPU

(Golosio et al., 2021) using GPUs; CARLsim (Nageswaran et al.,
2009; Richert et al., 2011; Beyeler et al., 2015; Chou et al., 2018)
running on heterogeneous clusters; and the neuromorphic
hardware SpiNNaker (Furber et al., 2014; Rhodes et al., 2019).
NEURON (Carnevale and Hines, 2006; Migliore et al., 2006; Lytton
et al., 2016) and Arbor (Akar et al., 2019) aim for simulating
morphologically detailed neuronal networks.

The hardware and software configurations used in published
benchmark studies are diverse because both underlie updates
and frequent releases. In addition, different laboratories may not
have access to the same machines. Therefore, HPC benchmarks
are performed on different contemporary compute clusters or
supercomputers. For example, NEST benchmarks have been

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 837549

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

FIGURE 1 | Dimensions of HPC benchmarking experiments with examples from neuronal network simulations. Hardware configuration: computing architectures and

machine specifications. Software configuration: general software environments and instructions for using the hardware. Simulators: specific simulation technologies.

Models and parameters: different models and their configurations. Researcher communication: knowledge exchange on running benchmarks.

conducted on the systems located at Research Center Jülich in
Germany but also on those at the RIKEN Advanced Institute
for Computational Science in Japan (e.g., Helias et al., 2012;
Jordan et al., 2018). To assess the performance of GPU-based
simulators, the same simulation is typically run on different GPU
devices; from low-end gaming GPUs to those installed in high-
end HPC clusters (Knight and Nowotny, 2018; Golosio et al.,
2021). This variety can be beneficial; performing benchmark
simulations on only a single system can lead to unwanted
optimization toward that type of machine. However, comparing
results across different hard- and software is complicated and
requires expert knowledge of the compared technologies in order
to draw reasonable conclusions.

The modeling community distinguishes between functional
models, where the validation is concerned with the questions
if and how well a specific task is solved, and non-functional
models, where an analysis of the network structure, dynamics,
and activity is used for validation. Simulating the same model
using different simulation engines often results in activity data
which can only be compared on a statistical level. Spiking activity,
for example, is typically evaluated based on distributions of

quantities such as the average firing rate, rather than on precise
spike times (Senk et al., 2017; van Albada et al., 2018). Reasons
for that are inevitable differences between simulators such as
different algorithms, number resolutions, or random number
generators, combined with the fact that neuronal network
dynamics is often chaotic, rapidly amplifying minimal deviations
(Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky,
1998; Monteforte and Wolf, 2010). The most frequently used
models to demonstrate simulator performance are balanced
random networks similar to the one proposed by Brunel (2000):
generic two-population networks with 80% excitatory and 20%
inhibitory neurons, and synaptic weights chosen such that
excitation and inhibition are approximately balanced, similar to
what is observed in local cortical networks. Variants differ not
only in the parameterization but also in the neuron, synapse, and
plasticity models, or other details. Progress in NEST development
is traditionally shown by upscaling a model of this type, called
“HPC-benchmark model”, which employs leaky integrate-and-
fire (LIF) neurons, alpha-shaped post-synaptic currents, and
spike-timing-dependent plasticity (STDP) between excitatory
neurons. The detailed model description and parameters can be

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 837549

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

found in Tables 1–3 of the Supplementary Material of Jordan
et al. (2018). Other versions include a network of Izhikevich
model neurons and STDP (Izhikevich, 2003) used by Yavuz et al.
(2016) and Golosio et al. (2021), the COBAHH model with
Hodgkin-Huxley type neurons and conductance-based synapses
(Brette et al., 2007) used by Stimberg et al. (2020), and a version
with excitatory LIF and inhibitory Izhikevich model neurons
where excitatory synapses are updated with STDP and inhibitory-
to-inhibitory connections do not exist is used by Chou et al.
(2018). Even though balanced random networks are often used
for weak-scaling experiments, they describe the anatomical and
dynamical features of cortical circuits only at a small spatial scale
and the upscaling affects the network dynamics (see van Albada
et al., 2015b as indicated above). At larger scales, the natural
connectivity becomes more complex than what is captured
by this model type. Therefore, models of different complexity
need to be benchmarked to guarantee that a simulation engine
performs well across use cases in the community. In addition
to the HPC-benchmark model, this study employs two more
elaborate network models: the “microcircuit model” proposed
by Potjans and Diesmann (2014) and the “multi-area model” by
Schmidt et al. (2018a). The microcircuit model is an extension
of the balanced random network model with an excitatory and
an inhibitory neuron population in each of four cortical layers
with detailed connectivity derived from experimental studies.
The model spans 1mm2 of cortical surface, represents the
cortical layers at their natural neuron and synapse densities,
and has recently been used to compare the performance of
different simulation engines; for instance, NEST and SpiNNaker

(Senk et al., 2017; van Albada et al., 2018; Rhodes et al.,
2019); NEST, SpiNNaker, and GeNN (Knight and Nowotny,
2018); and NEST and NeuronGPU (Golosio et al., 2021). The
multi-area model comprises 32 cortical areas of the visual
system where each is represented by an adapted version of the
microcircuit model; results are available for NEST (van Albada
et al., 2021) and GeNN (Knight and Nowotny, 2021). Comparing
the performance of the same model across different simulators
profits from a common model description. The simulator-
independent language PyNN (Davison et al., 2009), for example,
enables the use of the same executable model description for
different simulator back ends. Testing new technologies only with
a single network model is, however, not sufficient for general-
purpose simulators and comes with the danger of optimizing the
code base for one application, while impairing the performance
for others.

Problems to reproduce the simulation outcome or compare
results across different studies may not only be technical but
also result from a miscommunication between researchers or a
lack of documentation. Individual, manual solutions for tracking
the hardware and software configuration, the simulator specifics,
and the models and parameters used in benchmarking studies
have, in our laboratories, proven inefficient when scaling up
the number of collaborators. This effect is amplified if multiple
laboratories are involved. Similar inter-dependencies are also
present between the other four dimensions of Figure 1, making
it hard to produce long-term comparable results; the exhibited
intricacy of benchmarking is susceptible to errors as, for instance,

small details in parameterization or configuration may have a
large impact on performance.

Standardizing benchmarks can help to control the
complexity but represents a challenge for the fast-moving
and interdisciplinary field of computational neuroscience. While
the field had some early success in the area of compartmental
modeling (Bhalla et al., 1992) and Brette et al. (2007) made
initial steps for spiking neuronal networks, neither a widely
accepted set of benchmark models nor guidelines for performing
benchmark simulations exist. In contrast, benchmarks are
routinely employed in computer science, and established
metrics help to assess the performance of novel hardware and
software. The LINPACK benchmarks (Dongarra et al., 2003),
for example, were initially released in 1979, and the latest
version is used to rank the world’s top supercomputers by
testing their floating-point computing power (TOP500 list).
Although this strategy has been successful for many years, it
has also been criticized as misguiding hardware vendors toward
solutions with high performance in formalized benchmarks but
disappointing performance in real-world applications1. For the
closely related field of deep learning, Dai and Berleant (2019)
summarize seven key properties that benchmarking metrics
should fulfill: relevance, representativeness, equity, repeatability,
cost-effectiveness, scalability, and transparency. There exist
standard benchmarks for machine learning and deep learning
applications such as computer vision and natural language
processing with standard data sets and a global performance
ranking. The most prominent example is MLPerf2 (Mattson
et al., 2020). Another example is the High Performance LINPACK
for Accelerator Introspection (HPL-AI) benchmark3 which is
the mixed-precision counterpart to the LINPACK benchmarks.
Ostrau et al. (2020) propose a benchmarking framework for
deep spiking neural networks and they compare results obtained
with the simulators Spikey (Pfeil et al., 2013), BrainScales
(Schemmel et al., 2010), SpiNNaker, NEST, and GeNN.

For measuring and comparing the scaling performance
of large-scale neuronal network model simulations, there
exists, to our knowledge, no unifying approach, yet. Recently,
more laboratories make use of established simulators rather
than developing their own, and computing resources have
become available and interchangeable. The resulting increase
in the size of user-communities comes with the demand for
even more flexible and efficient simulators with demonstrated
performance. To keep up with this progress, we see the
need for a common benchmarking framework. We envision
a consistently managed array of standard benchmark models
together with standard ways for running them. The five
dimensions outlined above lend themselves to a modular
framework integrating distinct components which can be
updated, extended, or replaced independently. The framework
needs to cover all steps of the benchmarking process from
configuration, to execution, to handling of results. For enabling

1https://www.technologyreview.com/2010/11/08/199100/why-chinas-new-

supercomputer-is-only-technically-the-worlds-fastest
2https://mlcommons.org
3https://www.icl.utk.edu/hpl-ai

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 837549

https://www.technologyreview.com/2010/11/08/199100/why-chinas-new-supercomputer-is-only-technically-the-worlds-fastest
https://www.technologyreview.com/2010/11/08/199100/why-chinas-new-supercomputer-is-only-technically-the-worlds-fastest
https://mlcommons.org
https://www.icl.utk.edu/hpl-ai
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

comparability and reproducibility, all relevant metadata and
data need to be tracked. In this work, we develop a conceptual
benchmarking workflow that meets these requirements. For a
reference implementation named beNNch, we employ the JUBE

Benchmarking Environment4 and the simulator NEST in different
versions (Gewaltig and Diesmann, 2007), and we assess the time-
to-solution for the HPC-benchmark model, the microcircuit
model (Potjans and Diesmann, 2014), and the multi-area model
(Schmidt et al., 2018a) on the contemporary supercomputer
JURECA-DC (Thörnig and von St. Vieth, 2021). The goal of
this study is to set the cornerstone for reliable performance
benchmarks facilitating the comparability of results obtained
in different settings, and hence, supporting the development
of simulators.

The Results section of this manuscript formalizes the
general concepts of the benchmarking workflow (Section 2.1),
implements these concepts into a reference benchmarking
framework for the NEST simulator (Section 2.2), and applies the
framework to generate and compare benchmarking data, thereby
making a case for the relevance of benchmarking for simulator
development (Section 2.3.1). After a discussion of our results
in Section 3, Section 4 provides details of specific performance
optimizations addressed in this work.

2. RESULTS

2.1. Workflow Concepts
We devise a generic workflow for performance benchmarking
applicable to simulations running on conventional HPC
architectures. The conceptual workflow depicted in Figure 2

consists of four segments which depend on each other in a
sequential fashion. The segments are subdivided into different
modules which are related to the specific realizations used in
our reference implementation of the workflow (Section 2.2).
We use the term “workflow” to describe abstract concepts
that are of general applicability with regard to benchmarking
efforts, and “framework” to refer to the concrete software
implementation we have developed. Further, we make the
distinction between “internal” and “external” modules. Internal
modules are considered essential building blocks of the workflow
while external modules can be exchanged more readily. The
following introduces each of the workflow’s conceptual segments
and explains how the proposed solution addresses the identified
problems (cf. Figure 1).

2.1.1. Configuration and Preparation
The first of the four workflow segments consists of five distinct
modules that together set up all necessary prerequisites for the
simulation. First, the installation of the simulation software and
its dependencies is handled by “software deployment”, while
“machine configuration” specifies parameters that control the
simulation experiment conditions, as for example, how many
compute nodes to reserve. Together, these two modules target

4https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.

html

the problem dimensions “hardware configuration”, “software
configuration”, and “simulators”. Addressing “models and
parameters”, the module “model” provides the network model
implementation, while “model configuration” allows for passing
parameters to the model such as the biological model time to
be simulated, thereby separating the model from its parameters.
Finally, the “user configuration” module confines user-specific
data, such as file paths or compute budgets, to a single location.

2.1.2. Benchmarking
The second segment encompasses all modules related to actually
running the benchmark simulation. Compute clusters typically
manage the workload of the machine via queuing systems;
therefore, compute-intensive calculations are submitted as jobs
via scripts which define resource usage and hold instructions for
carrying out the simulation. In the workflow, this is handled by
the module aptly named “job script generation”. Here, the first
link between modules comes into play: the workflow channels
model, user and machine configuration to create a job script
and subsequently submit the script to the job queue via the
module “job submission”. With the simulator software prepared
by the software-deployment module, “job execution” performs
the model simulation given the job-submission parameters.
While a simulation for neuroscientific research purposes would
at this point focus on the output of the simulation, for
example, neuronal spike times or voltage traces, benchmarking
is concerned with the performance results. These are recorded in
the final benchmarking module called “data generation”.

2.1.3. Data- and Metadata Handling
A core challenge in conducting performance benchmarks is
the handling of all produced data and metadata. While the
former type of data here refers to the results of the performance
measurements, the latter is an umbrella term describing the
circumstances under which the data was recorded according
to the dimensions of benchmarking (Figure 1). Since executing
multiple simulations using different configurations, software,
hardware, and models is an integral part of benchmarking, data
naturally accumulates. Recording the variations across these
dimensions leads to a multitude of metadata that needs to
be associated to the measured data. Standardized formats for
both types of data make the results comparable for researchers
working with the same underlying simulation technology. The
workflow segment “Data- and metadata handling” proposes the
following solution. First, the raw performance data, typically
stemming from different units of the HPC system, are gathered
and unified into a standardized format, while the corresponding
metadata is automatically recorded. Next, the metadata is
associated to the unified data files, alleviating the need for
manually keeping track of parameters, experiment choices and
software environment conditions. While there are different
possible solution for this, attaching the relevant metadata directly
to the performance-data files simplifies filtering and sorting of
results. Finally, “initial validation” allows for a quick glance at the
results such that erroneous benchmarks can be swiftly identified.

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 837549

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

FIGURE 2 | Conceptual overview of the proposed benchmarking workflow. Light gray boxes divide the workflow into four distinct segments, each consisting of

multiple modules. Internal modules are shown in orange and external ones in pink. Blue boxes indicate their respective realization in our reference implementation.

2.1.4. Data Presentation
This final workflow segment addresses the challenge of making
the benchmarking results accessible and comparable such that
meaningful conclusions can be drawn, thereby aiming to
cope with the complexity that “Researcher communication”
introduces. In a first step, “metadata based filtering and sorting”
allows the user to dynamically choose the results to be included
in the comparison. Here, dynamic means that arbitrary cuts
through the hypercube of metadata dimensions can be selected
such that the filtered results only differ in metadata fields of
interest. Second, the data is presented in a format for which
switching between benchmarks is intuitive, key metadata is given
alongside the results, and data representation is standardized.
The presentation of data should be comprehensive, consistent,
and comparative such that the benchmarking results are usable
in the long term. Thereby, the risk of wasting resources through
re-generation of results is eliminated, making the corresponding
software development more sustainable.

2.2. beNNch: A Reference Implementation
Building on the fundamental workflow concepts developed
in Section 2.1, we introduce a reference implementation for
modern computational neuroscience: beNNch5—a benchmarking

5https://github.com/INM-6/beNNch

framework for neuronal network simulations. The framework
serves not only as a proof-of-concept, but also provides a software
tool that can be readily used by neuroscientists and simulator
developers. While beNNch is built such that plug-ins for any
neuronal network simulator can be developed, we specifically
implement compatibility with the NEST simulator (Gewaltig and
Diesmann, 2007) designed for simulating large-scale spiking
neuronal network models. In the following subsections, we detail
software tools, templates, technologies, and user specifications
needed to apply beNNch for benchmarking NEST simulations.
Each of the conceptual modules of Figure 2 is here associated
with a concrete reference.

2.2.1. Builder
Reproducible software deployment is necessary for repeatability
and comparability of the benchmarks. In favor of the usability
of the benchmarking framework, however, we need to abstract
non-relevant information on the hardware architecture and the
software tool chain. The tool set is required to install software in a
platform independent way and should not depend on a particular
flavor of the operating system, the machine architecture or overly
specific software dependencies. Additionally, it needs to be able
to make use of system-provided tools and libraries, for example,
to leverage machine specific MPI implementations. beNNch uses

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 837549

https://github.com/INM-6/beNNch
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

the tool Builder6 for this purpose. Given a fixed software
stack and hardware architecture, Builder provides identical
executables by deriving the install instructions from “plan files”.
Integration with other package management systems such as
easy_build (Geimer et al., 2014) or Spack (Gamblin et al., 2015)
is achieved by using the same environment module systems7.
Thereby, the required user interaction is minimized and, from
a user perspective, installation reduces to the configuration
of installation parameters. Given a specified variation of the
software to be benchmarked, beNNch calls Builder to deploy
the requested software. In doing so, Builder checks whether the
software is already available and otherwise installs it according to
the specifications in the plan file. The depth to which required
dependencies need to be installed and which mechanisms are
used depend on the conventions and prerequisites available
at each execution site. For any installation, the used software
stack—including library versions, compiler versions, compile
flags, etc.—are recorded as metadata.

2.2.2. NEST
beNNch implements compatibility with the NEST simulator
(Gewaltig and Diesmann, 2007), enabling the performance
benchmarking of neuronal network simulations at the resolution
of single neurons. The NEST software is complex, and the
consequences of code modifications for performance are often
hard to predict. NEST has an efficient C++ kernel, but network
models and simulation experiments are defined via the user-
friendly Python interface PyNEST (Eppler et al., 2009; Zaytsev and
Morrison, 2014). To parallelize simulations, NEST provides two
methods: for distributed computing, NEST employs the Message
Passing Interface (MPI, Message Passing Interface Forum, 2009),
and for thread-parallel simulation, NEST uses OpenMP (OpenMP
Architecture Review Board, 2008).

2.2.3. Instrumentation
We focus our performance measurements on the time-to-
solution. Acquiring accurate data on time consumption is critical
for profiling and benchmarking. To this end, we make use of
two types of timers to collect this data: the timers are either
built-in to NEST on the C++ level, or they are included on the
Python level as part of the PyNEST network-model description.
The latter type of timers are realized with explicit calls to
the function time.time() of the Python Standard Library’s
time. To achieve consistency throughout the framework, we
use standardized variable names for the different phases of the
simulation. Figure 3 shows the simulation flow of a typical
NEST simulation. During “network construction”, neurons and
auxiliary devices for stimulation and recording are created
and subsequently connected according to the network-model
description. Afterwards, in the course of “state propagation”, the
network state is propagated in a globally time-driven manner.
This comprises four main phases which are repeated until
the entire model time has been simulated: update of neuronal
states, collocation of spikes in MPI-communication buffers,

6https://github.com/INM-6/Builder
7https://modules.readthedocs.io and http://lmod.readthedocs.io

FIGURE 3 | Instrumentation to measure time-to-solution. Successive phases

of a NEST simulation; time is indicated by top-down arrow. Fanning arrows

denote parallel operation of multiple threads. The main phases network

construction (cyan) and state propagation (pink) are captured by external

timers on the Python level. Built-in NEST timers on the C++ level measure

sub-phases: node creation and connection (both gray, not used in benchmark

plots); update (orange), collocation (yellow), communication (green), and

delivery (blue). The sub-phases of the state propagation are repeated until the

simulation is finished as shown by the dashed arrow connecting delivery

and update.

communication of spikes, and delivery of the received spikes
to their respective thread-local targets. NEST’s built-in timers
provide a detailed look into the contribution of all four phases
of state propagation, while timers on the Python level measure
network construction and state propagation.

In NEST, the postsynaptic connection infrastructure is
established during the “connection” phase. However, the
presynaptic counterpart is typically only set up at the beginning
of the state propagation phase (see Jordan et al., 2018, for details).
In this work, we trigger this step deliberately and include it in our
measurement of network-construction time rather than state-
propagation time. Besides, it is common practice to introduce
a short pre-simulation before the actual simulation to give the
network dynamics time to level out; the state propagation phase
is only recorded when potential startup transients have decayed
(Rhodes et al., 2019). The model time for pre-simulation can be
configured via a parameter in beNNch. For simplicity, Figure 3
does not show this pre-simulation phase.

2.2.4. beNNch-models
We instantiate the “model” module with the repository
beNNch-models8 which contains a collection of PyNEST neuronal

8https://github.com/INM-6/beNNch-models

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 837549

https://github.com/INM-6/Builder
https://modules.readthedocs.io
http://lmod.readthedocs.io
https://github.com/INM-6/beNNch-models
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

network models, i.e., models that can be simulated using the
Python interface of NEST (Eppler et al., 2009). In principle, any
such model can be used in conjunction with beNNch; only a
few adaptations are required concerning the interfacing. On
the input side, the framework needs to be able to set relevant
model parameters. For recording the performance data, the
required Python timers (Section 2.2.3) must be incorporated.
On the output side, the model description is required to
include instructions to store the recorded performance data and
metadata in a standardized format. Finally, if a network model is
benchmarked with different NEST versions that require different
syntax, as is the case for switching between NEST 2.X and NEST

3.X, the model description also needs to be adjusted accordingly.
Which model version is used in a simulation can thereby be
deduced from knowing which simulator version was tested. For
fine-grained version tracking, we additionally record the commit
hash of beNNch-models and attach it as metadata to the results.
Instructions on how to adapt existing models are provided in the
documentation of beNNch-models.

The current version of beNNch provides benchmark versions
of three widely studied spiking neuronal network models:
the two-population HPC-benchmark model9, the microcircuit
model10 by Potjans and Diesmann (2014) representing 1mm2

of cortical surface with realistic neuron and synapse densities,
and the multi-area model11 by Schmidt et al. (2018a,b) consisting
of 32 microcircuit-like interconnected networks representing
different areas of visual cortex of macaque monkey. The model
versions used for this study employ the required modifications
described above.

2.2.5. config files
When executing benchmarks, the main user interaction with
beNNch consists of defining the characteristic parameters. We
separate this from the executable code by providing yaml-based
templates for “config files” to be customized by the user. Thereby,
the information that defines a benchmark experiment is kept
short and well arranged, limiting the number of files a user
needs to touch and reducing the risk of user errors on the
input side. Listing 1 presents an excerpt from such a config
file which has distinct sections to specify model, machine, and
software parameters. While some parameters are model specific,
standardized variable names are defined for parameters that are
shared between models.

2.2.6. JUBE
At this point, the first segment of the benchmarking workflow
(Figure 2) is complete and hence all necessary requirements
are set up: the software deployment provides the underlying
simulator (here: NEST with built-in instrumentation), the models
define the simulation, and the configuration specifies the
benchmark parameters. This information is now processed by
the core element of the framework: generating and submitting

9Original repository: https://github.com/nest/nest-simulator/blob/master/pynest/

examples/hpc_benchmark.py.
10Original repository: https://github.com/nest/nest-simulator/tree/master/

examples/nest/Potjans_2014.
11Original repository: https://github.com/INM-6/multi-area-model.

� �
parameterset:

- name: model_parameters

parameter:

can be either "metastable" or "ground"

- {name: network_state, type: string, _: "metastable"}

biological model time to be simulated in ms

- {name: model_time_sim, type: float, _: "10000."}

"weak" or "strong" scaling

- {name: scaling_type, _: "strong"}

- name: machine_parameters

parameter:

number of compute nodes

- {name: num_nodes, type: int, _: "4,8,12,16,24,32"}

number of MPI tasks per node

- {name: tasks_per_node, type: int, _: "8"}

number of OpenMP threads per task

- {name: threads_per_task, type: int, _: "16"}

- name: software_parameters

parameter:

simulator used for executing benchmarks

- {name: simulator, _: "nest-simulator"}

simulator version

- {name: version, _: "3.0"}
� �

Listing 1: Excerpt of a config file in yaml-format for setting
model, machine, and software parameters for benchmarking
the multi-area model. When giving a list (e.g., for num_nodes),
a job for each entry of the list is created. Model parameters:
network_state describes particular model choices that induce
different dynamical fixed points; model_time_sim defines the
total model simulation time in ms; scaling_type sets up the
simulation for either a weak- or a strong-scaling experiment.
The former scales the number of neurons linearly with the
used resources which might be ill-defined for anatomically
constrained models. Machine parameters: num_nodes defines
the number of nodes over which the scaling experiment shall be
performed; tasks_per_node and threads_per_task specify
the number of MPI tasks per node and threads per MPI task
respectively. Software parameters: simulator and version

describe which version of which simulator to use (and to install
if not yet available on the machine).

simulation jobs and gathering and unifying the obtained
performance data. We construct this component of beNNch

around the xml-based JUBE4 software tool using its yaml

interface. Built around the idea of benchmarking, JUBE can
fulfill the role of creating job scripts from the experiment,
user and machine configuration, their subsequent submission,
as well as gathering and unifying of the raw data output.
Here, we focus on the prevalent scheduling software SLURM

(Yoo et al., 2003), but extensions to allow for other workload
managers would be straightforward to implement. Our approach
aims at high code re-usability. Model specific code is kept to
a minimum, and where necessary, written in a similar way
across models. Adhering to a common interface between JUBE

scripts and models facilitates the integration of new models,
starting from existing ones as a reference. Since JUBE can
execute arbitrary code, we use it to also record metadata in

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 837549

https://github.com/nest/nest-simulator/blob/master/pynest/examples/hpc_benchmark.py
https://github.com/nest/nest-simulator/blob/master/pynest/examples/hpc_benchmark.py
https://github.com/nest/nest-simulator/tree/master/examples/nest/Potjans_2014
https://github.com/nest/nest-simulator/tree/master/examples/nest/Potjans_2014
https://github.com/INM-6/multi-area-model
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

conjunction with each simulation. This includes specifications of
the hardware architecture as well as parameters detailing the run
and model configuration.

2.2.7. git-annex
Without a mature strategy for sharing benchmark results,
communication can be a major obstacle. Typically, each
researcher has their preferred workflow, thus results are shared
over different means of communication, for example, via email
attachments, cloud-based storage options, or git repositories.
This makes it difficult to maintain an overview of all results,
especially if researchers from different labs are involved. Ideally,
results would be stored in a decentralized fashion that allows for
tracking the history of files while allowing on-demand access for
collaborators. To this end, we use git-annex12 as a versatile base
technology; it synchronizes file information in a standard git

repository while keeping the content of large files in a separate
object store, thereby keeping the repository size at a minimum.
git-annex is supported by the GIN platform13 which we employ
for organizing our benchmark results. In addition, it allows for
metadata annotation: instead of relying on separate files that store
the metadata, git-annex can directly attach them to the data
files, thereby implementing the “metadata annotation” module.
Previously this needed to be cataloged by hand, whereas now
the framework allows for an automatic annotation, reducing
the workload on researchers and thus probability of human
mistakes. A downside of following this approach is a limitation
to command line-based interaction. Furthermore, git-annex is
not supported by some of the more widely used git repository
hosting services such as GitHub or GitLab in favor of Git LFS.

A difficult task when scaling up the usage of the framework
and, by extension, handling large amounts of results, is providing
an efficient way of dealing with user queries for specific
benchmark results. Attaching the metadata directly to the
performance data not only reduces the visible complexity of the
repository, but also provides an efficient solution: git-annex
implements a native way of selecting values for metadata keys
via git-annex “views”, automatically and flexibly reordering
the results in folders and sub-folders accordingly. For example,
consider the case of a user specifying the NEST version to
be 3.0, the tasks_per_node to be either 4 or 8, and the
network_state to be either metastable or ground. First,
git-annex filters out metadata keys for which only a single
value is given; in our example, only benchmarks conducted with
NEST version 3.0 remain. Second, a hierarchy of directories
is constructed with a level for each metadata key for which
multiple options are given. Here, the top level contains the
folders “4” and “8”, each containing sub-folders metastable

and ground where the corresponding results reside. However,
it may be difficult to judge exactly what metadata is important
to collect; oftentimes, it is only visible in hindsight that certain
metadata is relevant for the simulation performance. Therefore,
recording as much metadata as possible would be ideal, allowing
for retrospective investigations if certain metadata becomes

12https://git-annex.branchable.com
13https://gin.g-node.org

relevant after run time. Importantly, a balance needs to be
struck between recording large amounts of metadata and keeping
the volume of annotations manageable. In our implementation,
we choose to solve this issue by recording detailed metadata
about the system, software, and benchmarks, but only attaching
what we currently deem relevant for performance to the data.
The remaining metadata is archived and stored alongside the
data, thereby sacrificing ease of availability for a compact
format. This way, if future studies discover that a certain
hardware feature or software parameter is indeed relevant
for performance, the information remains accessible also for
previously simulated benchmarks while staying relatively hidden
otherwise. Furthermore, using git as a base technology allows
to collect data sets provided by different researchers in a curated
fashion by using well-established mechanisms like branches
and merge-request reviews. This use of git-annex thereby
implements the “metadata based filtering and sorting” module
of Figure 2.

2.2.8. beNNch-plot
To enable a comparison between plots of benchmark results
across the dimensions illustrated in Figure 1 it is paramount
to use the same plotting style. To this end, we have developed
the standalone plotting package beNNch-plot14 based on
matplotlib (Hunter, 2007). Here, we define a set of tools to
create individual plot styles that can be combined flexibly by
the user. The standardized definitions of performance measures
employed by beNNch directly plug into this package. In addition,
beNNch-plot includes default plot styles that can be readily
used, and provides a platform for creating and sharing new
ones. beNNch utilizes the default plot styles of beNNch-plot for
both initial validation—a preliminary plot offering a quick glance
at the results, thereby enabling a swift judgement whether any
problems occurred during simulation—and visualization of the
final results.

2.2.9. Flip-Book
When devising a method of presenting benchmark results
we found the following aspects to be of crucial relevance
for our purposes. First, it should be possible to navigate the
results such that plots are always at the same screen position
and have the same dimensions, thereby minimizing the effort
to visually compare results. To achieve such a format, we
decided to create a flip-book in which each slide presents the
results of one experiment. Second, relevant metadata should be
displayed right next to the plots. This can include similarities
across the runs, but more importantly should highlight the
differences. As each user might be interested in different
comparisons, we let the user decide which kind of metadata
should be shown. Third, it should be easy to select only the
benchmarks of interest in order to keep the number of plots
small. This is already handled by the filtering provided by
git-annex views as described in Section 2.2.7. As an underlying
technology for programmatically creating HTML slides we use

14https://github.com/INM-6/beNNch-plot

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 837549

https://git-annex.branchable.com
https://gin.g-node.org
https://github.com/INM-6/beNNch-plot
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

TABLE 1 | Shorthand notation and description of NEST versions used in this work.

Shorthand notation

of NEST version

Description

2.20.2 Official 2.20.2 release (Fardet et al., 2021)

3.0rc Release candidate for 3.0

3.0rc+ShrinkBuff 3.0rc plus shrinking MPI buffers

3.0rc+ShrinkBuff+SpikeComp 3.0rc+ShrinkBuff plus spike

compression

3.0 Official 3.0 release (Hahne et al., 2021) =

3.0rc+ShrinkBuff+SpikeComp plus

neuronal input buffers with multiple

channels

jupyter notebooks15 in conjunction with the open source HTML
presentation framework reveal.js16. An exemplary flip-book
containing the NEST performance results described in this work is
published alongside the beNNch repository17. By respecting these
considerations, our proposed solution offers a way of sharing
benchmarking insights between researchers that is both scalable
and flexible.

2.2.10. Exchanging External Modules
beNNch is written in a modular fashion; as such, it is
possible to exchange certain modules without compromising
the functionality of the framework. In particular, the “external
modules” (see Figure 2) are implemented such that an exchange
is straight-forward to implement. This section presents a recipe
to exchange the “job execution” module, i.e., the simulator,
along with necessary changes in “data generation” and “model”
that follow:

First, the simulator to be substituted instead of NEST needs
to be properly installed. Builder—our implementation of the
“software deployment” module—provides the flexibility to install
any software as well as make it loadable via a module system.
Thus, a plan file specifying dependencies as well as source
code location and installation flags needs to be created for the
new simulator.

Second, models compatible with the new simulator need to be
added. On the framework side, the execute commands may need
to be adapted. Required adaptations to the models are the same
as for PyNEST models and are described in Section 2.2.4.

Third, the instrumentation needs to be changed. As NEST has
built-in instrumentation, only superficial timing measurements
are necessary on the model level. Depending on the new
simulator’s existing ability to measure performance, timing
measurements might need to be implemented on the simulator
or model level. If different measurements than implemented
are of interest, a simple addition to an existing list in
beNNch suffices to add the recorded data to the csv-format
result file.

15https://jupyter.org
16https://github.com/hakimel/reveal.js
17https://inm-6.github.io/beNNch

2.3. Using beNNch for Simulator
Development
For the development of simulation software with the goal to
optimize its performance, it is vital to focus efforts on those
parts of the simulation loop that take the most time to complete.
Benchmarking can help in identifying performance bottlenecks
and testing the effect of algorithmic adaptations. However, the
dimensions of benchmarking identified in Figure 1 make this
difficult: to guarantee that observed differences in performance
are caused by changes in the simulator code, many variables
need to be controlled for, such as hardware and software
configurations as well as simulator versions. General-purpose
simulators also need to be tested with respect to different settings
and applications to ensure that a performance improvement
in one case does not lead to a crucial decline in another
case. Neuronal network simulators are one such example as
they should exhibit reasonable performance for a variety of
different models with different resource demands. A systematic
assessment of the scaling performance covering the relevant
scenarios is therefore a substantial component of the iterative
simulator development.

beNNch, as an implementation of the workflow outlined in
Section 2.1, provides a platform to handle the complexity of
benchmarking while staying configurable on a low level. The
following suggests how beNNch can support the process of
detecting and tackling performance issues of a simulator. In a
first step, exploration is necessary to identify the performance
bottlenecks of the current version of the simulation engine.
As many software and model parameters need to be explored,
the centralized location of configuration parameters built
into beNNch helps in maintaining an overview of conducted
experiments. Neuronal network simulations can usually be
decomposed into separate stages, such as neuronal update and
spike communication. The instrumentation and visualization of
these stages is part of beNNch and points the researcher to the
respective sections in the code. If a potential bottleneck for
a certain model is identified, tests with other models provide
the basis for deciding whether these are model- and scale-
specific or are present across models, hinting at long-reaching
issues of the simulator. beNNch’s native support for handling the
benchmarking of multiple models alleviates the researchers from
operating a different code base for every model. In the process
of solving the simulator issue, running further benchmarks
and directly comparing new results can assist in deciding
which adaptations bear fruit. The standardized visualization
tools of beNNch support spotting differences in performance
plots. Finally, an ongoing development of a neuronal network
simulator should respect the value of insights gained by resource-
intensive benchmarks. To this end, beNNch implements a
decentralized storage of standardized performance results. In
addition to preserving information for the long term, this also
helps in communicating between researchers working on the
simulator’s development.

2.3.1. Use Case: NEST Development
This section illustrates the relevance of performance benchmarks
for the development of neuronal network simulators with the

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 837549

https://jupyter.org
https://github.com/hakimel/reveal.js
https://inm-6.github.io/beNNch
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

example of recent changes to the NEST code base; for historical
context see Section 4.1.1. We use beNNch to outline crucial steps
of the development from the release candidate NEST 3.0rc to
the final NEST 3.0 and also discuss improvements compared
to the latest NEST 2 version (NEST 2.20.2, Fardet et al.,
2021). Table 1 summarizes the NEST versions employed in
this study.

Regarding the dimensions of HPC benchmarking in Figure 1,
this use case primarily addresses the “Simulators” dimension by
testing different NEST versions and the “Models and parameters”
dimension by testing different network models; the approach can
be extended similarly to the other dimensions.

Our starting point is the weak-scaling experiments of
the HPC-benchmark model (Jordan et al., 2018); the times
for network construction and state propagation as well as
the memory usage remain almost constant with the newly
introduced 5g kernel (see their Figures 7, 8). Figure 4 shows
similar benchmarks of the same network model conducted
with beNNch using the release candidate in Figure 4A and
the final release in Figure 4B. The graph design used here
corresponds to the one used in the flip-book format by the
framework. A flip-book version of the results shown in this
work can be accessed via the GitHub Pages instance of the
beNNch repository17. While the release candidate in Figure 4A

exhibits growing state-propagation times when increasing the
number of nodes, network-construction times stay constant
and are, for Tmodel = 1 s, small, making up less than
10% of the total simulation time. The phases “delivery” and
“communication” both contribute significantly to the state-
propagation time. Jordan et al. (2018) report real-time factors
of about 500 (e.g., their Figure 7C) in contrast to values
smaller than 40 shown here and their simulations are by
far dominated by the delivery phase (see their Figure 12).
A comparison of our data and the data of Jordan et al.
(2018) is not straightforward due to the inherent complexity
of benchmarking and we will here emphasize a few concurring
aspects: first, Jordan et al. (2018) run their benchmarks on the
dedicated supercomputers JUQUEEN (Jülich Supercomputing
Centre, 2015) and K Computer (Miyazaki et al., 2012) while our
benchmarks use the recent cluster JURECA-DC (Thörnig and
von St. Vieth, 2021). Each compute node of the BlueGene/Q
system JUQUEEN is equipped with a 16-core IBM PowerPC
A2 processor running at 1.6GHz and each node of the K
Computer has an 8-core SPARC64 VIIIfx processor operating at
2GHz; both systems provide 16GB RAM per node. In contrast,
the JURECA-DC cluster employs compute nodes consisting of
two sockets, each housing a 64-core AMD EPYC Rome 7742
processor clocked at 2.2GHz, that are equipped with 512GB
of DDR4 RAM. Here, nodes are connected via an InfiniBand
HDR100/HDR network. Second, Jordan et al. (2018) use 1
MPI process per node and 8 threads per process while our
simulations are performed throughout this study with 8 MPI
processes per node and 16 threads per process. Third, Jordan et al.
(2018) simulate 18,000 neurons per MPI process while we only
simulate 11, 250 neurons per process. This list of differences is not
complete and only aims to illustrate that potential discrepancies
in benchmarking results may be explained by differences in

hardware, software, simulation and model configuration, and
other aspects exemplified in Figure 1.

Having demonstrated that beNNch can perform weak-scaling
experiments of the HPC-benchmark model as done in previous
publications, we next turn to strong-scaling benchmarks of
the multi-area model (Schmidt et al., 2018a). To fulfill the
memory requirements of the model, at least three compute nodes
of JURECA-DC are needed; here, we choose to demonstrate
the scaling on four to 32 nodes. Initially, we compare the
latest NEST 2 version (Figure 5A) with the release candidate
for NEST 3.0 (Figure 5B). The improved parameter handling
implemented in NEST 3.0rc reduces the network-construction
time. However, the communication phase here largely dominates
state propagation in both NEST versions shown; both use the
original 5g kernel. Previous simulations of the HPC-benchmark
model have not identified the communication phase as a
bottleneck (Jordan et al., 2018, Figure 12). Communication only
becomes an issue when then smallest delay in the network is of
the same order as the computation step size because NEST uses the
smallest delay as the communication interval for MPI. While the
HPC-benchmark model uses 1.5ms for all connections—which
is a good estimate for inter-area connections—the multi-area
model andmicrocircuit use distributed delays with a lower bound
of 0.1ms leading to a fifteen-fold increase in the number MPI
communication steps.

The following identifies and eliminates the main cause
for the large communication time in case of the multi-area
model, thus introducing the first out of three performance-
improving developments applied to NEST 3.0rc. Cross-node
communication, handled in NEST by MPI, needs to strike a
balance between the amount of messages to transfer and the size
of each message. The size of the MPI buffer limits the amount
of data that fits into a single message, and is therefore the main
parameter controlling this balance. Ideally, each buffer would fit
exactly the right amount of information by storing all spikes of
the process relevant for the respective communication step. Due
to overhead attached to operating on additional vectors, a scheme
in which the buffer size adapts precisely for each MPI process
for each communication step can be highly inefficient. Therefore,
in cases where communication is roughly homogeneous, it is
advantageous to keep the exchanged buffer between all processes
the same size, as is implemented in NEST 3.0rc. While buffer
sizes are constant across processes, NEST does adapt them
over time to minimize the number of MPI communications.
Concretely, whenever the spike information that a process needs
to send exceeds what fits into one buffer, the buffer size for
the next communication step is increased. However, the original
5g kernel of NEST does not shrink buffer sizes. In networks
such as the multi-area model, the firing is not stationary over
time; transients of high activity propagate through the network
(Schmidt et al., 2018a). In general, startup transients may cause
high spike rates only in the beginning of a simulation unless
the network is carefully initialized (Rhodes et al., 2019). If the
rates decrease, the spiking information becomes much smaller
than the available space in the MPI buffer. Consequently, the
original 5g kernel preserves unnecessarily large buffer sizes
which results in the communication of useless data. To address

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 837549

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

A

B

FIGURE 4 | Weak-scaling performance of the HPC-benchmark model on JURECA-DC. (A) NEST 3.0rc. The left graph shows the absolute wall-clock time Twall
measured with Python-level timers for both network construction and state propagation [legend in (B)]; the model time is Tmodel = 1 s. Error bars indicate variability

across three simulation repeats with different random seeds. The top right graph displays the real-time factor defined as wall-clock time normalized by the model time.

Built-in timers resolve four different phases of the state propagation [legend in (B)]: update, collocation, communication, and delivery. Pink error bars show the same

variability of state propagation as the left graph. The lower right graph shows the relative contribution of these phases to the state-propagation time. Same colors used

for phases as in Figure 3. (B) NEST 3.0. Same display as (A).

this issue, a mechanism for automatically shrinking the buffer
sizes has been introduced. For details see Section 4.1.2. The
release candidate with the implementation of shrinking MPI
buffers (NEST 3.0rc+ShrinkBuff) approximately halves the
time spent in the communication phase compared to the original
implementation (compare Figures 5B,C).

Next, we assess the strong-scaling performance of the
microcircuit model (Potjans and Diesmann, 2014). The model
size is similar to the size of one of the 32 areas of the multi-
area model. The microcircuit therefore requires fewer resources.
We show results of the model run on one to six compute nodes;
for a detailed analysis of NEST’s thread scaling performance
on the example of this model refer to Kurth et al. (2021).
Using NEST 3.0rc, the microcircuit is simulated faster than
the HPC-benchmark and the multi-area models and achieves
approximately real time (Twall/Tmodel ≈ 1, Figure 6A). The finer
resolution of the vertical axis of the top-right graph reveals a
small gap between the state propagation measured with Python
timers and the sum of the phases timed on the C++ level which
is not visible for the other models. The state-propagation time

of the microcircuit is also dominated by the communication
phase similarly to the respective benchmarks with the multi-
area model (Figure 5B) and even increases with the number of
nodes used. However, shrinking MPI buffers does not reduce
communication significantly (data not shown), indicating that
we face a different bottleneck with the microcircuit model.
With on the order of 103 outgoing connections per neuron,
a single neuron of this model has multiple targets on each
MPI process and, in particular, on multiple threads of a
given process. Since the 5g kernel is designed to send out
a separate copy of a neuron’s spiking information to each
target thread, multiple copies of identical information about
the activity of a presynaptic neuron may be sent to the same
process, causing unnecessary communication load. To tackle
this, we devise a spike compression algorithm which only
requires transmitting the spiking information once to each MPI
process where it is locally routed to the receiving threads. For
details see Section 4.1.3. This algorithm leads to a significant
reduction in communication time for the microcircuit model
(compare Figures 6A,B).

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 837549

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

A

B

C

FIGURE 5 | Strong-scaling performance of the multi-area model on JURECA-DC. Same display as in Figure 4. The multi-area model is simulated in its meta-stable

state leading to a high amount of spikes that are communicated. The model time is Tmodel = 10 s. Simulations are repeated for 10 different random seeds.

(A) NEST 2.20.2 (latest NEST 2 release). (B) NEST 3.0 release candidate. (C) NEST 3.0 release candidate with shrinking MPI buffers.

The microcircuit model easily fits within the main memory
of one compute node of JURECA-DC. Due to the simplicity
of the employed model neurons and the absence of synaptic
plasticity mechanisms, the network model causes little workload
during update and delivery in a strong-scaling experiment—
real-time simulation is already possible with a single compute
node. Consequently, communication naturally starts to dominate
the state-propagation time at a few compute nodes even with
the spike-compression optimization described above. While
increasing the number of compute nodes from one to two still

results in a fair reduction of state-propagation time, scaling
is already sublinear, and increasing the number of compute
nodes further hardly results in further improvement. Therefore,
simulation phases other than the so far discussed communication
become important if the objective of the optimizations is,
for example, achieving real-time performance with even fewer
resources. In the following we highlight an algorithm adaptation
that concentrates on the update phase. A redesign of the
neuronal input buffers prevents neurons from retrieving the
input values for different channels, for example, excitatory and

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 837549

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

A

B

C

FIGURE 6 | Strong-scaling performance of the microcircuit model on JURECA-DC. Same display as in Figure 4. The model time is Tmodel = 10 s. Simulations are

repeated for 10 different random seeds. (A) NEST 3.0 release candidate. (B) NEST 3.0 release candidate with spike compression and shrinking MPI buffers.

(C) NEST 3.0.

inhibitory, from separate locations in memory. Thereby, the
cache can be better utilized during neuronal updates. Instead
of maintaining separate buffers for the input channels as in the
original 5g kernel, neurons maintain a single buffer with all
inputs for a particular simulation time step stored contiguously
in memory. For details see Section 4.1.4. This adaptation is
most effective for network models with short minimum synaptic
delays; both the microcircuit and the multi-area model use
0.1ms. Figure 6C shows the resulting decrease in update time for
few compute nodes.

In summary, the analysis with beNNch exposes the
communication phase as a major performance bottleneck
in microcircuit and multi-area model simulations with the
release candidate NEST 3.0rc. The underlying problem is,
however, a different one for each of the two models, and they
are rectified with different adaptations to the code: the shrinking
MPI buffers (Section 4.1.2) improve the performance of the
multi-area model while spike compression (Section 4.1.3)
increases simulation speed of the microcircuit model. Notably,
none of the adaptations introduce performance regressions for

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 837549

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

the respective other model (data not shown). In addition, the
update phase is improved by introducing neuronal input buffers
with multiple channels (Section 4.1.4). Returning to the HPC-
benchmark model, Figure 4B shows that the kernel adaptations
are not detrimental to the originally tested model; the overall
state-propagation time is preserved with the final NEST 3.0

release. However, the reduced communication and update
times here come at the cost of increased delivery times due to
an additional indirection introduced with spike compression.
Ongoing work targets the delivery phase (Pronold et al., 2021,
2022) and gives a perspective for performance improvements in
future NEST releases.

3. DISCUSSION

Benchmarking studies in the field of neuronal network
simulations are often hard to reproduce and compare.
To overcome this problem, we propose a unified and
modular workflow for defining, running, and analyzing
benchmark simulations. We identify five dimensions spanning
the space of the benchmarking endeavor, and work out
their specific challenges: hardware configuration, software
configuration, simulators, models and parameters, and
researcher communication. The benchmarking concept
developed in this study encompasses all five dimensions and
proposes solutions for the posed challenges in the form of self-
contained and interacting modules. Each module contributes
to one of the main workflow segments: configuration and
preparation, actual benchmarking, data- and metadata handling,
and data presentation. As a proof of concept, we provide a
reference implementation of the framework (beNNch), describe
the concrete underlying technologies, and apply it to a specific
use case: assessing and comparing the performance of different
versions of the neuronal network simulator NEST for three
different network models. The reference implementation goes
beyond existing benchmarking environment software such
as JUBE: it adds an interface to models, installs and deploys
simulation software, automates data and metadata annotation,
and implements storage and presentation of results. The use
case illustrates how the framework helps to focus simulator
development by detecting performance bottlenecks, and
demonstrates the relevance of an accessible and comprehensive
benchmarking setup. The software is ready to use, not only for
developers of simulation technology, but also for researchers
seeking to find optimal performance configurations for
their models.

The proposed workflow is generic and not restricted to
benchmarking neuronal network simulations with NEST. The
reference implementation, however, still faces limitations and
open problems. First, it is a priori unclear what parameters,
configurations or external influences may possibly contribute
to differences in the performance of complex software systems
such as simulation engines. beNNch seeks to address this problem
by employing a metadata archive which—in addition to the
selection of metadata directly attached to the performance
results—tracks further metadata that are seemingly insignificant

at the time of simulation but may become relevant in
future investigations. Exhaustiveness, however, can not be
claimed. For the exploration and presentation of benchmarking
data, the reference implementation uses metadata to filter
benchmark results and to highlight differences in a flip-
book format. However, even if all relevant metadata were
tracked, selecting sensible metadata keys for filtering and
highlighting is a hard problem. In the current implementation,
this requires knowledge about existing results and, therefore,
human input. Future solutions could, for example, categorize
and hierarchically structure metadata keys to facilitate and semi-
automatize these steps. Second, the networkmodel specifications,
expressed in the PyNEST set of commands for the Python
language, require adaptations to interface with the benchmarking
framework. These include accepting parameters passed by
JUBE benchmarking files, adjusting the model specification to
work with different versions of the simulation engine, and
storing recorded metadata and performance measures such
as the duration of simulation phases. At the moment, it
is a manual task to keep the benchmarking model version
up to date with the original model version, which is error
prone. We use rigorous version control of the code, automatic
checking for errors (via exceptions), and continuous testing for
correct simulation outcome to reduce the risk of errors. This
strategy could be automatized further in the future by finding
methods to automatically inject respective instrumentation into
the executable model descriptions. To mitigate the additional
overhead, we keep the necessary changes as minimal as
possible, thereby lowering the entry barrier for new models.
Third, the reference implementation makes concrete choices
on the employed tools. Alternatives, however, may be viable.
For example, the required software for the simulations is
installed with Builder which can be integrated with other
package management systems or replaced by a different
solution. Our strategy exploits the native software environment
available on a compute cluster which is typically specifically
configured for the underlying hardware. An alternative is to
use containerized systems such as Docker18 or Singularity19.
Replacing NEST by a different simulator requires adapting the
model implementations. Expressing the models in the simulator-
independent language PyNN (Davison et al., 2009) instead
of PyNEST would avoid this. However, additional layers of
complexity such as PyNN may have an impact on performance,
making it more challenging to pinpoint bottlenecks in the
simulator backend. JUBE as an environment to manage jobs
on compute clusters could be substituted by tools such as
ecFlow20, AiiDA21 (Huber et al., 2020), or cylc (Oliver
et al., 2021). Further, one could replace git-annex with,
e.g., DataLad22 which is based on the same technology but
extends its functionality and provides slightly different metadata
handling. The flip-book-style presentation of results could also

18https://www.docker.com
19https://sylabs.io
20https://confluence.ecmwf.int/display/ECFLOW
21https://www.aiida.net
22https://www.datalad.org

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2022 | Volume 16 | Article 837549

https://www.docker.com
https://sylabs.io
https://confluence.ecmwf.int/display/ECFLOW
https://www.aiida.net
https://www.datalad.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

be replaced or supplemented with other approaches, for example
an automatically generated overview figure showing results from
multiple benchmarking runs together, similar to Figures 4–6 in
this article. Furthermore, tools like Rust Compiler Performance
Monitoring and Benchmarking23 or Sacred24 cover multiple
aspects of the workflow and can be a source of inspiration for
further development of beNNch. Fourth, beNNch presently focuses
on a single performance measure: the time-to-solution. However,
different performance aspects, such as energy-to-solution and
memory consumption, may also be of interest. Energy-to-
solution, for example, combines power consumption and time-
to-solution. Monitoring both power consumption and time-to-
solution enables researchers to determine an optimal number
of compute nodes balancing speed and energy consumption
(van Albada et al., 2018). The memory consumption of the
simulation dictates, for instance, the smallest number of nodes
required to simulate a network of a given size, or the largest
network size possible to simulate on a given machine. Reducing
memory requirements was a major driving force behind the
improvements to the NEST kernel (Helias et al., 2012; Kunkel
et al., 2012, 2014; Jordan et al., 2018) in the past decade. The
spike compression introduced here reduces the time-to-solution
(communication phase, Figures 4, 6). However, this code change
directly affects the memory consumption. Assuming that the
number of postsynaptic targets per neuron is fixed, the memory
overhead is negligible if the number of MPI processes is small.
But in the limit of a large number of MPI processes, i.e., when
each neuron has at most one target on each process, the effective
size of each synapse is increased by 8 byte. In this limit, users thus
are encouraged to actively deactivate the “spike compression”
feature. This example illustrates that performance optimizations
often have to find a balance between acceptable solutions for
different measures. Due to its modular structure, beNNch is ready
to include further performance measures.

To achieve long term sustainability, organized and openly
available communication on development is essential. Adhering
to this guideline, we have developed beNNch as an open source
software project from the start, making use of a public issue
tracker, suggestions via pull requests, public code reviews, and
detailed documentation. This approach facilitates constructive
communication between users and developers which enables a
targeted progression of the framework by demand. While the
concrete application of NEST benchmarks of neuronal network
models shaped our specific implementations, the modular
structure allows for adaptation to other use cases. In certain
domains of software development, it is already common practice
to verify each code change on the basis of syntax, results, and
other unit tests. The proposed automated approach to execute
performance benchmarks creates the opportunity to integrate
an aspect of validation directly into the development cycle.
This way, performance regressions of algorithm adaptations
are immediately exposed, while positive effects can readily
be demonstrated. For high-performance software, however,
comprehensive checks for scaling performance are particularly

23https://github.com/rust-lang/rustc-perf
24https://github.com/IDSIA/sacred

costly because they require compute time on state-of-the-art
clusters and supercomputers. Therefore, it is important to
conduct the performance benchmarks purposefully and with
care. By organizing benchmarking results and keeping track
of metadata, beNNch helps to avoid redundant benchmark
repeats and instead encourages a direct comparison with
previous results.

It has long been recognized that software development
in science underlies different constraints and needs to fulfill
different requirements as compared to industry (Diesmann
and Gewaltig, 2002). The software crisis in neuroscience at
the beginning of the century led to the foundation of the
International Neuroinformatics Coordinating Facility (INCF)
in 2005. A first INCF report in 2006 addresses the software
challenges of large-scale modeling in neuroscience (INCF
Secretariat et al., 2018) and recommends establishing a common
set of benchmark models and a corresponding framework
for assessing accuracy and efficiency. Furthermore, the report
advocates benchmarking neuroscientifically relevant published
models rather than network models constructed specifically for
the purpose of benchmarking only. In 2007, the communitymade
a first effort in verifying simulation codes by using a number of
simple network models (Brette et al., 2007). Executable model
descriptions are, in part, already expressed in the simulator
independent language PyNN (Davison et al., 2009), but there
is no support by a common benchmarking framework, and a
focus is set on correctness rather than computational efficiency.
The emerging field of Research Software Engineering (RSE) is
studying how, in the scientific setting, reliable and sustainable
software can be developed, developers can be educated for this
purpose, and science organizations and politics can be made
aware of its strategic relevance (Manifesto25 and Akhmerov
et al., 2019). Obvious differences to software engineering in
the industrial setting include research code being developed
by scientists rather than experienced software developers, the
time-constrained and thesis-bound nature of scientific projects,
and the continuous integration of new contributors into the
development process. Our study contributes to RSE conceptually
by identifying the dimensions of benchmarking simulation
technology and proposing a general workflow capable of coping
with the complexity, and practically by developing a reference
implementation of a benchmarking framework which can be
used to test and refine the concepts. It is too early to tell
quantitatively whether the benchmarking framework improves
the collaboration in a joint project and the communication
between researchers in the community.

The proposed framework enables benchmarking of research
software to evolve from one-off tasks of individual researchers
to a collaborative routine effort, thereby increasing the
benchmarking capacity and reducing its susceptibility to
errors. Making beNNch accessible to the community as an
open-source software puts the concept to the test. We are
looking forward to learn how the current implementation of
the framework’s components are received and adapted to other
applications. Due to the conceptual foundation and modular

25https://www.software.ac.uk/about/manifesto

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 837549

https://github.com/rust-lang/rustc-perf
https://github.com/IDSIA/sacred
https://www.software.ac.uk/about/manifesto
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

structure, we hope that beNNch can adjust to future requirements
and ultimately help increase the complexity and explanatory
scope of brain models. The benchmarking concepts developed in
this work are not limited to neuroscience and can be transferred
to other types of simulation research.

4. MATERIALS AND METHODS

4.1. NEST Developments
4.1.1. Brief History of NEST
The series of NEST 2.X releases includes enhancements, bug
fixes, and contributions to maintenance with only marginal
effects on the PyNEST user interface (Eppler et al., 2009).
Performance-related updates to the simulation kernel are
accomplished under the hood. The 3g kernel (Helias et al., 2012;
Kunkel et al., 2012) is in use from NEST 2.2.0 (van Albada
et al., 2015a). NEST 2.12.0 (Kunkel et al., 2017) introduces the
4g kernel (Kunkel et al., 2014) which implements novel data
structures allowing for an efficient and flexible representation
of sparse network connectivity on highly distributed computing
systems such as supercomputers. The 5g kernel (Jordan
et al., 2018) in NEST 2.16.0 (Linssen et al., 2018) continues
this direction of development toward an optimal usage of
HPC systems for large-scale simulations by disentangling the
memory usage per compute node from the total network
size. The transition from NEST 2 to NEST 3 corresponds to
a refurbishment of the simulator code which also breaks the
backwards compatibility of the user interface. While improved
high-level functionality and parameter handling are the primary
goals of this transition, the 5g kernel is supposed to remain.
In the past, performance changes due to kernel updates have
been predominantly assessed using the HPC-benchmark model.
The performance of the NEST 3.0 release candidate (“3.0rc”),
however, is in addition evaluated with the microcircuit and
multi-area model which exhibit a more complex connectivity
structure and a different distribution of synaptic delays. In this
way, so far undetected performance bottlenecks are discovered
and subsequently resolved, leading to the official release NEST

3.0 (Hahne et al., 2021).

4.1.2. Shrinking MPI Buffers
Motivated by reducing the memory footprint of the postsynaptic
infrastructure—necessary to deliver spikes to their process-
local targets—the 5g kernel of NEST 3.0rc prepares a separate
part of the MPI send buffer for each target process and only
includes the relevant spikes. Thus, each process is responsible
for sending the spikes of its neurons to all target processes
for each communication time step. NEST 3.0rc implements a
homogeneous buffer size across processes to avoid overhead
introduced by variable buffer sizes; in the latter case, each process
would need to complete two rounds of communication, one for
transmitting the size, and one for the actual spiking information.
Similarly, transmitting a certain amount of information via
sending MPI buffers is more efficient when fewer buffers—each
carrying more information—are sent. NEST 3.0rc consequently
aims to reduce the number of needed MPI buffers to only 1 by
dynamically increasing the global buffer size whenever a process

FIGURE 7 | Spike compression adds an additional indirection to post-synaptic

spike routing. Green arrow denotes original spike delivery introduced with the

5g kernel (Jordan et al., 2018, same display as their Figure 4A). Blue arrow

illustrates additional indirection with compressed spike delivery. Dashed arrows

indicate spikes from the same source neuron with target on a different thread.

cannot fit all spikes into the buffer. Specifically, every time more
than a single buffer needs to be sent by a process, NEST increases
the buffer size of the following communication step by a factor of
1.5. In this scheme, a reduction of buffer sizes is not implemented,
meaning that buffer sizes can only increase or stay constant. The
kernel of NEST 3.0rc+ShrinkBuff addresses this by introducing
the following algorithm for shrinking the global buffer size. In
each communication round in which only a single send buffer is
required, the buffer for the following round decreases by a factor
of 1.1. Even though this implementation leads to an oscillation of
buffer size for constant spiking activity, tests show that this simple
mechanism only introduces negligible cost while being robust.

4.1.3. Spike Compression
NEST’s 5g kernel (Jordan et al., 2018) introduces a two-tier
connection infrastructure for routing spikes. The connection
infrastructure consists of data structures on the presynaptic side
(the MPI process of the sending neuron) and the postsynaptic
side (the MPI process of the receiving neuron), cf. Section 2.2.3.
Communication of spikes is organized as follows: when a neuron
becomes active, its targets are retrieved from the local presynaptic
data structure. These targets represent indices of synapses in
the “thread-local” post-synaptic data structure through which
spikes are routed to the target neurons. The presynaptic side
then creates MPI buffers containing collections of such indices

Frontiers in Neuroinformatics | www.frontiersin.org 17 May 2022 | Volume 16 | Article 837549

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

which are subsequently communicated to the postsynaptic side
via the MPI Alltoall function. To deliver spikes on the
postsynaptic side, each thread uses the received spikes to index
its local postsynaptic data structure and register a spike in the
corresponding synapse (Figure 7, “original spike delivery”). If a
presynaptic neuron has targets on multiple threads of a process,
it hence has to send multiple spikes, i.e., indices in different
thread-local data structures, to the target process.

Here, we adapt this infrastructure as follows. We introduce
an additional data structure on the post-synaptic side which
is shared across threads (“process local”). This data structure
contains, arranged by source neuron, the indices of all process-
local synapses. While the pre-synaptic part of communicating
spikes remains essentially identical, the postsynaptic part incurs
an additional indirection: each entry in the MPI receive buffer
now represents an index in the new process-local postsynaptic
data structure. Using this index, each thread can retrieve the
indices of thread-local targets, to which it can then deliver spikes
as previously (Figure 7, “compressed spike delivery”; note that
the origin of the dashed arrow changes). In contrast to the
previous implementation, each presynaptic neuron thus sends at
most one spike to each process.

In NEST 3.0, spike compression is turned on by default, but
the previous 5g behavior can be recovered by setting:
� �
nest.SetKernelStatus({"use_compressed_spikes": False})
� �

4.1.4. Neuronal Input Buffers With Multiple Channels
Simulation technology for spiking neuronal networks requires
techniques to handle synaptic transmission delays. The reference
simulation code (Section 2.2.2) follows a globally time-
driven approach: spikes are constrained to a time grid and
regularly exchanged between MPI processes using collective
communication. The time grid defines the simulation time
step for neuronal updates, whereas the minimum synaptic
delay dmin in the network model defines the communication
interval (Morrison et al., 2005a), which comprises at least
one simulation time step. In the microcircuit model and the
multi-area model used in this study the minimum delay is
0.1ms (i.e., dmin = 1 simulation time step) and in the HPC-
benchmark model it is 1.5ms (i.e., dmin = 15 simulation
time steps). While communication and subsequent process-local
delivery of spikes define interaction points between neurons,
within a communication interval each neuron independently
updates its state for all time steps without interruption. Hence,
a simulation cycle of neuronal update, spike-communication,
and spike-delivery phase propagates the network state by one
communication interval, but within each update phase neurons
propagate their state in potentially shorter simulation time steps.
All spikes emitted by the process-local neurons during such
an update are immediately transmitted during the subsequent
communication and on the receiver side delivered to their target
neurons. Hence, to account for synaptic delays, neurons cannot
immediately integrate the incoming spikes into their dynamics,
but they need to buffer the inputs until the corresponding delays
elapse. To this end, neuronsmaintain input buffers of dmin+dmax

time slots, where dmax denotes the maximum synaptic delay in
the network (Figure 8A). The relative time origin S defining

A

C

B

FIGURE 8 | Neuronal input buffers accounting for synaptic delays in

simulations of spiking neuronal networks. (A) Structure of neuronal input

buffers assuming a minimum synaptic delay dmin of three simulation time steps

and a maximum delay dmax = 2dmin. To buffer upcoming inputs during

simulation a total buffer size of dmin + dmax time slots is required, which

corresponds to three communication intervals of three simulation time steps

each. After every spike communication and subsequent spike delivery to local

targets, simulation time is advanced, meaning that the relative time origin S
of the neuronal input buffers advances by dmin time slots with a wrap-around

at the buffer end. A pre-calculated and continuously updated look-up table

maps the index relative to S to the actual buffer index. Example: The relative

time origin S is located at the fourth time slot. Synaptic delays of the inputs of

the middle buffer segment elapse with the upcoming three simulation time

steps; the neuron integrates these inputs updating its state. Spikes are then

communicated and new inputs delivered to the neuron are added to the time

slots in the last or first buffer segment depending on the delay, which is at least

dmin and at most dmax. Relative time origin S then advances to the seventh

buffer slot (not shown). (B) Original neuronal spike buffers for two input

channels (e.g., excitatory and inhibitory synaptic inputs). For each channel a

separate resizable array buffers the inputs for the upcoming time slots.

(C) Multi-channel input buffer for two input channels. A single resizable array

stores the inputs for the upcoming time slots, where for each time slot a fixed

size array holds the inputs sorted by channel.

the time slots from which to retrieve inputs during update and
the time slots for adding inputs during spike delivery advances
by dmin time slots at the end of every simulation cycle. In this
way, the time slots that were read and reset during the update
of the current cycle become available for adding new inputs
during the spike delivery in the next cycle. For cases where
the communication interval comprises multiple simulation time
steps (e.g., HPC-benchmark model), input retrieval is most
costly for the first step as the corresponding buffer entry needs
to be loaded into cache, but then benefits from the already
cached subsequent buffer entries in the subsequent steps of
the communication interval. If, however, the communication
interval consists of only one simulation step due to a very short
minimal synaptic delay (e.g., microcircuit andmulti-area model),
input retrieval is costly for every simulation step as each step
is handled in a separate simulation cycle, and hence caching of
relevant input buffer entries is rendered ineffective during the
spike communication and delivery that follows each neuronal
update phase.

Frontiers in Neuroinformatics | www.frontiersin.org 18 May 2022 | Volume 16 | Article 837549

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

Most neuron models need to distinguish between input
channels to treat the corresponding inputs dynamically
differently, as for example, excitatory and inhibitory synaptic
inputs causing different post-synaptic responses. The original
input-buffer design required a separate resizable array per
channel storing the channel’s input values per time slot
(Figure 8B). This entailed retrieval of the input values for a
particular time step from separate locations in memory, which
amplifies the cache inefficiency during update for network
models with short minimum delays described above. To alleviate
this issue, the newly introduced input buffer allows storing the
input values for multiple channels per time slot contiguously in
fixed size arrays in a single resizable array (Figure 8C). Thus,
neurons now retrieve all input values for a particular time step
by accessing subsequent locations in memory in one pass.

DATA AVAILABILITY STATEMENT

The benchmarking framework is publicly available under https://
github.com/INM-6/beNNch. Benchmarks for this study were
performed with version 1.0 of beNNch which is available as
a release on GitHub and on Zenodo (https://doi.org/10.5281/
zenodo.6092768, Albers et al., 2022). The data sets generated and
analyzed for this study as well as the code to reproduce all figures
of this paper are available on Zenodo (https://doi.org/10.5281/
zenodo.5784633). An exemplary flip-book containing the results
shown in this work can be accessed under https://inm-6.github.
io/beNNch.

AUTHOR CONTRIBUTIONS

JA, JP, ACK, SBV, KHM,AP, DT, TT,MD, and JS: study design. JA,
JP, ACK, SBV, KHM, DT, and JS: implementation of beNNch. JA:
execution and analysis of benchmarks. JA, JP, SK, and JJ: figures.
AP and JA: implementation of shrinking MPI buffers. JJ and

JS: implementation of spike compression. SK: implementation
of neuronal input buffers with multiple channels. All authors
contributed to the writing of the manuscript and approved it
for publication.

FUNDING

This project has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and
Innovation under Specific Grant Agreement No. 945539 (Human
Brain Project SGA3) andNo. 754304 (DEEP-EST); theHelmholtz
Association Initiative and Networking Fund under project
number SO-092 (Advanced Computing Architectures, ACA);
the Joint Lab Supercomputing and Modeling for the Human
Brain; the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation)—368482240/GRK2416 and 491111487;
the Helmholtz Metadata Collaboration (HMC), an incubator-
platform of the Helmholtz Association within the framework of
the Information and Data Science strategic initiative, under the
funding ZT-I-PF-3-026.

ACKNOWLEDGMENTS

We thank the members of the NEST development community
for their contributions to the concepts and implementation of
the NEST simulator, and our colleagues in the Simulation and
Data Laboratory Neuroscience of the Jülich Supercomputing
Centre for continuous collaboration. We gratefully acknowledge
the computing time granted by the JARA Vergabegremium and
provided on the JARA Partition part of the supercomputer
JURECA at Forschungszentrum Jülich (computation grant
JINB33). We acknowledge the use of Fenix Infrastructure
resources, which are partially funded from the European Union’s
Horizon 2020 research and innovation programme through the
ICEI project under the grant agreement No. 800858.

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.

(2019). “Arbor— amorphologically-detailed neural network simulation library

for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia: IEEE), 274–282.

Akhmerov, A., Cruz, M., Drost, N., Hof, C., Knapen, T., Kuzak, M., et al. (2019).

Raising the profile of research software. doi: 10.5281/zenodo.3378572

Albers, J., Pronold, J., Kurth, A. C., Vennemo, S. B., Haghighi, M. K., Patronis, A.,

et al. (2022). beNNch. Version 1.0. Zenedo. doi: 10.5281/zenodo.6092768

Beyeler, M., Carlson, K. D., Chou, T.-S., Dutt, N., and Krichmar, J. L. (2015).

“CARLsim 3: A user-friendly and highly optimized library for the creation of

neurobiologically detailed spiking neural networks,” in 2015 International Joint

Conference on Neural Networks (IJCNN) (Killarney: IEEE).

Bhalla, U., Bilitch, D., and Bower, J. M. (1992). Rallpacks: A set of

benchmarks for neuronal simulators. Trends Neurosci. 15, 453–458.

doi: 10.1016/0166-2236(92)90009-w

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,

et al. (2007). Simulation of networks of spiking neurons: a review of tools and

strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory

and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.

doi: 10.1023/a:1008925309027

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:

Cambridge University Press.

Chou, T.-S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M., et al.

(2018). “CARLsim 4: An open source library for large scale, biologically detailed

spiking neural network simulation using heterogeneous clusters,” in 2018

International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro.

Crook, S. M., Davison, A. P., and Plesser, H. E. (2013). “Learning from the past:

approaches for reproducibility in computational neuroscience,” in 20 Years of

Computational Neuroscience, Springer Series in Computational Neuroscience,

ed J. Bower (New York, NY: Springer), 73–102.

Dai, W., and Berleant, D. (2019). “Benchmarking contemporary deep learning

hardware and frameworks: a survey of qualitative metrics,” in 2019 IEEE

First International Conference on Cognitive Machine Intelligence (CogMI) (Los

Angeles, CA).

Davison, A., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski,

D., et al. (2009). PyNN: a common interface for neuronal network

simulators. Front. Neuroinform. 2:10. doi: 10.3389/neuro.11.011.

2008

Frontiers in Neuroinformatics | www.frontiersin.org 19 May 2022 | Volume 16 | Article 837549

https://github.com/INM-6/beNNch
https://github.com/INM-6/beNNch
https://doi.org/10.5281/zenodo.6092768
https://doi.org/10.5281/zenodo.6092768
https://doi.org/10.5281/zenodo.5784633
https://doi.org/10.5281/zenodo.5784633
https://inm-6.github.io/beNNch
https://inm-6.github.io/beNNch
https://doi.org/10.5281/zenodo.3378572
https://doi.org/10.5281/zenodo.6092768
https://doi.org/10.1016/0166-2236(92)90009-w
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1023/a:1008925309027
https://doi.org/10.3389/neuro.11.011.2008
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

Diesmann, M., and Gewaltig, M.-O. (2002). “NEST: an environment for neural

systems simulations,” in Forschung und Wisschenschaftliches Rechnen, Beiträge

zum Heinz-Billing-Preis 2001, eds T. Plesser and V. Macho (Göttingen: Ges. für

Wiss. Datenverarbeitung), 43–70.

Dongarra, J. J., Luszczek, P., and Petitet, A. (2003). The LINPACKbenchmark: past,

present and future. Concurr. Comput. 15, 803–820. doi: 10.1002/cpe.728

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M.,

et al. (2019). The scientific case for brain simulations. Neuron 102, 735–744.

doi: 10.1016/j.neuron.2019.03.027

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. (2009).

PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008

Fardet, T., Vennemo, S. B., Mitchell, J., Mork, H., Graber, S., Hahne, J., et al. (2021).

NEST 2.20.2, Version 2.20.2. Zenedo. doi: 10.5281/zenodo.5242954

Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The SpiNNaker Project.

Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski,

B. R., et al. (2015). “The spack package manager,” in Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis (ACM). doi: 10.1145/2807591.2807623

Geimer, M., Hoste, K., and McLay, R. (2014). “Modern scientific software

management using EasyBuild and lmod,” in 2014 First International Workshop

on HPC User Support Tools (New Orleans, LA,).

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S.,

et al. (2019). Open source brain: a collaborative resource for visualizing,

analyzing, simulating, and developing standardized models of neurons and

circuits. Neuron 103, 395–411.e5. doi: 10.1016/j.neuron.2019.05.019

Golosio, B., Tiddia, G., Luca, C. D., Pastorelli, E., Simula, F., and Paolucci, P. S.

(2021). Fast simulations of highly-connected spiking cortical models using

GPUs. Front. Comput. Neurosci. 15:627620. doi: 10.3389/fncom.2021.627620

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks

in python. Front. Neuroinform. 2:8. doi: 10.3389/neuro.11.005.2008

Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.

(2018). Reproducible neural network simulations: statistical methods for model

validation on the level of network activity data. Front. Neuroinform. 12:90.

doi: 10.3389/fninf.2018.00090

Hager, G., andWellein, G. (2010). Introduction to High Performance Computing for

Scientists and Engineers, 1st Edn. New York, NY: CRC Press.

Hahne, J., Diaz, S., Patronis, A., Schenck, W., Peyser, A., Graber, S., et al. (2021).

NEST 3.0. Zenedo. doi: 10.5281/zenodo.4739103

Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J. M., Ishii, S., et al.

(2012). Supercomputers ready for use as discovery machines for neuroscience.

Front. Neuroinform. 6:26. doi: 10.3389/fninf.2012.00026

Huber, S. P., Zoupanos, S., Uhrin, M., Talirz, L., Kahle, L., Häuselmann,

R., et al. (2020). Aiida 1.0, a scalable computational infrastructure for

automated reproducible workflows and data provenance. Sci. Data 7, 1–18.

doi: 10.1038/s41597-020-00638-4

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,

90–95. doi: 10.1109/MCSE.2007.55

INCF Secretariat, Djurfeldt, M., and Lansner, A. (2018). “1st INCF Workshop

on Large-Scale Modeling of the Nervous System.” Stockholm: F1000 Research

Limited. doi: 10.7490/F1000RESEARCH.1116028.1

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing

neuronal network models in massively parallel environments. Front.

Neuroinform. 11:30. doi: 10.3389/fninf.2017.00030

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Trans. Neural Netw.

14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops to

exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Jülich Supercomputing Centre (2015). JUQUEEN: IBM Blue Gene/Q®

Supercomputer System. Jülich Supercomputing Centre.

Knight, J. C., Komissarov, A., and Nowotny, T. (2021). PyGeNN: A python

library for GPU-enhanced neural networks. Front. Neuroinform. 15:5.

doi: 10.3389/fninf.2021.659005

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC

and neuromorphic solutions in terms of speed and energy when

simulating a highly-connected cortical model. Front. Neurosci. 12:941.

doi: 10.3389/fnins.2018.00941

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain

simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.

doi: 10.1038/s43588-020-00022-7

Kunkel, S., Morrison, A., Weidel, P., Eppler, J. M., Sinha, A., Schenck, W., et al.

(2017). NEST 2.12.0. Zenedo. doi: 10.5281/zenodo.259534

Kunkel, S., Potjans, T. C., Eppler, J. M., Plesser, H. E., Morrison, A.,

and Diesmann, M. (2012). Meeting the memory challenges of brain-

scale simulation. Front. Neuroinform. 5:35. doi: 10.3389/fninf.2011.

00035

Kunkel, S., and Schenck, W. (2017). The NEST dry-run mode:

efficient dynamic analysis of neuronal network simulation

code. Front. Neuroinform. 11:40. doi: 10.3389/fninf.2017.

00040

Kunkel, S., Schmidt, M., Eppler, J. M., Masumoto, G., Igarashi, J., Ishii, S.,

et al. (2014). Spiking network simulation code for petascale computers. Front.

Neuroinform. 8:78. doi: 10.3389/fninf.2014.00078

Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann, M. (2021). Sub-

realtime simulation of a neuronal network of natural density. Neural. Comput.

Eng. doi: 10.1088/2634-4386/ac55fc

Linssen, C., Lepperod, M. E., Mitchell, J., Pronold, J., Eppler, J. M., Keup, C., et al.

(2018). NEST 2.16.0. Zenedo. doi: 10.5281/zenodo.1400175

Lytton, W. W., Seidenstein, A. H., Dura-Bernal, S., McDougal, R. A., Schürmann,

F., and Hines, M. L. (2016). Simulation neurotechnologies for advancing

brain research: parallelizing large networks in NEURON. Neural Comput. 28,

2063–2090. doi: 10.1162/neco_a_00876

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micikevicius, P., Patterson,

D., et al. (2020). “MLPerf training benchmark,” in Proceedings of Machine

Learning and Systems, Vol. 2, eds I. Dhillon, D. Papailiopoulos, and V. Sze,

336–349. Available online at: https://proceedings.mlsys.org/paper/2020/file/

02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016). Reproducibility

in computational neuroscience models and simulations. IEEE

Trans. Biomed. Eng. 63, 2021–2035. doi: 10.1109/TBME.2016.25

39602

Message Passing Interface Forum (2009). MPI: A Message-Passing Interface

Standard, Version 2.2. Technical Report, Knoxville, TN, United States.

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. (2006).

Parallel network simulations with NEURON. J. Comput. Neurosci. 21, 119–223.

doi: 10.1007/s10827-006-7949-5

Miyazaki, H., Kusano, Y., Shinjou, N., Fumiyoshi, S., Yokokawa, M., and

Watanabe, T. (2012). Overview of the K computer System. Fujitsu Sci. Techn. J.

48, 255–265.

Monteforte, M., and Wolf, F. (2010). Dynamical entropy production in

spiking neuron networks in the balanced state. Phys. Rev. Lett. 105:268104.

doi: 10.1103/PhysRevLett.105.268104

Morrison, A., Hake, J., Straube, S., Plesser, H. E., and Diesmann, M. (2005a).

“Precise spike timing with exact subthreshold integration in discrete time

network simulations,” in Proceedings of the 30th Göttingen Neurobiology

Conference, 205B, Göttingen.

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M.

(2005b). Advancing the boundaries of high connectivity network

simulation with distributed computing. Neural Comput. 17, 1776–1801.

doi: 10.1162/0899766054026648

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.

(2009). A configurable simulation environment for the efficient simulation of

large-scale spiking neural networks on graphics processors. Neural Netw. 22,

791–800. doi: 10.1016/j.neunet.2009.06.028

Oliver, H. J., Shin, M., Sanders, O., Fitzpatrick, B., Clark, A., Dutta, R., et

al. (2021). cylc/cylc-flow: cylc-flow-8.0b3. Zenedo. doi: 10.5281/zenodo.566

8823

OpenMP Architecture Review Board (2008). OpenMP Application Program

Interface. Available online at: http://www.openmp.org/mp-documents/spec30.

pdf (accessed September 27, 2016).

Frontiers in Neuroinformatics | www.frontiersin.org 20 May 2022 | Volume 16 | Article 837549

https://doi.org/10.1002/cpe.728
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.5281/zenodo.5242954
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.5281/zenodo.4739103
https://doi.org/10.3389/fninf.2012.00026
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.7490/F1000RESEARCH.1116028.1
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.5281/zenodo.259534
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.3389/fninf.2017.00040
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.5281/zenodo.1400175
https://doi.org/10.1162/neco_a_00876
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.1103/PhysRevLett.105.268104
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1016/j.neunet.2009.06.028
https://doi.org/10.5281/zenodo.5668823
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

Ostrau, C., Klarhorst, C., Thies, M., and Rückert, U. (2020). “Benchmarking

of neuromorphic hardware systems,” in NICE ’20: Proceedings of

the Neuro-inspired Computational Elements Workshop, Heidelberg.

doi: 10.1145/3381755.3381772

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing

polychronization: a guide to maximizing the reproducibility of spiking network

models. Front. Neuroinform. 12:46. doi: 10.3389/fninf.2018.00046

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A., et al.

(2013). Six networks on a universal neuromorphic computing substrate. Front.

Neurosci. 7:11. doi: 10.3389/fnins.2013.00011

Plesser, H. E., Eppler, J. M., Morrison, A., Diesmann, M., and Gewaltig, M.-

O. (2007). “Efficient parallel simulation of large-scale neuronal networks on

clusters of multiprocessor computers,” in Euro-Par 2007: Parallel Processing,

Vol. 4641 of Lecture Notes in Computer Science, eds A.-M. Kermarrec, L. Bougé,

and T. Priol (Berlin: Springer-Verlag), 672–681.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and Kunkel, S.

(2021). Routing brain traffic through the von Neumann bottleneck: Efficient

cache usage in spiking neural network simulation code on general purpose

computers. arXiv [Preprint]. arXiv: 2109.12855. Available online at: https://

arxiv.org/pdf/2109.12855.pdf (accessed March 11, 2022).

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and

Kunkel, S. (2022). Routing brain traffic through the Von Neumann

bottleneck: Parallel sorting and refactoring. Front. Neuroinform. 15:785068.

doi: 10.3389/fninf.2021.785068

Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer, C.,

et al. (2019). Real-time cortical simulation on neuromorphic hardware. Philos.

Trans. R. Soc. A 378:20190160. doi: 10.1098/rsta.2019.0160

Richert, M., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2011). An efficient

simulation environment for modeling large-scale cortical processing. Front.

Neuroinform. 5:19. doi: 10.3389/fninf.2011.00019

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Benureau, F. C.,

et al. (2017). Sustainable computational science: the ReScience initiative. PeerJ

Comput. Sci. 3:e142. doi: 10.7717/peerj-cs.142

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of the 2010 International Symposium on Circuits and

Systems (ISCAS) (Paris: IEEE Press), 1947–1950.

Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada,

S. J. (2018a). Multi-scale account of the network structure of macaque

visual cortex. Brain Struct Funct. 223, 1409–1435. doi: 10.1007/s00429-017-

1554-4

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada, S. J.

(2018b). A multi-scale layer-resolved spiking network model of resting-state

dynamics in macaque visual cortical areas. PLOS Comput. Biol. 14:e1006359.

doi: 10.1371/journal.pcbi.1006359

Senk, J., Yegenoglu, A., Amblet, O., Brukau, Y., Davison, A., Lester, D. R.,

et al. (2017). “A collaborative simulation-analysis workflow for computational

neuroscience using HPC,” in High-Performance Scientific Computing, JHPCS

2016, Vol. 10164 of Lecture Notes in Computer Science, eds E. Di Napoli, M.-A.

Hermanns, H. Iliev, A. Lintermann, and A. Peyser (Cham: Springer), 243–256.

doi: 10.1007/978-3-319-53862-4_21

Sompolinsky, H., Crisanti, A., and Sommers, H. J. (1988). Chaos in random neural

networks. Phys. Rev. Lett. 61, 259–262. doi: 10.1103/PhysRevLett.61.259

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8:47314. doi: 10.7554/elife.47314

Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2020). Brian2GeNN:

accelerating spiking neural network simulations with graphics hardware. Sci.

Rep. 10:410. doi: 10.1038/s41598-019-54957-7

Thörnig, P., and von St. Vieth, B. (2021). JURECA: data centric and

booster modules implementing the modular supercomputing architecture

at Jülich supercomputing centre. J. Large Scale Res. Facil. 7:A182.

doi: 10.17815/jlsrf-7-182

van Albada, S., Chindemi, G., Deger, M., Diesmann, M., Djurfeldt, M., Enger, H.,

et al. (2015a). NEST 2.2.0. Zenedo. doi: 10.5281/zenodo.5772624

van Albada, S. J., Helias, M., and Diesmann, M. (2015b). Scalability of

asynchronous networks is limited by one-to-one mapping between

effective connectivity and correlations. PLOS Comput. Biol. 11:e1004490.

doi: 10.1371/journal.pcbi.1004490

van Albada, S. J., Kunkel, S., Morrison, A., and Diesmann, M. (2014).

“Integrating brain structure and dynamics on supercomputers,” in Brain-

Inspired Computing, eds L. Grandinetti, T. Lippert, and N. Petkov (Cham:

Springer), 22–32.

van Albada, S. J., Pronold, J., van Meegen, A., and Diesmann, M. (2021). “Usage

and scaling of an open-source spiking multi-area model of monkey cortex,”

in Brain-Inspired Computing. Lecture Notes in Computer Science (Cetraro:

Springer International Publishing), 47–59.

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,

Stokes, A. B., et al. (2018). Performance comparison of the digital

neuromorphic hardware SpiNNaker and the neural network simulation

software NEST for a full-scale cortical microcircuit model. Front. Neurosci.

12:291. doi: 10.3389/fnins.2018.00291

van Vreeswijk, C., and Sompolinsky, H. (1998). Chaotic balanced state

in a model of cortical circuits. Neural Comput. 10, 1321–1371.

doi: 10.1162/089976698300017214

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep18854

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). “Slurm: simple linux utility for

resource management,” in Job Scheduling Strategies for Parallel Processing, eds

D. Feitelson, L. Rudolph, and U. Schwiegelshohn (Berlin; Heidelberg: Springer

Berlin Heidelberg), 44–60.

Zaytsev, Y. V., and Morrison, A. (2014). CyNEST: a maintainable Cython-

based interface for the NEST simulator. Front. Neuroinform. 8:23.

doi: 10.3389/fninf.2014.00023

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Albers, Pronold, Kurth, Vennemo, Haghighi Mood, Patronis,

Terhorst, Jordan, Kunkel, Tetzlaff, Diesmann and Senk. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 21 May 2022 | Volume 16 | Article 837549

https://doi.org/10.1145/3381755.3381772
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.3389/fnins.2013.00011
https://doi.org/10.1093/cercor/bhs358
https://arxiv.org/pdf/2109.12855.pdf
https://arxiv.org/pdf/2109.12855.pdf
https://doi.org/10.3389/fninf.2021.785068
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.3389/fninf.2011.00019
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.1007/s00429-017-1554-4
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.1007/978-3-319-53862-4_21
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.7554/elife.47314
https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.5281/zenodo.5772624
https://doi.org/10.1371/journal.pcbi.1004490
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fninf.2014.00023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations
	1. Introduction
	2. Results
	2.1. Workflow Concepts
	2.1.1. Configuration and Preparation
	2.1.2. Benchmarking
	2.1.3. Data- and Metadata Handling
	2.1.4. Data Presentation

	2.2. beNNch: A Reference Implementation
	2.2.1. Builder
	2.2.2. NEST
	2.2.3. Instrumentation
	2.2.4. beNNch-models
	2.2.5. config files
	2.2.6. JUBE
	2.2.7. git-annex
	2.2.8. beNNch-plot
	2.2.9. Flip-Book
	2.2.10. Exchanging External Modules

	2.3. Using beNNch for Simulator Development
	2.3.1. Use Case: NEST Development

	3. Discussion
	4. Materials and Methods
	4.1. NEST Developments
	4.1.1. Brief History of NEST
	4.1.2. Shrinking MPI Buffers
	4.1.3. Spike Compression
	4.1.4. Neuronal Input Buffers With Multiple Channels

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

