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Resting state functional MRI (rsfMRI) has been shown to be a promising tool to study
intrinsic brain functional connectivity and assess its integrity in cerebral development. In
neonates, where functional MRl is limited to very few paradigms, rsfMRI was shown to
be a relevant tool to explore regional interactions of brain networks. However, to identify
the resting state networks, data needs to be carefully processed to reduce artifacts
compromising the interpretation of results. Because of the non-collaborative nature of
the neonates, the differences in brain size and the reversed contrast compared to adults
due to myelination, neonates can’t be processed with the existing adult pipelines, as
they are not adapted. Therefore, we developed NeoRS, a rsfMRI pipeline for neonates.
The pipeline relies on popular neuroimaging tools (FSL, AFNI, and SPM) and is optimized
for the neonatal brain. The main processing steps include image registration to an
atlas, skull stripping, tissue segmentation, slice timing and head motion correction and
regression of confounds which compromise functional data interpretation. To address
the specificity of neonatal brain imaging, particular attention was given to registration
including neonatal atlas type and parameters, such as brain size variations, and contrast
differences compared to adults. Furthermore, head motion was scrutinized, and motion
management optimized, as it is a major issue when processing neonatal rsfMRI data.
The pipeline includes quality control using visual assessment checkpoints. To assess
the effectiveness of NeoRS processing steps we used the neonatal data from the
Baby Connectome Project dataset including a total of 10 neonates. NeoRS was
designed to work on both multi-band and single-band acquisitions and is applicable on
smaller datasets. NeoRS also includes popular functional connectivity analysis features
such as seed-to-seed or seed-to-voxel correlations. Language, default mode, dorsal
attention, visual, ventral attention, motor and fronto-parietal networks were evaluated.
Topology found the different analyzed networks were in agreement with previously
published studies in the neonate. NeoRS is coded in Matlab and allows parallel
computing to reduce computational times; it is open-source and available on GitHub
(https://github.com/venguix/NeoRS). NeoRS allows robust image processing of the
neonatal rsfMRI data that can be readily customized to different datasets.
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INTRODUCTION

The analysis of resting-state functional connectivity (RS-FC)
constitutes a promising tool as it provides complementary
information to structural imaging related to brain physiology.
Indeed, since its discovery in 1995 (Biswal et al., 1995) resting
state functional MRI (rsfMRI) studies have provided new
insights in the understanding of brain architecture and cerebral
development (Power et al., 2010; Smyser and Neil, 2015; Gao
et al., 2017; Grayson and Fair, 2017; Keunen et al,, 2017; Zhang
et al,, 2019). Smyser et al. (2013) demonstrated the feasibility of
using rsfMRI to explore the alterations in resting state networks
(RSN) associated with preterm birth and white matter injury.
Alterations of the default mode and ventral attention networks at
birth, are associated with behavioral inhibition at age of two years,
(Sylvester et al., 2018) which suggests early alterations of the
RSN present a correlation with clinical manifestations, and opens
the opportunity of early diagnostics and treatment. Additionally,
neonatal RSN are consistently identifiable and present with high
similarities to older populations (Fransson et al., 2007, 2009;
Gao et al, 2009). RS-FC is based on low frequency regional
fluctuations (<0.1 Hz) in the Blood-Oxygen-Level-Dependent
(BOLD) (Ogawa et al., 1990, 1993) signal while the participant
is not performing any task, a useful feature when evaluating
neonates (Smyser and Neil, 2015). RSN signal is very stable across
subjects (Lee et al., 2013), but vulnerable to several artifacts such
as head-motion (Maknojia et al., 2019), susceptibility distortions
and or white matter (WM) and cerebrospinal fluid (CSF) signals
(Joetal., 2013; Power et al., 2014). Robust rstMRI data processing
is key to reduce the nuisance effects of the non-neural signals
in the data to identify reliable resting state activity (Lund et al,,
2006; Giove et al., 2009). Its clinical potential and implementation
present several methodological challenges that need to be
addressed before considering its use to develop a new generation
of biomarkers. For this reason, straightforward to use and open-
source tools for the neonatal rsfMRI data processing need to be
readily available. Tools for mature brains already exist to process
rsfMRI data, but analyzing the neonatal brain presents challenges
that need to be addressed with new approaches (Smyser and Neil,
2015). There are several straightforward rsfMRI data processing
pipelines developed for adults such as Conn toolbox (Whitfield-
Gabrieli and Nieto-Castanon, 2012),fmriprep (Esteban et al,
2019), the Human Connectome Pipeline (HCP) (Glasser et al.,
2013), the Resting-State Analysis Toolkit (REST) (Rubinov and
Sporns, 2010), or the Connectome Computation System (CCS)
(Xu et al,, 2015), however, those are not adapted to the newborn
brain which presents additional challenges, such as different
contrast due to myelination (Enguix et al., 2018). T2-weighted
images are usually needed for tissue segmentation in place of T1-
weighted images. Further, varying brain sizes between subjects
(Smyser and Neil, 2015) makes adult skull stripping less robust on
the neonatal brain. Additionally, different age specific atlases and
tissue probability maps are required for accurate segmentations,
common space normalization and seed-based analysis.

To the best of our knowledge the only existing open-access
pipeline to process neonatal rsfMRI data is the one developed by
the developing Human Connectome Project (dHCP) (Fitzgibbon

et al., 2020). While this pipeline has proven to provide excellent
results with the dHCP data, its implementation on smaller or
clinical datasets remains challenging, as it requires large datasets
for independent component (IC) denoising. Furthermore, the
dHCP pipeline can be difficult to set up for cohorts acquired
at other centers, because the pipeline was developed/optimized
from the dHCP database specifically. For example, the dHCP
denoising step is based on spatial independent component
analysis (sICA), which separates independent correlating signals
that can be classified as neural or non-neural signal. This
denoising technique has been shown to provide superior results
in adults and infants when the dimensionality is accurately set
(Griffanti et al., 2017; Alfaro-Almagro et al., 2018). However,
the identified signals need to be classified as neural signal or
structured noise, which in most cases is performed manually
and a difficult process to automate. To overcome this limitation,
the dHCP pipeline uses a machine learning approach (ICA-
based Xnoiseifier) (Salimi-Khorshidi et al., 2014) to classify
the independent components as neural signals or noise. The
machine learning algorithm requires a minimum of 35 manually
labeled subjects to be trained, which is not always possible in
smaller cohorts and requires specialists to manually classify the
independent components (Fitzgibbon et al., 2020).

To overcome the aforementioned challenges, we developed
NeoRS, with the goal of creating a robust open-source pipeline
containing the necessary tools to preprocess rsfMRI data. The
main advantages of NeoRS are it has been developed specifically
for neonates, simple to implement and flexible to process
different datasets. Additionally, it can process single subject data,
utilizes parallelizable environment and includes visual quality
control checkpoints at each step.

The data processing steps include T2-weighted image
alignment to a common space, slice timing correction and
segmentation, and rsfMRI procedures are slice timing, distortion
correction using reversed phase encoding polarity acquisitions,
alignment in a common space, motion correction, removal
of nuisance confounds and noise compromising functional
data interpretation. Further, simple resting state functional
connectivity cross-correlations based on seed-to-voxel and seed-
to-seed approaches are incorporated.

MATERIALS AND METHODS

Data

NeoRS has been evaluated on neonates (7 £ 1.4 weeks old)
from the Baby Connectome Project (BCP) (Howell et al., 2019)
dataset. For this study only participants scanned at 9 weeks
old or less and contained T2-weighted images and rsfMRI were
used (N = 10). Participants were naturally sleeping and were
scanned on a 3.0 T MRI Prisma from Siemens using a 32-channel
head coil. This study included a T2-weighted structural image
(TE = 564 ms, TR = 3,200 ms, matrix = 320 mm X 320 mm,
FOV = 256 mm x 256 mm, resolution = 0.8 x 0.8 x 0.8 mm,
flip angle = variable, in-plane acceleration factor = 2, acquisition
time = 5 min 57 s), two gradient-echo (GRE) echo-planar
imaging (EPI) blip-up/blip-down (TE = 37 ms, TR = 800 ms,
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matrix = 104 mm x 91 mm, FOV = 208 mm x 182 mm,
resolution =2 mm x 2 mm X 2 mm, flip angle = 52°, multiband
acceleration factor = 8, acquisition time = 5 min 47 s, 420
volumes), and two spin-echo (SE) EPI blip-up/blip-down for
distortion correction purpose (TE = 66 ms, TR = 8,000 ms,
matrix = 104 mm x 91 mm, FOV = 208 mm x 182 mm,
resolution =2 mm x 2 mm X 2 mm, flip angle = 52°, multiband
acceleration factor = 1, acquisition time = 33 s, 3 volumes).

Data Structure

To facilitate collaborations, NeoRS uses the Brain Imaging
Data Structure (BIDS) format as described in https://bids.
neuroimaging.io/. See Figure 1 for an example of data naming
and organization for NeoRS.

Pipeline Overview

NeoRS is a neonatal rsfMRI data processing pipeline developed
on Matlab and calls for commands developed on well-known
open-source neuroimaging tools, such as FSL 6.0.3.1 (Smith
et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012),
AFNI 20.2.10 (Cox, 1996) and SPM 12.! It runs on both
MacOS and Linux operating systems. NeoRS has been tested
on a MacBook pro 2015 with operating system High Sierra
and on a Linux computer using Ubuntu 18.04.5 by running
the pipeline from the beginning to end on different subjects
on both computers. NeoRS is built to accommodate MRI
data acquired with different manufacturers. The pipeline was
tested using the aforementioned BCP data, as well as the not
publicly available data from CHU Sainte-Justine acquired on
a GE 3T MR750, but this manuscript focuses only on BCP
results. Furthermore, the pipeline has single subject capabilities.
NeoRS has been developed to accommodate a parallelizable
environment, allowing several subjects to be simultaneously
processed depending on the number of selected cores. To
investigate, two subjects were processed on an early 2015
MacBook pro with 2.7 GHz Intel Core i5 processor and 8 GB
1,867 MHz DDR3 memory by using a single core vs. 2 parallel
cores and found a reduction of computing time of 1.8 times when
using the 2 parallel cores. This function is optional and requires
the Matlab parallel toolbox.

See NeoRS workflow in Figure 2.

To ensure images align to the orientation of the standard
template a reorientation to standard is performed in both
structural and functional data prior to other data processing
procedures by employing fslreorient2std from FSL. Furthermore,
to guarantee the accurate performance of NeoRS, output files for
each processing step are saved in a folder called Output_files.
Processing steps are dependent from previous outputs and should
be inspected carefully. In case of fail, the user can parameterize
the specific function, as specified later on. Various operations
are not mandatory, such as slice-timing correction or distortion
correction, and can be manually turned-off by setting the
function parameter to 0 in the main file. See Figure 3 for an
example of inputs configuration.

Uhttps://www.filion.ucl.ac.uk/spm/

Data Processing

Structural

T2-Weighted Image Registration

NeoRS uses the term age stereotaxic space (Smyser et al., 2010)
from Washington University - School of Medicine. The template
is available in Talairach space (Talairach, 1988) 1 and 3 mm
isotropic resolutions. Image registration in NeoRS is performed
using FSL flirt and is implemented in a single step with 12 degrees
of freedom and not applying the resampling blur when down
sampling. These parameters can be modified by the user in the
function anat2std.m. High resolution T2-weighted images are
registered to a 1 and 3 mm isotropic template.

Skull Stripping

Skull stripping plays an important role in image processing,
as it is mandatory for different processing functionalities, such
as tissue segmentation, and requires special attention to avoid
further complications in the process. NeoRS skull stripping step
utilizes the FSL (Jenkinson et al., 2012) function bet2 and has been
optimized for term neonatal brains. Skull stripping is performed
after image registration to obtain consistent results independent
of brain size. Furthermore, visual quality control is available in
a file containing the brain with the skull and the overlay of the
contour of the intracranial cavity. If the user is not satisfied with
the results, modify the fractional intensity threshold, “-f”, and
vertical gradient in fractional intensity threshold, “-g”, to properly
adjust skull stripping in the Matlab function skull_stripping.m.

Segmentation

Extracted T2-weighted intracranial content is then segmented
to create different tissue probability maps corresponding to
each brain structure. Tissue segmentation is crucial in image
processing as the outputs will be used for regression of confounds.
For brain segmentation NeoRS applies Morphologically Adaptive
Neonatal Tissue Segmentation: Mantis (Beare et al., 2016).
Mantis is an SPM based toolbox and allows T2-weighted image
segmentation based on template adaptation via topological
filters and morphological segmentation tools, resulting in eight
different tissue probability maps. The segmentation process is
fully integrated in the NeoRS pipeline and has been tested on
three different datasets (BCP, and CHU Sainte-Justine). After
segmentation, the eight tissue probability maps are automatically
combined, thresholded and binarized to create three different
binary masks needed to run downstream processing. The masks
correspond to WM, gray matter (GM), and CSF. The masks
are resampled to 3-mm isotropic to match functional image
space resolution.

Functional

Slice Timing Correction

A common acquisition technique for rstMRI is the single-
shot Gradient-Echo (GRE) Echo-Planar Imaging (EPI). In this
acquisition sequence, slices are acquired at varying intervals,
which need to be addressed. The NeoRS function for slice timing
correction is FSL slicetimer and can automatically read the slice
order from the.json file, if available. If the.json file is not available,
the user can manually define the slice order or use one of the
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data

Name

v sub-00001
v anat

v fmap

v B func

> sub-00002

FIGURE 1 | Example of data naming and organization for NeoRS.

sub-00001_run-001_T2w.json
sub-00001_run-001_T2w.nii

J sub-00001_dir-AP_run-001_se_ep.nii.gz
sub-00001_dir-AP_run-001_se_epi.json
sub-00001_dir-PA_run-001_se_ep.json

¥ sub-00001_dir-PA_run-001_se_ep.nii.gz

sub-00001_task-rest_acqg-AP_run-001_bold.json
U sub-00001_task-rest_acq-AP_run-001_bold.nii.gz
sub-00001_task-rest_acq-PA_run-001_bold.json
J sub-00001_task-rest_acqg-PA_run-001_bold.nii.gz

predefined options from fsl (i.e., interleaved ascending) in the
configuration file.

Functional Cross Realignment

To correct for head movement, it is necessary to obtain a
motion estimation based on 6 movement parameters (three
rotation and three translation parameters). This is done by rigid-
body registration (six degrees of freedom) between the different
volumes with respect to a reference, in NeoRS, the reference is
the first volume from the rsfMRI, but can be easily altered by
the user if desired. This NeoRS function is performed using FSL
mcflirt (Jenkinson et al., 2002) and works the same as for adults,
however we set the smoothness level to 0, as smoothing occurs
later in the pipeline, and used sinc interpolation. Parameters
for cross realignment can be customized in the Matlab function
cross_realign2.m. For quality control purposes, NeoRS creates
a.png file where the total rotations, translations and framewise
displacement (FD) for each volume can be evaluated. Framewise
displacement is calculated as previously described by Power
et al. (2012). To take into account head size differences, the
calculations were done using a 35 mm radius sphere instead of
50 mm which approximately corresponds to the mean distance
from the cerebral cortex to the center of the head in neonates.
After motion correction, the motion parameters are saved in a
text file that will be further used for denoising purposes.

Functional Best Resting State Section Selection
NeoRS incorporates the possibility to analyze sub sections of
long time series (i.e., 20 min). This tool is deactivated by default

but can be activated by setting options.best_volumes = 1 in
the configuration file. The sectional analysis tool automatically
identifies a section of the time-series (i.e., 5 min) with the
lowest average FD, which is recommended to use on very long
acquisitions that present a higher average FD than the threshold.
The length of the section can be modified by the user, but it is
recommended the duration remain above 5 min (Sylvester et al.,
2018). To note, the average FD threshold has a default of 0.25 mm,
but can also be tailored as needed by altering options.FDaverage
in the configuration file. NeoRS chooses only the best sections of
the time-series, which reduces computational times drastically.

Functional Distortion Correction

The EPI sequence is considerably sensitive to off-resonance fields
due to susceptibility variations of participants. To address these
distortions a typical approach is to use two SE-EPI reversed
polarity acquisitions (reversed phase encoding direction) to
estimate the distortion field. This field is implemented to
correct for distortions in the original GRE EPI images. Directly
using two reversed polarity GRE EPI to estimate the distortion
field instead of two reversed polarity SE EPI is possible, but
not recommended because GRE-EPI sequences are hampered
by signal dropouts caused by intravoxel dephasing. Providing
reversed phase encoding polarity SE EPI images and activating
the distortion correction option (options.fmap = 1) in NeoRS,
allows users to estimate these distortions utilizing FSL topup
(Andersson et al., 2003; Smith et al., 2004; Graham et al,
2017). Such as specified in the topup documentation, a text
file containing the encoding directions and total readout time
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T2-weighted
Spatial
normalization

Slice timing correcﬁon r 7 Spatial
Cross reallgnmeng“‘.", At v normalization

q

Motion censoring FUNCTIONAL DENOISING

—~ A;,p‘ v

Regression of confounders < "
i Functional smoothing
Band-pass filter

% Activate or deactivate functions: 1=0n; 0=0ff
options.slicetimingcorrection=1; %Slice timing correction
options.fmap = 0; %Functional distortion correction
options.FDaverage = 1;

%Inputs definition

workingDir=("'/Desktop/Data');%Data directory
options.TR=3;%Repetition time of the RS sequence in seconds
options.motion=12; %Number of motion parameters—> 6,12 or 24
options.slice_order=5;%1: bottom up, 2: top down, 3: interleaved+bottom up
% 4: interleaved+top down, 5:automatically read json file
options.FWHM=6; %FWMH for functional gaussian smoothing
options.radius=35; %Head radius

options.FD_max=0.25; % Framewise displacement threshold
options.BPF=[0.01,0.1]; %Band-pass filter frequencies in Hz
options.n_core=2; %Number of cores for parallel computing

FIGURE 3 | Example of NeoRS input parameters.
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needs to be included in the fmap folder to perform distortion
corrections. If the.json file is found in the fmap folder, the text
file will be automatically created by NeoRS. Distortion estimates
are rectified with FSL applytopup for each EPI volume by applying
the output from topup.

Functional Image Registration

Functional images are registered to the same stereotaxic space
template from the Washington University — School of Medicine
as the T2-weighted image registration procedure. Initially,
a two-step registration was performed. First, a rigid body
registration between the mean rsfMRI volume and T2-weighted
images was calculated, followed by affine transformation between
T2-weighted and the template. Finally, the output affine
transformation matrices from each process were applied to
the rsfMRI images to align to the 3 mm isotropic template.
Additionally, a single step registration approach was investigated,
where the rsfMRI images were aligned directly to the 3 mm
isotropic template using 12 degrees of freedom. This registration
approach was comparable to the 2-step registration process and
was chosen as it was accurate and faster. Down-sampling blur, by
default is set to off in NeoRS, however, if needed, the parameters
can be customized in the Matlab function epi2std2.m.

Denoising

Motion Censoring

Before the regression of the confounding signals, volumes
with excessive motion are removed based on the framewise
displacement metric described by Power et al. (2012).

NeoRS performs linear detrending and computes framewise
displacement after functional cross realignment based on 6
motion parameters in radians (3 rotation parameters + 3
translation parameters). This step also automatically removes the
first five volumes.

FD = |rot_x| + |rot_y| + [rot_z| 4 [trans_x

+ |trans_y| + |[trans_z|

Where rot_x/rot_y/rot_z are rotations converted from radians
to mm and trans_x/trans_y/trans_z are translations in mm. Once
the FD is computed, a text file containing the information of
volumes exceeding the FD threshold plus the first 5 frames, is
created and head motion plots are saved and can be reviewed.
The FD threshold is automatically set to FD < 0.25 mm (Smyser
etal,, 2016), so volumes with FD higher than or equal to 0.25 mm
are excluded. Excluded volumes are set to zero value and no
interpolation is applied to avoid artificial correlations.

High Motion Subjects

High motion acquisitions are source of artifacts and may
confound neural correlations with non-neural signals. Apart
from single frame motion censoring based on FD NeoRS
evaluates the average FD for every BOLD run. By default, NeoRS
was set to discard acquisitions with an average FD higher than
0.25 mm. The average FD threshold can be altered in the
configuration file by defining options.FDaverage.

Template

FIGURE 4 | T2-weighted and BOLD image registration to stereotaxic space. Gray scale images represent the T2-weighted, average BOLD and template images; the
yellow lines correspond to the cerebrospinal fluid contours obtained from the T2-weighted image segmentations.
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Regression of Confounds

Variables identified as potential confounders of the estimated
BOLD signal are merged in a single file. To avoid frequency
mismatch in the regression process, the file is used to compute
linear regression in a single step with frequency filtering. This
process is performed utilizing AFNI 3dTproject.

Motion Parameters

Head motion is considered as a rigid body moving in a 3D
space with 6 degrees of freedom. In cartesian coordinates
we can describe it with 3 translations x- (left/right), y-
(anterior/posterior), and z-axes (inferior/superior), and 3
rotations around the x-axis (pitch), y-axis (yaw), and z-axis
(roll). To address the residual motion related signal variance

after a suboptimal rigid body registration, NeoRS uses a linear
regression strategy based on the 6 aforementioned estimated
motion parameters. Those parameters are considered as nuisance
effects of the signal and are then removed. NeoRS allows various
options including: 6 motion parameters, 12 (including temporal
derivatives) (Power et al, 2012) or 24 (including temporal
derivatives and their squares) (Friston et al., 1996) which can be
defined in the configuration file parameter options.motion.

White Matter, Cerebrospinal Fluid, and Global Signals

White matter and cerebrospinal fluid signals are highly
confounding and need to be removed from the rsfMRI (Smyser
et al., 2016). Signals for regression of confounds are extracted
from the WM and CSF masks generated previously in the pipeline

By default settings

FIGURE 6 | One millimeter isotropic masks created from the tissue probability maps obtained with Mantis. White matter (red), CSF (yellow), gray matter (blue).
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from the segmentation. Masks are created in a conservative way
by selecting voxels from the tissue probability masks with higher
probability than 0.5. The voxels of the white matter are eroded
by one voxel to ensure the mask doesn’t include any GM. Two
files containing the average signal of the WM and CSF masks are
created. Finally, global signal is approximated by averaging the
signal in a GM mask (Vos de Wael et al., 2017) and used by default
in NeoRS, as it improves data quality by reducing motion artifacts
(cardiac, respiration, head motion) (Smyser et al., 2016).

Frequency Filter

Temporal frequencies outside the frequency range of [0.01-0.1]
Hz are removed from the BOLD signal to correct for slow
frequency drifts, reduce motion artifacts and other physiological
noises while preserving the frequencies of resting state networks
(Power et al., 2014). The use of a low-pass filter could drastically
reduce the degrees of freedom of the time series in acquisitions
with very short TR. For those cases, it is recommend to set
the value of options.BPF = [HPH, LPF], to [0.01, 999] in the
configuration file.

Smoothing

Functional Smoothing

Functional smoothing is the last processing procedure. After
denoising the rsfMRI signal is convolved with a gaussian kernel.
This reduces the effect of misregistration between functional
regions and slightly increases the signal to noise ratio. Gaussian
smoothing is performed implementing fslmaths from FSL. The

size of the gaussian kernel is customizable in the NeoRS pipeline
by modifying options.fwhm in the configuration file, which is
6 mm by default.

Data Analysis —Functional Connectivity
Prior to further data analysis, like ROI to ROI (region of interest)
correlations, all the processed BOLD runs are merged together
into a single 4D-file. NeoRS offers basic single subject data
analysis, including seed based and seed to seed correlations, so
the user can further assess data has been correctly processed.

Seed-Based Correlations

Seed-based functional connectivity identifies correlation between
a defined ROI, also called a seed, and the rest of the brain.
This metric facilitates the observation of simultaneously activated
regions with the pre-defined ROI. The NeoRS pipeline provides
31 template seeds representing some of the most common
resting state networks including: language, default mode, dorsal
attention, visual, ventral attention, motor and fronto-parietal
networks. An excel file (Perceptron_ROI list.xlsx) can be found
in the documentation with all the information related to seed
positioning (Smyser et al., 2016).

Seed-To-Seed Measurements

Seed-to-seed data analysis provides measurements of
functional connectivity between all the different pairs of
seeds demonstrating a more global perspective about networks
compared to seed-based functional connectivity. NeoRS

2:20 Z=23

. Cerebrospinal fluid

White matter

FIGURE 7 | White matter, cerebrospinal fluid, and gray matter masks for regression of confounds.

z=29

Gray matter
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performs Pearson correlation between the different ROIs to
create a correlation matrix.

RESULTS

Image Registration

Image registration results of the T2-weighted and BOLD
images to the template for a representative subject are
demonstrated in Figure 4, an example of a user checkpoint.
Yellow lines represent the segmented cerebrospinal fluid, and
is added as an overlay to the T2-weighted images, BOLD and
template. After visual inspection, a correct alignment within
the template for both registrations was observed for each
test participant.

When comparing single step registration versus a 2-step
registration approach for rsfMRI there were no discernible
differences between both registrations and final functional
connectivity results presented the same correlation strengths
and topology. The main difference between the two approaches
was computational times, which were higher for the 2-step
registration method.

Skull Stripping

Figure 5 illustrates the default skull stripping segmentations
versus NeoRS adapted parameters for neonates. With the default
settings we observed skull stripping was failing for some of
the subjects with different brain sizes, in contrast, when using
NeoRS parameters, skull stripping remained robust for all the
processed subjects.

Segmentation and Mask Creation

Figure 6 displays the 1 mm isotropic binary masks created by
NeoRS from Mantis tissue probability maps. The output contains
three different binary files corresponding to white matter, SCF
and GM. Figure 7 demonstrates the 3 mm isotropic masks for
the regression of confounds process.

Functional Distortion Correction

Functional susceptibility-induced magnetic field inhomogeneity
correction for a representative subject is shown in Figure 8.
GRE EPI images, independent of brain size are distorted in the
phase encoding direction whether they are acquired AP or PA
but present those distortions in both areas of the brain. After
susceptibility-induced magnetic field inhomogeneity distortion

FIGURE 8 | Susceptibility-induced magnetic field inhomogeneity causing geometric distortions along the phase encoding direction. (A) Original T2-weighted image
without distortion, shown as reference; (B) original GRE-EPI acquired in anterior-posterior phase encoding direction (AP); (C) original GRE-EPI acquired in
posterior-anterior phase encoding direction (PA); (D) corrected GRE-EPI AP; (E) corrected GRE-EPI PA.

- T2w brain overlay

Phase encoding direction

Frontiers in Neuroinformatics | www.frontiersin.org

June 2022 | Volume 16 | Article 843114


https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

Enguix et al.

NeoRS: Neonatal RS-fMRI Preprocessing

correction, the two acquisitions (AP and PA) present a similar
morphology and a more accurate brain shape with respect to the
undistorted T2-weighted image.

Head Motion

After functional cross-realignment, an output graph is
provided by NeoRS containing information concerning
rotations and translations applied to cross-realign for each
volume of the rsfMRI, as well as the computed framewise
displacement (Figure 9).

Figure 10 is an example of a single subject with 2 different
rsfMRI acquisitions with different amounts of motion. In the
seed-based functional connectivity results of the motor network,
the correlation differences between an acquisition with an average
framewise displacement higher than 0.25 mm (run 1) and
an acquisition with an average framewise displacement lower
than 0.25 mm (run 2). High motion acquisition presented
increased amounts of noise and the network topology was
difficult to identify.

Resting State Networks —Seed-Based

Correlations

Figure 11 illustrates, seven of the most common resting state
networks after NeoRS processing employing an seed-based
correlations (SBC) approach.

Figure 12 is a single subject example of the 31 seeds
included in NeoRS.

DISCUSSION

NeoRS is an open-source image processing pipeline dedicated
to neonatal rstMRI. It includes seed-based and seed-to-seed 1st
level analysis. NeoRS has neonatal brain templates for term in
Imm and 3mm Talairach space, as well as a set of 31 seed
regions defining seven common resting state networks. NeoRS
relies on the open-source neuroimaging pipelines: SPM, FSL and
AFNI and encompasses robust methods to segment, register and
denoise neonatal rsfMRI data. Each of the various processing
steps were evaluated separately. Output was carefully inspected
to ensure the best quality products, by optimizing skull stripping,
image registration, head motion and denoising related results.
Additionally, functional connectivity of the motor, visual, default
mode, language, dorsal attention, ventral attention and fronto-
parietal networks using seed-based functional connectivity
analysis were demonstrated.

Image registration to the atlas was meticulously inspected for
every subject and no significant misalignments were observed
for T2-weighted or rsfMRI images for affine registration. We
compared single step to two-step registration for accuracy
and computational times. The single step registration was

0.3 Estimated rotation (radians)
X
0.1 y
z
0 - ZIOR
o1l |
.0.2 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450
05 Estimated translation (mm)
X
Y
z
-0.5 1 1 1 1 1 1 1 1 ]
0 50 100 150 200 250 300 350 400 450
Framewise displacement
0.8 T T T T T T T T
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FIGURE 9 | Example of head motion plots from a single subject. Plots are generated for each bold run and contain three different graphs per run: estimated rotation
in radians; estimated translation in millimeters; Framewise displacement in milimeters.
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FIGURE 10 | Two acquisitions of a high motion subject, run 1 excluded for having an average FD > 0.25 mm, run 2 kept with an average FD < 0.25 mm.

chosen, as this process required less computational time and
demonstrated no substantial variation when compared to the
two-step counterpart.

In contrast with some of the most common adult pipelines,
image registration is implemented prior to skull stripping, as
alignment quality results were identical. Further, performing
image registration preceding skull stripping produced vastly
robust skull stripping results across varying brain sizes. This
was not the case employing traditional skull stripping before
image registration. Skull stripping of the T2-weighted images
was found to be a crucial step when working with neonates
because poor stripping lead to misclassification of segmented
data and ultimately unreliable representation of RSN because
of misregistrations. Additionally, image registration prior to
skull stripping facilitated brain extraction without any user
intervention. Furthermore, if the brain was previously aligned
to an atlas, bet2 was implemented on the subject specific atlas
aligned data instead of applying an atlas brain mask to avoid
subtle geometric inaccuracies. This procedure is critical and
needs to be properly assessed. For this reason, an output for
the skull stripping is provided which contains the image of the

non-skull stripped mask with an overlay of the contour of the
skull stripped brain.

After skull stripping, tissue segmentation is performed using
Mantis, without the need of any further intervention. Mantis
is integrated into the NeoRS pipeline as it provided robust
results for disparate brain sizes using only T2-weighted images.
Contrary to the adult brain that uses T1-weighted images for
brain segmentation, it is fundamental in neonates to provide the
pipeline with T2-weighted images as the water/cholesterol ratio
is reversed with respect to adults due to lack of myelination.
Neonatal T2-weighted images present a better contrast between
brain structures (McArdle et al., 1987). While Mantis needs to be
installed to use the NeoRS pipeline, no additional setup steps are
required as it is fully assimilated in NeoRS. The results showed
the binary masks created from Mantis tissue probability maps are
perfectly aligned with their corresponding structures for various
subjects without any manual intervention.

It is well known the GRE-EPI sequence for rsfMRI is
prone to susceptibility-induced magnetic field inhomogeneity
(Czervionke et al., 1988). The artifact primarily appears close
to the extrema portions of the brain in the phase encoding
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FIGURE 11 | Example resting state networks obtained by seed-based functional connectivity after image processing with NeoRS.
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direction (Andersson et al., 2018) and needs to be properly
corrected. While several methods have been successfully used
in these settings (Jezzard and Balaban, 1995; Cusack et al.,
2003), NeoRS operates the standard topup/applytopup method.
Two reversed phase encoding direction images are involved
to correct for the deformations (Holland et al., 2010). The
method is simple to implement in the acqulsltlon protocol,
provides high quality results and acquisition sequences require
very short duration times.

Slice timing correction remains a controversial step when a
very short repetition time (TR) is deployed (Parker and Razlighi,

2019). However, as it has been shown it can significantly improve
z-scores (Parker and Razlighi, 2019) and as the aim was to
make NeoRS work with the maximum number of datasets, it is
included as an option. Slice timing correction can be deactivated
for multi-band sequences with very low TR, as in this kind of low
TR sequence, all slices in each volume are acquired very closer
together (Glasser et al., 2013).

After data preprocessing, confounding signals and motion
effects are removed. First, the framewise displacement threshold
is defined as 0.25 mm, as performed by Smyser et al. on
their neonatal study and shown to provide accurate results
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FIGURE 12 | Representative subject resting state network example seed-to-seed functional connectivity correlations.

(Sylvester et al., 2018). Volumes with FD higher than 0.25 mm
were removed from the time-series as described per Power et al.
(2012). Motion censoring was performed prior to filtering to
prevent spikes from passing through band-pass filtering, as this
could introduce artifacts such as Gibbs ringing and or skew
correlation coefficients. Furthermore, extremely high motion
acquisitions shouldn’t be taken into account as they can lead
to inflated results. To do so, different metrics can be adopted,
such as maximum framewise displacement, minimum number
of low motion volumes or average framewise displacement. In
NeoRS, acquisitions with average FD higher than 0.25 mm
were introducing augmented correlations related to motion
and improper denoising. Those acquisitions were completely
removed. Therefore, the average framewise displacement was
employed as the metric for exclusion.

To correct for nuisance variables NeoRS implements a
traditional denoising strategy that performs global signal,
white matter and cerebrospinal fluid signal regression, motion
parameter regression and a band-pass filter. This simple approach
provides robust results (Smyser et al., 2016), and doesn’t require
manual intervention or large datasets for denoising purposes.
In contrast to the aforementioned independent components
denoising techniques, (Griffanti et al., 2017; Alfaro-Almagro
etal., 2018) such as the one employed in the dHCP pipeline.

Finally, NeoRS incorporates seed-based functional
connectivity analysis tools to assist the user in assessing
initial results. Seed-based results across subjects showed
patterns very similar to those observed in the literature for

all the analyzed resting state networks (Fransson et al., 2009;
Damaraju et al., 2010; Figure 11). Further data analysis can be
carried out on the fully processed data, final_BOLD.nii, if desired.

Limitations and Future Directions

NeoRS was fully vetted on the BCP, and CHU (results not shown)
cohorts for neonates less than 9 weeks old. Expanding NeoRS to a
larger cohort in both size and neonatal age variation, i.e., preterm,
would only further demonstrate its novelty and application,
but the current number of subjects is a limitation. Obviously,
this expansion would also necessitate additional age specific
atlases. Additionally, the pipeline requires a usable T2-weighted
structural image and would benefit from the adaptability of the
option of using a T1-weighted image, especially for younger
neonates older than 9 weeks where tissue boundaries may begin
to vary. NeoRS has been developed based on a traditional
denoising strategy which includes band-pass filtering. This is
a limitation on data acquired with very low TR, such as the
dHCP data, as the degrees of freedom might be highly reduced.
In the Fourier domain, the maximum sample rate corresponds
to the frequency of Nyquist, f.ax = 1/2TR, and the frequency
spacing Af = 1/tpax, Where tpqy is the total scan duration. If
there are two data sets with the same total acquisition time,
but different TR, the one with the lower TR will lose more
degrees of freedom when filtering (Bright et al., 2017). Another
limitation of the pipeline is brains with significant malformations
or injury. While a high range of brain sizes is accepted in
the pipeline, anomalies such as neonatal hydrocephalus may
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require special attention, as part of the automated process could
fail, such as cortical extraction. To overcome this limitation
the user should perform rigorous individual image quality
control of those brains and may adjust parameters, such as
the head radius. Furthermore, it is known that a fundamental
factor for measuring interindividual differences is reliability (Zuo
et al, 2014) which is highly related to reproducibility. For
this reason, performing a test-retest reliability approach should
have been considered (Noble et al., 2019). However, measuring
the test-retest reliability is a challenge in this population.
As mentioned by Zuo et al. (2019), at least 20-30 min of
data are needed to perform functional connectivity reliability
measurements which can be challenging. Moreover, performing
multiple sessions is also a challenge because of the fast brain
development. Additionally, neonates also present higher levels of
motion, which compromises reliability (Zuo and Xing, 2014). To
overcome this issue, we think that we should focus on acquiring
high quality data by using real-time head motion monitoring
tools such as FIRMM (Dosenbach et al., 2017). Finally, we are
currently working on the inclusion of second-level analysis to
allow the users to make group-level inference about networks.
The possibility to perform Independent Component Analysis will
also be available in the next release. Further functionalities such as
the characterization of the networks and lifespan developmental
trajectories of cortical thickness and surface area, as described
by Xu et al. (2015) might be of particular interest as it would
allow the study of the maturation process of the neonatal
brain and the resting state networks. The characterization of
the resting state networks over time is especially important
on newborns as a deeper knowledge on networks development
might help detecting possible outliers in a given population,
bringing neonatal rstMRI one step closer of being a brain
integrity biomarker.

CONCLUSION

NeoRS? is an open-source, straightforward to use rsfMRI data
processing pipeline for the neonatal brain which relies on the
open-source neuroimaging pipelines FSL, AFNI and SPM. NeoRS
works with neuroimaging nifti format, BIDS folder structures
and has been developed to work with different MRI vendors and
diverse acquisition parameters with minimal user implication.
After image processing with NeoRS, we observed resting state
networks were in agreement with previously published studies
at term age. Each processing step is easy to inspect to ensure
consistent results through quality control checkpoint figures.

An open-source, rudimentary to use pipeline for neonatal
resting state image processing will allow the community

? https:/github.com/venguix/NeoRS
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