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The meaning behind neural single unit activity has constantly been a challenge, so it will

persist in the foreseeable future. As one of the most sourced strategies, detecting neural

activity in high-resolution neural sensor recordings and then attributing them to their

corresponding source neurons correctly, namely the process of spike sorting, has been

prevailing so far. Support from ever-improving recording techniques and sophisticated

algorithms for extracting worthwhile information and abundance in clustering procedures

turned spike sorting into an indispensable tool in electrophysiological analysis. This

review attempts to illustrate that in all stages of spike sorting algorithms, the past 5

years innovations’ brought about concepts, results, and questions worth sharing with

even the non-expert user community. By thoroughly inspecting latest innovations in the

field of neural sensors, recording procedures, and various spike sorting strategies, a

skeletonization of relevant knowledge lays here, with an initiative to get one step closer

to the original objective: deciphering and building in the sense of neural transcript.

Keywords: spike sorting, single unit recordings, neural sensors, clustering, algorithm evaluation

INTRODUCTION

Electrophysiology has been constructed on electrical properties of biological membranes provided
by ion exchanges between extra- and intracellular fluids. This phenomenon gives rise to
the presence of electrochemical gradient across every single eukaryotic cell membrane, the
state of net equilibrium called resting membrane potential. Transitory perturbations of this
balance-like state and the spillover feature of these sudden changes render excitable cells,
such as neurons capable of electrochemical signal propagation. An action potential (AP)
occurs when the resting membrane potential of a neuron, around −70mV, is reversed toward
positive values in about an ms and then restored (Raghavan et al., 2019). Regarded as
a foundation stone in neurophysiology, recorded extracellular APs (commonly referred to
as spikes) are the fingerprints of single neurons’ activities, an observation that has been
fueling neuroscientific research for almost a century (Carlson and Carin, 2019; Zhang and
Constandinou, 2021a). Analyzing spike trains and spatiotemporal properties of extracellular AP
waveforms provides us precious evidence of a cell’s functional profile and morphology, including
dendritic tree architecture, surrounding environment, and relative position of the recording site
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(Chaure et al., 2018; Rodriguez-Collado and Rueda, 2021;
Soleymankhani and Shalchyan, 2021) and sheds light on the
meticulously orchestrated functioning of neural networks (Leibig
et al., 2016; Luan et al., 2018). Besides providing insight into brain
activity at the highest temporal resolution currently available
(Rey et al., 2015; Wouters et al., 2021), facilitating the “reverse-
engineering” of the brain (Petrantonakis and Poirazi, 2017),
extracellular APs are eagerly sourced in the development of
brain-machine interfaces, too (Hammad et al., 2016).

However, barely collecting APs does not reveal much
information on representation among neural populations,
activity correlations, let alone higher order brain functions
(Lefebvre et al., 2016; Abbott et al., 2020; Valencia and
Alimohammad, 2021). To bridge the gap between a signal [i.e.,
voltage change recorded as waveform or, ubiquitously speaking, a
spike (Dallal et al., 2016)] and its actual meaning, one must detect
neural activity and attribute it to its corresponding source neuron
correctly, a process named spike sorting (Pachitariu et al., 2016;
Pakman et al., 2020; Guzman et al., 2021; Pagin, 2021) (Figure 1).
As it is commonly treated, at the heart of the spike sorting
technique lies a clustering problem (Souza et al., 2019), but
prior steps such as the subsequently presented spike detection,
feature extraction, and alignment are inescapable aspects as well
(Steinmetz, 2017).

It is enough to look back on half a decade’s spike sorting
techniques to demonstrate the urging need for more efficient
algorithms (Rossant et al., 2016). With the ever-growing

FIGURE 1 | From brain to spike. Gaining, sorting, and employing of spikes begin with the acquisition of neural signals, either from human or animal neural tissues.

Microelectrode arrays and micro-assembled probes are two of the most frequently used modalities of neural tissue recordings. These recordings are routinely filtered

in order to render them more accessible for the conventional spike sorting procedure. As a result, single unit activities would be recognized and finally organized into

clusters based on similar morphology.

number of recording sites capable of detecting thousands of
APs simultaneously and computational power in our hands
(Navratilova et al., 2016; Haessig et al., 2020), we must turn our
attention to challenges that lay still unresolved or require fine-
tuning (Mena et al., 2017; Zhang et al., 2018; Jurczynski et al.,
2021).

In this study, we aimed to outline up-to-date improvements
in the field of extracellular neurophysiological data recordings
and then present and compare the most elaborate and promising
approaches in each spike sorting step. Next, we described
some pivotal points of spike sorting that we consider worthy
of enhancement. Finally, a set of probable further directions
was summarized.

DATA ACQUISITION: FROM SINGLE
ELECTRODES TO NEUROPIXELS PROBES

Being aware of Moore’s adapted law on neural recording devices,
we might expect that the number of channels in which we
can record simultaneously practically doubles every 7 years
(Radmanesh et al., 2021). In light of this, we are inclined to expect
that the number of spikes recorded should likewise grow steeply.
For this assumption to be true, a series of circumstances should
also be realized, such as our recording devices provide a decent
signal-to-noise ratio and provide a quality that ultimately enables
rejecting artifacts in a stable manner.
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Neural sensors should be able to detect voltage variations on a
large scale (Saggese et al., 2021). Each electrode records by default
extracellular de- and hyperpolarizations in the close vicinity of its
nano-to-micrometer-wide tip (to a distance of about 140µm in
the case of a single wire electrode), and given the propagating
nature of action potentials, these deflections would not only be
APs assigned to a particular neuron, or single unit activity (SUA)
but rather the spatio-temporal summation of a neural population
in the close proximity, multi-unit activities (MUAs), and local
field potentials (Hong and Lieber, 2019; Tambaro et al., 2021).
Most spike sorting techniques discard local field potentials by
simply high pass filtering data and concentrate on the spatial
and temporal contexts of signal propagation (Abbott et al., 2020),
although invasive brain-machine interface (BMI) systems could
also possibly profit from this frequency range (Hammad et al.,
2016).

Biocompatibility and Physical
Considerations
To increase the quality of neurophysiological recordings, it seems
to be a good idea to improve the biocompatibility of the recording
tool, which means that its physical and chemical properties
should approximate the ones of the intact neural tissue. One step
forward could be an electrode coating or insulation with a boron-
doped diamond material (Klempír et al., 2020) or polyethylene
glycol (PEG) 4000 for increasing the rigidity of ultra-flexible
probes (Guan et al., 2019; Vasileva and Bondar, 2021). Another
promising material that unites strength and flexibility on a
neural probe scale is carbon fiber, with increasing attentiveness
in neurophysiological studies (Cetinkaya et al., 2018). Another
procedure that decreases damage during implantation is the
slow insertion of the recording devices. For even better results,
administration of certain steroidal anti-inflammatory drugs or
vasoconstrictive pharmakons, dura mater preparation and blood
vessel-sparing penetration may be attempted (Fiáth et al., 2019a;
He et al., 2020). Shank volume reduction is also proportional with
tissue damage reduction (Musk, 2019). Nevertheless, elasticity
has its own drawbacks when surgical procedures are considered;
therefore, stiffening supports or even implantation shuttles can
be of benefit (Wang et al., 2021). The latter solution would
be of key importance when implantation targets dictate a high
precision or vascular structures should be exceptionally spared
(Fiani et al., 2021).

There has been serious aspirations to decrease electrode
impedance by applying special coatings to recording probes,
for instance gold plating and polyethylene glycol additives
(Kuperstein, 2021), poly (3,4-ethylenedioxythiophene) (PEDOT)
(Saunier et al., 2020), or polystyrene sulfonate (Neto et al.,
2018). However, it turned out that impedance control is of less
importance when conceptualizing an electrode (Neto et al., 2018).
Furthermore, impedance can be diminished by simply growing
the surface of contacts, possibly entailing signal dissipation
and decrease in amplitude (Camuñas-Mesa and Quiroga, 2013).
Another more relevant aspect is that when recording potentials
of interest, one should be concerned about the reference either
theoretically set at zero potential or positioned far enough

to be considered at least uncorrelated from recording probes
(Jurczynski et al., 2021). Electrode geometry or channel density
can also raise non-trivial surgical questions (Rivnay et al., 2017)
butmore importantly influence the quality of recordings, namely,
recording sites located closer to the border of rigid silicon shanks
are prone to s with a higher signal-to-noise ratio (Fiáth et al.,
2021). Implementation of wider shanks has its two-faced features,
too: the more volume covered and neural activity observed by the
electrode, the more significant tissue scarring will be (Tóth et al.,
2021).

Neural Sensors
Progress in electrode fabrication has not only yielded to multiply
the amount of recording sites at a fast pace (Kim et al., 2018) but
also finds the most suitable means for any electrophysiological
experiment. Take for example 3D self-rolled biosensor arrays
that are meant to collect data from three-dimensional cortical
spheroid cultures (Kalmykov et al., 2021), with their high-density
channel profile, Neuropixels probes are ideal for functional
connectivity studies (Wang et al., 2021). In the following
paragraphs, some of the most common sensor types used for
electrophysiological recordings are presented.

Single Electrodes
Neural recordings may flawlessly be acquired by single, glass,
or coated microwires, but their usefulness hinge on the tested
experimental hypothesis. Whether dense-packed structures,
for instance pyramidal cells of the hippocampus, are under
investigation, plus population activity as local field potential
brings sufficient information, individual electrodes constitute an
ideal choice (Rutishauser et al., 2006). On the other hand, it is also
evident that single unit activity can hardly be relieved by a single
electrode recording because of the abundance of independently
firing nearby neurons, without any knowledge of their spatial
coordinates (Petrantonakis and Poirazi, 2017).

Tetrodes
The ensemble of four closely packed electrodes with the purpose
of recording extracellular potentials defines a tetrode. Tetrodes
may originate from simple copper wires (Lu et al., 2018) to even
the more refined gold covering (Kuperstein, 2021) or quartz-
coated platinum-tungsten alloy (Ravikumar, 2021), and their
superiority compared to single electrodes stands in allowing to
differentiate waveforms belonging to distinct neurons, thanks to
their spatial configuration (Rey et al., 2015). Even so, tetrodes fall
short when extracellular AP distributions must be investigated
considering a complex set of attributes, such as distributions of
multidimensional extracellular potentials. One should also bear
in mind that tetrode usage as a recording facility technically
culminates in animal studies (Vasileva and Bondar, 2021), since
human applications are sparse (Despouy et al., 2020).

Polytrodes
Grading up from tetrodes, polytrodes, typically insulated metal
wires (Francoeur et al., 2021) or micro-assembled silicon probes,
have increased exponentially the number of neurons in a single
observation (Neto et al., 2016). With a channel count ranging
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from 8 to 64, each one set 25–200µm apart and arranged in
1–3 columns, U-/V- or S-probes are reliable tools for study on
different cortical layers (Wang et al., 2021). As the time span
of recorded data is increasingly substantial, it is recommended
that beginning with polytrodes, data should be split into subsets,
in a divide-and-conquer fashion (Swindale and Spacek, 2014;
Lee et al., 2017; Diggelmann et al., 2018). Besides the probes by
Plexon described above, there have been endeavors to upscale
channel count mainly by placing electrodes as close as possible,
thus keeping physical expansion of the channel ensembles at
the bottom (Pimenta et al., 2021; Steinmetz et al., 2021; Wang
et al., 2021). The rationale behind spatial oversampling or
spacing recording sites so tightly that SUAs and background
activity are clearly separable is not only to boost recording
quality and neuron discriminability (Diggelmann et al., 2018)
but to assess the accuracy of a newly engineered spike sorting
algorithm without knowing the ground truth data (Zhang and
Constandinou, 2021a).

Microelectrode Arrays
Standing as the pedestal for BMIs, microelectrode arrays (MEAs)
are capable of direct signal gain or transmission (Ravikumar,
2021). Knowing that the traditional single glass electrode, then
later its wire version was quickly replaced by a bundle of four
wires, it was quite reasonable that there was a demand-and finally
solution for microelectromechanical systems (De Dorigo et al.,
2018) and finally, densely packed MEAs with 8, 32, 4,096 or
even 11,000, 65,536 recording sites. Another direction for sensor
development is to create a flexible, mesh-like grid of surface
electrodes, namely, electrocorticogram (ECoG) arrays; this too
serves as a potential interface for invasive BMIs without direct
damage to brain tissues. There are MEAs that enable recording
on a single side of the shaft, such as Michigan arrays, while Utah
arrays receive signals from the tip of silicon needles (Kim et al.,
2019).

Objecting the vertical direction, Michigan probes are
remarkably suitable for deep structure electrophysiological
recordings. Their shaft length is usually between 2 and 15mm
(Choi et al., 2018; Ravikumar, 2021). Utah arrays, on the other
hand, are 1.5-mm long, sharpened, and metal-layered silicon
needles arranged in a matrix of 10 × 10 and are large enough
to cover a 16-mm2 cortical, consequently apt, and approved by
the United States Food and Drug Administration for clinical
neurophysiology investigations (Saif-Ur-Rehman et al., 2019;
Ravikumar, 2021; Sahasrabuddhe et al., 2021).

Apart from these traditional arrays, non-conventional array
architectures purpose effectiveness and biocompatibility through
multiple strategies. Prevention of array shielding may be reduced
bymultiplanar, robust arrays (Shin et al., 2017), but folding arrays
in an origami style may also increase the surface from where
recordings are gained (Goshi et al., 2018). Spatial resolution
may also be improved by creating tubular recording devices
(Wang et al., 2017). Conic recording structures help in chronic
stabilization of recordings by enabling tissues to grow inside
perforations (Hara et al., 2016); and ECoG-like design (Fu et al.,
2017), extreme volume reduction (Ereifej et al., 2018), or even

self-softening materials (Hess-Dunning and Tyler, 2018) aims to
reduce adverse tissue reactions (Kim et al., 2019).

MEAs are excellent tools for long-term recordings, resulting
in hundreds of relatively well-isolated single units (Chung et al.,
2020). Nevertheless, we should not forget that detector/cell ratios
that MEA arrays can provide are not always appropriate; hence,
for tasks that require higher spatial resolution, probes may
constitute a better choice (Negri et al., 2020).

Complementary Metal Oxide Semiconductors: CMOS

Technologies
In the haste for superior recording instruments, lithographically
printed and highly scalable probes turned out to be ideal
candidates (Sahasrabuddhe et al., 2021). Being one of
these, complementary metal oxide semiconductor (CMOS)
applications amalgamated integrated circuits with recording
electrodes, thus empowering probes with more compact
input/output connections than ever (Hong and Lieber, 2019).
CMOS probes maintain their compactness by local amplification
and time-division multiplexing (Dimitriadis et al., 2018a) and
support hardware acceleration processing by integration of
application-specific integrated circuits or field programmable
gate arrays at a very fair energy and space consumption rate
(Schaffer et al., 2021); that is how they ensured the appearance
of high-density microelectrode arrays (Dragas et al., 2017). An
outstanding attempt are the Neuropixels probes: their silicon
structure is made up of CMOS technology, with recording
site numbers reaching up to 960 (Wang et al., 2021) or 5,120
(Steinmetz et al., 2021). Similarly grandiose projects made
evidence that these types of probes are worth “scaling up”
(Tsai et al., 2017; Sahasrabuddhe et al., 2021), reducing even
more their inter-electrode spacing in Fiáth et al. (2019b) using
them intracellularly (Abbott et al., 2020) or for the sake of
neuromorphic computational paradigm (Milo et al., 2020).

Raw Output Data
The plethora of neural sensors does not entitle us to choose
the recording parameters further discussed in a rather oblivious
manner; on the contrary, we should strive to precisely select our
targets within brain structures and their specific physiological
conditions for data acquisition, as quality of spike sorting does
heavily lean on this step (Hildebrandt et al., 2017). Considering
technological factors such as sampling frequency (Irwin et al.,
2016), referencing procedures (Jurczynski et al., 2021) and
recording data thatmight be subdivided later (Hassan et al., 2021)
are all influencing quality and computational cost. We should
also take into account that not every channel would provide
the highest quality signal possible, since electrodes detached
from their amplifier may broadcast their data intermittently or
simply get distorted by noise. For this case, real-time rejection
of corrupted channels would be favorable (Swindale and Spacek,
2016; Li et al., 2020a).

Need for Compression
If we record with 1,000 channels at a sampling frequency
of 40 kHz, an hour is just enough to produce 30 GB of
electrophysiological data (Hadianpour et al., 2021); furthermore,
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a Neuropixels probe of 384 channels generates 90 GBs when
sampling is set to 30 kHz. Unless virtually infinite storage capacity
is in our hands, compression is what we should make use of. A
more compact dataset is not just efficiently, but also speeds up the
computational process (Rokai et al., 2021). Several methods have
been described for data reduction up to a four-fold rate, including
pure compression (Pagin and Ortmanns, 2018), thresholded
signal transmission (Irwin et al., 2016), or the lately introduced
on-chip spike sorting procedures (Saeed et al., 2017; Xu et al.,
2019). Local data reduction may enable wireless broadcasting
(Schiavone et al., 2020; Sahasrabuddhe et al., 2021; Voitiuk
et al., 2021) but cannot handle massive multiplexing (Muratore
et al., 2019); thus, large-enough on-chip memory is an absolute
prerequisite (Yu et al., 2011): for instance, operating with 128
channels, with each of them generating 32.5 samples per second,
would have a memory requirement of 768 to even 2,400 kbits
(Park et al., 2017). Such a chip could be just robust enough for
deep learning applications, namely, compressing inputs into an
output that can be deconvolved on the receiver side (Wu et al.,
2018b). Instead of transmitting each recorded sample, the mean
difference between every two of them, delta compression, seems
a reasonable routine (Mukhopadhyay et al., 2018; Chou et al.,
2021; Pagin, 2021), although compressed sensing techniques can
render data even more compact (Xiong et al., 2018).

Sensor types can play an additional role in compression.
Metal oxide memristive integrative sensors record and
compress information in parallel (Gupta et al., 2016), while
neuromorphic sensors are capable of event-driven recording
and transmission, therefore improving temporal precision and
reducing power consumption and data bandwidth (Liu et al.,
2018; Soleymankhani and Shalchyan, 2021).

Digitalization of Neural Data
To be computationally analyzed, analog signals must be digitized,
and analog to digital converters (ADCs) are just meant to
solve the task. Various studies reported that for optimal spike
sorting conditions, ADC resolution must be at least 7–8 bits
(Zamani and Demosthenous, 2015; Liu et al., 2017; Pagin and
Ortmanns, 2017). Moreover, logarithmic ADCs, as opposed to
their linear counterparts, take advantage of small signals and
more distributed dynamic range, just how neural recordings are
designed to stand out.

THE COMMON SPIKE SORTING
PROCEDURE

After data acquisition and its conversion to digital signal, the
search and contextualization of extracellular action potentials
follows. This mining-and-meaning procedure has been coined
spike sorting and subdivided into a changing number of
tasks, like waveform identification, feature extraction and low-
dimensional re-representation, and, finally, projection-based
group formation (Fournier et al., 2016). In different stages of
spike sorting, we could refer to preprocessing (cleaning) and
processing-per-se practices, but it is quite reasonable that for

practical and computational reasons, even major steps tend
to interweave.

Filters and Detectors
Prior to action potential detection, it is worth considering a
filtering stage, as lower frequency local field potentials, mostly
defined as frequencies below 300–500Hz, may encumber further
analyses (Issar et al., 2020). By this step, the quality of spikes
should also enhance; hence, filters behave as balancing factors
between incorrectly detected or discarded events even without
previous thresholding (Zhang and Constandinou, 2021b). Take
for example plain bandpass filtering (e.g., causal infinite impulse
response filters), with the advantage of amplitude threshold
detection: as feasible as it is, one should also deal with
avoiding secondary phase distortion (Schaffer et al., 2021).
Another yet computationally expensive non-linear filtering
option is wavelet denoising, and the Haar mother wavelet is
especially useful when background noise is unlike Gaussian
distribution (Barabino et al., 2017; Baldazzi et al., 2020; Pakman
et al., 2020). Statistical filtering is based on certain calculated
parameters, like average absolute values or standard deviation
of sample waveforms (Toosi et al., 2020), while reverse filtering
ensures noise diminution by waveform encoding and restoration
(Mizuhiki et al., 2020). If abrupt changes in particular data
are suspected, particle filtering may confidently detect them,
along with accepting the burden of greedy computational
needs (Hu et al., 2018). Artifacts occur not just because of
imperfect signal filtering but also human-induced signs like
stimulation artifacts may contaminate data, and as these objects
are highly structured artifacts, statistical filtering may circumvent
this source of bias (Mena et al., 2017; Toosi et al., 2020).
Despite most algorithms striding to suppress noise, some of
them suggest highly contaminated snippet exclusion (Evangelou,
2020). At first sight paradoxically, introducing certain artifacts
in the pre-emphasis (Ravikumar, 2021) with an optimum flicker
noise intensity called stochastic resonance, signal detection rates
significantly improve (Güngör and Töreyin, 2020; Güngör et al.,
2021).

As it can be seen, filtering and spike detection are the
lead-in operations in spike sorting; therefore, the quality of
feature extraction and clustering is greatly impacted by detection
algorithm performance, but even if data have been vigorously
curated, spotting spike candidates remains a challenge (Okkesim
et al., 2021). Filters may be an excellent support for threshold
crossing event detection algorithms (Yang et al., 2017; Saggese
et al., 2021), although more complicated methods, such as
correlation-based detection, wavelet decomposition (Gao et al.,
2018), Bayesian shrinkage methods (Sousa et al., 2021), and
Teager or smoothed non-linear energy operators may also profit
from them (Pagin and Ortmanns, 2017; Tambaro et al., 2020).
Once noise level is estimated, amplitude threshold value can
be set to a proper value (Barabino et al., 2017), although
dynamic changes in noise variance are principally neglected
(Toosi et al., 2020), but where is the optimum for picking
a threshold? By employing a three-to-five standard deviation
threshold, most authors agree that spike prominence is correctly
estimated (Laboy-Juárez et al., 2019), while others focus on loss
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minimization and push threshold values lower (Bigelow and
Malone, 2021; Chou et al., 2021). Instead of declaring signal
standard deviation as the event detection threshold, it may be
reasonable to surge robustness against alternating firing rates
and calculate with median values (by recognizing that high
amplitudes or spiking activity could only represent a small
fraction of the recorded data) (Pregowska et al., 2019). Therefore,
an automatically set threshold value could be determined as
follows (Quian and Nadasdy, 2004):

σn = median

{

|x|

0.6745

}

, (1)

where x stands for the filtered signal. Evaluated at ¾, the
approximation constant is the inverse of the standard normal
distribution function, and threshold may be from a two- to
four-fold value of σn (Quian and Nadasdy, 2004).

Besides threshold crossing, plenty of algorithms enable action
potential detection. Smoothed or common non-linear energy
operators may be capable of sub-millisecond on-chip spike
detection (Malik et al., 2016; Schaffer et al., 2017; Tambaro
et al., 2021). Signal-to-noise ratio can be further augmented by
amplitude-slope operators (Zhang and Constandinou, 2021b).
By applying a Teager energy operator-detector on data, even
higher noise levels are well-tolerated; thus, filtering stages
may be skipped (Lieb et al., 2017). Another noise-resilient
approach represents fractal analysis of neural recordings, and
after concluding that segments containing spikes have inferior
dimensionality compared to noise, spike detection can be
achieved (Salmasi et al., 2016). As it can be candidly imagined,
an action potential and its propagation in an extracellular space
would not let the entropy content of the temporal dimension
unchanged, so calculating it with a sliding window method
proved to detect spikes with greater specificity (Farashi, 2018).
Combined methods that filter and set threshold parallelly, with
adjustable weights depending on the source, are signal-to-noise
ratio optimal filters and proposed to reduce computational
complexity and upgrade discriminating capability (Wouters and
Kloosterman, 2019). As a next chapter in filtering and detection
paradigms, neural networks with barely one hidden layer can
fulfill the tasks of preprocessing and event detection (Issar et al.,
2020).

Alignment
After successful data filtering and detection of action potentials,
spike characteristics should also be explored and mapped. Before
the very solution, which is feature extraction, it is reasonable
to line up spikes in a way that may facilitate further processing
and eventual visualization. This can be rendered by “binning”
all spikes into a fixed length window, and then aligning them
such that each spike has its temporal reference point, for instance
maximum value or slope (Metcalfe et al., 2017; Valencia and
Alimohammad, 2021). This method is uncomplicated and vital
when opting for clustering alternatives but may fail when noise
corruption is elevated (Valencia and Alimohammad, 2019). Such
issues may be circumvented by upsampling data and, therefore,
performing super-resolution alignment (Lee et al., 2017).

Feature Extraction
The main pillar for accurate signal decoding is inarguably finding
distinctive features in spikes that practically reveal their source.
This gain of waveform information is called feature extraction,
where only the most critical elements, the so-called principal
components, are retained for further assessment (Ravikumar,
2021), which means that later, dimensionality reduction also
takes place (Mahallati et al., 2019). For maximizing spike sorting
accuracy, it is reasonable to choose principal components wisely,
preferably ones that are noise-independent (Soleymankhani and
Shalchyan, 2021) and are distinctly discriminative (Lefebvre
et al., 2016; Zamani et al., 2020b) but cheap at implementation
(Zamani et al., 2020a); by this means, we can map neural data
in an informative but lower dimensional space. There is also
a difference between first (waveform amplitude) and second
(slope of the waveform) principal components (Navratilova
et al., 2016). Principal component analysis (PCA), as one of
the most popular dimensionality reduction methods (Salmasi
et al., 2016; Allen et al., 2018), constructs a matrix of the largest
variation-containing orthogonal basis vectors in the feature space
(Chen et al., 2021), but extensive computations and storage
requirements are inevitable (Regalia et al., 2016; Yang et al.,
2017).

The must for unsupervised analysis had urged to think
forward PCA. As a result, independent component analysis (ICA)
has been created, which, similarly to PCA, has also benefited
from redundancy reduction, improved signal to noise ratio, and
as a final implementation, fastICA version reduced computation
time, therefore turning the initial method into a suitable option
for high density channel recordings (Leibig et al., 2016). While
appropriate for high-density MEAs, ICA presumes that the set of
sources does not outweigh the number of recording channels, and
consequently fails when tetrode or low-density neural recordings
are analyzed (Buccino et al., 2018). ICA generates both temporal
and spatial redundancy, an advantage that can be brilliantly
exploited by deep learning: convolutive ICA methods, therefore,
are ready to extract features and cluster them in an unsupervised
fashion (Leibig et al., 2016).

There is another dissimilar branch of methods that prioritizes
cutting back on hardware complexity and template matching
(Laboy-Juárez et al., 2019) that is an increasingly popular
alternative for clustering. Discrete derivatives (Zamani et al.,
2018) or optimal wavelet transforms (Yang and Mason, 2017;
Soleymankhani and Shalchyan, 2021), which are sub-band
selective, can stand for filtering as well (Soleymankhani and
Shalchyan, 2021), whereas zero crossing features (Oh et al.,
2017) or first and second derivative spike features (Caro-
Martín et al., 2018) are methods that can tackle this condition.
These methods are concentrated on global features gripping
waveform morphology similarities of action potentials, but local
feature extraction, e.g., Laplacian eigenmaps, could constitute
another strategy as well (Chah et al., 2011; Huang et al.,
2021). Regardless of the choice of feature extraction algorithms,
by the end of this step, a well-represented feature space
should be received, mapping each spike snippet as part of a
highly distinguished and densely populated area (Chung et al.,
2017).
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FIGURE 2 | Feature classifications of the most widely used clustering algorithms. When choosing the ideal algorithm for a given dataset, it is straightforward to

imagine a decision tree and consider which features are essential during the clustering process: supervised or unsupervised, and then the level of accuracy, even with

acceptance of enormous computational costs.

Clustering: The Core of Spike Sorting
The practice of categorizing spikes or their calculated
features in such a way that their source neurons would
be identical holds the name of clustering (Knieling et al.,
2017). All the algorithms and technologies presented so
far converge toward clustering, since the goal of decoding
extracellular action potentials is acquired by this step.
The ideal clustering algorithm runs real-time, implements
sequential processing, it is fully unsupervised, but preferably
as uncomplicated as clustering and parallel operations
may be carried out on the recording device (Wood et al.,
2004; Li et al., 2019; Toosi et al., 2020). For simplicity,
clustering algorithms may be arranged into model- or
non-model-based categories, admitting that even within
these groups, algorithms highly differ from each other
(Figure 2). This section intends to outline major clustering
paradigm strategies without the ambition to compare all
of them in terms of performance, execution speed, and
other properties.

Model-based or simply probabilistic approaches lean on a
source-dependent spike probability distribution provided by a
generative model: Bayesian methods, expectation maximization
procedures, or maximum likelihood estimations are typical
instances of this class. These tactics are unusually resilient to
noise associations, and over and above cluster visualization
is facilitated (Mahallati et al., 2019). Modeling a mixture
of drifting t-distributions enables differentiating overlapping
clusters from heavy tails (Shan et al., 2017), while hidden Markov
models have been successfully utilized during joint detection
and sorting analyses (Li et al., 2019); however, the foremost
strain of computational requirements is faintly resolved. The
threat of cluster overseparation is also considerable, especially
when non-Gaussian clusters, in fact, are assumed to represent

Gaussian distribution (Keshtkaran and Yang, 2017; Rezaei et al.,
2021).

Non-model-based methods, on the contrary, endeavor on
classification tasks (Shan et al., 2017). With almost historical
relevance, manual clustering is the most expository approach
where obvious parameters like spike amplitude, duration, and
channel location are applied as model substitutes (Sun et al.,
2021). These methods have been gradually replaced by minimally
supervised or supervision-free practices, one of them being
k-means clustering, from the partitional subclass. Today, k-
means dominates spike sorting protocols because of its lack
of sophistication (Dallal et al., 2016; Fournier et al., 2016;
Lefebvre et al., 2016; Park et al., 2020; Rácz et al., 2020),
along with hierarchical techniques or graph-based, fuzzy logic,
and density-, grid- and learning-based methods (Zhang et al.,
2018; Veerabhadrappa et al., 2020). Hierarchical solutions are
mainly represented by Euclidean distance-employing algorithms
(Knieling et al., 2017), which are the base of optimal filter
estimation methods, too (Hassan et al., 2020). Graph-based
clustering has nearest neighbor interactions at the center, but
spectral clustering (Huang et al., 2021) or super-paramagnetic
clustering in the well-known wave_clus algorithm does also
subscribe to this ground (Quian and Nadasdy, 2004). Fuzzy-
C-means logic considers each action potential as a member of
every cluster that has been delineated, and only their affinity
degree makes decoding possible (Regalia et al., 2016). Density-
based algorithms are the most analogous approaches with human
clustering strategy, since they focus on agglomerated regions
and their low-density belts in the feature space (Chung et al.,
2017; Hilgen et al., 2017; Hennig et al., 2019). Learning-based
clustering incorporates various means in the service of spike
sorting, beginning from single-layer perceptrons to state-of-the-
art spiking neural networks (Veerabhadrappa et al., 2020).
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Making up our mind for a certain clustering approach
does not automatically discard correction procedures or even
melting it with another algorithm. The minor corrections imply
Laplacian eigenmaps, which boost k-means clustering accuracy
(Chah et al., 2011) or subset clustering together with pre-
whitening for parameter-free spike clustering (Diggelmann et al.,
2018). Consensus and ensemble clustering uses the variability
of distinct clustering algorithms (Fournier et al., 2016; Vitale
et al., 2019; Zhu et al., 2020); similar contracted measures are
Euclidean distance of scatter-plotted features (Berjis and Al-
sulaifanie, 2020), k-means clustering combined with mean-shift
strategy [with the advantage of calculating the number of optimal
clusters and analyzing similarity degrees (Negri et al., 2020)], and
hierarchical agglomerative clustering (Cleaver-Stigum, 2021).

Automated Strategies
Gradual replacement of manual spike sorting by software
techniques anticipated the rise of fully automated algorithms
(Barnett et al., 2016). This particular aspect of spike sorting
attracted so much attention in the past half decade, that this
section is dedicated entirely to processes where tedious and
time-intensive human interaction found its alternative.

Although most of the clustering algorithms presented
previously are fully automated, many of them neglect aspects
such as real-time application or opportunity to be uploaded on
a chip that parallelly records and analyzes data. Neural network-
based methods, however, are on the way to satisfy both criteria,
with a promise of clinical applications (Radmanesh et al., 2021).
But why do learning-based methods excel where human sorting
efficiency is oftentimes inconsistent? Deep learning takes the
advantage of non-linear relationship modeling, which means if
associations between inputs and outputs are not straight-line,
strategy finding patterns in these links might actually outperform
algorithmic methods (Markanday et al., 2020; Guido, 2021).

Automated algorithms are characterized by an unsupervised
strategy, although exceptions exist, such as supervised training of
a neural network, to be followed later by unsupervised execution
or selecting meaningful channels before the sorting process
begins (Saif-Ur-Rehman et al., 2021). It must be emphasized,
though, that most learning-based algorithms perform a plainer
form of spike sorting, namely, classification depending on what
has been learned during the paramount process of training (Luan
et al., 2018). Classification may be a clever option when runtime
drop is a priority instead of near-maximum accuracy (Valencia
and Alimohammad, 2019), thus enabling online sorting on a
general-purpose computer or a chip with which neural data
have been acquired (Schaffer et al., 2021). Therefore, to achieve
storage reduction, neural networks may be shrunk to three
layers of artificial neurons, where additional attention elements
complete the network (Bernert and Yvert, 2019). Sequentially
constructed algorithms, such as those building upon multiple
basic dense layers (Mahallati et al., 2019; Yeganegi et al., 2020)
and convolutional (Li et al., 2020b) and recurrent layers (Rácz
et al., 2020) require an expansive repository, although by weights’
and activation functions’ binarization, complexity may be cut
back (Valencia and Alimohammad, 2021), or parallelization
by graphical processing units may take place (Tam and Yang,

2018). These layers may be constructed in different ways, mainly
in order to mitigate or abandon the need for hand-labeled
neural data throughout training: autoencoders (Weiss, 2019;
Radmanesh et al., 2021; Rokai et al., 2021) or networks generated
by adversarial (Wu et al., 2019; Ciecierski, 2020) or reinforcement
learning paradigms (Salman et al., 2018; Moghaddasi et al., 2020)
have successfully clustered features originating from noisiest
datasets. Likewise, a more sophisticated learning-based method
may even incorporate multiple steps of spike sorting, resolving
detection, feature extraction, and clustering as a close-packed
solution (Eom et al., 2021; Rokai et al., 2021), although manual
curation is advisable (Horváth et al., 2021).

Learning-basedmethods in the pay of automated spike sorting
benefit a lot from additional remarks and optimization strategies
(Table 1). If artificial neural networks perpetrate clustering, the
optimal number of clusters may be estimated by Gap statistics
(Tariq et al., 2019), and a method called Heuristic Spike Sorting
Tuner even helps in selecting spatial or temporal features that
ensure precise clustering (Bjånes et al., 2020). Regarding ideal
input dimensionality, that is to say the number of specific features
under analysis, studying four features are mostly sufficient for
clustering (Hilgen et al., 2017).

Even with greatest circumspection during spike sorting,
clustering quality must be inspected, and to solve the needs,
ground truth-containing datasets have been created. These
data entail a ground for fair comparison between spike
sorting algorithms in terms of accuracy, speed, and memory
requirements (Figures 3, 4).

Alternatives for Clustering
Clustering banks on feature space construction, which means
that a two-step process may hide unanticipated problems.
With this point of view, reducing the number of steps to 1
and introducing the concept of template matching hold great
promises (Yang et al., 2017), especially when templates are
interpreted in a Bayesian context (Franke et al., 2015). However,
running templates through whole target signals in search for
best-matching units is quite a chronophagous routine and
remarkable when objected neurons are in abundance (Chen
et al., 2021). As it could be speculated, these approaches are
worthwhile when neural recordings are less compound, namely,
electroneurogram/electromyogram decoding may be executed
with this type of pattern recognition (Noce et al., 2019). By
repeating spike sorting on the same data, normalized template
matching methods guarantee an additional 40–70% detection of
spikes; however, computational costs should also be a concern
(Laboy-Juárez et al., 2019).

On-Chip Spike Sorting
Spikes may even be decoded with a recording device, and power
consumption; data quantity will also benefit from it (Liu et al.,
2018). Contemporary tools to fulfill this task are mainly based on
field-programmable gate arrays or application-specific integrated
circuits (Barnett et al., 2016). Nevertheless, microcontroller units
(Schiavone et al., 2020) and system-on-a chip devices (Liu
et al., 2017) are increasingly popular. These chips, however,
must be trained in preceding spike sorting procedure for
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TABLE 1 | Presentation of the most used learning-based methods.

Learning based method Particularities References

MLP—multilayer perceptron Non-linearly activating, fully connected nodes arranged in three or more layers
Park et al., 2020;

Zamani et al., 2020b

CNN—convolutional neural

network

Regularized MLP: finding hierarchies in data by sliding along convolutional

kernels on the input matrix Lee et al., 2017; Li

et al., 2020b

RNN—recurrent neural network Backpropagation of certain node outputs to previous layers for finetuning node

values Rácz et al., 2020

AE—autoencoder Two-pillar architecture with non-recurrent neural network: 1. encoder encrypting

the input; 2. decoder reconstructing the original input, based on the output of

the encoder

Weiss, 2019; Eom

et al., 2021; Rokai

et al., 2021

GAN—generative adversarial

network

Two-pillar architecture: 1. generative network creating samples for the evaluation

performed by the, 2. discriminative network Wu et al., 2019;

Ciecierski, 2020

RL—reinforcement learning

agent

Learning process based on maximizing reward after the action correctly

executed Salman et al., 2018;

Moghaddasi et al.,

2020

It is worthwhile to stress that the first three learning-based methods are the fundamental structures of modern artificial neural networks; moreover they may serve as building blocks

when constructing the latter three.

FIGURE 3 | (A) Algorithm accuracy vs. the number of units found above the accuracy threshold of 80%. (B) Algorithm accuracy vs. time needed for computation.

Algorithms were tested on the Hybrid_Janelia dataset, with a minimum SNR of 101 .

successive fine tuning and accurate execution of functions
(Zeinolabedin et al., 2016; Saeed et al., 2017). This approach is
also vital in the field of neuromorphic computation, ignited by
very large-scale integration technologies (Mukhopadhyay et al.,
2018); there has recently been an implementation for 65,536
simultaneously recording and stimulating electrodes (Tsai et al.,
2017). Similarly, extensive neural recordings are preferentially
processed in batches and then subdivided into bins given the
resistive state that calls for proper noise estimation (Gupta et al.,
2019).

1data source: https://spikeforest.flatironinstitute.org/.

Clustering itself can be any algorithm from those introduced
in the general clustering section, but it is worth considering
the computational bottleneck of recording front ends. As it
could be seen, most non-model based clustering algorithms are
intended to capture specific geometric features; therefore, finding
the most prominent ones could also cut back on the number
of features under analysis (Shaeri and Sodagar, 2020). Event-
trace, template-value differences add a temporal dimension
to the template matching procedure, so they can further
reduce the number of comparison units (Haessig et al., 2020).
Learning-based methods may also control this circumstance
at a superior level; hence, it is sufficient to upload a ready-
to-use, modest as possible pretrained artificial neural network
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FIGURE 4 | Comparison of clustering algorithms based on their accuracy achieved in the wave_clus dataset. We selected novel state-of-the-art algorithms that

cannot yet be evaluated through the SpikeForest framework, but their performance in the wave_clus dataset has been made available with their publication. Generally,

16 samples of this dataset are applied during validation and divided into the subgroups “easy1,” “easy2,” “difficult1,” and “difficult2,” which appear in our x axis as

“e1,” “e2,” “d1,” and “d2,” respectively. The values after the underscore reveals the noise content of each simulation, i.e., _005 means a 5% noise contamination,

whereas _01 10, _015 15, and _02 20% sequentially.

(Valencia et al., 2019). In this subject, hardware-embedded
spiking neural networks are the greatest novelty, mostly owing
to their feasible adaptation to data recorded on the fly (Werner
et al., 2016).

Toolboxes and Software Suites for Spike
Sorting
The ever-increasing need for spike sorting has led to a wide range
of open-source electrophysiological platforms, frameworks, and
software (Pachitariu et al., 2016). Any related project is
either aimed to bring spike sorting closer to a user who
has little knowledge of the procedure or provide a space for
methodology comparison and dataset generation. It is also
required to support a wide range of data formats, as well
as oscillating quality and length of the recordings (Swindale
et al., 2017). Here, we briefly present novel toolboxes from the
past 5 years that can be applied straightforward even by non-
expert users.

For data acquisition, the Parallel Ultra-Low-Power
(PULP) platform merges the process of data acquisition
and single unit detection under a single benchwork
(Schiavone et al., 2020). Another software, Neural Parallel
Engine, is useful when the execution speed of spike sorting
algorithms is crucial, since it enables highly parallelized
computational process through graphical processing units
(Tam and Yang, 2018). Neurophysiological data can be
curated and further analyzed with Phy2, a graphical
user interface operating with Python. Another manual
curation-supporting graphical user interface is based on t-
student stochastic neighbor embedding (Dimitriadis et al.,
2018b).

Python frameworks have also been created for complete
spike sorting procedures such as OpenElectrophy (Rosenberg
and Horn, 2016), herding_spikes (Muthmann et al., 2015),

2source: www.github.com/cortex-lab/phy.

NeoAnalysis (Zhang et al., 2017), tridesclous3, and spyke4.
All of them support multichannel architectures. At the center
of MountainSort, a density-based clustering approach stands,
namely, ISO-SPLIT; this suite is also open-source (Chung et al.,
2017).

SpikeInterface is a framework that not only offers algorithms
for spike sorting, but most recent sorters can be used
interchangeably (Buccino et al., 2020). Similarly, Spikeforest is
also available for a wide range of sorting approaches; moreover,
their comparison has never been easier because of its intuitive
graphical user interface (Magland et al., 2020). Spikeforest,
which may be embedded into the SpikeInterface environment,
evaluates algorithms automatically and systematically based on
some of the most well-known datasets supplied with ground
truth. The Spike-Sorting Evaluation Initiative and the 1st INCF
Workshop on Validation of Analysis Methods (Denker et al.,
2012) have pushed the spike sorting community toward sharing
essential data for algorithm evaluation, but cloud computing as
a helping feature is also considered (Mahmud and Vassanelli,
2019).

When searching for unified computational for a more specific
use, P-sort is a unique pipeline and software, destined to sort
cerebellar single unit activities (Sedaghat-Nejad et al., 2021).
CellExplorer suits for single-neuron characterization and signal
visualization are for those who are confident with MATLAB
(Petersen et al., 2020), whereas Big Neuronal Data Format
(BNDF) emphasizes large-scale data processing and reducing
overall runtime (Hadianpour et al., 2021). Combinato, on the
other hand, is written in C/C++ and enables dealing with
long-term, noisy recordings mostly in an unsupervised fashion
(Knieling et al., 2016). For algorithm validation, SHYBRID is a
surrogate platform when ground truth information is expected,
offering hybrid data as an evaluation tool (Wouters et al., 2021).

3source: www.github.com/tridesclous/tridesclous.
4source: www.github.com/spyke/spyke.
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Another road to unburdening spike sorting is to simulate
datasets in which algorithms can be trained, validated, and tested.
ViSAPy (Hagen et al., 2015) and MEArec (Buccino and Einevoll,
2021) are Python-based, whereas Neurocube (Camuñas-Mesa
and Quiroga, 2013), Neural Benchmark Simulator (Mondragón-
González and Burguière, 2017), and SHYBRID (Wouters et al.,
2021) are MATLAB-implemented frameworks (Figure 5).

ARISING CHALLENGES

There are several factors that may emerge during data
collection, and despite being often predictable, they may
complicate spike sorting. In the search for accurate and real-time
functioning, computationally efficient algorithms, difficulties
such as involuntary drifts, temporally coincident, overlapping,
spikes, or even obstacles given by the ever-increasing recording
capacity are generated. Disregarding energy consumption
especially when implantable devices are considered can lead to
obstacles in practice (Mukhopadhyay et al., 2018; Okkesim et al.,
2021). Last but not least, we should also engage in assumptions
that aremade before recording, since electromagnetic field theory
presumes extracellular space isotropy and homogeneity; however,
e.g., privileged cell orientations and the bare existence of neural
probes in a tissue render simplemodels inaccurate (Buccino et al.,
2019). These notions are generally applicable within the gray
matter, since one can easily admit radical differences in white
matter signal propagation.

High Channel Counts
By increasing channel counts and covered brain areas, we get
an insight into more neurons’ activities in parallel. This means
that statistical models based on such recordings would also hold
a promise for superior neural population activity interpretation
(Hurwitz et al., 2021). Nevertheless, computational costs escalate
almost exponentially with channel numbers, and the number
of wires that send signals forward would also grow, except for
methods employing controllable switches to attach recording
sites with single wires (Lee et al., 2021). Increasing channel
density and adopting a divide-and-conquer processing strategy
(Chen et al., 2021) allows for effortless detection of duplicated
or overlapping spikes (Larionov et al., 2019; Chou et al.,
2021; Dehnen et al., 2021) and provides more detailed spatial
information on action potential sources (Rácz et al., 2020).
Meanwhile, by increasing the number of spikes sorted out, false
positive or negative detections become an imaginable source of
errors: a small quantity of mistakenly identified spikes perturb
firing rate or interspike interval values (Chiarion and Mesin,
2021).

The Drifting Dilemma
For a short time, almost every detected spike waveform keeps
its original shape, which is the pseudo-stationary stage of the
recording, and any occurring signal variability is mainly given by
Gaussian-distributed noise (Yu et al., 2011). On the other hand,
in vivo and sometimes in vitro setups suffer from small changes
in electrode positions, even from the beginning of recordings,
when, e.g., perceptible discrete brain sample dislocations that

may impact initially recognized waveforms to an extent that
clusters may split or even intercept each other and form new
but misclassified groups of action potentials (Gong et al., 2016;
Harris et al., 2016; Chaure et al., 2018). The most plausible
solution for probe drift is to track and update primordial neuron
templates (Lee et al., 2017) or handle data as independent batches,
and then ultimately merge alike-looking clusters, but considering
spikes with a mixture of drifting t-distribution character can
also eliminate drift-suggesting heavier tails of clusters on data
representation (Shan et al., 2017). Spike amplitude change may
also be estimated with recursive least-squares, but its utility is
mostly demonstrated by low-count channel recordings (Davey
et al., 2020).

Overlapping Spikes
Overlapping spikes frequently cause a problem for spike sorting
algorithms: when different neurons fire in such a restrained
time window that their waveforms overlay (Rey et al., 2015),
the features of their subcomponents extracted for clustering
cannot be applied. It is reasonable and right to suspect that the
extent of overlap defines the trouble of accurate classification; yet
quite paradoxically, evidence shows that firing rate and spike-
train correlation levels do not infer with algorithm performance
change (Garcia et al., 2021). If data suggest that these events,
by incidence, are sufficiently low, simply censoring spikes with
double peaks may overcome the problem, and for detections
that represent only a mild overlap, deconvolution can be
employed (Li et al., 2020b). Others emphasize the ubiquity of
overlapping spikes especially when recording with high-density
channel count probes and urge for specific algorithms committed
to defeat misclustering. A straightforward approach suggests
resolving the overlap in the feature space by treating problematic
spikes’ feature vectors as linear superpositions (Wouters et al.,
2020), enhanced by one-hot encoding (Wouters, 2020), or
quite the contrary, by fusing features in behalf of dimension
number and missing information reduction (Li et al., 2018),
while others suggest adding an extra step of combining pair-
wise action potential waveform templates at various time shifts
for refining sorting accuracy as much as 30% (Mokri et al.,
2017). Additional alternative strategies are biogeography-based
optimization (Chiarion and Mesin, 2021), using blind source
separation methods (Leibig et al., 2016) or close examination
of each spike cluster’s center, which is equally close to another
two midpoints (Wouters and Kloosterman, 2021), by automated
template merging (Chen et al., 2021). Sparse representation or
compressive sensing of neural data performs peculiarly well
when spike waveforms are alike; therefore, overlapping spikes
can be resolved by this means (Wu et al., 2018a; Huang et al.,
2020). Wavelet Packets Decomposition and Mutual Information
(WM sorting) is a clustering algorithm specially designed for
overlapping spikes outperformingmost of themethods presented
here; nevertheless, its computational intensity generates doubts
about real-time applications (Huang et al., 2019).

Neural Bursts
Noticing in a recording channel a set of action potentials, with
short, ∼3–5-ms interspike intervals, mostly similar in shape
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FIGURE 5 | Enlisting signal processing toolboxes based on their most useful functions. “Signal acquisition” box: a wide variety of toolboxes treating difficulties of the

recording or signal generation process, most of them compressing or prefiltering data for further steps. “Data curation + data format” box: software indicated for

preprocessing previously recorded signals, most of them recommended even in the case of manual spike sorting. The “sorting” box lists the most used and trusted

spike sorting algorithms or algorithm collections that can be applied to various datasets. Finally, the “algorithm evaluation” and “algorithm comparison” box offers help

when a custom algorithm needs validation or measuring against the algorithms itemized in the “sorting” box.

but decreasing in amplitude, conventionally means there is a
neural burst or “complex spike” (Rey et al., 2015; Evangelou,
2020). Emitted usually by pyramidal cells, in the standard signal
generator circuit and by interneurons in deeper structures, the
latter ones act by suppression (Gainutdinov, 2021). But why
do they constitute a problem when spike sorting is at stake?
First, decreasing amplitudes may hamper detection; moreover,
this decrescendo may be the source of falsely created separate
clusters; second, they can mimic other problem sources: complex
waveforms may originate from overlapping spikes (Rácz et al.,
2020), and diminishingmay be due to electrode drifting. Bursting
neurons can be handled by assigning them a burst index (Sun
et al., 2021) or a special spike label (Kapucu et al., 2016), or by
simply decomposing a spike train and its successors into a parent
wave (Chung et al., 2017).

Long-Term Recordings
The ability to achieve recordings from freely moving animals
with a promise of proper neural decoding over months, hopefully
with the same device, is the holy grail of spike sorting (Shan
et al., 2017). Long-term recordings, therefore, comprise all arising
challenges that could be met throughout spike sorting, but the

main problem is represented by unit instability, when new-found
spike waveforms replace former ones; hence, most template
matching strategies fail (Toosi et al., 2020). Unit firing rate
variations, neural plasticity, or loss of recorded neurons in the
long run may also influence sorting accuracy (Okun et al., 2016;
Xiao et al., 2019; Vasileva and Bondar, 2021), although large-
scale, multisite platforms may reconcile even these obstacles
(Chung et al., 2020; Vasileva and Bondar, 2021). In the long run,
neural sensors may determine leptomeningeal proliferation and
fibrosis or even foreign body reaction, all these possibly leading
to device encapsulation, further deteriorating recording quality
(Szymanski et al., 2021).

The “Dark Neuron” Problem: Scarcely
Firing Cells
It has been widely debated why generally, a recorded neural
activity is sparser compared to anatomy-based expectations
(Ahmadpour et al., 2019), However, research may suggest that
the “dark neuron” problem could be accounted to neural sensors,
since their de facto electrode sensibility is usually lower than their
anticipated value; therefore others caution on the non-negligible
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TABLE 2 | Formulas of the most common clustering metrics and indices.

Performance quantification:

• relies on ground truth

• based on confusion

matrix results

External criteria indices

• relies on ground truth

• compares calculated labels with

actual ground truth

Accuracy = TP+TN
TP+TN+FP+FN

Jaccard index =
|Dground ∩ Dcalc |

|Dground ∪ Dcalc|

Precision = TP
TP+FP

Internal criteria indices

• requires no ground truth

• gives information about cluster

compactness and separation

Recall = TP
TP+FN

Silhouette index =
d(x, n)−d(x, s)

max(s, n)

F1 score = 2× Precision×Recall
Precision+Recall

Calinski − Harabasz index = tr(Bk )
tr(Wk )

×
nD−k
k−1

TP, true positive; TN, true negative; FP, false positive; FN, false negative; Dground, dataset

of the ground truth labels; Dcalc, dataset of the calculated labels; x, given sample point;

n, mean of all sample points from the next nearest cluster; s, mean of all sample points

from the cluster to which x is assigned; k, number of clusters; tr(Bk), between-group

dispersion matrix trace; tr(Wk), within-cluster dispersion matrix trace; and nD, cardinality

of the dataset.

nature of subthreshold signaling and urge for pushing further
technical limitations (Shmoel et al., 2016).

VALIDATION OF SPIKE SORTING
ALGORITHMS

It is a common consensus that any novel algorithm must at
least show a better performance than its predecessors; however,
inventing custom metrics, for instance isolation, noise-overlap,
or cluster signal-to-noise ratio, may bias performance evaluation
(Chung et al., 2017). To prevent this situation, evaluation metrics
should be kept as simple as possible, relying on accuracy,
precision, recall, or F1 scores (Veerabhadrappa et al., 2020).
However, profiting from external criteria indices, such as the
Jaccard index, that can compare data clustering structures and
internal criteria indices, e.g., the silhouette coefficient or Calinski-
Harabasz index, which is also meant to predict the optimal
number of clusters, can all be beneficial (Zhang et al., 2018;
Toosi et al., 2020) (Table 2). Another heuristic alternative for
clustering accuracy is to measure its stability, which means that
performance is evaluated in terms of perturbation introduction
to the testing dataset (Carlson and Carin, 2019). Besides
algorithm validation, performance of neural sensors must also
be characterized: additional optical imaging with high spatial-
temporal resolution can settle both aspirations (Aqrawe et al.,
2020).

Ground Truth
Validation of spike sorting performance is almost inconceivable
without ground truth. This concept is based on the a priori
knowledge of an action potential source, more specifically,
sensing when and which neuron in the neighborhood was active
(Neto et al., 2016). Ground truth data generation involves human

interaction to a certain extent, turning it to a supervised process
(Wouters et al., 2021).

What can be done when “ground truthing” is not an option?
The most straightforward and popular method is to generate
synthetic data and, with these, access ground truth (Buccino and
Einevoll, 2021). Hybrid ground truth is accessible by spatially
oversampled data acquisition or synthesis (Pachitariu et al.,
2016; Scholvin et al., 2016; Wouters et al., 2021), although
enriching data with formerly isolated or artificial spikes is also
an option, coined hybrid method (Yger et al., 2018). Some
classical approaches include manual labeling or simultaneous
recording of intra- and extracellular activity, with the latter
providing ground truth regarding a single neuron (Fournier
et al., 2016; Diggelmann et al., 2018; Abbott et al., 2020).
Recently, an automatic patch clamp technique in vivo lightened
the workload, but human intervention cannot yet be erased
(Kodandaramaiah et al., 2016; Allen et al., 2018). Simultaneous
juxta-and extracellular recordings are also applied instead of in
vivo patch clamping (Hunt et al., 2019; Magland et al., 2020;
Urai et al., 2021). An appealing alternative for compensation
of ground truth is to follow over the long run extracellular
action potential propagation alongside single axonal arbors
and, therefore, assessing their correlation with relatively stable
extracellular action potentials; empirical ground truth can be
obtained (Tovar et al., 2018). A last compromise for lacking
ground truth can stand in the application of the internal criteria
indices presented previously (Zhang and Constandinou, 2021a).
This choice may be shadowed by certain tacit assumptions of
internal criteria applications, such as the Gaussian nature of
noise distribution.

Simulated Datasets
For the past 15 years, reclining on the well-known wave_clus
dataset (Quian and Nadasdy, 2004) has proved to be a reliable
source for algorithm validation; moreover, its prevalence for this
scope assured a feasible and fair comparison ground among
clustering procedures. Analogous but less-known synthetic
datasets also grant for correct validation (Rutishauser et al.,
2006; Pedreira et al., 2012; Rossant et al., 2016). It is becoming
increasingly popular to generate custom datasets, enabling
to set various complexity levels or recording site geometries
(Smith and Mtetwa, 2007; Camuñas-Mesa and Quiroga, 2013;
Hagen et al., 2015; Mondragón-González and Burguière, 2017;
Buccino and Einevoll, 2021), but when producing synthetic
waveforms that ideally mirror recorded ones, one should also
pay attention to cell morphology, membrane ionic channel
configuration, and density (Tran et al., 2020). Paying attention
to previously lesser-considered aspects like layer-in homogeneity
and dependence of frequencies resulted in construction of
trailblazing dataset-simulating environments (Gherardi and
Toreyin, 2021) (Table 3).

In vivo Datasets
Despite lacking ground truth information, in vivo recorded
datasets are highly valuable, because all features that simulated
datasets need to be fulfilled are implicitly present. To mention

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 851024

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Bod et al. Gaining and Sorting of Spikes

TABLE 3 | Most relevant and widely used synthetic datasets for spike sorting algorithm validation.

References Specifications

Quian and Nadasdy (2004) wave_clus dataset: activity of 3 simulated neurons over 4 difficulty levels. The noise level is well-defined in each case.

Rutishauser et al. (2006) 3 simulated datasets each containing 3 neurons with the following scopes:

• 1st: parameter evaluation for the algorithm tested

• 2nd: limits of detectability

• 3rd: limits of discriminability.

Smith and Mtetwa (2007) Biophysical model incorporating signals that closely mimic in-vitro single unit activities, adding non-Gaussian noise and

featuring spatial configuration characteristics between neurons and recording electrodes.

Pedreira et al. (2012) 95 simulations containing from 2 to 20 neurons’ action potentials. The background activity appears as multiunit activity of

varying weighting.

Camuñas-Mesa and

Quiroga (2013)

A tetrode simulation with neural and thermal noise incorporated, three-dimensional aspect enhanced by the “neurons inside

a cube” concept.

Hagen et al. (2015) VisaPy: in vivo mimicking of the multi-compartmental neuron model. A Python-based software is also available.

Rossant et al. (2016) Klusta: test dataset available for the algorithm proposed in the same paper.

Tran et al. (2020) NEURON-based model software employing morphological filter for signal accuracy.

Gherardi and Toreyin (2021) NEURON-based model software with line-source approximation improvements.

Buccino and Einevoll (2021) MEARec: signal generation considering problematic spike aspects, several electrode designs

Note that while pioneering data have been constructed to test a certain algorithm; these days, data-synthesizing types of software prevail, with all their custom implementations.

a few, for rat cortical recordings, there are 32/128 channel-
polytrode (Neto et al., 2016), 128 (4 × 32) array (Horváth
et al., 2021) and Neuropixels-patch clamp combined recordings
(Marques-Smith et al., 2018) available. A dataset recorded by
Utah arrays on non-human primates executing different tasks
is also suitable for single-unit activity clustering (Brochier et al.,
2018). Human data are regularly acquired from patients whose
epileptic seizure onset zone is under investigation. Among these,
amygdala neurons during visual/emotional stimulation (Fedele
et al., 2021) or medial temporal lobe populations under verbal
working memory tasks are recorded by intracranial EEG and
technically validated later (Boran et al., 2020) (Table 4).

DISCUSSION

On the Necessity of Spike Sorting
Spike sorting is not an art for art’s sake protocol, since its
applications are visibly boosting contemporary neuroscience:
it has become essential in extraction of individual neuronal
activities from multi-electrode data, since each electrode reports
the collective activity of multiple nearby neurons. But why is
carrying out this task cardinal? The fact that neighboring neurons
are not necessarily the nearest in connections, i.e., are activated
by different pathways or stimuli (Rey et al., 2015) mainly owing
to information processing and energy optimization through
structural solutions (Pregowska et al., 2019) calls the promise
of neural decoding. This concept, although not equal with spike
sorting, relies heavily on it and undertakes the risk of bias and
wrong intensity estimation generated by spike sorting (Shibue
and Komaki, 2017). Spike sorting also incites statistical analyses,
involving correlogram analysis, inter-spike intervals, or spike
rates (Veerabhadrappa et al., 2020).

When we talk about spike sorting we classically imply
manual sorting alongside automated methods (Dai et al.,

2019). Given its time-consuming feature and potential for
subjective bias (Febinger et al., 2018), manual sorting has been
mostly overtaken by history; consequently, there is a sore
need for fully automated algorithms (Chah et al., 2011). High-
density microelectrode arrays foster progressing classification
accuracies; however, computational capacity should also fall in
line with recording performance (Chen et al., 2021). Several
authors, most of them stressing the expenses of calculation,
argue against the pertinence of spike sorting. As it may be
expected, alternatives for spike sorting all have their strengths
and limitations. According to those who subscribe to rather
overtake spike sorting, when the sum (Li and Li, 2017) or
moments (Sonia et al., 2014) of waveform features are calculated,
spike sorting can be omitted for motor imagery task neural
decoding; however, even these methods fall short of real-time
reconstructions. Similarly, frequency spectrum maps together
with temporal energy heatmaps can predict imaginary finger
movements but in a well-defined force amplitude interval (Xu
et al., 2020).

Spike sorting indeed does not have to be compulsory when
population activity is targeted (Trautmann et al., 2019); therefore
brain-computer interface systems that engage in multi-unit
activity may settle for less complex preprocessing techniques.
Such a method is “binning,” by which firing rates are estimated
in a fixed time window (Ahmadi et al., 2020), and with
marked point models (Yousefi et al., 2020) or interspike interval
histograms combined with power spectrum density estimation,
complete firing patterns can be investigated (Guo et al., 2020):
these methods are advantageous when tuning curves of single
neurons may be distributed bimodally, such as in the case of
murine head direction cells (Liu and Lengyel, 2021). Whenever
applying a clustering-free method, one should keep in mind
that its goodness-of-fit evaluation may differ from mainstream
clustering algorithms (Tao et al., 2018). Nonetheless, at the level
of individual cells, properties cannot be completely evaluated
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TABLE 4 | Most recent in vivo datasets suitable for validation of spike sorting algorithms.

References Source Recording device State or task Dataset

Neto et al. (2016) Rat cortex 32- or 128-channel

polytrode

Under anesthesia 23 neurons with juxtacellular

pipette + nearby electrode

Marques-Smith

et al. (2018)

Rat cortex Patch clamp next to

Neuropixels probe

Under anesthesia 43 paired recordings

Boran et al. (2020) Human medial

temporal lobe

Depth electrode with 8

contacts

Working memory task 9 patients, 37 recording

sessions

Brochier et al.

(2018)

Macaque motor cortex 10-by-10 Utah arrays Reach-and-grasp task 2 macaques, 93 and 156

single unit activities

Fedele et al. (2021) Human amygdala Depth electrode with 8

contacts

Various emotional

situations

9 patients, 14 amygdala

recordings

Horváth et al.

(2021)

Rat neocortex 128-channel polytrode Under anesthesia 20 rats, 109 recordings,

7,126 sorted spikes

While there is a clear aspiration for acquiring continuous long-term recordings with as many channels as possible, and preferably although not necessarily from humans, all criteria

cannot always be met. However, datasets focusing on just one of these aspects can reveal important strengths and weaknesses of a spike sorting algorithm under validation.

with spike sorting algorithms (Rossi-Pool and Romo, 2019). To
conclude, an eventual conflict between spike sorting methods
or data should not discourage us from conducting spike sorting
whenever there is a clear indication of employing it.

Implementations of Spike Sorting
As the demand for spike sorting is clear-cut, we considered
further stressing the relevance of these sets of algorithms by
presenting research fields that greatly benefit from spike sorting.
Spike sorting is mostly regarded as the essential step toward
functional brain-machine interfaces and micro-electronic neural
bridges (Huang et al., 2016), but its relevance is substantial
in epilepsy research (Neumann et al., 2017; Richner et al.,
2019) or the study of sleep (Kozák et al., 2020; Matsumoto,
2020). Besides common-term primary motor cortex single unit
activity, clustering in areas where visual coding or multisensory
integration takes place is an intuitive approach in vision
and adaptive behavioral studies (Reber et al., 2019; Mizuhiki
et al., 2020; Steinmetz, 2020). Cerebellar spikes should also be
detected and clustered; nevertheless, the latter task is rendered
more difficult by the intricate morphology of Purkinje cells
(Markanday et al., 2020). Complex spikes can also be met in
the thalamus, and spike sorting is just a way to learn about its
electrophysiological properties (Pastor and Vega-Zelaya, 2020).
In the subthalamic nucleus, clustering of spike trains may
help to understand the pathophysiology of movement disorders
(Kaku et al., 2019; Sukiban et al., 2019), while the basolateral
amygdala or the hippocampus can offer ideas about general
neural interactions (Hojjatinia et al., 2020; Oghazian et al.,
2020). Correlations calculated after vigorous spike sorting in
multichannel data gave rise to a promising neural encoding
capacity hypothesis (Isbister et al., 2021) and neural populational
activity dynamics (Theilman et al., 2021).

Furthermore, spike sorting may be just as pivotal outside of
the brain. Remaining at the level of the central nervous system,
superficial dorsal horn spinal cord neurons reveal much about
spinal plasticity, and sorting their activities may ensure isolation
of relevant populations (Smith et al., 2020). For peripheral
nervous system recordings, discrimination and identification of
APs cannot lack spike sorting either (Metcalfe et al., 2021). Spike

sorting is required to isolate retinal ganglion cells based on their
multiunit activity recordings (Tsai et al., 2017; Pérez-Ortega et al.,
2021) and identify their electrical responses (Li et al., 2021), but
non-neural tissues can also benefit from it by applying spike
sorting algorithms, i.e., on pancreatic biosignals (Iniguez-Lomeli
et al., 2021).

Spike sorting has its own advantages during in vitro
experiments, too. Cerebral organoids, also known as Minibrains,
and spike sorting together enable studying neuro/gliogenesis
and connectivity (Govindan et al., 2021), while spike sorting
in its intracellular variations can elucidate synaptic plasticity
mechanisms (Ghanbari et al., 2017). Recently, spike sorting
proved to be inescapable when performing optogenetic
stimulation on MEA-supported brain slices (Sacher et al., 2021).

Up to this point, we presented spike sorting as a complete
procedure that seeks to assign a signal to a particular source,
but regarding it as a piece of puzzle toward another problem
solution is also valid. Spike sorting can be embedded in synaptic
connectivity estimation algorithms, thus helping construct
neuronal circuit diagrams (Endo et al., 2021). By combining
spike sorting with phasic unit selection, we can recognize firing
patterns in structures that have timekeeping properties (Chrobok
et al., 2021).

Past Conclusions, Current Improvements,
and Future Ideas
Our study intended to outline some of the most relevant issues
that shape current spike sorting trends. Despite the endless
attempts and various strategies, obvious spike sorting standards
and algorithm comparison methods are still deficient, but any
effort toward unified spike sorting frameworks and accuracy
quantification metrics should be cheered (Rey et al., 2015;
Smith et al., 2020). In spite of closely focusing on a set of
algorithms that ascribe a well-defined signal to its supposed
emitter, we should not miss the bigger picture either and,
therefore, concentrate on the non-independent nature of neural
activities (Urai et al., 2021). In the search for the gold standard
algorithm, we should also leave room for neural network-based
or custom-tailored solutions too, without which we cannot excel
whenmiscellaneous temporal or spatial particularities are present
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(Vu et al., 2018; Sedaghat-Nejad et al., 2021). The authors of
this article believe that fostering the concept of incremental
learning in spike detection and clusteringmethods could offer the
panacea for most difficulties arising during long-term recording
analysis, since adaptation to alternating circumstances would not
demand repeated training on previous samples but focus on
the gradually growing set of data without having to worry for
memory restrictions.

Another aspect that opens new perspectives is the myriad
of neural sensors at our fingertips. As it can now be
anticipated, CMOS technologies could fulfill the requirements
for implantable long-term sensors, as their ultra-low power
consumption, neuromorphic design, and, lately, their capability
to self-repair should be exploited (Rahiminejad et al., 2021). Even
though a great variety of recording devices provides us with
data of ever-improving signal-to-noise ratios and of diminishing
invasiveness, there are fundamental questions about extracellular
action potentials that are, so far, unanswered. In particular, a
probe’s interference with the adjacent neural tissue, eventual
chance of bias for certain neuron subclasses, cross-compliance
between neuron types, and extracellular signatures are hotly
debated topics (Neto et al., 2016). None of these subjects are self-
standing, since contemplating about the limitations of recording
facilities could also possibly bring about the advent of better-built
BMI systems.
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