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Causality inference has arrested much attention in academic studies. Currently,

multiple methods such as Granger causality, Convergent Cross Mapping (CCM), and

Noise-assisted Multivariate Empirical Mode Decomposition (NA-MEMD) are introduced

to solve the problem. Motivated by the researchers who uploaded the open-source

code for causality inference, we hereby present the Matlab code of NA-MEMD Causal

Decomposition to help users implement the algorithm in multiple scenarios. The code

is developed on Matlab2020 and is mainly divided into three subfunctions: na_memd,

Plseries, and cd_na_memd. na_memd is called in the main function to generate the

matrix of Intrinsic Mode Functions (IMFs) and Plseries can display the average frequency

and phase difference of IMFs of the same order in a matrix which can be used for the

selection of the main Intrinsic Causal Component (ICC) and ICCs set. cd_na_memd is

called to perform causal redecomposition after removing the main ICC from the original

time series and output the result of NA-MEMD Causal Decomposition. The performance

of the code is evaluated from the perspective of executing time, robustness, and validity.

With the data amount enlarging, the executing time increases linearly with it and the value

of causal strength oscillates in an ideally small interval which represents the relatively high

robustness of the code. The validity is verified based on the open-access predator-prey

data (wolf-moose bivariate time series from Isle Royale National Park in Michigan, USA)

and our result is aligned with that of Causal Decomposition.

Keywords: NA-MEMD Causal Decomposition, empirical mode decomposition, Granger causality, CCM, Causal

Decomposition, causality inference, bivariate time series
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1. INTRODUCTION

In early studies, the definition of Noise-assisted Multivariate

Empirical Mode Decomposition (NA-MEMD) based Causal

Decomposition was given by Ur Rehman and Mandic (2011),
She et al. (2017), and Zhang et al. (2017, 2021), dealing
with the cause-effect relationship observed across from two
time series signals in the real-world situations (Adarsh and
Janga Reddy, 2019). The study provides Matlab Open Source
Code of NA-MEMD Causal Decomposition and helps scholars
and researchers (particularly in function connectivity Mueller
et al., 2013; Meshi et al., 2016, signal detection and processing
Abbate et al., 1997; Song and Que, 2006, and Statistical Causality
Cox, 1992; Cox and Wermuth, 2004) to determine the causality
occurring at stochastic, deterministic and complex dynamical
(nonlinear deterministic) processes on the basis of time series
(Small, 2008). The development of such a theoretical framework
has been arising since the publication of Granger causality
(Granger, 1969; Kamiński et al., 2001; Seth, 2007). It defines
that variable X is considered to be the Granger cause of
variable Y if X helps to explain future changes in Y. The
test of Granger causality introduces F-test to quantify the
autoregressive property between X and Y by solving a best

FIGURE 1 | Basic workflow for NA-MEMD Causal Decomposition.

least-square problem. Granger causality was fundamentally based
on the hypothesis of uncoupling cause-effect and, thus, would
be applicable to stochastic processes. For multivariate time
series, Looney et al. (2018) propose a novel multivariate sample
entropy that can handle the analysis of within- and cross-channel
dynamics. It is also the only method to identify synchronized
regularity dynamics. In addition, inspired by Takens’ Embedding
Theorem (Noakes, 1991), Sugihara et al. proposed Convergent
Cross Mapping (CCM) (Sugihara et al., 2012; Krakovská et al.,
2015), which held that if the projections of X and Y in a
certain dimension, i.e., X′ and Y′ respectively, existed the
causal relationship, then X and Y would have CCM causality.
It was assumed that a cause-effect relation was embedded in
a complex dynamical process which was also likely to be a
linear/nonlinear deterministic system. CCM accommodated the
inseparability/coupling of causal effects. Not surprisingly, Yang
et al. (2018) established Causal Decomposition and further
confirmed the utility of Hilbert-Huang Transform (HHT)
(Huang, 2014a,b) in causality inference. Cause-effect mutual
information was assumed to be carried over the instantaneous
phase of the observed time series. However, standard methods
such as Standard Fourier, wavelet, and Hilbert may encounter
problems in analyzing real-world data. First, the approaches
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FIGURE 2 | The workflow of function na_memd.

depending on predefined function heavily depend on the data
length and stationarity and the real-world data which are
often short and intermittent may hinder the analysis process.
Second, among the standardmethods, integral transforms pursue
more frequency concepts than the temporal concept which
may increase the frequency resolution but lose information
in the time domain. Third, for nonmonocomponent data, the
direct implementation of analytic signal representation results in
negative IFs which have no physical justification. Next, accurate
observation and measurement should be conducted on the
corresponding scales rather than globally. However, correlation,
coherence, and synchrony measure cannot be performed on
certain scales (Mandic et al., 2013). Causal Decomposition was
based on phase dependency, which was distinguished from the
prediction paradigm such as Granger causality, CCM, Mutual
Information fromMixed Embedding (Kugiumtzis, 2013; Jia et al.,
2019), Dynamic Causal Modeling (Friston et al., 2003, 2013),
and Transfer Entropy (Staniek and Lehnertz, 2008; Bossomaier
et al., 2016). It was suitable for complex dynamical processes,
acquired in the manner of time series in certain similar time
scales. The development of the MEMD theoretical framework

has been started by Altaf et al. (2007) who put forward a
method that develops a mathematical approach to adapt EMD
to both real and complex domains. The so-generated Intrinsic
Mode Functions (IMFs) can be used in processing both real
and complex signals. Another method proposed by Tanaka
and Mandic (2007) also provides an insight into extending
standard EMD to the complex domain. It takes advantage of
both positive and negative frequency components of signals to
generate complex-valued IMFs. Since the EMD is initially limited
to real-valued time series, an extension of the EMD framework
to bivariate time series is designed by extracting zero-mean
rotating components (Rilling et al., 2007). In order to make
EMD compatible with trivariate signals, ur Rehman and Mandic
(2009) comes out with a theoretical framework that projects
local mean envelop to multiple directions in three-dimensional
spaces adapting the rotation property of quaternions. In order
to handle the causality analysis in multiscale time series, like
multiple physiological time series (e.g., EEG, EMG, and ECG)
composed network (Bashan et al., 2012; Faes et al., 2017), we
recently presented NA-MEMD Causal Decomposition (Zhang
et al., 2021) and pointed out its potential to the causality
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FIGURE 3 | The workflow of function PLseries.

inference in a complex dynamical process. In Zhang et al.
(2017), multichannel EMG signals are processed by EEMD,
MEMD, and NA-MEMD, and their outcomes are quantitively
assessed by comparing their number of IMFs, mode-alignment,
and mode-mixing. It has been justified that NA-MEMD has a
relatively outstanding performance in processing brain-muscle
signals compared with EEMD and MEMD. Many studies have
contributed to algorithm implementations related to causality
analyzes in open-source scenarios. C and C++ code of EMD
using Matlab CoderTM was introduced in R2018a in MathWorks
(Huang, 2022). Furthermore, Rehman and Mandic generated
the algorithm of Multivariate empirical mode decomposition

(MEMD) (Rehman andMandic, 2010). Then, Zhang et al. (2017)
published a Matlab toolbox (Wen et al., 2022) of NA-MEMD in
2017. In the causality analysis, Mønster provided a Convergent
Cross Mapping algorithm in MATLAB in 2018 (Jakubik, 2022).
Yang published the proposed Causal Decomposition approach in
GitHub (Yang, 2022), which then was exchanged to MathWorks
in 2020. In the study, we hereby present the Matlab code package
for NA-MEMD Causal Decomposition used in the preliminary
article by Zhang et al. (2021), offering the configuration
specification details required in the data analyzes and tests, and
providing the functional specification of line-by-line codes in
the workflow.
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FIGURE 4 | The workflow of function causal_decomposition.

2. SPECIFICATION OF CALLING FUNCTION

2.1. Background Theory
The overall procedure for NA-MEMD Causal Decomposition
is illustrated in Figure 1 by 5 steps. It first adds multichannel
auxiliary white noise (shown in step a-2) to original bivariate
time series signals (shown in step a-1), followed by NA-MEMD
to obtain two corresponding IMFs sets (shown in steps b-1

and b-2) as well as their phase coherence. Next, the main ICC
(framed by the purple rectangles in steps c and d) and ICCs
sets (framed by the yellow rectangles in steps c and d) are
selected according to average frequency and phase difference.
Only the IMFs with identical frequency scales and small phase
differences can be regarded as ICCs. The main ICC is usually
selected as the first ICC in the set. Removing the main ICC from
IMFs sets and adding the remaining signals in each IMFs setup,
two pairs of signals are formed by one modified signal without
the main ICC and the other original one (shown in step d).
The phase coherence of the two pairs is calculated. Combined
with the value of the phase coherences of two redecomposed
signal pairs and the original signal pair, the value of Absolute
Causal Strengths (ACSs) and Relative Causal Strengths (RCSs)

can be obtained by NA-MEMD Causal Decomposition (shown
in step e).

2.2. Function na_memd
The procedure for function na_memd is illustrated in Figure 2.
The function enables to form a matrix, giving Intrinsic Mode
Functions (IMFs) decomposed from NA-MEMD with causal-
effect time series defined by input matrix input_data. Relevant
variables about function na_memd are listed in Table 1. The
function na_memd is invoked when variables input_data,
ave_noise, level_noise, noise_channel_num, and en_num are set.
Then, function size returns the number of row elements of
matrix input_data to variable len_inp, and the number of
column elements of matrix input_data to variable wid_inp.
level_noise and noise_channel_num are used to generate the
random Gaussian-White noise time series. After then, function
memd is run if vector/matrix inp_noise is appended to matrix
input_data, which is named matrix input_cha_noi. It repeats
for constant en_num times (i is the loop variable). For each
repetition, a three-dimension array imfs is returned which
contains all IMFs decomposed from matrix input_cha_noi. In
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TABLE 1 | Parameter configurations for function na_memd.

Parameter names Parameter specification Configurations

input_data Data type:Matrix

IMFs decomposed from NA-MEMD

Two time series data on identical length.

level_noise Data type: Number

Used to determine the intensity of alternating component of noise in

na_memd

With it increasing, the represented cause-effect relationship may be

attenuated.

noise_channel_num Data type: Number

Used to determine the channel number of appended noise signals in

na_memd

With it increasing, the represented cause-effect relationship may be

attenuated.

en_num Data type: Number

Used to determine the cycle index of noise-assisted calculation in

na_memd

With it increasing, the running time will be prolonged dramatically.

TABLE 2 | Parameter configurations for function PLseries.

Parameter names Parameter specification Configurations

imf_1, imf_2 Data type:Matrix

IMFs decomposed from NA-MEMD

Two time series data on identical length.

ave_fre1, ave_fre2 Data type:Vectors

Represent the average instantaneous frequency of two IMF

sets

Null

difference Data type: Vector

Represent the average phase difference of two IMF sets

Null

peakMatrix Data type: Matrix

A matrix to illustrate av_freq1,av_freq2 and difference in

different columns

The first two columns refer to av_freq1 and av_freq2. The

third column represents difference.

TABLE 3 | Parameter configurations for function causal_decomposition.

Parameter names Parameter specification Configurations

ICC_main Data type:Number

The index of selected main ICC

The main ICC is the one with the minimal phase difference.

input Data type:Matrix

The raw data to be analyzed

Null

imf_result Data type: Matrix

The result from na_memd in na_memd_causal_decomposition

Null

level_noise Data type: Number

Used to determine the intensity of alternating component of noise in

na_memd

With it increasing, the represented cause-effect relationship

may be attenuated.

noise_channel_num Data type: Number

Used to determine the channel number of appended noise signals in

na_memd

With it increasing, the represented cause-effect relationship

may be attenuated.

en_num Data type: Number

Used to determine the cycle index of noise-assisted calculation in

na_memd

With it increasing, the running time will be prolonged

dramatically.

causal_matrix Data type: Matrix

Used to output the relative causal strengths and the absolute strengths.

The first two columns represent the relative causal strengths.

The latter two columns represent the absolute causal

strengths.

order to facilitate the ensemble process of NA-MEMD, array
imfs is reshaped into cell imf _result. Considering repetitions
in-between, if the matrix sizes in cell imf _result perhaps are
inconsistent, the residual is embedded with a pseudo-monotone
variation. In order to guarantee the consistency of the size in
cell imf _result, the residuals can be ignored together. Matrix
elements of imf _result, sum_imf _result, and imf _result are first

initialized to be zero, which stand for reshaped IMF data, the
summation of the reshaped IMF, and the average value of
the summation respectively. The noise data are generated by
random alternating noise components determined by parameter
level_noise. This process is repeated by times of en_num. For each
loop, the noise is appended to matrix input_data which is matrix
input_cha_noi. Then matrix imfs is calculated by performing
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TABLE 4 | The relationship between noise_channel_num and executing time.

noise_channel_num 3 4 5 6 7 8 9 10

Executing time(s) 24.50 25.68 26.86 28.01 31.73 33.58 34.80 37.64

MEMD on input_cha_noi with function memd. Next, imfs is
reshaped into imf _result for further summation which data is
stored in sum_imf _result. The average value is also calculated and
assigned to ave_imf _result.

2.3. Function PLseries
The workflow for function PLseires is shown in Figure 3. The
function outputs a matrix that shows the average frequency and
their phase difference of IMFs decomposed from NA-MEMD
by matrices imf 1 and imf 2 (Table 2), respectively. The row of
imf 1 and imf 2 stand for the index of IMFs and the column of
imf 1 and imf 2 refers to the length of the time series. The output
matrix is defined as matrix peakMatrix. The function PLseries
is called when matrix imf 1 and imf 2 are input. The elements
in vectors av_fre1, av_fre2, and difference are initialized to be
zero and their length of the row is also set to be consistent with
that of imf 1 and imf 2 (their rows are in the same length). After
that, for each IMF, Hilbert Transform is used to calculate its
instantaneous phase. To alleviate the effect of phase winding, the
function unwarp is called to obtain the real phase which is defined
as vectors un_ang1 and un_ang2. Then the average value of the
unwrapped phase is calculated and stored in vectors av_ang1
and av_ang2, respectively. Their difference is stored in vector
difference. According to vectors un_ang1 and un_ang2, the phase
information is converted to frequency information which is
stored in vectors fre1 and fre2, respectively. Their average values
are calculated and are stored in vectors av_fre1 and av_fre2. The
final output matrix peakMatrix is the combination of vectors
av_fre1, av_fre2, and difference which are in the first, the second,
and the third column, respectively.

2.4. Function causal_decomposition
The workflow for function causal_decomposition is
demonstrated in Figure 4. The function generates a matrix
causal_matrix to provide values of RCSs and ACSs according to
the times series inputted by matrix input referred to in Table 3.
The raw data of bivariate time series are row-by-row loaded
to input which is subsequently defined as vectors s1 and s2.
Those two decomposed IMF sets are then assigned as matrices
imfs1 and imfs2, respectively. Intrinsic Causal Components
(ICCs) sets, vector ICC, are manually reviewed and selected by
function plot_and_pick. Based on ICC, the number ICC_main
is confirmed to indicate RCSs and ACSs of raw bivariate time
series of input. Main ICC is selected manually by function
plot_and_pick, and is defined as vector imfss1 and imfss2.
Their phase coherence and variance are calculated by function
phasefcimf and function nvar, respectively. After obtaining the
main ICC, it is removed from the corresponding inputs s1 and s2,
and the rest are defined as vectors s1r and s2r. They are used to
replace the corresponding signal in input to form two new input

TABLE 5 | The relationship between en_num and executing time.

en_num 5 10 15 20 25 30 35 40

Executing time(s) 41.26 78.94 117.09 155.09 194.79 217.20 245.20 288.27

TABLE 6 | The relationship between data length and executing time.

Data length 250 500 750 1,000 1,250 1,500 1,750 2,000

Executing time(s) 16.11 22.46 31.49 37.65 44.14 50.87 62.34 70.41

matrices input1 and input2. Then they are re-decomposed by
calling function na_memd to calculate two IMFs pairs (matrices
imfsr11, imfsr12 and matrices imfsr21, imfsr22, respectively).
The phase coherence between paired IMFs sets and the distance
between the phase coherences of the original IMFs pairs and the
redecomposed ones are calculated and stored in (ps12, ps21) and
(p12, p21), respectively. The final causal strengths are outputted
by the matrix causal_matrix.

3. RESULT

3.1. Test for Time Series Data
To guarantee the experimental efficiency in the real application,
variable noise_channel_num and en_num and the data length
should be modified. The input data is the Gaussian-White noise
with a mean value of 0 and variance of 1, and the experiment is
performed on Matlab 2020b on the fully powered laptop.

3.1.1. Variable noise_channel_num
The relationship between noise_channel_num and executing
time is demonstrated below in Table 4.

In this test, en_num and data length are determined to be 3
and 500, respectively. It is clear that executing time has a linearly
increasing trend with noise_channel_num from the recorded data
in Table 4.

3.1.2. Variable en_num
The relationship between en_num and executing time is
demonstrated below in Table 5.

In this test, noise_channel_num and data length are fixed to be
3 and 500, respectively, and with en_num increasing, executing
time increases linearly along with en_num according to Table 5.

3.1.3. Data Length
The relationship between data length and executing time is
demonstrated below in Table 6.

In this test, noise_channel_num and en_num are both fixed
to be 3, and with data length increasing, executing time increases
linearly along with data length referred to in the data in Table 6.

3.2. Robustness and Validity Test
Since the random noise is involved in NA-MEMD, it is likely that
the results of different execution will be slightly different from
one another. Therefore, the consistency of the output should be
tested. In this test, level_noise, noise_channel_num, en_num,
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TABLE 7 | Result of robustness and validity test.

Test number RCSs of X-to-Y (Cxy) RCSs Y-to-X (Cyx) ACSs of X-to-Y (Cxy) ACSs Y-to-X (Cyx)

1 0.7168 0.2832 0.2237 0.0884

2 0.5374 0.4626 0.1927 0.1659

3 0.6804 0.3196 0.2003 0.0941

4 0.7594 0.2306 0.1810 0.0542

5 0.6364 0.3636 0.2048 0.1170

6 0.6042 0.3958 0.1971 0.1291

7 0.6398 0.3602 0.2038 0.1148

8 0.6585 0.3415 0.1974 0.1024

9 0.5943 0.4057 0.1923 0.1313

10 0.5473 0.4527 0.1979 0.1637

and data length are set to be 0.001, 3, 5, and 61, respectively, and
the open-access predator-prey data is provided by Vucetich and
Peterson (2012). The result is shown in Table 7.

In Table 7, since the X-to-Y causality value and Y-to-X
causality value sum to one, only the X-to-Y causal value is
considered in the stability discussion.

From the statistical point of view, the mean value of Cxy

is 0.6384 and the variance is 0.004712 which is less volatile.
Combined with the actual causal process demonstrated by the
causality values by Yang et al. (2018), all of them indicate strong
and valid causality since our results are close to that of Yang
et al. (2018), which demonstrates the outcome of the procedure
is consistent with the algorithm.

4. DISCUSSION

4.1. The Approach to Exert Noise in
Original Signals in na_memd
Generally, input parameters level_noise, en_num, and
noise_channel_num are used to determine the total amount
of noise appended to the original signal. The description of the
relevant variables can be checked in Table 3. Before setting the
parameters, the noise level in the original input data should
be evaluated. If the input has already been overwhelmed by
noise, both the two parameters are supposed to be set higher
to better remove the noise in the original data. However,
with the Gaussian-White noise increasing, the effective data
in the input is also likely to be attenuated by the appended
noise. As a result, it is of significance to choose a proper
value of level_noise and noise_channel_num to avoid excessive
Gaussian-White noise. One method of removing the original
noise without doing damage to the effective data is to reduce the
product of level_noise and noise_channel_num and to increase
en_num.

4.2. The Method of Selecting ICCs Set
From IMFs
For ICCs, the ICCs set and the main ICC need to be selected
for further operation. Among all the IMFs, ICCs are the ones
whose average frequencies and phases are on the same scale.
IMFs in different frequency scales or with large phase differences
should be excluded from the ICCs set. In ICCs set, the main ICC
is the one with the smallest average phase difference. Besides,

the phase diagram of IMFs generated by Matlab can also be
used to discriminate ICCs from all IMFs. Assist from both data
in peakMatrix and visual aid of signal diagram is necessary for
ICCs discrimination.

4.3. Calculation of RCSs and ACSs
In this code, it is recommended that only RCSs are used
to detect the causal-effect relationship between bivariate time
series signals.

Absolute Causal Strengths is defined as the variance weighted
Euclidean distance (De Leeuw and Pruzansky, 1978) between
the re-decomposed IMFs set and the original IMFs set. Its value
can reflect the relative cause-effect relationship between multiple
signals. The signals with higher ACS can be regarded as the cause
and the ones with smaller ACS can be considered as the effect,
respectively. Specifically, if only two signals are considered, RCS
can also be calculated to illustrate their cause-effect relationship.
It normalizes the ACS into an interval between zero and one,
and we use the value of RCS to interfere with the causal-
effect relationship. When the value of RCS is larger than 0.5,
it represents the relationship of cause, and when the value of
RCS is smaller than 0.5, it represents the relationship of effect.
When the value is equal to 0.5, the relationship can be either
reciprocal causation or an irrelevant relationship. When the ACS
of two candidate signals is negligible, RCS will converge to 0.5.
The threshold value is normally set as 0.05 (Yang et al., 2018).

4.4. Further Analysis of the Result
4.4.1. The Reason for Linear Increase in Executing

Time
In this code, the ensemble process is designed as simple
loops for multiple noise appending rather than nested loops
or complex function iteration. According to ur Rehman et al.
(2013), compared with EEMD, NA-MEMD applies an ensemble
algorithm that massively reduces the reconstruction error. As a
result, the impact of the number of noise channels on creating
error can be negligible. However, ur Rehman et al. (2013)
recommend the number to be 2 which is suitable for the
test situation and can be adjusted accordingly. Therefore, this
experiment can change the noise_channel_num and observe
differences. As a result, the executing time is in direct proportion
to the total data size. When noise_channel_num, en_num, and
data length increase, respectively, the total data size inflates
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linearly. Therefore, the executing time would have a tendency of
linear increase with those variables.

4.4.2. The Determination for System Robustness
For any existing causality pairs, their cause-effect relationship is
stable. RCS between them is considered a constant. As a result,
it is appropriate to use the variance of relative causality data to
represent the robustness of the system. If the variance has a small
value whichmeans RSC is less likely to fluctuate between the ideal
causality strength, the system has relatively high robustness. If the
variance is measured high, then it proves that the system is more
susceptible to the external or internal environment.

5. CONCLUSION

A code package of NA-MEMD has been proposed to facilitate
the potential users to apply the algorithm in an effective way.
The users need to select the ICCs set and main ICC to check
the causal-effect relationship according to the printed frequency-
phase matrix and the signal figures. Based on MEMD, the crucial
step is to append multi-channel random Gaussian-White noise
to the original signal repeatedly to attenuate self-carrying noise.
By adjusting the number of noise channels, the intensity of
appended noise per channel, and the cycle index, it has been
shown that the users can alleviate the influence of original noise
without damaging the original data. As a result, NA-MEMD
Causal Decomposition has potential for applications in analyzing
bivariate and multiscale time series signals.

6. DATA AVAILABILITY STATEMENT

The code of NA-MEMD Causal Decomposition for causality
inference of bivariate time series will be available through
open-source platform github, https://github.com/AaronLi43/
ginkgo_glasgow. The demo data used in section RESULT is
Wolf and moose field data which are available online at the
United States Isle Royale National, https://isleroyalewolf.org/
data/data/home.html. Further inquiries can be directed to the
corresponding author.
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