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Many research works indicate that EEG bands, specifically the alpha and theta bands,

have been potentially helpful cognitive load indicators. However, minimal research

exists to validate this claim. This study aims to assess and analyze the impact of the

alpha-to-theta and the theta-to-alpha band ratios on supporting the creation of models

capable of discriminating self-reported perceptions of mental workload. A dataset of

raw EEG data was utilized in which 48 subjects performed a resting activity and an

induced task demanding exercise in the form of a multitasking SIMKAP test. Band

ratios were devised from frontal and parietal electrode clusters. Building and model

testing was done with high-level independent features from the frequency and temporal

domains extracted from the computed ratios over time. Target features for model

training were extracted from the subjective ratings collected after resting and task

demand activities. Models were built by employing Logistic Regression, Support Vector

Machines and Decision Trees and were evaluated with performance measures including

accuracy, recall, precision and f1-score. The results indicate high classification accuracy

of those models trained with the high-level features extracted from the alpha-to-theta

ratios and theta-to-alpha ratios. Preliminary results also show that models trained with

logistic regression and support vector machines can accurately classify self-reported

perceptions of mental workload. This research contributes to the body of knowledge by

demonstrating the richness of the information in the temporal, spectral and statistical

domains extracted from the alpha-to-theta and theta-to-alpha EEG band ratios for the

discrimination of self-reported perceptions of mental workload.

Keywords: human mental workload, EEG band ratios, alpha-to-theta ratios, theta-to-alpha ratios, machine

learning, classification

1. INTRODUCTION

Human mental workload is a fundamental concept for investigating human performance. It
represents an intrinsically complex and multilevel concept, and ambiguities exist in its definition.
The most general description of mental workload can be framed as the quantification of a cognitive
cost of performing a task in a finite timeframe in order to predict operator, system performance or
both (Reid and Nygren, 1988; Rizzo and Longo, 2018; Hancock et al., 2021). Mental workload has
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been regarded as an essential factor that substantially influences
task performance (Young et al., 2015; Galy, 2018; Longo,
2018a). As a construct, it has been widely applied in the
design and evaluation of complex human-machine systems and
environments such as in aircraft operation (Hu and Lodewijks,
2020; Yu et al., 2021), train and vehicle operation (Li et al.,
2020; Wang et al., 2021), nuclear power plants (Gan et al.,
2020; Wu et al., 2020), various human-computer and brain-
computer interfaces (Longo, 2012; Asgher et al., 2020; Putze
et al., 2020; Bagheri and Power, 2021) and in educational contexts
(Moustafa and Longo, 2019; Orru and Longo, 2019; Longo and
Orr, 2020; Longo and Rajendran, 2021), to name a few. Mental
workload research has accumulated momentum over the last two
decades, given the fact that numerous technologies have emerged
that engage users in multiple cognitive levels and requirements
for different task activities operating in diverse environmental
conditions.

Different methods have been proposed to measure human
mental workload. These methods can be clustered into three
main groups. Subjective measures which relies on the analysis of
the subjective feedback provided by humans interacting with an
underlying task and is usually in the form of a post-task survey.
Themost well-known subjective measurement techniques are the
NASA Task Load Index (NASATLX) (Hart and Staveland, 1988),
the Workload profile (WP) (Tsang and Velazquez, 1996), and the
Subjective Workload Assessment Technique (SWAT) (Reid and
Nygren, 1988). Task performance measures, often referred to as
primary and secondary tasks measures, focus on the objective
measurement of a human’s performance in an underlying task.
Examples of such measures include timely completion of a
task, reaction time to secondary tasks, number of errors on
the primary task and tapping error. Physiological measures are
based upon the analysis of physiological responses of the human
body. Examples include EEG (electroencephalography), MEG
(magnetoencephalography), brain metabolism, endogenous eye
blink rates, pupil diameter, heart rate variability (HRV) measures
or electrodermal responses such as galvanic skin response (GSR)
(Byrne, 2011).

Many research works indicate that EEG data contains
information that can help correlate task engagement and mental
workload in cognitive processes like vigilance, learning and
memory (Berka et al., 2007; Roy et al., 2016), in operating under
environmental factors such as temperature (Wang et al., 2019)
and in critical systems domains such as transport (Borghini
et al., 2014; Diaz-Piedra et al., 2020), nuclear power plants (Choi
et al., 2018) and aviation (Wilson et al., 2021). The reason for
using EEG is that it offers several benefits compared to imaging
techniques or mere behavioral observational approaches. The
most important benefit of EEG is its excellent time resolution
which offers the possibility to study the precise time-course
of cognitive and emotional processing of behavior. Billions
of neurons in the human brain are organized in a highly
intricate and convoluted fashion exhorting in complex firing
patterns. These patterns, accompanied by frequency oscillations,
are measurable with EEG reflecting certain cognitive, affective
or attentional states. These frequencies, in adults, are usually
decomposed in different bands: delta band (1–4 Hz), theta band

(4–8 Hz), the alpha band (8–12 Hz), the beta band (13–25 Hz)
and gamma band (≥ 25 Hz) (Mesulam, 1990).

Recent studies seem to indicate changes in frequency band
across different brain regions when a subject performs specific
tasks (Gevins and Smith, 2003; Schmidt et al., 2013; Borys et al.,
2017). The theta band is thought to be linked to mental fatigue
and mental workload (Gevins et al., 1995). The increase in theta
spectral power is thought to be correlated with the rise in the use
of cognitive resources (Tsang and Vidulich, 2006; Xie et al., 2016),
task difficulty (Antonenko et al., 2010) and working memory
(Borghini et al., 2012). Alpha band tends to show sensitivity in
experiments with mental workload (Xie et al., 2016; Puma et al.,
2018), cognitive fatigue (Borghini et al., 2012), attention and
alertness (Kamzanova et al., 2014).

Even though EEG bands have been proposed as indicators
that can discriminate mental workload (Gevins and Smith,
2003; Tsang and Vidulich, 2006; Antonenko et al., 2010; Coelli
et al., 2015), it is unclear which of these best contribute to
such discrimination. This article aims to identify the impact
of the high-level features extracted from alpha and theta band
ratios (and their combination) on the discrimination of levels of
perception of mental workload self-reported by users. To tackle
this aim, an empirical research experiment has been designed
to generate time-series of alpha, theta band ratios, and their
combinations, and extract high-level features that can be used
to build models to classify self-report perceptions of mental
workload.

The remainder of this article is organized as follows: Section
2 outlines the related work regarding the specific definition
and use of the alpha-to-theta and theta-to-alpha band ratios
along with their relationship to mental workload. Section
3 describes the design of an empirical experiment and the
methodology employed for answering the above research goal.
Section 4 presents the findings followed by a critical discussion
while Section 5 concludes this work, proposing future research
directions.

2. RELATED WORK

Recent studies analyze EEG bands on various experimental
settings designed for specific domains and purposes such as
fatigue and drowsiness (Borghini et al., 2014), brain-computer
interfaces (Gevins and Smith, 2003; Käthner et al., 2014), learning
(Borys et al., 2017; Dan and Reiner, 2017) as well as for specific
brain function disorders such as Alzheimer (Schmidt et al., 2013).
Most research studies seem to indicate the possibility that EEG
signals across various cortical regions can be a helpful tool toward
discriminating mental workload while performing experiments
with varying degree of task demands (Borghini et al., 2014).

The theta band is thought to be linked to mental fatigue and
drowsiness (Gevins et al., 1995; Borghini et al., 2014). Increase
of spectral power in the theta band is associated with an increase
of demand in cognitive resources (Tsang and Vidulich, 2006; Xie
et al., 2016), an increase in task difficulty (Gevins and Smith,
2003; Antonenko et al., 2010; Käthner et al., 2014; Borghini et al.,
2015) and an increase in working memory (Borghini et al., 2012,
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2014). Particularly, the theta power spectrum seems to increase in
cases where a prolonged concentration while executing a task is
required (Gevins and Smith, 2003; Borghini et al., 2014; Käthner
et al., 2014). Some research even indicates a decrease in vigilance
and alertness where a higher power spectrum in theta band is
observed (Kamzanova et al., 2014). The brain regions thought to
be associated with theta activity are mostly in the frontal cortical
area (Gevins and Smith, 2003; Borghini et al., 2014; Dan and
Reiner, 2017).

The research on alpha band emerges to indicate sensitivity
toward mental workload (Xie et al., 2016; Puma et al., 2018),
cognitive fatigue (Borghini et al., 2012, 2014), and an increase in
the alpha band activity is associated with a decrease in attention
and alertness (Kamzanova et al., 2014). An increase/decrease in
the alpha band power spectrum is witnessed during relaxed states
with eyes closed and opened, respectively (Antonenko et al.,
2010). A continuous suppression in the alpha band seems to be
linked with increments of task difficulty (Mazher et al., 2017).
The brain regions that are primarily associated with the alpha-
band activity are parietal and occipital areas (Borghini et al., 2014;
Puma et al., 2018).

The beta band is thought to be linked to visual attention
(Wróbel, 2000), short term memory tasks (Palva et al., 2011) and
inconclusively it was hypothesized that an increase in the beta
band is associated with an increase in working memory (Spitzer
andHaegens, 2017). An increase in the beta band spectrum seems
to be associated with increased levels of task engagement (Coelli
et al., 2015) and concentration (Kakkos et al., 2019). The brain
regions that are associated with the beta-band activity are parieto-
occipital areas that have been observed during visual working
memory task experiments (Mapelli and Özkurt, 2019).

Multiple EEG band combinations and ratios have also been
used to improve mental workload assessment. For instance,
beta/(alpha+ theta) known as engagement index is used to study
task human engagement (Mikulka et al., 2002), mental attention
(MacLean et al., 2012) and mental effort (Smit et al., 2005).
The reduction in the alpha band activity seems to correlate with
increased activity in the frontal-parietal areas with an increase
in beta power followed by a decrease in theta, which indicates
high vigilance states (MacLean et al., 2012). Alpha band activity
reduction is also thought to correlate with activities in the parietal
brain region where a decrease in beta activity followed by an
increase of theta band activity indicate states of drowsiness and
low attention (MacLean et al., 2012).

Attempts to assess mental workload and task engagement
using the information from the theta and alpha bands in the
form of theta-to-alpha band ratios are seen in Gevins and Smith
(2003), Käthner et al. (2014), Dan and Reiner (2017), and Xie
et al. (2016). This is based on the assumption that an increase
in the theta power band in the frontal brain region, and a
decrease in the alpha power in parietal region is associated
with an increase in mental workload (Käthner et al., 2014).
The increase in both alpha and theta power is related to the
rise of fatigue (Käthner et al., 2014; Xie et al., 2016). Research
seems to indicate that task load manipulations are followed
by an increase of theta band activity in frontal brain regions
followed by a decrease in alpha power in the parietal areas

(Gevins and Smith, 2003; Käthner et al., 2014; Dan and Reiner,
2017).

The motivation for this article arises from the fact that
research studies are indicating that band ratios, specifically the
theta and alpha bands, are associated with mental workload
states (Gevins and Smith, 2003; Borghini et al., 2014) and to
some extent, this seems to justify their potential as workload
indicators (Fernandez Rojas et al., 2020). While research exists
that focuses on the alpha, theta and beta bands as well as their
respective ratios such as beta/(alpha+ theta) and to some extent,
theta-to-alpha, there is an absence of research related to the use
of the alpha-to-theta and theta-to-alpha ratios and their role
in discriminating self-reported perceptions of mental workload.
Therefore, to address the goal as stated in the introductory
Section 1 we formulate a research problem focused on the
investigation of the importance of high-level features extracted
from the alpha-to-theta and the theta-to-alpha EEG band ratios
on the discrimination of levels of perception of mental workload.
In other words, the research question that can be formulated is:
what is the impact of high-level features extracted from alpha and
theta band ratios (and their combination) on discriminating of
levels of perception of mental workload self-reported by users?

3. DESIGN AND METHODOLOGY

To answer the research problem and research question outlined
above, the following research hypotheses are defined:

1. H1: If high-level features are extracted from indexes of mental
workload built upon alpha-to-theta and theta-to-alpha band
ratios, then their discriminatory capacity to self-reported
perceptions of mental workload will be higher than those
extracted from indexes of mental workload built upon the
alpha and theta bands alone.

2. H2: If more adjacent EEG electrodes from the respective
cortical areas are used to create indexes of mental workload
built upon alpha-to-theta and theta-to-alpha band ratios,
then they will exhibit higher discriminatory capacity to self-
reported perceptions of mental workload than those indexes
built with fewer electrodes.

In order to test these research hypotheses, empirical comparative
research has been designed based on a process pipeline as
illustrated in Figure 1 with details outlined in the following
subsections.

3.1. Experiment Design and Dataset
Description
The STEW (Simultaneous Task EEGWorkload) (Lim et al., 2018)
has been selected for experimental purposes. The dataset consists
of raw EEG data collected from 48 subjects across 14 channels in
two experimental conditions. In one condition, the EEG data was
recorded from subjects in the rest state while not performing any
mental activity. In the second condition, a multitasking SIMKAP
test was presented to subjects, and EEG data was recorded. In
both cases, a sampling frequency of 128 Hz was used with 2.5
min of EEG recordings utilizing the Emotiv EPOC EEG headset.
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FIGURE 1 | Illustrative process for classification of self-reported perception of mental workload based on mental workload indexes built upon the EEG alpha and theta

bands. (A) Signal denoising pipeline. (B) Electrode selection for theta band from frontal cortical areas and alpha band from parietal cortical areas and their aggregation

to form electrode clusters. (C) Computation of the mental workload indexes employing the EEG alpha-to-theta and theta-to-alpha band ratios. (D) Extraction of high

level features from mental workload indexes. (E) Model training for self-reported perception of mental workload classification employing machine learning. (F).

Model evaluation for hypothesis testing.

Every recording contains 19,200 data samples (128 samples x 150
s) across the following 14 channels: AF3, F7, F3, FC5, T7, P7,
O1, O2, P8, T8, FC6, F4, F8, and AF4. Additionally, a subjective
rating was collected after each task execution whereby users rated
their experienced mental workload on the scale 1 to 9. The rating
was a likert scale with 1 = “very, very low mental effort”; 2 =

“very low mental effort”; 3 = “low mental effort”; 4 = “rather
low mental effort”; 5 = “neither low nor high mental effort”;
6 = “rather high mental effort”; 7 = “high mental effort”; 8 =

“very high mental effort” and 9= “very, very high mental effort.”
The rationale of using a perceived mental workload scores, was
a form of subjective validation to verify whether a subject indeed
experienced an increase in cognitive load load while performing
the SIMKAP condition as compared to the resting condition.

3.2. EEG Denoising Pipeline
Applying a denoising pipeline is an important step to pre-process
the raw EEG data and to remove noise from it to facilitate
subsequent analysis. In detail, this process follows the Makoto’s
pre-processing pipeline (Miyakoshi, 2018) including:

• re-referencing channel data to average reference.
• high-pass filtering of each channel at 1hz.
• source separation and artifact removal via Independent

Component Analysis (ICA).

The key pre-processing step is the application of ICA which
is utilized to separate the 14 EEG signal sources into
independent components for each subject. Fourteen components

are generated and used to automatically find and remove artifacts
without human intervention using part of the methodology
described in Nolan et al. (2010). In detail, the criteria for
identifying bad components includes the computation of the
z-scores of each component’s spectral kurtosis, slope, Hurst
exponent and gradientmedian. Spectral kurtosis is a parameter in
the frequency domain indicating the component’s impulsiveness
variation with frequency. The slope of a component represents
its mean slope of the power spectrum over two-time points. The
Hurst exponent, also known as a long term memory in time
series, tends to measure the tendency of a component to either
regress to its mean or to catch up with an upward/downward
trend. The gradient median is the median slope of the
component’s time course. All of the components exhorting values
above and below ranges “z − score ± 3” can be considered as
artifacts since they are outliers and significantly different from
all the others. The value of ±3 for a z − score was adopted
from Nolan et al. (2010) as part of automatic outlier detection
taken from the FastR method. Finally, the inverse ICA has been
executed to convert the remaining “good” components back in
the original neural EEG signal.

3.3. Forming Cluster Combinations
A baseline of initial parietal and frontal electrodes was adopted
following the electrode locations from the 10-20 international
system to form different alpha and theta clusters for analysis
and comparison purposes. These electrode locations were
cross-referenced with locations, naming notation and electrode
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TABLE 1 | Clusters and electrode combinations from frontal and parietal cortical

regions selected from the available electrodes.

Cluster

notation

Band Electrodes Channel

aggregation

approach

c1− θ theta AF3, AF4, F3, F4, F7, F8 Average

c2− θ theta F3, F4 Average

c3− θ theta F3, F4, F7, F8 Average

c− α alpha P7, P8 Average

availability from the Emotiv EPOC EEG headset. The initial
electrodes that are selected from the frontal and parietal locations
are indicated as S1 and S2 in Figure 1. Due to the limited
availability of electrodes from the Emotiv EPOC EEG headset
(highlighted in green in Figure 1), three frontal and one parietal
clusters were constructed. In detail, cluster combinations and
electrodes, together with the channel aggregation approach used,
is shown in Table 1.

3.4. Formation of the Mental Workload
Indexes From Clusters of EEG Alpha and
Theta Bands
Generating band ratios from EEG channels over time follows the
methodology used in Borghini et al. (2014). The computation of
the alpha-to-theta and theta-to-alpha ratios was done utilizing
the average power spectral density (PSD) values from the alpha
band from the cluster c− α and the average PSD values from the
theta band from clusters c1− θ , c2− θ and c3− θ as outlined
in Table 1. Three alpha-to-theta and theta-to-alpha ratios are set
to take different clusters from frontal electrodes and one cluster
from parietal electrodes. The computation of the band ratios are
given as follows:

α

θ
=

avg(∀e ∈ c− α)

avg(∀e ∈ cx − θ)
(1)

θ

α
=

avg(∀e ∈ cx − θ)

avg(∀e ∈ c− α)
(2)

where, c− α and cx − θ are the respective alpha and theta
clusters (from Table 1), with e an electrode in them, and x a
cluster among those using the theta band (c1− θ , c2− θ , c3− θ).
The combination of the clusters in Table 1, jointly with their
individual use, led to the formation of the following possible
mental workload indexes (configurations):

MWL Indexes = {c1− θ , c2− θ , c3− θ , c− α, at − 1, at − 2,

at − 3, ta− 1, ta− 2, ta− 3} (3)

where, at − 1 =
c− α

c1− θ
, at − 2 =

c− α

c2− θ
, at − 3 =

c− α

c3− θ
,

ta− 1 =
c1− θ

c− α
, ta− 2 =

c2− θ

c− α
and ta− 3 =

c3− θ

c− α
.

In this study, a 1 s non-overlapping sliding widow technique is
employed to segment long EEG data, and for each window, an
index of mental workload can be calculated.

3.5. Feature Extraction From Indexes and
Selection
Extracting high-level features fromMWL indexes is crucial since
it allows the finding of distinguishing properties that otherwise
would not be possible if a raw index alone is considered.
The extraction of such high-level features from the indexes
defined in the set Equation 3 is executed using the TSFEL
(Time Series feature Extraction Library) (Barandas et al., 2020).
The advantage of using TSFEL is that it offers a wide range
of statistical properties that can be extracted from multiple
domains, including those from frequency and temporal domains.
It is useful for identifying peculiar aspects of a signal and its
specific properties such as variability, slope or peak to peak,
just to name a few. Classes of extracted features span from the
most well-known such as statistical/spectral kurtosis, mean and
median of a signal, to less frequently employed features such
as human range energy ratio, the estimator of the cumulative
distribution function (ECDF), variability and peak-to-peak. The
idea behind considering a large number of initial features was
to assess their individual importance, and subsequently retain
only the most informative ones by adopting a systematic feature
selection approach rather than selecting them subjectively from
intuition. Feature reduction can also facilitate model training
in terms of required computational time. The selection criteria
were based on the “SelectKBest” feature selection algorithm that
ranks the features with the largest ANOVA F-value between
a feature vector and a class label. The reason for choosing
such an approach is that it offers a better trade-off in terms
of accuracy, stability and stopping criteria in comparison
to other feature selection algorithms such as SelectPercentile
or VarianceThreshold (Powell et al., 2019). Determining the
threshold for an optimal number of features is an iterative
process of supervised evaluation of model performance with
variable numbers of features. Initially, a model with all features
was built and its performance metric in terms of accuracy was
observed and in subsequent steps, the number of features was
reduced by half iteratively as long as the model performance
increased. The following iterative step with number of features
that would indicate a decrease in model performance served as
a stopping criteria. Finally, a Pearson correlation was computed
to assess the correlation between selected features in order to
reducemulticollinearity among them. Reducingmulticollinearity
of features is an essential step for retaining the predictive power
of each of them. Using highly correlated features very often
hamper model training. Experiments conducted by Lieberman
and Morris (2014) indicate a correlation threshold of ±0.5 for
optimal model performance.

3.6. Models Training
The modeling and training process aims at learning classification
models capable of discriminating self-reported mental workload
scores from subjects (target feature), given the features extracted
and selected in the previous step D (independent features). The
mental workload scores were selected rather than the type of
condition (“Simkap” or “Rest”) because we wanted a sensible
indicator of mental workload, not a task load condition. In
other words, a self-reported indicator of mental workload can be
considered a more reliable representation of the user experience

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 861967

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Raufi and Longo EEG Band Ratios as Indexes of MWL

than a class representing a certain task load condition. This
argument is originated by the fact that, in both task load
conditions, users can experience any level of cognitive load. For
example, a novice user can experience high mental workload
for an easy task load condition when compared to an expert
user. Similarly, a skilled user can experience moderate mental
workload even while in a resting condition because of significant
mind wandering. In research from Charles and Nixon (2019),
a distinction between objective elements of the work (taskload)
from the subjective perception of mental workload is outlined.
Both taskload and subjective perception of mental workload
can be mediated by operator experience or time constraint
factors. Therefore, it is intuitive that task load conditions are
not equivalent to mental workload experiences. In fact, on one
hand, the former are strictly defined prior task execution, and are
static, meaning they are immutable during task execution. On the
other hand, the latter are unknown prior task execution and can
change depending on a number of factors, for example including
user’s prior knowledge, motivation, time of execution, fatigue,
stress among the others. To stress further, research has clearly
shown that even the same person can execute a task, designed
with a specific, static load condition (pre-defined task demands)
differently at various times of the day (Hancock et al., 1992).

Additionally, to facilitate subsequent interpretation, we
treated model training as a binary classification problem, mainly
to use more interpretable evaluation metrics such as precision,
recall, accuracy and f1 score. Therefore, the target feature range
of 1–9 of the self-reported mental workload scores was mapped
into two levels of mental workload, the “suboptimal MWL” and
“super optimal MWL.” The split was adopted based on the
assumption of the parabolic relationship between experienced
mental workload and performance as outlined in Longo and
Rajendran (2021). This split was done by aggregating the scores
from 1 to 4, representing some degree of low mental workload
(effort), into the “suboptimal MWL,” and all the scores from 6
to 9, for all of those supporting some degree of high mental
workload (effort), into the “super optimalMWL.” All those scores
rated five were discarded because they represent the neutral
experience of mental workload.

The learning techniques chosen for achieving this aim are
Logistic regression (L-R), Support Vector Machines (SVM) and
Decision Trees (DTR). Many research works have considered
these three learning techniques for continuous and more
prolonged EEG recordings (Berka et al., 2007; Hu andMin, 2018;
Doma and Pirouz, 2020). Logistic regression and SVM, as error-
based learning techniques, are suitable for binary classification
tasks (as in this work). On the other hand, as an information-
based technique, decision trees are suitable for distinguishing
important features by calculating their information gains during
model training.

Due to the fact that a small dataset of 48 subjects was
selected, then repeated montecarlo sampling for model training
and validation is set in the following order:

1. A randomized 70% of subjects is selected both from the
“suboptimal MWL” and the ‘super optimal MWL” classes
(dependent feature) for model training;

2. The remaining 30% was kept for model testing.

3. The above splits are repeated for 100 iterations to observe
random training data, and effectively capture the probability
density of the target variable.

A general rule of thumb implies a minimum of 1/5th ratio for
each feature in the data to increase model accuracy (Friedman,
1997). Given the low number of training instances in each of the
target classes (“suboptimal MWL,” “super optimal MWL”), the
“curse of the dimensionality” problem is anticipated (Verleysen
and François, 2005). Therefore, a strategy for generating
synthetic data is adopted, which is based on the generation of
statistically similar synthetic data that mimics the original data.
For this purpose, the Synthetic Data Quality Score based on
metrics like Field Correlation Stability, Deep Structure Stability
and Field Distribution Stability (Gretel.ai, 2022) is adopted.

The Field Correlation Stability is the correlation between every
pair of independent features (fields) in the training data and
then in the synthetic data. These values’ absolute difference is
computed and averaged across all independent features. The
lower this average, the higher is the correlation stability of the
synthetic data. Deep Structure Stability verifies the statistical
integrity of the generated dataset by performing deep, multi-
field analysis of distributions and correlations. This is done by
executing Principal Component Analysis (PCA) on the original
data, and comparing it against that on the synthetic data. A
synthetic quality score is created by comparing the distributional
distance between the principal components found in the two
datasets. The closer the principal components, the higher the
quality of the synthetic data. Field distribution stability measures
how closely the field distribution in the synthetic data mimic that
on the original data. The comparison of two distributions is done
using the Jensen-Shannon (JS) distribution distance given as:

JSD = H(M)−
1

2
(H(O)−H(S)) (4)

whereH(O) andH(S) are the Shannon entropy values for original
(O) and synthetic (S) data respectively and H(M) is the sum
of selected weights for probability distributions (π) and dataset
probabilities (P) given as M=

∑2
i=1 πiPi. The lower the distance

score on average across all fields, the higher the Field Distribution
Stability quality score and consequently the higher the quality of
the synthetic data generated.

The Synthetic Data Quality Score represents an arithmetic
mean between field correlation stability, deep structure stability
and field distribution stability. In this sense, the Synthetic
Data Quality Score can be viewed as a confidence score as to
whether scientific conclusions drawn from the synthetic dataset
would be indistinguishable as if they were to be used in the
original data. Synthesizing new data is performed using synthetic
generators offered from Gretel.ai1. The training process for
the combined (original + synthetic) uses the same montecarlo
sampling with the same steps as with original data outlined above.
Randomized 70% of subjects is selected both from the combined
(original + synthetic) for the“suboptimal MWL” and the ‘super
optimal MWL” classes (dependent feature) for model training,
the remaining 30% of combined (original + synthetic) subjects

1Gretel.ai - Privacy Engineering as a Service for Data Scientists - https://gretel.ai.
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was kept for model testing and performing 100 iteration through
these randomized splits. During model training, the data was
normalized using z − score normalization given as z = (x−µ)/σ ,
where µ is the mean of training samples and σ is the standard
deviation. The rationale for using z − score normalization is that
it tends tominimize themean (µ= 0) andmaximize the standard
deviation (σ = 1) for the normalized value and makes it suitable
reducing extremely peak values in data, by transforming it in such
a way that it’s no longer a massive outlier.

3.7. Models Evaluation
A set of evaluation metrics were employed to assess the ability
of the selected models to generalize on unseen data by learning
from the training data. These metrics can be used to measure and
summarize the quality of the trained models when tested with
previously unseen data. For a binary classification problem, such
as in the case, the evaluation of the models is dependent on True
Positives (tp) and True Negatives (tn) which denote the number of
positive and negative instances that are correctly classified. It can
be also conducted with the False Positives (fp) and False Negatives
(fn) that denote the number of miss-classified negative and
positive instances, respectively. According to this, several metrics
are used to evaluate the performance of the trained models. The
accuracy metric measures the ratio of correct predictions over
the total number of evaluated instances. Accuracy is represented
as, Accuracy=(tp + tn)/(tp + fp + tn + fn).Precision is used
to measure the positive instances that are correctly predicted
from the total predicted instances in a positive class, given as
Precision=(tp)/(tp + fp). Recall measures the fraction of positive
instances that are correctly classified, Recall=(tp)(tp + tn). F-
Measure or f1-score is the harmonic mean between recall and
precision values represented as, f 1− score = (2 · Precision ·

Recall)/(Precision + Recall). The proposed evaluation metrics
are essential to assess the robustness of the selected models
built upon high-level features extracted from the MWL indexes
toward the discrimination of self-reported perceptions of mental
workload. While precision refers to the percentage of relevant
instances, recall refers to the rate of total relevant instances
correctly classified by the model. The best model minimizes the
value of (fp) in precision and (tn) in recall, and both come at
the cost of each other since we cannot minimize both of them
in one metrics. f1-score represent a harmonic mean of precision
and recall and takes into account both metrics. Consequently, to
bring hypotheses H1 and H2 on provable grounds, the f 1− score
metric is adopted too.

4. RESULTS

The results section follows the same order of steps as outlined in
the design section.

4.1. EEG Artifact Removal
Artifact removal is performed on each EEG signal for each of
the 48 subjects separately for the “Rest” and “Simkap” task load
conditions. The average number of ICA components removed
from the EEG data associated with each subject is 1.61 for the
“Rest” and 1.46 for the “Simkap” condition. The number of

removed artifacts is within limits of the adopted methodology
described in Nolan et al. (2010). Figure 2 depicts the removal
occurrence for a total of 14 components across all 48 users for
“Rest” condition and “Simkap” condition. As it is possible to
see from Figure 2, at most, one ICA component per subject
that is significantly different from the other components (±3
standard deviations) exists. These components are removed by
zero-ing them, and the EEG multi-channel data is subsequently
reconstructed by applying inverse ICA. Since at least one bad
component was identified and removed for most subjects, it
is possible to reasonably claim that some artifact has been
removed from the EEG signal, thus facilitating the subsequent
computations of the alpha and theta bands.

4.2. Evaluation of Feature Extraction and
Selection
All high-level features are collected from the statistical properties
of the mental workload indexes in various domains, including
the temporal and frequency domains. The initial number of
collected features are 210, and the exhaustive list is provided
in the Supplementary Material accompanying this article. The
ANOVA F-Value is computed for each of these features, and
those with the highest value are retained for subsequent model
training.

Since the SelectKBest algorithm requires an initial number of
features, an iterative approach of feature inclusion during model
training and the performance of the models with those features is
assessed through its accuracy. Iterative optimal feature selection
is performed by employing data from the original dataset.
Figure 3 illustrates the convergence on the optimal number of
features in relation to model performance grouped by learning
techniques (L-R, SVM, DTR). This resulted in a reduced number
of features that are kept for model training by employing to the
dataset enhanced with synthetic data. Figure 4 shows the Pearson
correlation matrix for the “Rest” and the “Simkap” states for the
alpha-to-theta ratios for the case of index at-1 (as designed in
Section 3.3).

Noticeably, most of the features are in the correlation
range between −0.5 and +0.5, which contributes to reduce
multicollinearity and thus potentially being all relevant and
with high prediction capability (Lieberman and Morris, 2014).
Figure 4 is an illustration of the results associated to a single
mental workload index (at-1). However, results associated to the
other indexes are mostly consistent with these, as it is possible
to examine in the Supplementary Figures S1–S9 accompanying
this article.

4.3. Evaluation of the Training Set Across
Indexes
After the feature selection process, training of the models was
conducted with Montecarlo sampling using Logistic Regression
(L-R), Support Vector Machines (SVM) and Decision Trees
(DTR) as described in design subsection E). Model training
suffered from the “curse of dimensionality” issue since it
comprised 48 subjects across only the seven selected features.
The number of training instances is low compared to the number
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FIGURE 2 | The number of components removed across all 48 subjects for “Rest” and “Simkap” task load conditions.

FIGURE 3 | Optimal number of features against model performance with data coming from the Simultaneous Task EEG workload (STEW) dataset. The dashed lines

indicate the number of feature considered in the iteration. It can be seen that the optimal number of top features to select is around seven indicated with green dashed

line which also acts as a stopping criteria.

of independent features retained for modeling purposes. This is
followed by the peak phenomenon of feature inclusion, where
the number of features and their cumulative discriminatory
effect is essential for the average predictive power of a classifier,
which is data-dependent (Zollanvari et al., 2019). The initial
model evaluation with test data on the original dataset did
not reveal the accuracy of more than 60% for the standalone
mental workload indexes built upon the alpha and theta indexes

alone (c1− θ , c2− θ , c3− θ , c− α). An accuracy of 70% for
the mental workload indexes built upon the alpha-to-theta
and theta-to-alpha ratios was observed. An in-depth analysis
of the learning curves associated to the classifiers indicated a
model underfitting and an inability to generalize from test data.
Moreover, analyzing the spectral entropy of the mental workload
indexes revealed a small variance variation, as can be seen
from the boxplots of Figure 5. Small data variance subsequently
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FIGURE 4 | Pearson correlation coefficients matrix for the case of MWL index - at-1: Rest (Left) and Simkap (Right) task-load conditions. at-1: alpha-to-theta ratios

between the indexes c− α and c1− θ . The scale on the right of the image indicates the Pearson correlation coefficients range.

FIGURE 5 | Variance of spectral entropy associated the original data - Left (“Rest” state), Right (“Simkap” state). From the figure it can be seen a small interquartile

range Q1- Q3 is small.

increases the bias influencing the model’s ability to generalize.
Thus, as expected, synthetic data generation was applied for
training robust models.

4.4. Synthetic Data Evaluation
The input for data synthesis was the initial dataset comprised
of 48 subjects and 150 data points (2.5 min of EEG data per
participant split into segments of 1 s) for each of the indexes
designed in Equation 3. Two synthetic datasets are created, one
for the “Rest” and one for the “Simkap” task load conditions in
order to retain the original dataset’s intrinsic properties. Table 2

illustrates the overall synthetic quality scores for the mental
workload indexes set in Equation 3.

Findings suggest that the overall synthetic data score is always
above 87% throughout all the mental workload indexes selected
for the comparative analysis. The synthetic quality score was
measured in the scale (1–20)%-Very Poor, (20–40)%-Poor, (40–
60)%-Moderate, (60–80)%-Good and (80–100)%-Excellent. This
suggests that the quality of synthesized data is excellent, and in
line with similar studies (Hernandez-Matamoros et al., 2020).
Consequently, the synthesized data was of an additional 180
synthesized subjects with 150 data points (2.5 min of EEG activity
split into 150 segments of 1 s) for each mental workload index.
The final combined dataset with original and synthesized data
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TABLE 2 | Synthetic score for different mental workload indexes and two task load conditions (“Rest” and “Simkap”).

MWL Field corr. stability Deep struct. stability Field dist. stability Overall score

index: Rest (%) Simkap (%) Rest (%) Simkap (%) Rest (%) Simkap (%) Rest (%) Simkap (%)

c1− θ 100 100 95 98 78 70 91 89

c2− θ 100 96 94 94 78 71 91 87

c3− θ 94 95 97 100 78 80 89 91

c-α 100 94 97 100 72 81 90 91

at− 1 91 94 89 92 73 74 84 87

at− 2 100 92 93 94 76 78 90 88

at− 3 93 100 95 94 72 74 87 89

ta− 1 100 100 93 95 77 75 90 90

ta− 2 91 100 96 88 76 73 88 87

ta− 3 100 96 85 94 80 82 88 90

is now comprised of 228 subjects with 150 data points for each
mental workload index, as defined in set Equation 3.

4.5. Validation of Models for Discriminating
Self-Reported Perceptions of Mental
Workload
The training of the models with Logistic Regression and
Support Vector Machines learning techniques utilized the linear
optimizer since it offers speed and optimum convergence
on minimizing a multivariate function by solving univariate
optimization problems during repeated training of the model
(Fan et al., 2008). In the case of model training with Decision
Tree, a Gini index was used to measure the quality of split during
the model build.

The classifiers performance is shown in Figure 6. The
evaluation metrics are shown across all mental workload indexes
and are presented in descending order. The best classification
accuracy results are observed for those models built with Support
Vector Machines (SVM) and Logistic regression (L-R). In order
to acknowledge the best learning technique, a two-tailed t-
test between the three learning techniques and the employed
evaluation metrics was performed. The results indicated no
statistically significant difference between Logistic Regression
(L-R), Support Vector Machines (SVM) or Decision Trees
(DTR). This indicates the validity of the training approach
adopted from the design, which means that no matter the
learning technique adopted, the results across all applied
evaluation metrics are the same. Table 3 illustrates the p-value
significance levels of the t-test between evaluation metrics
for each learning technique used in the study. The t-test
was conducted with a threshold confidence value of α =

0.05.
Further analysis of mental workload indexes of the alpha-to-

theta ratios (at − 1, at − 2) indicates better performance than
their respective individual counterparts used for computing those
ratios (c1− θ , c2− θ and c− α). For example, in the case of all
learning techniques (L-R, SVM andDTR), first two alpha-to theta

ratio indexes (at − 1 and at − 2) show better performance than
their individual counterparts (c1− θ , c2− θ and c− α).

In the case of the theta-to-alpha mental workload indexes,
this is also seen in the first two indexes (ta− 1 and ta− 2).
Figure 7 illustrates the performance of band ratios (alpha-to-
theta and theta-to-alpha) across all evaluation metrics, given as
density plots for the case of Support Vector Machines (SVM).
The density plots for all other learning techniques are available
on the Supplementary Figures S10–S11. Table 4 outlines the
significance levels of a two-tailed t-test between the alpha-
to-theta and theta-to-alpha ratio indexes with indexes used
to construct those ratios. A comparison analysis of models
average performance between original data and those enhanced
with synthetic data is shown in Table 5. An analysis of the
number of electrodes across alpha and theta bands as given
in Table 1 outlined in the design Section 3 we can see a
higher number of electrodes in indexes c1− θ and c3− θ in
comparison to indexes c2− θ and c− α. To asses the impact
of the number of electrodes in overall performance of the
models, a cross-plotting between indexes at − 1 vs. at − 2 and
at − 3 vs.at − 2 as well ta− 1 vs. ta− 2 and ta− 3 vs.ta− 2 is
analyzed. Figure 8 illustrates this cross density plot comparison
of performance between the alpha-to-theta and theta-to-alpha
ratio indexes. Furthermore, a two-tailed significance test between
these band ratio indexes (at − 1 and at − 3 vs. at − 2 as
well as ta− 1 and ta− 3 vs. ta− 2) reveals a statistically
significant difference. Table 6 presents the p-value significance
levels for confidence interval of α=0.05. The p-values are with
Bonferroni correction applied, resulting in a significance level set
at α = 0.005.

5. DISCUSSION

Rapid advancements in various tools and technologies
introduced new perspectives in using EEG signals to classify
task load conditions using machine learning techniques. The
analysis done so far on EEG frequency bands, specifically alpha
and theta bands, seems to correlate the changes in these bands
to task load (Gevins and Smith, 2003; Borghini et al., 2014).
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FIGURE 6 | Classification results with high-level features across models with different learning techniques.

TABLE 3 | The two-tailed t-test between L-R, SVM and DTR and f1-score,

accuracy, recall and precision.

L-R - SVM SVM-DTR L-R - DTR

t-statistic (p-value)

f1-score –0.04 (0.96) 1.55 (0.13) 1.50 (0.15)

Accuracy –0.05 (0.96) 1.55 (0.14) 1.50 (0.15)

Precision –0.04 (0.96) 1.55 (0.14) 1.50 (0.14)

Recall –0.04 (0.96) 1.55 (0.14) 1.51 (0.15)

Researchers face many problems in using EEG band ratios for the
purpose of mental workload modeling: (i) the limited amount
of participants for each conducted empirical experiment (ii) a
clear definition of mental workload (iii) a clear EEG measure of
mental workload.

In detail, the three aforementioned issues can be overcome
and this article is a testament for such a claim. In fact,
this research work demonstrates how the first issue can be

tackled by using modern deep-learning methods for synthetic
data generation, giving the possibility to expand the often
limited cardinality of existing datasets created with EEG data.
It also contributes to tackle the second issue by advancing the
understanding of mental workload as a construct by means of an
empirical experiment with EEG data. In particular, it performs
a construction of indexes of mental workload by employing the
alpha and theta EEG bands individually and in combination, and
the extraction of statistical features from these indexes for the
discrimination of self-reported perceptions of mental workload.

Results show that, from an initial highest accuracy of 60%
for the individual alpha and theta indexes on the original
dataset, we witnessed an increase between 8 and 20% in
classifier performance when this data has been augmented with
synthetic data.

Regarding mental workload ratio indexes, especially the
alpha-to-theta indexes, it was possible to build models with
minimum 18.4 − 30.2% higher performance (as measured by
f1-score, accuracy, precision, recall) than the other indexes.
Furthermore, the results show that mental workload indexes
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FIGURE 7 | Density plots for SVM across all performance metrics between band ratio indexes vs. their individual indexes.

at − 1, at − 2 and ta− 1, ta− 2 can better discriminate self-
reported perceptions of mental workload in comparison to
their individual counterparts (c− α, c1− θ and c2− θ). This
proves our hypothesis H1 given earlier that alpha-to-theta and
theta-to-alpha ratios can significantly discriminate self-reported
perceptions of mental workload than the individual use of EEG
band power and can be used in designing highly accurate
classification models. The accuracy, f1-score, recall and precision
evaluation metrics indicate a good classification across almost all
alpha-to-theta and theta-to-alpha indexes.

One interesting observation is the impact of the number
of electrodes in the selected indexes on the overall accuracy
of the classifiers. For example, it can be seen from Table 1

that c1− t from theta band has a higher number of electrodes
that contribute to the computation of band ratios and indicate
the higher accuracy in both alpha-to-theta and theta-to-alpha
indexes. Given the results from Figure 8 and Table 6, hypothesis

H2 cannot be conclusively proven that the number of electrodes
used for calculating alpha-to-theta and theta-to-alpha better
effectuate the predictive power of the classifiers. Figure 8

indicates better performance of at − 2 and ta− 2 indexes which
are computed from c2− θ and c− α individual indexes that, if
seen from Table 1 have lesser electrode numbers. One potential
explanation hypothesized by authors lies in the nature of the
experiment performed while collecting STEW datasets’ EEG
recordings, where “Rest” and “Simkap” activities are performed
in sequence one after the other. Some research indicates a strong
correlation between EEG frequency patterns and the relative
levels of distinct neuromodulators (Vakalopoulos, 2014). This
sudden change in task load activity may lead to neuromodulation
in the parietal region and neuronal suppression on the frontal
cortical region, resulting in better performance of band ratio
indexes (at − 2 and ta− 2) with a smaller number of electrodes.
Further research is required to validate this claim.
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TABLE 4 | The two-tailed t-test between the alpha-to-theta and theta-to-alpha ratio indexes with their individual indexes with Bonferroni(†) correction applied, resulting in

a significance level set at α = 0.005.

c1 − θ c2 − θ c3 − θ c− α

t-statistic (p-value)

L-R

at− 1 25.1 (1.96·10−63)∗∗ (2.36·10−62)† - - 51.4 (1.32·10−111)∗∗ (1.56·10−115)†

at-2 - 42.3 (3.94·10−101)∗∗ (4.73·10−100)† - 46.8 (4.82·10−109)∗∗ (5.78·10−108)†

at-3 - - 15.5 (3.93·10−36)∗∗ (4.71·10−35)† 4.90 (1.95·10−6)∗∗ (2.34·10−5)†

ta-1 14.3 (1.49·10−32)∗∗ (1.79·10−31)† - - 15.1 (4.40·10−35)∗∗ (5.28·10−34)†

ta-2 - 14.9 (2.96·10−34)∗∗ (3.56·10−33)† - 20.7 (1.07·10−51)∗∗ (1.28·10−50)†

ta-3 - - 19.4 (5.81·10−48) (6.97·10−47)† 0.49 (0.62) (1)†

SVM

at-1 25.0 (1.99·10−63)∗∗ (2.39·10−62)† - - 52.4 (4.40·10−118)∗∗ (5.28·10−117)†

at-2 - 42.2 (4.48·10−99)∗∗ (5.37·10−98)† - 48.1 (2.69·10−111)∗∗ (3.22·10−110)†

at-3 - - 13.2 (4.75·10−29)∗∗ (2.79·10−28)† 6.68 (2.39·10−29)∗∗ (5.71·10−28)†

ta-1 14.8 (4.24·10−34)∗∗ (5.01·10−33)† - - 14.8 (6.07·10−34)∗∗ (7.29·10−33)†

ta-2 - 13.0 (1.98·10−28)∗∗ (2.37·10−27)† - 19.9 (2.74·10−49)∗∗ (3.29·10−48)†

ta-3 - - 17.0 (1.10·10−40) (1.32·10−39)† 1.21 (0.22) (1) †

DTR

at-1 20.10 (1.02·10−49)∗∗ (1.22·10−48)† - - 33.44 (1.18·10−83)∗∗ (2.69·10−82)†

at-2 - 33.9 (2.06·10−84)∗∗ (2.47·10−83)† - 27.76 (3.43·10−70)∗∗ (4.12·10−69)†

at-3 - - -0.57 (0.56) (0.15) † 2.51 (0.01) (1)†

ta-1 2.49(0.01) (0.15)† - - 13.20 (5.73·10−29)∗∗ (6.88·10−28)†

ta-2 - 11.6 (2.75·10−24)∗∗(3.30·10−23)† - 8.07 (6.16·10−14)∗∗ (7.93·10−13)†

ta-3 - - 14.6 (2.83·10−33)∗∗ (3.40·10−32)† 11.21(6.54·10−23)∗∗ (7.85·10−22)†

TABLE 5 | Models performance increase across mental workload indexes between original dataset and dataset combined with synthetic data.

Data c1 − θ (%) c2 − θ (%) c3 − θ (%) c− α(%) at − 1(%) at − 2(%) at − 3(%) ta− 1(%) ta− 2(%) ta− 3(%)

f1-score
Orig. 57.6 55.9 58.8 38.4 53.8 56.0 44.1 63.1 56.4 71.0

Orig.+Synth. 74.2 64.6 70.9 62.8 84.5 82.2 65.2 70.3 70.7 60.8

Accuracy
Orig. 57.7 56.6 60.0 50.0 53.3 56.6 47.7 63.3 56.6 71.0

Orig.+Synth. 74.8 64.7 70.0 62.6% 84.5 82.2 65.2 70.3 70.7 60.8

Precision
Orig. 57.7 56.7 61.3 33.3 65.25 57.2 47.5 63.8 56.6 71.1

Orig.+Synth. 74.2 64.7 70.6 62.6 84.6 82.2 65.2 70.3 70.7 60.8

Recall
Orig. 57.7 56.6 60.0 50.0 54.4 56.6 47.7 63.3 56.6 71.0

Orig.+Synth. 74.8 64.5 70.0 62.0 84.5 81.23 65.2 70.3 70.7 60.8

Avg. Increase: 17.2 8.0 10.0 19.9 30.2 25.5 18.4 6.9 14.1 f–10.1

Based on the results above, we can conclude that EEG band
ratios, alpha-to-theta and theta-to-alpha ratio mental workload
indexes, can significantly discriminate self-reported perceptions
of mental workload and be used to design models for detecting
such levels of mental workload perception. The observations
however cannot conclusively prove that the higher the electrode
number, especially in the parietal region, leads to a better
discrimination self-reported perceptions of mental workload.

6. CONCLUSION

Various EEG frequency bands indicate a direct correlation to
human mental workload. In particular, EEG bands such as alpha
and theta bands tend to increase/decrease in the state of mental
workload (Borghini et al., 2014). However, no conjoint analysis of
both bands in the form of indexes over time has been sufficiently
analyzed so far.

This article has empirically demonstrated that EEG
band ratios, specifically the alpha-to-theta and theta-to-
alpha ratios can be treated as mental workload indexes for
the discrimination of self-reported perceptions of mental
workload. In detail, a set of higher level features associated
to these indexes, have proven useful for the inductive
formation of models, employing machine learning, for the
discrimination of two levels of mental workload perception
(“suboptimal MWL” and “super optimal MWL”). Another
important contribution in this research is the analysis of the
impact of electrode density in-band ratios on the formation
of discriminative models of self-reported perceptions of
mental workload.

Future research work will outline the
usage of the alpha-to-theta and theta-to-
alpha ratio indexes related to the following
issues:
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FIGURE 8 | Density plots across all performance metrics between all band ratio indexes (the case for SVM).

TABLE 6 | The two-tailed t-test between alpha and theta band ratios: at− 1 vs. at− 2: 2-tail test value between indexes at− 1 and at− 2.

Learning

technique

at − 1 vs. at − 2 at − 3 vs. at − 2 ta− 1 vs. ta− 2 ta− 3 vs. ta− 2

t-statistic

(p-value)

L-R 4.82 (2.79·10−6)∗∗

(1.11·10−5)†
−42.29 (4.27·10−101)∗∗

(1.71·10−100)†
-4.98 (1.32· 10−6)∗∗

(5.29·10−6)†
−20.09 (1.07·10−49)∗∗

(4.31· 10−49)†

SVM 3.31 (1· 10−2)∗∗

(4.34·10−3)†
−42.31 (3.91·10−101)∗∗

(1.56·10−100)†
−4.10 (6.00·10−5)∗∗

(2.40·10−4)†
−17.44 (6.75·10−42)∗∗

(2.70· 10−41)†

DTR 6.96 (4.76·10−11)∗∗

(1.90·10−10)†
−29.21 (9.99·10−74)∗∗

(3.93·10−73)†
5.73 (3.64·10−8)∗∗

(1.45·10−7)†
−20.99 (2.93·10−52)∗∗

(1.17·10−51)†

at− 2 vs. at− 3: 2-tail test value between between indexes at− 2 and at− 3. ta− 1 vs. ta− 2: 2-tail test value between indexes ta-1 and ta-2. ta− 2 vs. ta− 3: 2-tail test value

between indexes ta− 2 and ta− 3. The (
†
) sign indicate the p-value with Bonferroni correction applied, resulting in a significance level set atα = 0.005.

• replication of the experiment conducted in
this research with additional public available
datasets, to further validate the contribution
to knowledge.

• evaluation of human tasks different than those employed
in this research, as for instance those conducted in the
automobile industry (Di Flumeri et al., 2018), in the context
of Human-Computer Interaction (HCI) (Longo, 2012) and in
education (Longo, 2018b; Longo and Orru, 2018).

• use of multi-channel EEG data collected from a
larger pool of electrodes, and thus formation and
evaluation of additional mental workload indexes built
with different clusters of electrodes for the alpha and
theta bands.

• the design of a novel experiment with additional task
load conditions of incremental complexity, for example by
employing the multiple resource theory of Wickens (Wickens,
2008) and the definition of objective task performance
measures that can be used as dependent features from indexes
of mental workload.
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