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Parkinson’s disease dysgraphia (PDYS), one of the earliest signs of Parkinson’s disease

(PD), has been researched as a promising biomarker of PD and as the target of

a noninvasive and inexpensive approach to monitoring the progress of the disease.

However, although several approaches to supportive PDYS diagnosis have been

proposed (mainly based on handcrafted features (HF) extracted from online handwriting

or the utilization of deep neural networks), it remains unclear which approach provides

the highest discrimination power and how these approaches can be transferred

between different datasets and languages. This study aims to compare classification

performance based on two types of features: features automatically extracted by

a pretrained convolutional neural network (CNN) and HF designed by human experts.

Both approaches are evaluated on a multilingual dataset collected from 143 PD patients

and 151 healthy controls in the Czech Republic, United States, Colombia, and Hungary.

The subjects performed the spiral drawing task (SDT; a language-independent task) and

the sentence writing task (SWT; a language-dependent task). Models based on logistic

regression and gradient boosting were trained in several scenarios, specifically single

language (SL), leave one language out (LOLO), and all languages combined (ALC). We

found that the HF slightly outperformed the CNN-extracted features in all considered

evaluation scenarios for the SWT. In detail, the following balanced accuracy (BACC)

scores were achieved: SL—0.65 (HF), 0.58 (CNN); LOLO—0.65 (HF), 0.57 (CNN); and

ALC—0.69 (HF), 0.66 (CNN). However, in the case of the SDT, features extracted by

a CNN provided competitive results: SL—0.66 (HF), 0.62 (CNN); LOLO—0.56 (HF),

0.54 (CNN); and ALC—0.60 (HF), 0.60 (CNN). In summary, regarding the SWT, the HF
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outperformed the CNN-extracted features over 6% (mean BACC of 0.66 for HF, and 0.60

for CNN). In the case of the SDT, both feature sets provided almost identical classification

performance (mean BACC of 0.60 for HF, and 0.58 for CNN).

Keywords: machine learning, deep learning, feature extraction, Parkinson’s disease dysgraphia,

handwriting analysis

1. INTRODUCTION

Parkinson’s disease (PD) is a chronic idiopathic disorder
characterized by the progressive loss/degeneration of
dopaminergic neurons in the substancia nigra pars
compacta (Hornykiewicz, 1998; Dickson, 2012) with the
development of α-synuclein-containing Lewy bodies within the
dopaminergic neurons (Forno, 1996). PD is the second most
frequent neurodegenerative disorder, with the prevalence rate
estimated to be ∼2.0% for people aged over 65 years (Heinzel
et al., 2019). To date, the gradual deficiency of dopaminergic
neurons in the basal ganglia has been recognized as a major

cause of parkinsonian symptoms (Brodal, 2003). In addition
to a large variety of other motor symptoms, such as tremor at

rest (Hughes et al., 1993), progressive bradykinesia (Berardelli
et al., 2001), muscular rigidity (Hughes et al., 1993),

postural instability (Horak et al., 2005), and hypokinetic
dysarthria (Brabenec et al., 2017), one of the prominent motor
symptoms of PD is so-called Parkinson’s disease dysgraphia

(PDYS) (Letanneux et al., 2014; Pinto and Velay, 2015; Thomas
et al., 2017).

PDYS is a term describing a spectrum of neuromuscular
difficulties, including motor-memory dysfunction (problems
combining memory input with motor output), graphomotor
production deficits (poor muscle coordination), motor feedback
difficulties (over-activation of certain muscles and joints during
handwriting as well as problems tracking the location of the pen’s
tip) and others. These cause a variety of handwriting difficulties
(HD) manifesting as dysfluent, shaky, slow, and less readable
handwriting; a progressive decrease in letter amplitude or
width, namely, micrographia (McLennan et al., 1972; Rosenblum
et al., 2013; Letanneux et al., 2014); etc. Hence, PDYS has
serious consequences that significantly affect a person’s everyday
life, starting with slow and less legible handwriting and often
progressing to lower self-esteem, poor emotional well-being,
problematic communication, and social interaction, and many
others. To introduce a timely and effective treatment to improve
a patient’s quality of life as much as possible, neurologists, and
other experts could benefit from a remote, objective, fast, and
low-cost decision support system. Such a system could employ
artificial intelligence and provide information that might lie
beyond human perception. It could enable specialists to combine
their expertise with a large volume of data that are not available
when utilizing a conventional in-clinic examination to identify
and assess parkinsonian symptoms. Finally, such an approach
could be implemented in decentralized clinical trials and could
significantly suppress the Hawthorne effect (Morberg et al.,
2018).

In general, the handwriting tasks that are traditionally
employed in PDYS analysis can be classified into drawing,
writing, and more complex tasks (Vessio, 2019). Usually, simple
drawing or writing elements are performed repetitively and
continuously as a single exercise. In the drawing task category,
spirals, circles, meanders, and simple figures are frequently
used for motor performance evaluation. These types of drawing
tasks are effortless and well-tolerated and hence are suitable for
studying motor control deficits in PD patients, especially for
assessing tremor (San Luciano et al., 2016; Vessio, 2019). As PD
patients commonly exhibit constructional apraxia (Garre-Olmo
et al., 2017), their drawings may contain simplifications, lack of
perspective, fewer angles, or spatial alterations. Letters, words,
and sentences are commonly acquired during the examination
process in the writing task category. As PD patients may produce
slower andmore irregular movements, mainly due to rigidity and
bradykinesia, the results of repetitive writing tasks usually emerge
in a more segmented fashion (Pullman, 1998; Drotar et al.,
2016). Sentence writing requires a high degree of simultaneous
processing, including motor planning; therefore, it is suitable
for detecting micrographia (Bidet-Ildei et al., 2011), which is
the most commonly observed handwriting abnormality in PD
patients. Finally, more complicated handwriting tasks, such as the
Clock Drawing Test (Agrell and Dehlin, 1998), may be used as
well as part of a more complex examination involving cognitive
and functional issues.

Currently, the most promising approach for the robust,
objective, and computerized assessment of PDYS utilizes various
signals describing the process/product of handwriting acquired
by a digitizing tablet (Drotar et al., 2014, 2015). Such signals
represent the movement of a digitizing stylus (pen) along
both the horizontal and vertical axes, the pressure exerted on
the surface of a digitizer, and the tilt and azimuth angles,
acquired with respect to a specific series of timestamps to form
a collection of time series describing the process of handwriting
from beginning to end (referred to as online handwriting). In
addition, modern digitizers have the ability to record not only
the movement of a pen on the surface of the digitizer but also the
movement above the surface (in-air movement; Alonso-Martinez
et al., 2017). As shown in a variety of research studies focusing
on the identification and assessment of HD in patients suffering
from PD, Alzheimer’s disease (AD), essential tremor (Drotar
et al., 2014, 2016; Alonso-Martinez et al., 2017; Impedovo et al.,
2018), etc., online handwriting capture provides the ability to
characterize the process of handwriting in terms of its kinematic,
dynamic, and temporal features, which are not accessible from
the final handwritten product when using the conventional pen
and paper methodology (referred to as offline handwriting).
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At present, the following handcrafted features are
conventionally used to describe the product/process of
handwriting/drawing (Rosenblum et al., 2013; Thomas et al.,
2017; De Stefano et al., 2019): (a) spatial features—width, height,
and length; (b) temporal features—duration; (c) kinematic
features—velocity, acceleration, and jerk; (d) dynamic features—
pressure, tilt, and azimuth; and (e) other features—number of
interruptions (pen elevations), etc. These features are computed
either for an entire product or on a per-stroke basis utilizing
on-surface and in-air movements. In the case of per-stroke
computation, the investigated signals are broken down into
the separate strokes forming the final handwritten product.
A crucial characteristic of these conventional features is their
clinical interpretability, allowing them to be linked with the
real physiological phenomena behind the studied pathologies,
which is extremely important for the mass adoption of this
methodology in real clinical use cases.

Despite the broad use and indisputable success of these
conventional handcrafted features, our recent studies (Mucha
et al., 2018a,b; Mucha et al., 2019) concerning the computerized
identification and assessment of PD and developmental
dysgraphia (DD) have illustrated the necessity of additional
research into novel and more advanced parametrization
techniques for handwriting that could enable more robust
and complex characterization of HD. For this reason, various
nonlinear handwriting features based on modulation spectra,
fractional-order derivatives (FD) and the tunable-Q wavelet
transform have been developed and evaluated (Galaz et al., 2020;
Mucha et al., 2020).

Conventional and nonlinear handcrafted features have shown
promising potential for the quantification of hidden patterns in
deficient handwriting. However, the necessity of manual design
and development is still a severe limitation. Recent advancements
in artificial neural networks offer new possibilities for automated
feature extraction. By utilizing transfer learning, pre-trained
convolutional neural networks (CNNs) can be advantageously
used to extract features and, as such, provide an alternative
solution in place of tedious and time-consuming manual feature
design. This approach has already been used not only for
handwriting processing (Gil-Martin et al., 2019; Moetesum et al.,
2019; Gazda et al., 2021) but also in several other domains
(Hagerty et al., 2019; Minaee et al., 2020). Nevertheless, in the
area of handwriting processing, one apparent limitation of CNN
feature extraction is that it utilizes only image data, and as such,
it is limited only to offline handwriting processing. However,
there have recently been some promising attempts to employ
recurrent neural networks for the classification of handwriting
signals (Diaz et al., 2021).

As seen from the above discussion, various parametrization
techniques for offline and online handwriting have been
developed. However, a major limitation of the current state
of affairs is that these techniques are treated separately most
of the time. Studies comparing the robustness of conventional
handcrafted features with that of features extracted automatically
using a pre-trained CNN for the identification and assessment
of PDYS are lacking. Moreover, multilingual studies analyzing

datasets acquired from subjects of different nationalities are
very rare.

The primary goal of this work is to compare two different
approaches for the identification of PDYS from drawing and
handwriting. The first approach is based on online handwriting
utilizing a set of conventional handcrafted features (baseline),
whereas the second approach relies on automated feature
extraction from offline handwriting utilizing a pre-trained CNN.
The primary aim of this comparison is to reveal whether a set of
features that are automatically extracted with no prior domain
knowledge could compete with a set of handcrafted features
designed by domain experts. The secondary goal of this work is
to explore the power of both feature sets for the identification
of PDYS in a multilingual dataset. In this study, we consider
two different handwriting tasks, namely, the Archimedean spiral
drawing task and the sentence writing task. The reason behind
this selection is to examine a drawing task, which is independent
of language, and a writing task, which is dependent on language.
We note that except for our own previous work (Mucha
et al., 2019), in which the Spanish and Czech sentence tasks
were investigated together, this is the only study to date to
consider a large multilingual cohort of PD patients, who were
enrolled in the Czech Republic, the United States, Colombia,
and Hungary. Such cross-language and cross-cultural clinical
studies are essential to generalize themethodology used for PDYS
diagnosis and assessment; therefore, the findings of this study
could lay a foundation for future research in this area.

2. RELATED WORKS ON PD
CLASSIFICATION FROM HANDWRITING

2.1. Online Handwriting
The most frequently used handcrafted features extracted from
online handwriting can be divided into (a) conventional features
(temporal, spatial, kinematic, and dynamic) and (b) advanced
features (Vessio, 2019). Among conventional features, the
following features have been utilized the most: (a) temporal—
duration of writing, duration of strokes; (b) spatial—width,
height, and length of a written product or of individual strokes;
(c) kinematic—velocity, acceleration, jerk; and (d) dynamic—
pressure, tilt, azimuth, etc. With respect to advanced features,
various studies have explored designs based on entropy, the
signal-to-noise ratio (SNR), empirical mode decomposition
(EMD), cepstrum (Nolazco-Flores et al., 2021), sigma–lognormal
models (O’Reilly and Plamondon, 2009), FD (Mucha et al.,
2018b), etc.

To obtain a complete picture of the utilization of
handcrafted features in PDYS diagnosis and assessment,
we refer to comprehensive reviews published up through
2019 (Letanneux et al., 2014; Impedovo and Pirlo, 2018;
De Stefano et al., 2019; Vessio, 2019). In the following
discussion, we review a number of recent articles. Although
the present work investigates conventional features only,
the review below includes studies that have employed
conventional features, advanced features, or both; the primary
focus is the summarization of the latest works addressing
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the computerized assessment of HD in patients suffering
from PD.

Impedovo et al. (2018) investigated whether a diagnosis of PD
based on the quantitative analysis of online handwriting could be
successful in early to mid stages of the disease. For this purpose,
the PaHaW database was reduced to a subset of 65 subjects [36
healthy controls (HCs) and 29 PD patients] who fit the Hoehn
and Yahr scale at scores from 1 to 2.5 (Goetz et al., 2004, 2008).
Almost all of the extracted features were kinematic, whereas some
of them utilized entropy. Significant discriminative power was
achieved in the sentence task [accuracy (ACC) of 71.95% with
a Gaussian naïve Bayes classifier], thus confirming the previously
reported findings of Drotar et al. (2016) that the writing of a long
sentence presents a higher cognitive demand such that the effect
of PD can manifest itself in the aggravation of HD.

Intending to improve the computerized assessment of PD
severity, Mucha et al. (2018b) deeply analyzed various advanced
kinematic features based on FD. The newly designed features
were compared to conventional ones for only those PaHaW
subjects who completed all of the 9 tasks (Drotar et al., 2016) (69
subjects in total). The authors reported that the conventional in-
air features outperformed the advanced ones in the differential
analysis (ACC of 97.1% with an XGBoost classifier) as well
as in the estimation of PD duration [estimation error rate
(EER) of 23.6%], but in this specific case, the in-air parameters
were combined with features extracted from the on-surface
movement. On the other hand, the severity of PD in terms of
the score on the Unified Parkinson’s Disease Rating Scale, part
V: Hoehn and Yahr scale (UPDRS V) was better estimated by the
new FD-based metrics (EER of 12.5%), suggesting that fractional
calculus can play a significant role in the assessment of PD.

In 2019, Rios-Urrego et al. (2019) analyzed the ability to use
kinematic, geometric, spectral and nonlinear dynamic features to
model HD and to discriminate between HCs and patients with
PD. In that study, they enrolled 130 subjects from Colombia,
who were asked to draw an Archimedean spiral and to write
a short sentence. The results indicated an ACC of 83.3% [K-
nearest neighbors (KNN) classifier] for the Archimedean spiral
and ACC of 75% [support vector machine (SVM) classifier] in
the case of the sentence writing task. The absence of nonlinear
features in the trainedmodels indicated that such features did not
contribute to the classification accuracy as much as kinematic or
geometric features.

Jerkovic et al. (2019) experimented with in-air handwriting
features and multiclass linear discriminant analysis (cLDA)
to differentiate between HCs, patients with PD and patients
with atypical parkinsonism. Altogether, 43 subjects from
Serbia were enrolled in the study. The task was to write
a sentence in various scenarios, such as with or without
looking at the monitor of the laptop during writing. Various
kinematic features related to the in-air and on-surface
trajectories were extracted. The combination of the on-
surface and in-air features led to ACC of 86%, whereas
a model trained only with in-air features had a slightly
lower ACC of ∼79%. The results led to the conclusion that
kinematic features based on both the in-air and on-surface
trajectories are equally important in the quantitative analysis

of the handwriting of PD patients with various types of
motor impairments.

Impedovo (2019) investigated the use of new velocity-based
signal processing techniques for the advance diagnosis of PD
based on the discrete Fourier transform (DFT; for assessing
rapidity and fluency), sigma–lognormal modeling (SLM; for
quantifying the constant tremor pattern of PD utilizing cepstrum
properties) and the Maxwell–Boltzmann distribution (MBD;
for modeling handwriting velocity profiles). In his work, he
utilized online handwriting records from the PaHaW database.
The newly proposed features were extracted together with
conventional features (baseline; Impedovo et al., 2018) for all
tasks in the database.When classification was performed using all
features and all tasks, the newly proposed features were selected
among the 10 best-performing features (ACC of 94%, SVM
classifier) and outperformed the baseline features (ACC of 88%
SVM classifier). The author was able to increase the HC/PD
classification accuracy to 98% when using only the most suitable
tasks (the Archimedean spiral, “lll” and the word “lektorka”).

In 2020, a study published by Aouraghe et al. (2020)
introduced new kinematic features utilizing the discrete time
wavelet transform (DTWT), the fast Fourier transform (FFT)
and a Butter/adaptive filter in the diagnosis of PD. Altogether,
80 native Arabic speakers were enrolled. All of them wrote
a particular segment of text on several lines. Additionally, to
better predict the continuous degradation of PD handwriting,
the output of the text task was segmented line by line using
unsupervised K-means clustering (observing the variation in the
x and y trajectories). All of the extracted features (new and
conventional) were calculated for the whole text and for each
segmented line separately (at least 4 lines). The best performance
on the entire task corresponded to ACC of 85.7% (KNN
classifier). The first line showed a slightly lower ACC of 78.6%
when a decision tree (DT) classifier was used. The last line proved
to be the most effective and discriminative segment in the study
when utilizing the DWT (ACC of 92.9%). Segmentation proved
to be a valid method, as the results confirmed the hypothesis that
PD handwriting degradation, deterioration, and fatigue increase
over time.

While the previous approaches relied on carefully designed
handcrafted features, Vásquez-Correa et al. (2019) proposed
directly feeding the raw captured signals and their derivatives
into a 1D CNN. These authors utilized a rather small CNN with
two convolutional and pooling layers. This procedure allowed
ACC of 67% to be achieved in the classification of PD patients
and HC subjects. The authors performed several experiments
using only onset or offset data, constituting the 200ms after the
transition from on-surface to in-air movement or the transition
from in-air to on-surface movement. However, this approach did
not seem to improve the prediction accuracy.

There are also some other studies that confirm feasibility of
the digitized spiral drawing for PD detection (Kamble et al., 2021)
and PD stage classification (Zham et al., 2017).

2.2. Offline Handwriting
In contrast to approaches based on online handwriting, in
which multiple modalities are available, offline handwriting
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approaches must rely on visual data only. This significantly limits
the information that is available for classification. Moetesum
et al. (2019) utilized a pretrained AlexNet CNN to extract
features from images capturing handwriting samples. To further
enhance the extraction of features and boost the performance, the
authors combined three different types of image preprocessing
techniques. With this approach, they obtained ACC of 76% on
a single task from the PaHaW dataset and ACC of 83% when
merging all tasks used for prediction.

Recently, Gazda et al. (2021) proposed the idea of multiple-
fine-tuned CNNs for the classification of PD handwriting.
Similar to the work of Moetesum et al. (2019), this approach
relies on a pretrained CNN. However, Gazda et al. utilized
datasets of handwriting samples to bridge the gap between the
semantically different ImageNet dataset, which was used for
network pretraining, and parkinsonian handwriting datasets.
This approach enabledmore efficient transfer learning, leading to
ACC of 92.7% on the spiral drawing task from the NewHandPD
dataset and ACC of 85.8% on the spiral drawing task from the
PaHaW dataset.

Similarly, six pretrained CNNs (AlexNet, GoogLeNet,
VGG16, VGG19, ResNet50, and ResNet101) were evaluated
in Kamran et al. (2021) in terms of their performance on
four different handwriting datasets. The obtained results
strongly depended on the dataset, with the most challenging
dataset being PaHaW. In this case, the classification accuracy
was only 62.5%, compared to accuracies of over 90% for the
HandPD, NewHandPD (Pereira et al., 2016) and Parkinson’s
Drawing (Zham et al., 2017) datasets.

Finally, the authors of Diaz et al. (2019) were able to merge
the online and offline handwriting approaches by incorporating
dynamic information into static images. This approach seemed to
improve classification in cases where the task can be performed
continuously without lifting the pen. The highest ACC of 75%
was achieved using VGG as the feature extractor and a linear
SVM as the classifier for a single drawing task (spiral). Further
improvements were obtained by building an ensemble classifier
based on the results from different tasks, yielding ACC of 86%.

For a better illustration, a summary of the related works is
provided in Table 1. The overview of the related works based
on online handwriting is in the upper part, and studies based on
offline handwriting are in the bottom part of the table.

3. MATERIALS AND METHODS

3.1. Dataset
In total, 143 patients with PD (71 female and 72 male; mean
age 66.32 ± 10.79 years) and 151 HCs (86 female and 65
male; mean age 64.79 ± 9.90 years) were enrolled in several
geographical locations: the Czech Republic (CZ), Hungary
(HU), the United States of America (US), and Colombia (CO).
A corresponding multilingual dataset was created by fusing
the following databases: PaHaW (Drotar et al., 2016), CoBeN
(acquired under the Marie Skłodowska-Curie grant agreement
no. 734718), and HWUDEA (Castrillon et al., 2019; Rios-Urrego
et al., 2019). In the case of the PaHaW database, the participants
performed 9 tasks (e.g., Archimedean spiral, letters, syllables,

words, sentence) on A4 paper that was laid down and fixed to
a digitizing tablet (Wacom Intuos 4M, with a sampling frequency
of fs = 133 Hz). A special Wacom inking pen was used to
provide immediate visual feedback, i.e., simulating classical pen-
and-paper writing/drawing. The participants enrolled for the
acquisition of CoBeN underwent a protocol consisting of 8 tasks
(e.g., connecting dots, overlapping pentagons, Archimedean
spiral, sentences) using a similar paper–tablet setup; however,
in this case, the data were recorded by a Wacom Intuos Pro
L (fs = 133 Hz). Finally, the HWUDEA database was acquired
by employing a Wacom Cintiq 13HD Touch display tablet
(fs = 180 Hz). In total, 17 tasks were recorded for each
participant (e.g., spring, alphabet, sentence, Archimedean spiral,
house drawing). Although the databases were collected following
different protocols, all of them share two tasks: the Archimedean
spiral drawing task and a sentence writing task. Selected samples
can be seen in Figure 1.

Demographic data with respect to each of the two tasks shared
among all databases are reported in Table 2. Unfortunately, the
databases are not annotated with the same clinical information
(e.g., the CoBeN–HU dataset contains only information about
sex and age); nevertheless, to provide at least limited insight into
the characteristics of the PD patients, we summarize the available
metadata in Table 3. None of the participants had a history or
the presence of any psychiatric symptoms, cognitive impairment,
or any disease affecting the central nervous system (other than
PD in the PD cohort). All PD patients were diagnosed based
on the diagnostic criteria for PD (Postuma et al., 2016). They
were well-compensated on their stable dopaminergic medication
and without major motor fluctuations or dyskinesias [they were
examined while on their regular dopaminergic medication (ON
state) ∼1 h after the L-dopa dose]. All subjects signed informed
consent forms. The study was approved by the relevant local
ethics committees.

3.2. Scenarios
We define three main scenarios to analyze the effect of linguality
on the classification of PDYS:

1. Single language—In this scenario, we consider datasets for
every language separately. As such, there are four different
models: HU, US, CO, and CZ (the Czech dataset is created by
merging the PaHaW and CoBeN datasets). In this scenario,
each classification model is trained and tested on a dataset
consisting of data samples that all come from the same
language. This scenario is considered to correspond to internal
model validation because the linguality of the datasets is not
considered; rather, the robustness of the features is evaluated
at the per-dataset level.

2. Leave one language out—In this scenario, the influence
of different languages on the classification performance is
evaluated by training each model on three out of four
datasets and testing it on the remaining dataset. With this
approach, we aim to investigate the effect of transferring
knowledge between datasets coming from different language
sources. We refer to this scenario as the leave-one-language-
out scenario. This scenario is considered to correspond to
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TABLE 1 | Overview of the related works.

References Participants Task Features Analysis Results

Online handwriting

Impedovo et al. (2018) 29 PD, 36 HC PaHaW–all Kinematic, enthropy GNB ACC = 72.0%

Mucha et al. (2018b) 33 PD, 36 HC

PaHaW–all

FD-based kinematic XGBoost ACC = 97.1%

EER = 23.6% (PD dur)

EER = 12.5% (UPDRS V)

Rios-Urrego et al. (2019) 39 PD, 70 HC
Archimedean spiral Kinematic, geometric KNN ACC = 83.3% (spiral)

Short sentence Spectral, non-linear SVM ACC = 75.0% (sentence)

Jerkovic et al. (2019) 33 PD, 10 HC Various sentences Kinematic cLDA ACC = 86.0%

Impedovo (2019) 37 PD, 38 HC PaHaW–all DFT, SLM, MBD SVM ACC = 94.0%

Aouraghe et al. (2020) 40 PD, 40 HC Segment of text
DTWT, FFT KNN ACC = 85.7% (full text)

Butter/adaptive filter decision tree ACC = 78.6% (first line)

Vásquez-Correa et al. (2019) 44 PD, 40 HC 14 drawings/writings Original signal 1D CNN ACC = 67.0%

Offline handwriting

Moetesum et al. (2019) 37 PD, 38 HC PaHaW–all AlexNet CNN SVM ACC = 83.0%

Gazda et al. (2021)
64 PD, 71 HC

Archimedean spiral
Pre-trained CNN and transfer ACC = 92.7% (NewHandPD)

2 dataset learning (ImageNet→PD dataset) ACC = 85.8% (PaHaW)

Kamran et al. (2021)

PaHaW

Several drawings

ACC = 62.5% (PaHaW)

HandPD
AlexNet, GoogLeNet, VGG16

ACC = 91.4% (HandPD)

NewHandPD
VGG16, ResNet50, ResNet101

ACC = 98.4% (NewHandPD)

PD Drawings ACC = 90.0% (PD Drawings)

Diaz et al. (2019) 37 PD, 38 HC PaHaW–all VGG SVM ACC = 86.0%

PD, Parkinson’s disease; HC, healthy control; PaHaW, Parkinson’s disease handwriting database (Drotar et al., 2016); FD, fractional order derivative; ACC, accuracy; EER, estimation

error rate; PD dur, PD duration; GNB, gaussian naïve bayes classifier; xGBoost, extreme gradient boosting tree; KNN, K-nearest neighbors; SVM, support vector machine; cLDA, multi-

class linear discriminant analysis; CNN, convolution neural network; ResNet, residual neural network; VGG, very deep CNN; DFT, discrete fourier transformation; SLM, sigma-lognormal

model; MBD, maxwell-boltzmann distribution; DTWT, discrete time wavelet transform; FFT, fast Fourier transform; UPDRS V, UPDRS, part V: Hoehn and Yahr scale (Fahn and Elton,

1987).

FIGURE 1 | Selected samples from the multilingual dataset (blue line – on-surface movement; red line – in-air movement). (A) Spiral drawing (PD patient); (B) Spiral

drawing (HC); (C) English sentence (PD patient) “The weather turned nice”; (D) Hungarian sentence (PD patient) “A vonat hirtelen megállt”; (E) Czech sentence (HC)

“Tramvaj dnes už nepojede”.

external model validation because the multilinguality of the
data is taken into account, i.e., the validation samples come
from a different geographical location, as recommended in the
TRIPOD guidelines (Collins and Moons, 2019).

3. All languages combined—In the last scenario, we combine all
datasets of different languages into one complete dataset to
evaluate the performance of the features on the mixed dataset.

3.3. Feature Extraction
Although the individual databases were acquired using different
devices, all of them recorded the following information (time
series): the x and y positions (x[n] and y[n]), the timestamp (t[n]),
a binary variable (b[n]) taking values of 0 for in-air movement
(i.e., movement of the pen tip up to 1.5 cm above the tablet’s
surface) and 1 for on-surface movement (i.e., movement of the
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TABLE 2 | Demographic characteristics.

Dataset Language PD (N; female) PD (N; male) PD (age) HC (N; female) HC (N; male) HC (age)

Archimedean spiral

PaHaW CZ 18 15 69.21 ± 11.10 17 19 62.50 ± 11.70

CoBeN CZ 6 13 66.48 ± 7.77 30 10 67.04 ± 6.07

CoBeN US 3 6 68.56 ± 4.07 9 3 72.50 ± 8.37

CoBeN HU 2 7 66.00 ± 9.96 7 5 64.92 ± 5.30

HWUDEA CO 41 28 64.42 ± 11.85 22 27 62.69 ± 11.34

Sentence

PaHaW CZ 19 18 69.32 ± 10.97 18 20 62.42 ± 11.39

CoBeN CZ 6 13 66.48 ± 7.77 30 9 67.21 ± 6.05

CoBeN US 3 6 68.56 ± 4.07 9 3 72.50 ± 8.37

CoBeN HU 2 6 65.88 ± 10.64 7 5 64.92 ± 5.30

HWUDEA CO 13 4 63.88 ± 7.61 5 5 70.20 ± 10.67

TABLE 3 | Clinical characteristics of the PD patients.

Dataset Language Duration of PD [years] LED [mg/day] UPDRS III UPDRS V

PaHaW CZ 8.38 ± 4.80 1,432.19 ± 704.78 – 2.27 ± 0.85

CoBeN CZ 4.00 ± 4.15 568.33 ± 508.03 7.00 ± 1.41 –

CoBeN US – 333.12 ± 240.40 – –

CoBeN HU – – – –

HWUDEA CO 10.56 ± 11.16 – 36.78 ± 19.63 2.38 ± 0.61

LED, L-dopa equivalent daily dose (Lee et al., 2010); UPDRS III, Unified Parkinson’s Disease Rating Scale, part III: motor examination (Fahn and Elton, 1987); UPDRS V, UPDRS, part

V: Hoehn and Yahr scale (Fahn and Elton, 1987).

pen tip on the paper), the pressure exerted on the tablet’s surface
during writing (p[n]), the pen tilt (a[n]), and the pen azimuth
(az[n]). First, we preprocessed the recordings for unit unification
(e.g., we expressed the x and y positions in millimeters, time
in seconds, etc.) and resampling [we resampled all signals
to fs = 133 Hz employing a finite impulse response (FIR)
antialiasing low-pass filter]. Subsequently, we parameterized the
signals employing the previously mentioned baseline and CNN-
based features.

3.3.1. Baseline Features

To establish a good baseline for the evaluation of the CNN-
based features, we consulted several recent articles and reviews
(Impedovo and Pirlo, 2018; De Stefano et al., 2019; Vessio, 2019)
and extracted the handcrafted features that are most commonly
used for the quantitative assessment of PD dysgraphia. These
features can be divided into six groups:

1. Temporal—duration of writing (DUR), ratio of the on-
surface/in-air durations (DURR), duration of strokes (SDUR),
and ratio of the on-surface/in-air stroke durations (SDURR)

2. Spatial—width (WIDTH), height (HEIGHT), and length
(LEN) of the whole product as well as those of its individual
strokes, i.e., stroke width (SWIDTH), height (SHEIGHT), and
length (SLEN)

3. Kinematic—velocity (VEL), angular velocity (AVEL), and
acceleration (ACC)

4. Dynamic—pressure (PRESS), tilt (TILT), and azimuth
(AZIM)

5. Spiral-specific (San Luciano et al., 2016; Cascarano et al.,
2019)—first-order smoothness of spiral (1stSm), second-order

smoothness of spiral (2ndSm), spiral tightness (TGHTNS),
first-order zero-crossing rate of spiral (1stZC), second-

order zero-crossing rate of spiral (2ndZC), degree of spiral
drawing severity (DoS), mean drawing speed of spiral (MDS),
variability of spiral width (SWVI), and spiral precision index

(SPI)
6. Other—number of interruptions or pen elevations (NINT),

relative number of interruptions (RNINT), number of on-
surface interstroke intersections (NIEI), relative number of

on-surface interstroke intersections (RNIEI), number of on-

surface intrastroke intersections (NIAI), relative number of

on-surface intrastroke intersections (RNIAI), total number

of on-surface intrastroke intersections (TNIAI), relative total

number of on-surface intrastroke intersections (RTNIAI),
relative number of changes in velocity profile (RNCV), relative

number of changes in pressure profile (RNCP), relative

number of changes in tilt profile (RNCT), and relative number
of changes in azimuth profile (RNCA)

The spatial, temporal, and kinematic features were extracted

from both the on-surface and in-air movements. In addition,
the kinematic features were also analyzed for the horizontal
and vertical projections of the movements. Features that are
represented by time series were transformed into scalar values
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using the median, interquartile range (iqr), nonparametric
coefficient of variation (ncv; defined as iqr/median), and slope
by applying the Theil–Sen estimator (slope). In the case
of the kinematic time series, we also calculated the 95th
percentile (95p).

For each feature, we use the following notation: INF: DIR-
FN (HL), where INF denotes the processed information (ON for
on-surface, AIR for in-air, PRESS for pressure, TILT for tilt, and
AZIM for azimuth), DIR denotes the direction (H for horizontal
and V for vertical), FN is the feature name, andHL is the statistic
used for the transformation.

3.3.2. CNN-Based Features

Over the past decade, CNNs have demonstrated outstanding
capabilities on various tasks, such as image recognition, medical
image analysis, and handwriting recognition. Multiple state-of-
the-art models exist, with a typical structure consisting of an
input layer, a mix of convolutional and pooling layers, and one
output layer. Deeper networks often produce better results than
shallower ones; on the other hand, they have multiple times more
parameters and require more data for training, especially when
compared to traditional machine learning models. To overcome
this problem, transfer learning techniques have been proposed.

The idea behind transfer learning is to take advantage of
the features of a CNN trained on one task and use them for
another task. Given a source domain Ds, a corresponding task
Ts, a target domain Dt , and the corresponding task Tt , where
Ds 6= Dt and Ts 6= Tt , the goal of transfer learning is to
reduce the error of the target predictive function ft(.) in Dt . For
transfer learning, twomain paradigms exist. The first is called fine
tuning, in which a neural network or at least part of the neural
network is retrained, thus changing the weights of the layers. In
the second approach, a CNN is used to extract features. In the
feature extraction model, the weights trained on the source task
are frozen, and the corresponding representations are applied in
the target task.

In case of CNN-based features we render images from data
captured by the digitizing tablet. Specifically, we use only the
x and y positions (x[n] and y[n]). To extract CNN-based
features, we employed the state-of-the-art CNN known as
VGG16 (Simonyan and Zisserman, 2014), pretrained on the
ImageNet dataset (Russakovsky et al., 2015). The VGG16 is well-
known architecture that is still being frequently used thanks to its
relative simplicity. The input images were resized to 224×224 by
nearest-neighbor interpolation. We extracted features from the
last convolutional layer in the VGG16 network. The extracted
features capture abstract representations of the processed input
image. Features were classified by CNN head consisting of fully
connected layer and output layer.

3.4. Machine Learning
For the handcrafted features, we built binary classificationmodels
using an ensemble extreme gradient boosting algorithm known
as XGBoost (Chen and Guestrin, 2016). The reason behind
using such an advanced nonlinear classifier is to search for
complex nonlinear patterns in a feature set composed of rather
simple feature representations. To build models with the optimal

hyperparameters, we applied a randomized search strategy to
optimize the following set of hyperparameters: the learning rate
[0.001, 0.01, 0.1, 0.2, 0.3], γ [0, 0.05, 0.10, 0.15, 0.20, 0.25,
0.5], the maximum tree depth [6, 8, 10, 12, 15], the fraction of
observations to be randomly sampled for each tree (subsample
ratio) [0.5, 0.6, 0.7, 0.8, 0.9, 1.0], the subsample ratio for the
columns at each level [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], the
subsample ratio for the columns when constructing each tree
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], the minimum sum of the weights
of all observations required in a child node [0.5, 1.0, 3.0, 5.0, 7.0,
10.0], and the balance between positive and negative weights [1,
2, 3, 4].

In contrast, the binary classification models for the CNN-
based features were built using L2-regularized logistic regression
(LR), also known as ridge regression. The reason behind using
this much simpler linear classifier is the assumption that the
underlying nonlinear representations are already captured by
the CNN-extracted features. In addition, features extracted from
convolutional layers tend to have very high dimensionality, and
thus, using a simpler classifierminimizes the chance of overfitting
and maximizes the computational efficiency. To find the optimal
parameters of the LR classifier, we searched through the various
settings for the regularization parameter C given by the following
set: [0.001, 0.01, 0.1, 1, 10, 100, 1000].

The randomized search was conducted 500 times. In both
cases, the objective of the hyperparameter search was to optimize
the balanced accuracy score (BACC; described in more detail
along with other evaluation scores below) via stratified five-
fold cross-validation with five repetitions (the five-fold cross-
validation scheme was chosen as a reasonable compromise
between the numbers of samples in the training and validation
folds, i.e., to provide the classifier with sufficient training samples
while also testing its performance on a representative subset of
the overall sample size).

Finally, the trained classification models were evaluated
on a per-scenario basis: (a) single language—in this scenario,
we conducted stratified five-fold cross-validation with five
repetitions; (b) leave one language out—in this scenario, we
tested the performance of each trained classifier on the remaining
dataset that was not present in the training data; and (c)
all languages combined—in this scenario, we again employed
stratified five-fold cross-validation with five repetitions. Only one
sample of Archimedean spiral or sentence was available from
each subject. Therefore, all decisions are based on a per subject
basis. The classification test performance was established using
the following well-known and widely used classification metrics:
BACC, sensitivity (SEN), specificity (SPE), and F1 score.

4. RESULTS

4.1. Single-Language Scenario
The classification performance of the models trained in this
scenario is summarized in Table 4. First, we trained and tested
the classification models using the spiral drawing task. The
highest BACC values of 82% (handcrafted features) and 77%
(CNN-based features) were achieved for the US dataset. These
accuracies are notably higher than those achieved for the other
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TABLE 4 | Classification performance in the single-language scenario.

Language Features BACC F1 SEN SPE

Spiral drawing

CZ Handcrafted 0.59 ± 0.08 0.590.07 0.82 ± 0.12 0.36 ± 0.14

CNN 0.64 ± 0.03 0.65 ± 0.05 0.65 ± 0.09 0.65 ± 0.06

CO Handcrafted 0.59 ± 0.12 0.72 ± 0.07 0.81 ± 0.09 0.37 ± 0.23

CNN 0.61 ± 0.02 0.62 ± 0.02 0.62 ± 0.03 0.62 ± 0.02

HU Handcrafted 0.64 ± 0.17 0.61 ± 0.20 0.72 ± 0.29 0.57 ± 0.34

CNN 0.48 ± 0.03 0.52 ± 0.13 0.52 ± 0.16 0.52 ± 0.12

US Handcrafted 0.82 ± 0.18 0.77 ± 0.28 0.84 ± 0.31 0.81 ± 0.23

CNN 0.77 ± 0.02 0.77 ± 0.07 0.77 ± 0.11 0.77 ± 0.08

Sentence writing

CZ Handcrafted 0.66 ± 0.08 0.62 ± 0.08 0.64 ± 0.10 0.69 ± 0.12

CNN 0.65 ± 0.04 0.66 ± 0.04 0.66 ± 0.04 0.66 ± 0.05

CO Handcrafted 0.56 ± 0.18 0.72 ± 0.19 0.83 ± 0.22 0.28 ± 0.29

CNN 0.50 ± 0.08 0.54 ± 0.07 0.54 ± 0.08 0.54 ± 0.09

HU Handcrafted 0.75 ± 0.18 0.65 ± 0.30 0.82 ± 0.34 0.59 ± 0.34

CNN 0.50 ± 0.06 0.48 ± 0.08 0.48 ± 0.10 0.48 ± 0.08

US Handcrafted 0.65 ± 0.20 0.54 ± 0.28 0.58 ± 0.34 0.73 ± 0.32

CNN 0.70 ± 0.04 0.70 ± 0.06 0.70 ± 0.08 0.70 ± 0.05

BACC, balanced accuracy; F1, F1 score; SEN, sensitivity; SPE, specificity.

datasets, which indicates that the US samples most likely carry
certain recognizable patterns of PD related to the graphomotor
difficulties manifested during spiral drawing. With respect to the
comparison between the handcrafted and CNN-based features,
the results show similar trends, with both types of features
yielding the highest accuracy on the US dataset and quite similar
results on the other datasets. More specifically, the CNN-based
features outperformed the handcrafted features on the CZ dataset
(BACCs of 64 vs. 59%) as well as on the CO dataset (BACCs
of 61 vs. 59%) but yielded less accurate predictions on the US
dataset. This shows that CNNs, even when provided with visual
information only, can be competitive with handcrafted features
on the spiral drawing task. However, there is one exception. From
the performance of the CNN-based features on the HU dataset, it
is evident that this model failed to provide reasonable predictions
(BACC of 48% with the CNN-extracted features as opposed to
BACC of 64% with the handcrafted features).

To interpret the machine learning models, we investigated
the top ten most important features (see Figure 2). In the CZ
dataset, most of these features are derived from the on-surface
angular velocity. Other kinematic features are based on the
on-surface velocity and the mean drawing speed of the spiral.
Finally, the zero-crossing rate of the spiral, the pressure and
the spiral smoothness all show some importance. The most
important feature in the CO dataset is the ratio between the
on-surface and in-air durations. It is followed by the relative
number of interruptions and by the tilt-based and azimuth-
based parameters. The important feature set also contains the
in-air duration and spiral tightness. The rest of the features are
based on the angular velocity and horizontal/vertical velocity.
The most important set of features for the HU model contains
two spatial parameters, width and height. The variation in

azimuth plays an important role as well. Finally, the majority of
the important features are kinematic (angular velocity, velocity,
and acceleration). These features are also important in the
US database. In addition, some spatial parameters (length
and height), the pressure and the intraspiral intersections are
identified as important.

Second, we evaluated the models for the sentence writing
task in the same scenario. There are a few interesting points
to note. First, prediction fails on the CO dataset for both types
of features (BACC of 56% with the handcrafted features and
BACC of 50% with the CNN-based features). The reason is most
likely the small sample size; in the CO data, there are only 27
sentences, compared to the 118 spirals used in the previous
experiment. Next, the model utilizing the handcrafted features
clearly outperformed the model based on the CNN features on
the HU dataset (BACC of 75% with the handcrafted features
and BACC of 50% with the CNN-based features) and yielded
slightly more accurate predictions on the CZ dataset (BACC
of 66% vs. BACC of 65%). This is to be expected since for
CNN-based features, a larger sample size is probably needed to
learn the underlying patterns from a given sentence; compared
with spiral drawing, sentence writing is much less restricted
in terms of what the final handwritten product should look
like. Finally, even though the US dataset contains spirals and
sentences from the same patient group, the classification accuracy
is significantly lower for the sentence writing task than for
the spiral drawing task. Quite surprisingly, the CNN-extracted
features outperformed the handcrafted features for the US cohort
(BACCs of 70 vs. 65%).

Regarding the interpretation of the models shown in Figure 3,
the most important features in the CZ dataset are based on
the on-surface velocity, more specifically on its median and
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FIGURE 2 | Importance of the features used in the models in the single-language scenario (spiral drawing task).
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FIGURE 3 | Importance of the features used in the models in the single-language scenario (sentence writing task).
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FIGURE 4 | Relevance maps for ten Archimedean spirals (two random samples from each dataset are depicted).

variation. In addition, the two highest-ranked velocity-based
parameters are derived from the vertical projection. The most
important feature set also contains the duration and number
of intrastroke intersections. The most important feature in the
CO dataset is the relative number of changes in the pressure
profile, and two other pressure-based parameters (range and
variation) were also selected. The last dynamic parameter is the

number of changes in the azimuth profile. Regarding kinematic
features, the set contains the in-air velocity and angular velocity.

The stroke duration and spatial features such as width and
height also play important roles. In the HU dataset, the most
important feature is the variation in azimuth. Other significant

features include the on-surface and in-air acceleration, and the
on-surface horizontal velocity and the relative number of changes
in the velocity profile are also important. Temporal features are

represented by the in-air stroke duration. Finally, two important
spatial parameters are identified: the on-surface stroke length

and the overall length of the in-air movement. The three most
important features in the US dataset are the number of on-surface

intrastroke intersections, the in-air stroke length and the range of
the azimuth. These are followed by mainly kinematic parameters,
i.e., the in-air horizontal velocity, in-air acceleration, and on-
surface velocity (including its horizontal projection). In terms of
temporal features, the set also contains the in-air stroke duration.

The interpretation of CNN decisions is not straightforward
since CNN models work in a black-box manner. We employ
deep Taylor decomposition (Montavon et al., 2017) to gain
a better understanding of the decisions made. Deep Taylor
decomposition generates relevance maps illustrating the
importance of single pixels in images. Figures 4, 5 show the
relevance maps for ten spirals and four sentence writing samples,
illustrating the pixels that were considered the most relevant for
CNN-based feature extraction. Note that all figures that were
used as CNN input were rendered at a resolution of 244 × 244
pixels. This resolution is optimal for the pretrained VGG
network, but it created some deformation of the handwriting in
the sentence writing task. This might have produced suboptimal
results; however, using different resolutions would have required
training the whole network from scratch, which would have been
incompatible with the intention of this study.

4.2. Leave-One-Language-Out Scenario
The classification performance of the models trained in this
scenario is summarized in Table 5. Naturally, the native language
of a participant exerts no influence on the spiral drawing task;
however, we can still investigate how the models performed
on external validation datasets. When the CZ dataset was
used as the test set, BACC degraded from 59 to 54% and
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FIGURE 5 | Relevance maps for four sentences (one random sample is depicted for each language).

from 64 to 45% for the handcrafted and CNN-based features,
respectively. In contrast, in the case of the CO test set, BACC

with the handcrafted features decreased from 59 to 50%, while

the performance of the CNN-based features slightly improved,
specifically from 61 to 63%. In the case of the HU test set, BACC

with the handcrafted features similarly degraded from 64 to 56%,
but interestingly, when the CNN-extracted features were used,
the classification performance improved from 48 to 71%, even

higher than in the internal model validation in the previous
experiment. This can be explained by the fact that the HU dataset

is quite small, so the model was not able to learn well from
data coming from the HU dataset only. Finally, the prediction
performance on the US test set, which yielded optimistic results
in the single-language scenario, decreased dramatically. For the
handcrafted features, BACC decreased from 82 to 65%, and
for the CNN-based features, the model completely failed to
generalize, as BACC decreased from 77 to only 38%. This shows
that the pattern responsible for the high classification accuracy in
the internal model validation is most likely not present (or is less
prominent) in the other datasets.

Regarding the sentence writing task, the language does exert
an influence, and it is therefore important to look at the
differences in the classification performance achieved in the
internal and external validations. When the CZ dataset was
used as the test set, BACC decreased from 66 to 63% and
from 65 to 54% for the handcrafted and CNN-based features,
respectively. In the case of the CO test set, BACC decreased from
56 to 50% for the handcrafted features and from 59 to 51% for
the CNN-extracted features. With respect to the HU test set,
BACC degraded from 75 to 67% for the handcrafted features but
improved from 50 to 60% for the CNN-based features. This is
consistent with the results of the spiral drawing task, for which
the classifier based on the CNN-extracted features needed more

TABLE 5 | Classification performance in the leave-one-language-out scenario.

TRAIN TEST Features BACC F1 SEN SPE

Spiral drawing

CO+HU+US CZ Handcrafted 0.54 0.51 0.62 0.46

CNN 0.45 0.41 0.48 0.42

CZ+HU+US CO Handcrafted 0.50 0.74 1.00 0.00

CNN 0.63 0.62 0.54 0.71

CZ+CO+US HU Handcrafted 0.56 0.47 0.44 0.67

CNN 0.71 0.67 0.67 0.75

CZ+CO+HU US Handcrafted 0.65 0.67 0.88 0.41

CNN 0.38 0.32 0.33 0.42

Sentence writing

CO+HU+US CZ Handcrafted 0.63 0.68 0.78 0.48

CNN 0.54 0.58 0.80 0.29

CZ+HU+US CO Handcrafted 0.59 0.30 0.18 1.00

CNN 0.51 0.72 0.82 0.20

CZ+CO+US HU Handcrafted 0.67 0.64 0.59 0.75

CNN 0.60 0.46 0.38 0.83

CZ+CO+HU US Handcrafted 0.71 0.67 0.59 0.83

CNN 0.63 0.46 0.33 0.92

TRAIN, training dataset; TEST, test dataset; BACC, balanced accuracy; F1, F1 score;

SEN, sensitivity; SPE, specificity.

data for training. In the case of the US test set, BACC improved
for the handcrafted features, from 65 to 70%, but decreased for
the CNN-extracted features, from 71 to 63%.

Interestingly, the classifiers utilizing the CNN-based features
extracted from the spiral drawing task either outperformed
those trained on the handcrafted features or failed to generalize,
whereas the classifiers based on the handcrafted features
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TABLE 6 | Classification performance in the scenario with all languages combined.

Task Features BACC F1 SEN SPE

Spiral Handcrafted 0.60 ± 0.06 0.63 ± 0.06 0.73 ± 0.10 0.48 ± 0.07

CNN 0.60 ± 0.01 0.61 ± 0.02 0.61 ± 0.04 0.61 ± 0.04

Sentence Handcrafted 0.69 ± 0.05 0.65 ± 0.07 0.61 ± 0.09 0.78 ± 0.07

CNN 0.66 ± 0.01 0.67 ± 0.01 0.67 ± 0.03 0.67 ± 0.03

BACC, balanced accuracy; F1, F1 score; SEN, sensitivity; SPE, specificity.

extracted from the sentence writing task yielded higher
classification accuracy in all four experiments (with different
combinations of training and test datasets). This was to be
expected since in the latter case, the models were trained on
sentences with orthography different from that in the test set.
These findings confirm the hypothesis that the handcrafted
features designed by domain experts are more robust than
automatically extracted CNN-based features in cases in which
different visual patterns are to be evaluated.

4.3. Scenario With All Languages
Combined
In the last scenario, we combined the samples from all
languages together to create a single heterogeneous dataset.
The classification performance of the models trained in this
scenario is summarized in Table 6. In the case of the spiral
drawing task, the handcrafted features and CNN-based features
show very similar performance, achieving 60% accuracy. The
hypothesis that CNN-based features are more sensitive to
the visual orthography of the sentence writing task is also
confirmed by this last scenario, as the classifier based on
handcrafted features outperformed the one trained on CNN-
extracted features, achieving almost 70% accuracy (although in
this case, the difference was much less prominent).

5. DISCUSSION

We compared the results of two different approaches to feature
extraction: handcrafted features and features extracted by a CNN.
In the case of the handcrafted features, we utilized a set of baseline
features that are frequently used for handwriting analysis. We
focused mainly on temporal, spatial, kinematic, and dynamic
features, and we did not employ any advanced nonconventional
features. Similarly, in the case of the CNN-extracted features,
we used a pretrained VGG network to extract the features,
although propositions have already emerged for improving the
methodologies applied to diagnose PD from offline handwriting
(Moetesum et al., 2019; Gazda et al., 2021). The motivations for
this are two-fold. First, our aim was to establish baseline results
that can be used as a reference in the future. Second, by using
these baseline approaches, we could provide a fair comparison
between the classification performance of handcrafted features
and CNN-extracted features.

Regarding clinical interpretability, the models based on the
Archimedean spiral drawing task mainly utilized kinematic
features. This finding is reasonable because the cardinal

symptoms of PD, such as rigidity, akinesia, and bradykinesia,
have a significant impact on fine motor skills, including
handwriting/drawing (Letanneux et al., 2014). Generally, PDYS is
associated with reduced velocity (Ponsen et al., 2008; Rosenblum
et al., 2013; Impedovo and Pirlo, 2018; De Stefano et al., 2019),
which could occur more frequently than the most pronounced
symptom, micrographia (Letanneux et al., 2014). Since the
Archimedean spiral drawing task is a task in which subjects
perform coordinated rotation, among the kinematic parameters,
the angular velocity seems to play the most important role in the
differentiation of PD/HC subjects.

Interestingly, features specifically designed for the assessment
of Archimedean spiral drawing in PD patients (San Luciano
et al., 2016; Cascarano et al., 2019; such as the smoothness
of the spiral, the spiral tightness, the variability of the spiral
width, and the spiral precision index) were not as important
as we initially assumed. Similar to the dynamic features (e.g.,
pressure, tilt, azimuth), spatial features (width, height, length),
and temporal features (duration), they were important only in
some specific datasets.

Concerning the clinical interpretability of the models based
on the sentence writing task, except for the CO database,
all models were again based mainly on kinematic features,
mostly extracted from the on-surface movement. In terms
of projection, kinematic deficits were observed in both the
horizontal and vertical movements. Nevertheless, in the largest
database (CZ), deficits mainly dominated in the vertical
projection. Kushki et al. (2011) reported that the finger system
(which is mainly involved in vertical movement) is more
affected by muscular fatigue than the wrist system (which
controls horizontal movement). From an anatomical point
of view, vertical movement requires coordinated movement
and finer flexions/extensions of more joints (interphalangeal
and metacarpophalangeal), i.e., it is more complex than ulnar
abductions of the wrist (Van Galen, 1991; Dounskaia et al., 2000),
and we assume this to be the reason why kinematic deficits
were more strongly observed in this direction. This finding could
also be somehow linked with progressive/consistent vertical
micrographia, i.e., progressive/consistent reduction in letter
amplitude (Thomas et al., 2017). However, this hypothesis
requires further research because some studies suggest that the
horizontal version of micrographia is even more common than
the vertical version (Thomas et al., 2017).

Interestingly, except for the CZ database, the azimuth
also played a significant role, more specifically its variation
and range. We have identified one publication in which the
authors advantageously utilized azimuth-based features in the
semisupervised modeling of PDYS (Ammour et al., 2020). We
assume that tremor could lead to improper coordination of the
upper extremities, which could manifest as unstable azimuth
features during the process of handwriting.

Temporal features (the duration of the whole process or of
individual strokes) additionally played an important role in all
models. In some studies, duration has not been found to be
useful for discriminating between PD patients and HCs because
although patients with PD write slowly, they also write smaller
letters and thus ultimately spend the same time on, e.g., copying
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a sentence (Letanneux et al., 2014; Vessio, 2019). Nevertheless,
in our case, with a few exceptions, spatial parameters were not
found to be important in PDYS modeling.

Although it has been reported that PD patients generally apply
less pressure (Rosenblum et al., 2013), we observed an important
role of pressure-based features only in the CO model. Since only
the CO database was recorded using the Wacom Cintiq tablet,
the question arises of whether the corresponding discriminative
power is associated solely with the disease or whether it is
somehow enhanced by writing on a display.

In contrast to conventional shallow machine learning models,
deep CNN models are quite challenging to interpret because
of the dimensionality and complexity involved. However, as
mentioned in the previous sections, we employed deep Taylor
decomposition (Montavon et al., 2017) to create relevance maps
illustrating the pixels that were considered most relevant for
CNN-based feature extraction.

Regarding the spiral drawing task, as seen from Figure 4,
the pixels that were assigned the highest weight for decisions
lay along the outline of the drawn image. This indicates that
the outer curve may convey information that can be explored
to differentiate PD patients and HCs. We can hypothesize that
this location in the spiral is strongly related to the shape and
size of the spiral itself, which requires more focus and fine
control over the kinematic and dynamic aspects of drawing.
In the case of the sentence writing task, Figure 5 shows that
the most important pixels tend to be clustered around bends
with high curvature. Again, this likely indicates that areas with
higher differentiation potential are related to increased demand
in terms of the kinematic and dynamic aspects of handwriting.
This is an interesting observation showing that a CNN without
any knowledge about the evolution of drawing/handwriting
over time (as it is given only the final handwritten product)
is able to identify the areas in handwritten images that require
increased muscular control and focus. This observation could
be consistent with the findings presented in Vásquez-Correa
et al. (2019), where the transitions from non-moving to moving
and from moving to non-moving states were shown to be
highly informative. Additionally, this observation supports the
importance of handcrafted features and poses an interesting
research question of whether deep neural networks, when
trained with adequately large and heterogeneous datasets, could
provide more insights for the development of new features
or whether the present knowledge about baseline handwriting
features could be used for the development of novel deep
neural networks specialized for automated feature extraction
from handwriting/drawing.

5.1. Study Limitations
This work has several limitations. First, we need to be aware
of the restricted statistical strength of any inferences regarding
the population of patients with PD given the relatively limited
sample size. In addition, although the clinical information is not
complete for all of the datasets, it is evident that the PD cohort
contains patients with different levels of PD progression; for
example, based on the UPDRS III, the CO subjects are at a more
severe stage than the CZ subjects. On the other hand, by fusing

them together, we were able to train models that could support
the diagnosis of PD in both severe and early stages.

Another limitation is associated with the effect of medication.
Since we did not have information about LED for all PD subjects,
we could not control for this effect in the statistical modeling.
According to Zham et al. (2019), levodopa has a positive effect,
especially on the performance in simple graphomotor tasks, such
as the Archimedean spiral drawing task in our case. Nevertheless,
the authors reported that no such benefit was observed in
the sentence writing task, which imposes higher memory and
cognitive loads. Therefore, we assume that controlling for the
effect of medication in our analyses could further improve the
performance of the models based on the spiral drawing task.

Next, although we performed unit unification and resampling
on the signals so that they all had the same sampling frequency,
the different recording conditions (e.g., paper vs. the display
version of the tablets) could still have had some impact on
the results.

In addition, various machine learning models should be
trained and compared in future studies to obtain more
information about the classification performance of the proposed
features and to obtain the most robust models for PDYS
identification. Finally, the relationship between the classification
performance of the trained models and the feature space
complexity as well as the cross-validation setup should be
investigated to evaluate and confirm the robustness of the
proposed methodology.

In summary, considering its limitations, this study should be
viewed as a pilot study that is exploratory in nature, and its results
should be confirmed by subsequent research studies.

6. CONCLUSION

We investigated several aspects of handwriting evaluation for
the detection of PDYS. First, we compared the utilization of
handcrafted features with the utilization of features extracted
by a CNN. We found that the two approaches are competitive,
especially for the spiral drawing task, which is independent of
language. Handcrafted features (especially kinematic features)
proved to be the better choice for the sentence writing task
in multilingual scenarios. This is expected since CNN-based
features are extracted only from offline handwriting samples,
from which temporal information is not available. In addition,
the orthography of a sentence is strongly affected by the language
of the writer. Second, we analyzed the effect of multilinguality
on the training and performance of classification models. Here,
in contrast to our initial hypothesis, model validation performed
on sentences written in a different language than the ones used
for training did not result in performance degradation. In fact,
the prediction accuracy improved in the case of the US and HU
datasets. Finally, we compared the sentence writing task and
the spiral drawing task. Here, the sentence writing task showed
higher discrimination potential, even in multilingual scenarios.

Although there are several limitations, to the best of our
knowledge, this is the first study to compare the classification
performance of conventional handcrafted features designed
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by domain experts and features extracted automatically by
a pretrained CNN from a multilingual dataset collected from
patients suffering from PD. It also provides an objective
evaluation of PDYS detection using two different and
very promising approaches and analyzes several aspects of
handwriting that are frequently neglected in the literature. Based
on the results, we can conclude that both types of features
have great potential to be used to describe various aspects
of drawing/handwriting in both language-independent and
language-dependent scenarios. In summary, our work can be
perceived as establishing some initial baseline results for further
research toward the introduction of new prediction models
utilizing handcrafted features as well as CNN-based features
that could provide more robustness and confidence in the
identification of HD in patients with PD.
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