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Recent advances in computational neuroscience have demonstrated

the usefulness and importance of stochastic, spatial reaction-di�usion

simulations. However, ever increasing model complexity renders traditional

serial solvers, as well as naive parallel implementations, inadequate. This

paper introduces a new generation of the STochastic Engine for Pathway

Simulation (STEPS) project (http://steps.sourceforge.net/), denominated

STEPS 4.0, and its core components which have been designed for improved

scalability, performance, and memory e�ciency. STEPS 4.0 aims to enable

novel scientific studies of macroscopic systems such as whole cells while

capturing their nanoscale details. This class of models is out of reach for

serial solvers due to the vast quantity of computation in such detailed models,

and also out of reach for naive parallel solvers due to the large memory

footprint. Based on a distributed mesh solution, we introduce a new parallel

stochastic reaction-di�usion solver and a deterministic membrane potential

solver in STEPS 4.0. The distributed mesh, together with improved data

layout and algorithm designs, significantly reduces the memory footprint of

parallel simulations in STEPS 4.0. This enables massively parallel simulations

on modern HPC clusters and overcomes the limitations of the previous

parallel STEPS implementation. Current and future improvements to the

solver are not sustainable without following proper software engineering

principles. For this reason, we also give an overview of how the STEPS

codebase and the development environment have been updated to follow

modern software development practices. We benchmark performance

improvement and memory footprint on three published models with di�erent

complexities, from a simple spatial stochastic reaction-di�usion model, to

a more complex one that is coupled to a deterministic membrane potential

solver to simulate the calcium burst activity of a Purkinje neuron. Simulation

results of these models suggest that the new solution dramatically reduces the
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per-core memory consumption by more than a factor of 30, while maintaining

similar or better performance and scalability.
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1. Introduction

For several decades computational modeling has

progressively proven its importance in neuroscience research,

covering a wide range of research domains and disciplines:

from sub-cellular molecular reaction-diffusion dynamics to

whole-brain neural network simulations. Breakthroughs in

experimental methods and community-driven data sharing

portals have significantly increased the amount of available

experimental data, enabling the advance of complex data-driven

modeling and analysis. These efforts are further enhanced by

large collaborative projects such as the US BRAIN initiative

(Insel et al., 2013), and the EU Human Brain Project (Markram

et al., 2011; Amunts et al., 2016, 2019), where complex

computational modeling plays an essential role. The rapid

progress of neuroscience modeling brings critical advances to

our understanding of neuronal systems, yet unprecedented

challenges to simulator software development have emerged

from two primary directions: first, the need to simulate

neuronal functionalities across multiple spatio-temporal scales,

and second, the requirement of simulating such systems with

extraordinary efficiency.

1.1. The STEPS project and its
applications

The STochastic Engine for Pathway Simulation (STEPS)

project has evolved following the above trends over the years.

The STEPS project started as a mesoscopic scale stochastic

reaction-diffusion solution (Hepburn et al., 2012) driven by a

spatial variant of the well-known Gillespie Stochastic Simulation

Algorithm (SSA) method (Gillespie, 1977). Over the years,

serial STEPS has contributed to a wide range of research

domains, such as studies on long-term depression in cerebellar

Purkinje cells (Antunes and De Schutter, 2012; Zamora Chimal

and De Schutter, 2018), viral RNA degradation and diffusion

(Schelker et al., 2016), longitudinal anomalous diffusion in

neuron dendrites (Mohapatra et al., 2016), and calcium signaling

in astrocytes (Denizot et al., 2019). We gradually expanded

STEPS to support electrical potential calculation on tetrahedral

meshes with the EField solver (Hepburn et al., 2013), allowing

combined simulations of reaction-diffusion and membrane

potential dynamics on a single mesh reconstruction of neuronal

morphology. This solution was important for research that

showed that stochastic activation of ion channels, in particular

calcium-activated potassium channels, produces significant

variability in Purkinje cell dendritic calcium spike shape (Anwar

et al., 2013). However, it was soon clear to us that the serial

nature of STEPS was the major bottleneck for simulating

such complicated models; even a sub-branch of a Purkinje

neuron often took weeks to complete one realization of 500 ms

biological time. This issue was partially addressed in STEPS 3.0

by introducing the parallel operator splitting method to the

reaction-diffusion solution (Hepburn et al., 2016; Chen and

De Schutter, 2017), which aided research such as platform

development for automatic cancer treatment discovery (Stillman

et al., 2021). A parallel EField implementation supported by the

PETSc library (Abhyankar et al., 2018) was added to STEPS 3.1.

The parallel solution dramatically improved performance by

thousand folds compared to the serial counterpart, making it

possible to model a complete neuron with detailed morphology

and channel mechanisms (Chen et al., 2022).

1.2. The need of a new parallel solver

Moving to parallel STEPS has greatly improved performance

compared to the serial solution. However, as the hardware

and software of high-performance computing have advanced

in recent years, noticeable bottlenecks have been observed in

modeling applications with STEPS. The main objective of this

article is to identify these bottlenecks and address them with a

new parallel implementation.

For many scientific applications, the memory capacity

of High-Performance Computing (HPC) systems is one of

the main constraints for running simulations at scale. A

large number of today’s HPC systems have about 2~3GB

of main memory per core (Zivanovic et al., 2017). This

is an improvement compared to previous BlueGene-like

systems where memory capacity is typically ~1GB per core.

Current systems are increasingly heterogeneous with the

use of accelerators such as GPUs. The memory capacity of

such a system is significantly lower compared to what is

commonly available on host CPUs. In the case of Intel Knights

Landing processors (Sodani et al., 2016), the total capacity

is approximately 0.2GB per core. The next generation of

processors such as Intel Sapphire Rapids will most likely have
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a per-core memory capacity similar to the current generation.

This poses a significant challenge to application developers:

on the one hand the raw computing power is significantly

increasing with architectures like GPUs, while on the other

handmaintaining a lowmemory footprint becomes increasingly

important to achieve better performance.

Onemajor limitation of the existing parallel implementation

in STEPS comes from the mesh data architecture inherited

from the serial solution. While bridging the gap between serial

and parallel STEPS and making many non-parallel components

reusable, the serial nature of the design requires the complete

data of the whole mesh and the molecule state of each mesh

element to be stored in every computing core. This poses a

hard limit on the maximum model size determined by the

per-core memory availability, the model complexity, and the

mesh size. Thanks to support from the parallel solver, realistic

simulations with a large number of chemical reactions for a

great period of biological time can now be accomplished in a

reasonable computing time. However, this in turn raises research

interests in even more complicated models and more realistic

morphologies, reaching the limits of the implementation. The

memory constraints in modern HPC systems further amplify

such limitations.

The solution to this issue is a new parallel implementation

constructed on the foundation of a sophisticated distributed

mesh library, Omega_h (Ibanez and Roberts, 2018). Thanks to

the distributed nature of the mesh library and the redesigns of

other STEPS components, we are able to dramatically reduce the

memory footprint of the simulation while maintaining similar

or better performance and scalability.

1.3. Other solutions for spatial
reaction-di�usion simulations

Traditionally, spatial reaction-diffusion simulation solutions

are divided into two major categories, voxel-based and off-voxel

particle-based. Voxel-based simulators divide the geometry into

small voxels, where the Reaction-Diffusion Master Equation is

solved by variants of the Gillespie SSA method (Gillespie, 1977).

Example simulators in this category include STEPS (Hepburn

et al., 2012), MesoRD (Hattne et al., 2005), and NeuroRD

(Oliveira et al., 2010). Off-voxel particle-based solutions

represent eachmolecule in the system individually as sphere-like

physical entities, track the Brownian motion of each molecule in

a continuum space, and simulate molecular reactions caused by

collisions. Example simulators of this category include Smoldyn

(Andrews and Bray, 2004), MCell (Kerr et al., 2008), and

ReaDDy (Schöneberg and Noé, 2013). Solutions between these

twomajor categories also exist, for instance, Spatiocyte (Arjunan

and Tomita, 2010), which simulates individual molecule particle

movement with reactions on a hexagonal close-packed lattice.

Some early attempts of parallel spatial reaction-diffusion

simulation solutions have been reviewed in Chen and

De Schutter (2017). Here we report the latest developments in

the field since then. In the voxel-based simulator domain, apart

from STEPS 3.x in our previous report, Patoary et al. (2019)

further optimized the multi-threading Neuron Time Warp

solution, and achieved 5.5x speedup with 7 logical processors,

comparing to the single logical processor simulation. In the

off-voxel particle-based domain, the ReaDDy 2 simulator

reported an approximately sixfold speedup with 11 threads,

using single thread simulation as the baseline (Hoffmann et al.,

2019). The parallel implementation of Spatiocyte, pSpatiocyte

(Arjunan et al., 2020), reported a 7,686x speedup with 663,552

cores on the RIKEN K computer, compared to the 64 core

baseline simulation. It is worth noting that direct performance

comparisons of these simulators are often challenging, as

different theoretical solutions and model abstractions are

applied in the implementations.

1.4. Naming conventions and the
structure of the article

To avoid confusion, we will hereby call the non-parallel,

spatial STEPS solver “serial STEPS,” the existing parallel

implementation reported in Chen and De Schutter (2017)

“STEPS 3,” and the new parallel implementation supported by

Omega_h that we introduce in this paper “STEPS 4.” Note

that serial STEPS, STEPS 3 and STEPS 4 are all integrated

solutions of the STEPS 4.0 release, and the users are free

to choose any of them for their simulations based on the

research requirements.

In Section 2, we first describe our design principles and the

implementation details of STEPS 4, and then introduce some

software engineering techniques applied to the overall STEPS

project for maintainability and efficiency improvements. In

Section 3, we present the validations of the implementation with

a series of well-establishedmodels, followed by performance and

scalability analysis of results. In Section 4, we further discuss the

achievements, limitations and potential solutions of this study,

as well as the future development plans for STEPS 4 and the

STEPS project in general.

2. Methods

The STEPS development project follows three major

methodological principles. First, it aims toward the researchers.

STEPS attempts to provide a user-friendly modeling interface,

and to progressively reduce the need for manual coding efforts

with implementations of auxiliary supports. Second, we focus on

improving its performance, as this determines if the simulations

can be completed within the expected research time frame.
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Third, it aims to be future-proof. Since the first public release,

the STEPS project has more than 10 years of history. Over the

years, many new standards and solutions in programming and

software engineering have been established and become the new

standard in software development. Some of them have been

adopted in previous STEPS development, but more work is still

required to ensure that the software development infrastructure

is ready for future project expansions. The following

sections detail how these principles are practically applied in

the project.

2.1. Code modernization and
future-proofing

Although STEPS introduced many new features and

additions in the following years since its first release in 2012

the core coding components and style remained relatively

unchanged. With this in mind, in this work we have

implemented various changes in STEPS in general and

adopted modern software design principles to STEPS 4

in particular. All these changes have the aim to reduce

bugs, improve maintainability and usability of the code

and increase the performance of time-critical data structures

and routines.

First, we have adopted the C++17 standard for STEPS. This

allowed us to take advantage of modern programming

language features, increasing code expressiveness and

compactness through meta-programming techniques such

as SFINAE (Substitution Failure Is Not An Error). We

have also removed raw pointers in favor of references and

other safer data-passing and access strategies provided by

the C++ standard and the Guidelines Support Library1.

Second, we have reduced code branching and indirections

using meta-programming techniques, which streamline code

execution. Third, when choosing container data structures

we avoid C++ Standard Template Library (STL) associative

containers, which are known to be very inefficient in terms

of memory management and performance. The intrinsic

arborescent memory layout of std::map brings very poor

data locality that makes it unusable in computational kernels.

Using std::unordered_map is a better choice since it

uses a contiguous arrays to store the hash values, but its

implementation relies on std::list to store the values for

backward compatibility reasons of the API, which brings back a

data locality issue. Because the dataspace of the keys in STEPS 4

is made contiguous, the best data structure based on the STL is

std::vector<std::vector<>> because the data access

is O(1) and data locality, though still flawed, is a bit better

than std::unordered_map since the values of a key are

1 https://github.com/microsoft/GSL

FIGURE 1

Memory layout of the flat-multimap container in comparison
with a vector of vectors container constructed using the
Standard Template Library to store the following key-values:
0 → [a, b, c], 2 → [d]. The flat-multimap class
relies on 2 member variables, a2ab and ab2c. a is the top
element index, ab is an index to retrieve the data of a in ab2c.
Data are stored contiguously in flat-multimap to reduce
heap fragmentation and increase data locality. In contrast, data
stored in the STL container are more fragmented. With
flat-multimap, the values of key a are stored in the range
ab2c[a2ab[a]] and ab2c[a2ab[a + 1]] - 1. In this
example, values of key 0 are in ab2c[0, 2] i.e [a, b ,c], key 1 has
no value since a2ab[1] == a2ab[2], finally values of key 3 are in
ab2c[3, 3] i.e [d].

stored contiguously. Instead, we have designed a new optimized

data structure to maximize both access and data locality, the

flat-multimap.

Figure 1 illustrates the memory layout of the

flat-multimap container in comparison with a naive

STL implementation by employing a vector of vectors data

structure. The STL implementation exhibits poor data locality

as the number of heap allocations required is O(n) whereas

flat-multimap is O(1) as it always requires 2 allocations.

This gives flat-multimap several advantages over the

STL counterpart. First, it reduces heap fragmentation in the

memory. In addition, as the data are stored contiguously

in flat-multimap, data locality is greatly improved

and the solution is more cache-friendly. In exchange, the

flat-multimap container requires a fixed size and shape

upon creation, which can not be changed throughout the

simulation. However, this restriction is mostly irrelevant to

STEPS 4, as the sizes of the majority of data are determined and

fixed by the model.

With the increased complexity of a software, there is a

growing concern about introducing bugs in the code that remain

undetected. In the best case, these bugs will lead to crashes

during runtime. In the worst case, they may silently introduce
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erroneous results and non-reproducible behavior. Although

STEPS runs an extensive validation set to try and ensure this

doesn’t happen, it is difficult to make sure that every base is

covered by such efforts. In an attempt to address this issue at least

partially, we introduced C++ vocabulary types meant to indicate

to the compiler the different entities used in a STEPS simulation

(e.g., species, membrane, channel, patch, etc., but also

tetrahedron, triangle, etc.).

A vocabulary type is a type whose name carries a specific

meaning in addition to its data. For example, an instance

of a class Width made of a floating-point value carries

both the value and the nature of this value, in opposition

to fundamental types like integers or floating-points. Usually

fundamental types don’t tell much about the meaning of

their instances. Vocabulary types can be used to create

interfaces comprehensible, expressive, and robust. For instance,

vocabulary types can improve functions like below:

void p r o c e s s _ l o c a l _ t e t r a h e d r o n ( i n t i ndex ) ;

In the signature of this function, most of the information

about the parameter is carried by the variable name and

function name, which the compiler cannot use. For the compiler,

process_local_tetrahedron is only a function that

takes a 32 bits integer in parameter. For the developer, this

integer is an index of a tetrahedron, local to the current process.

Vocabulary types allow us to transfer information traditionally

held by the name of the symbols to the typing system by

rewriting the signature of the function like this:

s t r u c t l o c a l _ t e t r a h e d r o n _ i d {
i n t v a l u e { } ;

} ;
void p r o c e s s ( l o c a l _ t e t r a h e d r o n _ i d e n t i t y ) ;

Thus, the compiler is now able to report an issue when the

index of one type is erroneously passed to a function expecting

another type.

Furthermore, by ensuring the code compiles with GCC,

clang, AppleClang and Intel OneAPI, we ensure that language

and system compatibility is maintained, further increasing code

safety. Numerous compilation flags have been added into our

build system, which allow us to spot and fix potential issues in

the code early in the development process. We have also moved

to a more modular build design where features can be enabled

via build configuration flags, which also benefits overall software

architecture.

Finally, we have tackled software sustainability beyond

code modernization. To improve developer confidence and bug

detection we have added continuous integration (CI) pipelines

into the review process. Proposed patches are automatically built

and tested before they can be merged into the development

trunk. We have also created a STEPS package for the Spack

(Gamblin et al., 2015) package manager. This not only

adds a software distribution channel for HPC systems but

also provides the developers with a comprehensive build

environment that allows them to conveniently test STEPS with

various dependency versions and build options. The choice of

the underlying libraries (see Section 2.2.2) plays an important

role in ensuring that STEPS remains well maintainable, and

easily extensible toward new features and use-cases while

continuing to support the latest hardware architectures and

parallel programming paradigms.

2.2. Implementing a parallel solver with
distributed mesh backend

2.2.1. Implementation criteria

To be able to make informed choices about the STEPS 4

implementation, we set early in the development a number

of criteria by which to make decisions. Clearly the first and

most important criterion is simulation runtime. The goal of the

STEPS 4 implementation is to develop a new efficient solution

for large-scale modeling with complex geometries. From a user’s

perspective, the most straightforward and important concern

is time-to-solution, how fast a simulation reaches a desired

stopping time. For parallel simulations, another important

concern is scalability. In high performance computing, parallel

scalability is commonly described by two notions, strong scaling

and weak scaling. The former describes runtime performance

at increasing number of cores and a fixed problem size,

while the latter scales the problem size with the number of

cores. In practice, the problem size of a STEPS production

simulation is often determined by the source materials. Thus,

we focus on strong scaling as our parallel performance criterion.

STEPS 4 is designed mainly for simulations that run on high

performance computing clusters. As mentioned previously, one

key characteristic of modern clusters is the large amount of

computing cores together with the limited amount of per-

core memory, thus memory footprint management is essential

to support large scale simulations. We regard it as our third

implementation criterion.

These criteria often affect each other in a simulation. For

instance, the reduction of memory footprint could substantially

improve the efficiency of memory caching, and further improve

scalability. Therefore, we do not focus on an individual criterion,

but consider them as a whole when making implementation

decisions.

2.2.2. Prototyping STEPS 4

Choosing the distributedmesh library with the most suitable

abstractions and best performance properties is vital for the

success of STEPS 4. This library is the backbone of the

whole implementation, providing fundamental data layout and

access functionalities, which tightly associates with the criteria
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discussed above. Besides performance considerations, from a

developer’s perspective, the mesh library should also provide a

rich and extendable API that can be connected with other STEPS

components with ease. Furthermore, while STEPS 4 mainly

targets CPUs, the algorithms themselves could in principle be

implemented on other hardware architectures and the right

abstraction layer should allow a relatively smooth transition

toward supporting shared-memory parallelism or GPUs.

To investigate the advantages and drawbacks of different

distributed mesh libraries, we used them to implement a series

of stand-alone mini-applications to cover a wide range of STEPS

functionalities, from simple mesh importing and exporting in a

distributed manner, to a functional reaction-diffusion solution

integrated with various validations and use case models. These

mini-applications were gathered in a library named Zee. Using

the Zee library we were able to investigate how different

components of STEPS, for example, the operator splitting

method, can be implemented on top of different distributed

mesh libraries, and to investigate the coding flexibility as well as

the performance of our implementations. These investigations

provided us essential insight for the choice of a suitable

distributed mesh library for STEPS 4, and prototypes for the

actual implementation.

We put our evaluation focus on two distributed mesh

library candidates, Omega_h (Ibanez and Roberts, 2018) and

the DMPlex module from the PETSc library (Abhyankar et al.,

2018). Both libraries provide very well-suited features and

showed promising performance. The choice of library, however,

depends on factors beyond pure technical considerations. On

the one hand, PETSc seemed a natural choice since STEPS 3’s

parallel EField solver already uses PETSc as a backend. Choosing

PETSc’s DMPlex would eliminate the need for an extra library,

as well as the associated data conversions and transfers between

libraries. Additionally, PETSc is an extremely well-known and

supported library with a large active community. On the other

hand, DMPlex is a minor component in the PETSc framework,

supported only by few developers and with a small user

community. Since the Zee mini-applications revealed that not

all functionalities required in STEPS 4 are currently present in

DMPlex, and some of which have considerably low priority on

the PETSc development roadmap, our choice had to fall on

Omega_h.

Omega_h is a C++14 library providing highly-scalable

distributed adaptive meshing primitives. Distributed-memory

parallelism is natively supported through Message Passing

Interface (MPI), while on-node shared-memory parallelism

is supported via Kokkos (Trott et al., 2022), a C++ library

that provides abstractions for parallel execution with

OpenMP on CPU and CUDA on GPU. Omega_h ensures

a fully deterministic execution. Given the same mesh, global

numbering and size field, mesh operations produce the exact

same results regardless of parallel partitioning and ordering.

This does, however, not extend to changing compilers or

hardware. Omega_h is being actively developed and is used for a

number of ongoing projects. Moreover, its codebase being much

smaller than PETSc, it allowed us to have a comprehensive

overview of its capabilities. Despite the lack of documentation,

the source code is concise and self-explanatory. Contributing to

Omega_h has been much easier than it would have been with

PETSc. We were for instance able to add support to the MSH

multi-part file format version 4 into Omega_h quite easily.

Omega_h’s modern C++ interface was a significant

advantage over PETSc as its ease of use allowed us to implement

compact yet expressive mini-applications very quickly. We

found that the C-oriented API of PETSc makes the library hard

to comprehend and is much more error prone than Omega_h’s.

Additionally, the data management policies of DMPlex are quite

complex and require a deep knowledge of PETSc internals as

entity data is not directly exposed to the user as it is in Omega_h.

This leads to the code being more cluttered and difficult to

maintain.

2.2.3. Solver components and the simulation
core loop

Fundamentally, STEPS 4 adopts the same operator splitting

solution for reaction-diffusion simulation as in STEPS 3

(Hepburn et al., 2016), but with significant differences in the

implementation details due to its distributed nature and other

optimization goals.

In STEPS 3, the data and operators are intermixed in

the solver, and data that are associated may be stored

sparsely due to the data structures inherited from previous

STEPS implementations. For instance, the molecule state of

a tetrahedron and the states of its neighboring tetrahedrons

may be stored far away from each other in memory. This

is because the molecule state is stored sparsely in individual

tetrahedrons together with other data such as mesh connectivity

and kinetic processes. This means operator visits to the molecule

state often require significant address jumps across memory,

decreasing cache efficiency. The bundle of operators and data

also make their optimization cumbersome, as new operator

solutions or new data structures can not be implemented directly

as independent alternatives.

In STEPS 4 one critical implementation change is the

separation and encapsulation of different solver components.

The two major components are: SimulationData, the data that

represents the current state of the simulation, and the operator

collection, which are applied to the data so that the simulation

evolves to the next state. The simulation state consists of the

molecule state M, where the distribution of molecule species

is stored and updated, the kinetic process state K, which stores

and maintains all kinetic processes such as reactions and surface

reactions in the simulation and the information of each kinetic

process, including the propensity and update dependencies, and

finally the voltage state V of the mesh if voltage-dependent
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surface reactions and channels are expressed in the model. The

voltage state contains the electrical potential at each vertex of

the mesh, as described in Hepburn et al. (2013). The operator

collection consists of the operators needed for each step of the

simulation core loop, mainly, the reaction SSA operator, the

diffusion operator and the PETSc EField operator. As the state

data is encapsulated and accessed by operators via a unified

interface, new operators can be easily developed and provided

to the solver as alternative solutions. The encapsulation of

simulation states M, K and V also allows the state data to be

stored contiguously in memory space, thus improving caching

efficiency of the solution.

As mentioned in Section 1, while the kinetic processes

and their dependency graphs are partitioned and distributed

among computing cores in STEPS 3, all mesh elements and

their molecule states are duplicated, leading to high memory

consumption and communication overhead when dealing with

large scale models. In STEPS 4, the mesh itself is partitioned

and distributed, thus each computing core only operates on the

data for the sub-domain problem of its associated partition.

Ghost layers were implemented for partition boundaries so

that simulation states of the boundaries can be synchronized

through regular data exchange. This solution ensures a relatively

consistent memory footprint for any given sub-domain problem

with a fixed partition size, regardless of the size of the overall

problem.

Figure 2 schematically illustrates the simulation core loop.

When the simulation enters the core loop that advances the

simulation state from time Tstart to Tend = Tstart + 1T,

the simulation period is divided into multiple time windows,

whose period is either determined by a user-defined EField

period 1TEField if the EField operator is involved, or equals 1T

otherwise.We call this the EField timewindow. Each EField time

window is then further subdivided by a period of 1TRD, where

1TRD is determined by the mesh and the diffusion constants

of the simulated model. This is the reaction-diffusion (RD) time

window.

At the beginning of each RD time window, the reaction

SSA operator is applied to the simulation data repeatedly. Each

time, the SSA operator first randomly selects a kinetic process

event kp from the kinetic process state K and the event time 1t

according to the SSA solution described by the operator and the

propensities of the kinetic processes. It then applies the molecule

changes caused by the event to the molecule state M, updates

the propensities of all kinetic processes that depend on kp in K,

and advances the simulation state time for1t. The SSA iteration

stops when the state time reaches the end of the RD time

window. As explained in Hepburn et al. (2016) and Chen and

De Schutter (2017), the SSA operator is executed independently

by each MPI rank without the need for any communication.

At the end of the RD time window, the diffusion operator

computes the number of molecules that should diffuse out

of each tetrahedron for the time window period 1TRD. For

this calculation the diffusion rates of each diffusive molecule

species must be taken into account. The operator then removes

them from their original tetrahedrons and redistributes them to

their target tetrahedrons. The redistribution is stored in a delta

molecule state 1M, which is then synchronized by Omega_h

across all simulation ranks. After the synchronization, each rank

applies the changes in 1M to M for the tetrahedrons it owns,

and updates the propensities that are affected by the changes.

This completes the operations in a single RD time window.

The solver then repeats this process until the state time

reaches the end of the EField time window, at which point the

EField operator evolves the voltage state V for the period of

1TEField, based on the electric currents computed from M and

K. This concludes the operations in a EField time window.

If 1TEField < 1T the EField time window process is

repeated, otherwise the simulation core loop is completed and

the user regains the simulation control for data inquiry.

2.2.4. Optimization on kinetic process
dependency graph

A kinetic process dependency graph describes the update

dependency of each kinetic process in the system. Technically,

it returns a list of kinetic processes whose propensities must

be updated when a certain kinetic process is selected and

applied by the SSA operator. Under the operator splitting

framework, the reactions in each tetrahedron are independent

until the diffusion operator is applied. Therefore, it is possible to

divide the dependency graph into independent subgraphs and

apply the SSA operator to them separately. This independent

graph optimization further compresses the targeting domain

of the SSA operator, providing potentially substantial gains in

simulation performance.

An example of the optimization for a small model is depicted

in Figure 3. This model has two tetrahedrons, each with three

volume reactions. One tetrahedron also contains four surface

reactions. Each colored node in the figure represents a kinetic

process. An arrow goes from one node to the other if the

occurrence of an event of the first entails a change in propensity

of the second. The whole dependency graph of the model can

therefore be subdivided into two independent subgraphs, in red

and blue as shown in the figure. Each subgraph can be evolved

freely by a SSA operator without the other’s interference in a RD

time window period.

Note that this optimization heavily relies on the hit rate of

drawing SSA events that take place within the time window

in each subgraph. Its advantage diminishes and eventually

becomes a burden if most of the drawn events happen

beyond the time window and are discarded. This hit rate

positively correlates to the duration of the time window, the

molecule concentrations and the reaction rates. Therefore, this

optimization favors simulations with a large RD time window,

high molecule concentrations and highly active reactions, but

Frontiers inNeuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Chen et al. 10.3389/fninf.2022.883742

FIGURE 2

Schematic representation of the STEPS 4 simulation core loop. In this example, when running the simulation from Tstart to Tend, the simulation
time is first split into 1TEField time windows (blue ticks). Each 1TEField time window is further subdivided into 1TRD time windows (red ticks).
Kinetic process events are represented as green ticks, their number in each time window depends on the propensities of the reactions. Current
state time is denoted t. The leftmost Run(Tend) box is the entry point into the core loop, it splits the time in 1TEField time windows. The second
box (Run_EF(TEFend)) runs a full EField time step until TEFend, the end-time that was passed from the first loop. It first subdivides the EField time
window in 1TRD time windows and calls Run_RD for each one. When state time t reaches TEFend, it runs the EField operator. The third box
(Run_RD(TRDend)) represents one RD time window, it is composed of the SSA operator and the di�usion operator. The SSA operator first selects
and applies kinetic processes until the state time reaches TRDend; it’s in this loop that the state time is updated. The di�usion operator is then
applied: it computes the changes 1M to the molecule state and applies them. Each of these steps can involve the modification of the simulation
data. When it does, a letter with a colored background is present to its right. The letter M with an orange background signifies that this operation
modifies the molecule state; the letter K with a yellow background signifies that it modifies the kinetic process state; and the letter V on a purple
background signifies that it modifies the voltage state. Finally, steps with a darker background and a dashed outline involve MPI communication
between processes.

disfavors simulations with a small time window, low molecule

concentrations and less active reactions.

In the STEPS 4 parallel scheme, a simulation core loop

is completed after every MPI process finishes its operations,

therefore the overall performance of the solution is determined

by the slowest computing core. Due to concentration gradients

as well as spatial variations of channel density in the model, large

scale simulations with complex morphology may exhibit high

variability of event drawing hit rate among computing cores. In

this case, switching off the independent graph optimization is

preferred.

2.2.5. EField solver improvements

Generally, in order to obtain the most accurate results and

the best performance, the solver and preconditioner in PETSc

need to be tailored to the particular simulation. Previously

STEPS 3 used by default the Conjugate Gradient iterative

solver (CG) and the Geometric Algebraic Multigrid (AMG)

preconditioner. However, performance tests have consistently

shown that they do not scale well for large problems. Thus, for

STEPS 4 we replaced solver and preconditioner with the widely

used Pipelined Conjugate Gradient method (KSPPIPECG)

and the Point Block Jacobi preconditioner (PCPBJACOBI),

respectively. The same configuration was also applied to STEPS 3

as the new default option. We have not performed a thorough

investigation on solvers and preconditioners as it was out of the

scope of the present paper.

Another improvement is the distribution of PETSc vectors

and matrices for the EField computation. STEPS 3 distributes

them equally among computing cores without considering if the

mesh elements represented by the matrix partition are owned

by the same core. This causes owner mismatches between the

EField solution data and the reaction-diffusion solution data,

which need to be resolved by expensive cross process data

exchanges. In order to avoid this issue, STEPS 4 assembles the

vectors andmatrices so that each processor only takes care of the

degrees of freedom corresponding to the sub-part of the mesh

that is owned locally on this processor. This greatly increases

data locality and performances since reaction-diffusion and the

EField solvers exchange data only locally.

2.2.6. Coupling with other STEPS components

Setting up a simulation in STEPS 4 is mostly done in

the same way as in STEPS 3: it involves the declaration of
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FIGURE 3

Structure of the reaction dependencies graph on a mesh with two connected tetrahedrons labeled 0 and 1. (A) The two tetrahedrons and the
reactions they contain. Both tetrahedrons contain reactions A → B, B → C and C → A. Tetrahedron 0 also contains four surface reactions:
Species C can be transferred back and forth to a triangle (Ctet → Ctri and Ctri → Ctet); and species C can cross the membrane back and forth as a
GHK current (since the amount of C outside of tetrahedron 0 is not modeled, it is equivalent to creating and removing species C). (B,C) The
corresponding reaction dependencies graphs. Each colored node represents a kinetic process. An arrow goes from one node to the other if the
occurrence of an event of the first entails a change in propensity of the second. In blue and red are the extracted connected components of the
graph.

a biochemical model and a description of the geometry in

which the model will be simulated. The biochemical model

is composed of species, channels, reactions, diffusion rules

and currents that are grouped by volume or surface systems.

Although most of the biochemical modeling features available

in STEPS 3 are also available in STEPS 4, surface diffusion rules

are not yet supported. Internally, the same classes are used for

declaring a biochemical model in STEPS 3 and in STEPS 4.

While in STEPS 3 tetrahedral meshes were managed with the

TetMesh class, a different class (DistMesh) was added for

distributed meshes in STEPS 4. This class inherits from the same

Geom base class as TetMesh but acts as a wrapper around

the Omega_h::Mesh distributed mesh class. Classes related

to the declaration of compartments (DistComp), patches

(DistPatch) and membranes (DistMemb) in a distributed

mesh are also different from the ones used in STEPS 3. Most

notably, as explained in the previous section, while tetrahedral

compartments in STEPS 3 are usually built from a list of

tetrahedron identifiers, STEPS 4 makes use of physical tags

in distributed meshes to create distributed compartment and

distributed patches. On solver creation, the DistTetOpSplit

distributed solver class in STEPS 4 initializes the relevant

data structures from the biochemical model and geometry

description classes. Although this type of initialization through

the python API corresponds to the most frequent use case,

the distributed solver can also be used and initialized directly

in C++, without requiring the creation of STEPS biochemical

model and geometry classes.

2.3. Validation strategy

In order to ensure accurate results, STEPS 4 is validated

on a series of published models. We extend the validation

pack described in Hepburn et al. (2012, 2016) to validate the

reaction-diffusion solver and the basic functionalities of other

data structures introduced in the new implementation. The

faster validations are integrated into the STEPS release and used

in continuous integration while the others are available in the

STEPS validation repository 2.

The package also contains fast validations with the EField

solution. However, since these models are stochastic models

designed to run in a reasonable amount of time, they each

contain a small tolerance that could mask minor numerical

2 https://github.com/CNS-OIST/STEPS_Validation
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inaccuracies. So as to rigorously test our new methods and

implementations in STEPS 4 and ensure even no small loss of

numerical accuracy, we go further in this study and investigate

STEPS 4 in a series of models, comparing either to STEPS 3

results or analytical solutions to a high degree of accuracy.

Validating stochastic simulation solutions presents several

challenges. Often, analytical solutions exist only for a few trivial

problems and, even in those cases, the stochastic nature of the

simulator makes results fluctuate around the analytical solution

depending on the particular seed provided to the random

number generator (RNG). Unfortunately, fixing the seeds and

numerically comparing STEPS 3 and STEPS 4 results is not a

meaningful strategy since the two simulators use RNG streams

in different ways. Thus, we validate STEPS 4 in a statistical sense.

2.3.1. Statistical analysis

We extract meaningful statistical data from multiple

realizations with different RNG seeds and compare either with

STEPS 3 results or the analytical solution when available.

The general steps are:

• Record relevant trace results such as the voltage traces in a

particular location in the mesh from multiple realizations

of STEPS 3 and STEPS 4 simulations.

• Refine traces to extract key features of the simulation, e.g.,

the frequency of a spike train.

• Collect refined features among the various simulation runs

and statistically compare STEPS 3 and STEPS 4.

The choice of what must be recorded and what are the

relevant features depends on the particular model at hand.

In literature, many goodness of fit tests exist. One of themost

used is the Kolmogorov-Smirnov test (KS test) (Massey Jr, 1951).

It is demonstrated that it produces conservative results in case

of discrete distributions (Noether, 1963). Since our analysis also

consider peak time stamps which are inherently discretized, we

decide to use the Cramér-von Mises test (CVM test) (Cramér,

1928; Von Mises, 1928) for our statistical comparisons between

STEPS 3 and STEPS 4, utilizing the Scientific Python (SciPy)

library. The null hypothesis is that the two samples come from

the same distribution. Perhaps a common misconception is that

a p-value below a chosen level such as 0.01 means that the null

hypothesis must be rejected and, therefore, the distributions are

different. In fact, when comparing two identical distributions

the p-value is expected to be uniformly distributed on [0,1],

and so if this test is repeated many times one would expect to

see a p-value below 0.01 1% of the time. In our tests, where

multiple distributions are compared within one model, we reject

the null hypothesis only if there is strong evidence that p-values

are consistently low, evidenced by significantly more than 1% of

the p-values generated being below the 0.01 level.

Conversely, when traces are relatively smooth and the

features are few, we study directly the confidence intervals at a

99% confidence level. In this case, we reject the null hypothesis

if the mean of the STEPS 3 traces does not lie in the confidence

interval of the STEPS 4 traces or vice versa.

3. Results

3.1. Validations

As STEPS 4 contains multiple operator components

targeting different sub-systems, such as molecular reaction-

diffusion and EField, we carefully select the models and

independently validate each component before testing the whole

implementation on a complex, real case scenario.

3.1.1. Validations of the reaction-di�usion
solver

As mentioned in Section 2.3, the reaction-diffusion

validations have been discussed in previous publications and

are included in the STEPS validation package. STEPS 4 passes

all the validations in the package. For the sake of brevity we do

not provide detailed analysis of these validations here.

3.1.2. Validations of the EField solver

To validate the EField solver we use the Rallpack models

described in Bhalla et al. (1992), focusing on Rallpack 1 as a basic

validation of our solution, and we introduce a new statistical

analysis of a stochastic implementation of Rallpack 3.

• Rallpack 1 simulates a simple uniform unbranched passive

cable. No randomness is involved in this validation and

STEPS 4 results are compared directly to the analytic

solution.

• Rallpack 2 model solution is equivalent to Rallpack 1

but based on branching morphology. This mathematical

morphological description is in practice very difficult to

capture realistically in a mesh (Hepburn et al., 2013), and

since Rallpack 1 already provides a basic passive validation

we do not provide a Rallpack 2 solution here.

• Rallpack 3 examines the interaction between the EField

system and the stochastic channel activities of the well-

known Hodgkin-Huxley model (Hodgkin and Huxley,

1952). No analytical solution is available for this test, thus

we compare STEPS 3 and STEPS 4 solutions using the

statistical validation framework illustrated in Section 2.3.1.

3.1.2.1. Rallpack 1

Rallpack 1 (Bhalla et al., 1992) focuses on the validation of

the EField solver in a passive model, with no active properties. It

consists of a leaking, sealed straight cable with a current injection
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TABLE 1 Parameters for rallpack 1.

Parameters Value

Leak conductance 0.25 S/m2

Reversal potential −65mV

Resistance 1Ω

Current 0.1 nA

Cable length 1mm

Membrane capacitance 0.01 F/m2

EField time step (1TEField) 5 µs

Number of tetrahedrons 1,135

(J) at zmin. Rallpack 1 setup is depicted in Figure 4A. Current

is injected in a leaking cable with sealed ends. Table 1 provides

the parameters. A leak channel is introduced on every surface

triangle. This is slightly different from the analytic solution setup

where the leak is uniformly distributed along the cable. However,

the effects should be negligible if the mesh is sufficiently refined.

Without loss of generality, we can focus on the voltage traces

at the extremes of the cable, where the voltage taps (V taps)

are located. This is because the equations are linear and all the

intermediate solutions are super-positions of the results at the

extremities.

Figure 4 visually compares STEPS 4 results with the analytic

solution. As expected, there is close agreement with mean

square errors (mse) mseVzmin
= 0.069mV2 and mseVzmax

=

0.019mV2. STEPS 3 presents almost exactly the same results.

When comparing STEPS 3 with STEPS 4 on the same mesh, the

mse is < 10−15mV2 for both Vzmin and Vzmax and is due to

numerical precision (results not shown).

Convergence to the analytical solution through

mesh refinement proceeds as expected with an initial

steep drop followed by a plateau at numerical precision

(Supplementary Section S2.1).

3.1.2.2. Rallpack 3

Rallpack 3 is an active model that builds on Rallpack 1

by adding Hodgkin-Huxley sodium and potassium channels,

and is simulated on the same simple, uniform, unbranched

cable geometry. The model tests ion channel activation as

well as spike propagation. Rallpack 3, when run stochastically,

presents sources of randomness and the problem cannot be

solved analytically. A statistical analysis is employed to study this

simulation and validate the code.

The degree of randomness strongly depends on the

single-channel conductance and resulting density of

channels, which are parameters that must be introduced

when running the model stochastically. Using biologically-

plausible values for single-channel conductance, with 20 pS

the Rallpack 3 model demonstrates a significant number

of failed spikes as illustrated in Figure 5A. Even if this

behavior is an interesting stochastic effect, it strongly hinders

statistical analysis. For this reason, we chose single-channel

conductance of both sodium and potassium channels to

be 4 pS. This almost entirely extinguishes failed spikes

whilst maintaining biological plausibility. Figures 5B,C

and the additional studies in Supplementary Section S2.1.1

were produced using single-channel conductance

of 4 pS.

The two sample sets consist of 10,000 simulation runs each

performed with STEPS 3 and STEPS 4 respectively. As for

Rallpack 1, we record voltages at the extremes of the cable (Vzmin

Vzmax ) (the raw traces).

The voltage trace at zmin presents a high peak of ~40 mV

followed by a regular spike train with peaks just surpassing 20

mV. The spike train at zmax has no bigger spike at the beginning

and spike peaks are above 40 mV. For both traces valleys are at

~-65 mV and frequencies are ~69 Hz. The simulated time span

is 250 ms.

Given that traces are spike trains with, possibly, a single

greater initial peak, the key features extracted and statistically

analyzed are:

• peak heights;

• peak timestamps.

The null hypothesis is that STEPS 3 and STEPS 4 simulation

results come from the same population, in other words, the

simulations are identical. We use the CVM test to refute it

with a 99% confidence level. In order to study uncorrelated

events we divide the two sample sets into 100 batches each

with 100 samples and we compare each STEPS 3 batch with

each STEPS 4 batch, producing a set of p-values. Thus, for

each key feature (e.g., time stamp of peak number 3) we

obtain 10,000 p-values. If the two initial samples are taken

from the same population, p-value distributions are expected to

be uniform (Murdoch et al., 2008). If the number of p-values

below 0.01 is higher than would be expected from a uniform

distribution, we refute the null hypothesis. Figures 5B,C present

the p-value distributions for peak heights and time stamps as

boxplots. For the sake of clarity and brevity here we show

only the results for the traces at zmax. At zmin the results are

qualitatively identical. We briefly recall here that the boxplot

of a uniform distribution of p-values is centered around 0.5,

the median is at 0.5, min and max are at 0 and 1 and Q1 and

Q3 quartiles are at 0.25 and 0.75, respectively. All the boxplots

follow this trend.

For these reasons, we cannot refute the null hypothesis

and we accept that the two samples are taken from the same

population.

Supplementary Section S2.1.1 offers a thorough overview

of the peak statistics (distributions, means, and standard

deviations) while Supplementary Section S2.2 reports all the p-

value distributions in detail.
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FIGURE 4

(A) The general setup for Rallpack 1. Current is introduced into a leaking cable with sealed ends. Voltage is recorded at the extremities (V taps).
(B) The voltage di�erence between the analytic solution and STEPS 4 at zmin and zmax. The inset shows the overlapping curves.

FIGURE 5

(A) Voltage traces at zmin and zmax for one realization of the simulation with STEPS 4. Failed spikes can occur with single-channel sodium and
potassium conductances of 20 pS, as shown, but are eliminated with 4pS. (B) With single-channel conductance of 4pS, boxplots for each peak
height at zmax of the p-values generated by dividing the two samples in 100 batches of 100 runs and then comparing them with the CVM test. As
expected, the distributions are uniform. (C) The same analysis for the peak heights. Their intrinsic discretization does not a�ect the p-value
distributions.

3.1.3. Validation of the reaction-di�usion and
EField combined solution

Finally, we validate all components of the STEPS 4 simulator

together by combining reaction-diffusion and EField features

and their possible interactions.

3.1.3.1. The calcium burst model

A previously published calcium burst model (Anwar

et al., 2013) is selected for the full validation. It contains

most of the modeling features supported by STEPS 4, such

as regular molecule reaction-diffusion events, ligand-based

channel activation and electric potential dynamics. Thus, it

contains all the mechanics required to validate STEPS 4 as a

whole. Minor modifications are applied to the original model

in Anwar et al. (2013) in order to run on a full dendritic mesh,

as opposed to the sub-branch mesh used in previous studies.

Figure 6A illustrates the full dendritic morphology. The full

dendritic mesh was created from reconstruction retrieved from
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FIGURE 6

(A) The Purkinje dendrite mesh reconstruction for both calcium burst models. The mesh consists of 853,193 tetrahedrons. Dendrite elements
are further classified and annotated into two components, representing smooth dendrite and spiny dendrite. (B) Raw voltage traces for 100 runs
of STEPS 4 at the four di�erent spatial locations indicated by a–d in (A). After the first depolarization to ~18 ms the systems starts to behave
stochastically coinciding with calcium-activation of potassium channels.

NeuroMorpho.Org (Ascoli et al., 2007), data ID: NMO_35058

(Anwar et al., 2014)3. The calcium burst model is also used

to analyze the performance of the implementation in Section

3.2.

In order to sample a good representation of the dendritic

tree we recorded voltage at the four disparate points shown in

Figure 6A. Two points (a and b) were recorded from the smooth

part of the dendrite, characterized by high diameter and low

capacitance, and two (c and d) in separate regions of the spiny

dendrite, characterized by low diameter and high capacitance.

Figure 6B presents these traces for 100 runs of STEPS 3. In

brief and as described in Anwar et al. (2013), AMPAR channel

activation by a simulated glutamate burst beginning at 10 ms

gives a strong depolarization, and corresponding activation

of Cav2.1 P-type calcium channels gives rise to a peaks at

~18 ms and ~28 ms. Calcium activity activates mslo BK

and SK2 calcium-activated potassium channels, producing the

repolarization.

As for Section 3.1.2.2, our null hypothesis is that the two

simulators run the same simulation and results are picked from

the same population. We try to refute this statement, computing

the confidence intervals of the averages of the traces at 99%

probability. By definition, the confidence intervals mark a region

where the trace average lies with 99% probability. Thus, if

the average of the traces of the STEPS 3 set does not lie in

between the confidence intervals of the STEPS 4 set or vice

3 http://neuromorpho.org/neuron_info.jsp?neuron_name=10-2012-

02-09-001

versa we reject the hypothesis. Figure 7 presents average and

confidence intervals for all the four traces. Since confidence

bands are extremely narrow, each picture is also shown with

the average of the averages removed. This greatly enhances the

small differences that exist between the two simulation results.

STEPS 4 averages almost always lie in the confidence intervals

of the STEPS 3 simulation set and vice versa. For these reasons

we cannot reject the null hypothesis and we consider STEPS 4

validated even in this complex scenario.

3.2. Performance

We evaluated the performance of the implementation using

three models with gradually increased complexity to cover

the use cases from a wide range of research interests. The

first one is a simple reaction-diffusion model on a simple

cuboid mesh (we term the "simple" model). In the second

model, we simulate the background activities of the calcium

burst model to investigate the performance of the reaction-

diffusion solution on complex Purkinje cell morphology with

resting calcium activity (the "background" model). Finally,

in the third model we simulate the complete calcium burst

model by adding calcium channels, potassium channels and

AMPAR activation (see Figure 6) to study how the combined

solution performs with a real world model (the "complete"

model). The simple model and the background model have

previously been used to study performance and scalability of

the reaction-diffusion operator splitting solution in STEPS 3
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FIGURE 7

The panels illustrate average and confidence intervals (at 99% probability) of STEPS 3 and STEPS 4 simulation sets for the voltages measured at:
(A) root and (B) middle point on the spiny membrane, and on (C) left and (D) right tip on the smooth membrane. Since confidence intervals are
extremely narrow, the lower subplot in each panel presents the results relative to the average of all traces so that the confidence intervals can be
seen clearly. Each sample consists of 100 runs. Since averages lie everywhere in each other confidence intervals we cannot refute the null
hypothesis.
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TABLE 2 Hardware and software configurations of the Blue Brain 5 (Phase 2) supercomputer.

System HPE SGI 8600

Hardware Compute Node (880×) 2× Intel Xeon Gold 6248 Cascadelake @2.5GHz (20 physical cores per CPU)

Memory 384GB of main memory (12× 32GB DDR4-2933 DIMMS)

Network InfiniBand EDR 100Gbps / Fat-tree topology

Accelerator GPFS/ IBM Spectrum Scale Filsystem (6.2PB)

Software Compiler GCC C++ compiler 9.3.0

Operating System Red Hat Enterprise Linux Server 7.9

MPI HPE MPI (SGI MPT) 2.25

Python 3.8.3

Linked Libraries
PETSc 3.14.1, Omega_h 9.34.6, Intel MKL 2018.3, Eigen 3.3.8,

SUNDIALS 2.7.0, mpi4py 3.1.3, NumPy 1.21.4, GMSH 4.9.0

Supercomputer.

(Chen and De Schutter, 2017). As the implementation has been

improved since the initial implementation, and the hardware

used in the previous research is now outdated, new simulation

series of these two models are performed to acquire up-to-

date results for comparison. The parallel performance of the

combined solution with the complete calcium burst model has

not been reported previously. We also investigate the effect

of the independent graph optimization on the simple model

with different molecule concentration setups. We disable this

optimization for the calcium burst background and complete

models as the complex morphology of Purkinje cell could lead

to poor SSA event hit rates in some partitions, and worsens the

overall performance of these simulations if this optimization is

enabled.

3.2.1. Benchmarking setup

All simulation benchmarks were run on the Blue Brain 5

(BB5) supercomputer hosted at the Swiss National Computing

Center (CSCS) in Lugano, Switzerland. A complete description

of the hardware and software configuration details of the BB5

system are provided in Table 2. All benchmarks were executed

in pure MPI mode by pinning one MPI rank per core. As the

number of cores used for simulation needs to be a power of 2

(see Supplementary Section S1.1), for each series of benchmark

we first choose an initial core count as a baseline and then double

the core count.

The code instrumentation for the performance

measurement in STEPS is performed through an

Instrumentor interface. This is a light wrapper that allows

for marking/profiling code regions of interests either by

calling a start/stop method or by C++ Resource Acquisition Is

Initialization (RAII) style. Various backends are used by this

interface, in particular in this work we use Caliper 2.6 (Boehme

et al., 2016), and LIKWID 5.2.0 (Treibig et al., 2010).

For each benchmark configuration, we repeat the simulation

30 times, and show the average results in the figures. The

standard deviations of the results are reported as the error

bars for each data point in the figures. Per-core memory

consumption of each simulation is alsomeasured using the psutil

Python module (Rodola, 2020) and reported. The comparisons

are mainly conducted between STEPS 3 and STEPS 4. For

the scalability studies, we also compare the results with the

theoretical ideal speedup scenarios. We further investigate the

contribution and scaling properties of operator components in

STEPS 4, namely, the SSA operator, the diffusion operator and

the EField operator, by measuring their individual speedup as

well as the proportion in the overall simulation time cost.

3.2.2. The simple model

We reuse the simple model in Chen and De Schutter (2017)

which consists of 10 diffusing species with different initial

molecule counts within simple cuboid geometry with 13,009

tetrahedrons. These species interact with each other through 4

different reversible reactions with different rate constants. The

details of the model can be found in Table 3. We choose 2

cores as the performance baseline and increase the core count

to 211 = 2, 048 as the maximum. Note each core has less than

10 tetrahedrons with this maximum, at which point it is unlikely

that the simulations remain scalable. However, the result is still

interesting as it illustrates the behavior of our solution under

extreme scaling scenarios.

The effect of the independent graph optimization is also

investigated using the simple model with different initial

molecule counts. We first simulate the model in Table 3 without

the optimization and use it as the baseline configuration. We

then modify the baseline model with four new settings, the

first two reduce the initial count of each molecular species by

10x and 100x, and the other two increase molecule counts by

10x and 100x. We name these simulation series “0.01x,” “0.1x,”
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TABLE 3 Species and reactions as well as the initial configuration of

the simple model.

Species Diffusion coefficient (µm2 / s) Initial count

A 100 1,000

B 90 2,000

C 80 3,000

D 70 4,000

E 60 5,000

F 50 6,000

G 40 7,000

H 30 8,000

I 20 9,000

J 10 10,000

Reaction Rate Constant

A+ B ⇋ C kf : 1, 000(µM· s)−1 , kb : 100s−1

C + D ⇋ E kf : 100(µM· s)−1 , kb : 10s−1

F + G ⇋ H kf : 10(µM· s)−1 , kb : 1s−1

H + I ⇋ J kf : 1(µM· s)−1 , kb : 1s−1

“1x,” “10x,” and “100x” respectively. We also repeat these series

with independent graph optimization enabled and record the

results for comparison. As this optimization solely targets the

SSA operator, a single core is used to run the simulation series,

and the time cost of the SSA operator instead of the overall

simulation time cost is measured.

Simulation results of the simple model are summarized

in Figure 8. Both STEPS 3 and STEPS 4 implementations

demonstrate a steady decrease of simulation time early on until

26 = 64 cores, and maintain roughly the same time cost for the

rest of the configurations. The memory footprint improvement

from STEPS 4 is significant. In the baseline simulations,

STEPS 4 consumes 45.6MB of memory per core, about 60%

of the required memory for STEPS 3. When simulating the

model with thousands of cores, the memory consumption of

STEPS 4 further decreases to about 4.5MB per core, 10% of

the baseline simulation consumption, thanks to the completely

distributed nature of the solution. While the memory footprint

of STEPS 3 simulations also decreases with high core counts,

the number stabilizes at 16MB, 2.6 times more than STEPS 4

requires. The strong scaling speedup for both STEPS 3 and

STEPS 4 in Figure 8C suggests that the STEPS 4 achieves close-

to-ideal speedup until 26 = 64 cores, reflecting the time

cost result in Figure 8A. In fact, the SSA component further

maintains a linear speedup until 29 = 512 cores according

to the component scalability analysis in Figure 8D. However,

due to the high scalability, its proportion in the overall time

cost reduces significantly in high core count simulations. For

these simulations, the diffusion operator and other background

maintenance routines become the two major proportions of the

simulation time cost.

The performance difference caused by the independent

graph optimization is illustrated in Figure 8F by the ratio

between enabling and disabling the optimization. In the baseline

1x simulations and other series with reduced molecule counts,

enabling the optimization results in a slight performance

decrease as the SSA time cost ratios in these series are all above

1.0, ranging from 1.15 in the 0.01x series, to 1.09 in the 1x series.

The benefit of the optimization is noticeable in the 10x series

with a ratio of 0.97, and becomes significant in the 100x case,

which shortens more than half of the simulation time. These

results agree with our analysis in Section 2.2.4.

3.2.3. The calcium burst background model

We extend our investigation on the reaction-diffusion

component with the calcium burst background model with

complex Purkinje cell morphology as described in Section

3.1.3.1. There is no voltage component nor any ion channels in

this model, only background buffering reaction and diffusion.

In total, the model consists of 15 molecule species, 8 of which

are diffusive, and 22 reactions. The simulated mesh consists

of 853,193 tetrahedrons. To eliminate any difference caused by

partitioning, we pre-partition themesh in Gmsh then import the

partitioned mesh to the simulations, therefore the partitioning is

always the same for each benchmark configuration. We start the

simulation series from 25 = 32 cores within a single node, then

double the core count each time until themaximumof 512 nodes

with 214 = 16, 384 cores is reached.

Figure 9 presents the key results of the simulation series.

In general, STEPS 4 performs slightly worse than STEPS 3 in

low core count configurations, but eventually achieves similar

performance as the core count increases. This is because

currently STEPS 4 implements the widely accepted Gibson

and Bruck (Gibson and Bruck, 2000) next reaction method as

the default SSA operator. This method provides logarithmic

computational complexity with simple data structures that we

find suitable for the distributed solution. On the other hand,

STEPS 3 inherits the serial implementation of the Composition

and Rejection method (Slepoy et al., 2008), which requires a

more complex data structure but takes advantage of its constant

time complexity, particularly when dealing with large number

of reactions in low core count simulations. It is worth noting

that the compartmental design in STEPS 4 supports multiple

operator implementations, therefore more efficient operators

can be easily integrated to the solution in the future.

Dramatic improvement in memory consumption can be

observed for STEPS 4 in Figure 9B. All STEPS 3 simulations

require no less than 2GB of memory per core; on the other hand,

the highest per-core memory footprint for STEPS 4 is about 630

MB with 25 = 32 cores, and drops down to about 67MB with

210 = 1, 024 cores and above, roughly 3% of what is required by

STEPS 3.

Both STEPS 4 and STEPS 3 demonstrate linear to super-

linear speedup until 212 = 4, 096 cores in Figure 9C.

Component scaling analysis in Figure 9D suggests that both
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FIGURE 8

The performance results and scalability of the simple model. (A) Both STEPS 3 and STEPS 4 implementations demonstrate a steady decrease of
time cost early on, then maintain similar time cost beyond 26 = 64 cores. (B) STEPS 4 consumes significantly less per-core memory than
STEPS 3, ranging from 60% in the baseline simulation, to approximately 30% in high core count simulations. (C) STEPS 4 achieves close-to-ideal

(Continued)
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FIGURE 8 (Continued)

speedup until 26 = 64 cores, but has poor scalability afterward. Similar but slightly worse scalability can be observed for STEPS 3. (D)
Component scalability analysis of STEPS 4. The SSA operator shows a linear speedup until 29 = 512 cores. (E) Component proportion analysis of
STEPS 4. Due to the highly scalable SSA operator, the time cost of high core-count simulations is dominated by the di�usion operator and other
non-scalable bookkeeping routines, resulting in poor scalability in high core count scenarios. (F) The SSA operator time cost ratio with and
without independent graph optimization in di�erent initial molecule count setups. Enabling the optimization results in performance decrease in
low molecule density simulations, but provides significant speedup in simulations with high molecule density.

the SSA and the diffusion operators contribute to this result.

The diffusion operator maintains close-to-linear speedup until

212 = 4, 096, while the SSA operator demonstrates super-linear

speedup throughout the series. We investigated this scaling

behavior and further profiling on the SSA operator indicates that

the super-linear speedup mainly comes from the update routine

of the operator, including the propensity calculations and the

priority queue updates. This suggests that the improvement on

memory caching may play an important role here.

The diffusion operator is the dominating component in this

series, as shown in Figure 9E. Its proportion in the overall time

cost increases from 65 to 95%. The proportion of other non-

scaling routines also rises but is still less than 10% with the

maximum 214 = 16, 384 cores. Overall the performance profile

of the background model is very similar to the simple model

profile. This is not surprising as they both involve the same

operators but the background model has more tetrahedrons and

reactions per core compared to the simple model.

3.2.4. Complete calcium burst model

The complete calcium burst model as described in Section

3.1.3.1 extends the background model by coupling molecular

reaction-diffusion updates with voltage-dependent channel

activation as well as membrane potential changes. Different

channel density parameters are assigned to the smooth and the

spiny sections of the mesh to approximate the effect caused

by regional spine density difference. The model consists of 15

regular species, 8 of which are diffusive, 5 types of channels

with in total 27 different channel states, 59 regular reactions

and 16 voltage-dependent reactions. Compared to the previous

two models, the complete model produces a simulation with

extremely complex dynamics and imbalanced computational

load, both spatially and temporally. We consider it as an

excellent demonstration of STEPS 4 performance in realistic

research projects.

Figure 10 summarizes the key results of the simulation

series. While STEPS 4 performs slightly worse than STEPS 3

initially, it reaches similar performance with 29 = 512 cores,

and outperforms STEPS 3 for the rest of the series. As expected,

STEPS 4 continues its advantage on per-core memory footprint

management, starting from 1.5GB for 25 = 32 core simulations,

to approximately 500MB for 29 = 512 cores and above. The

minimum memory requirement for STEPS 3 is 5GB, 10 times

what is needed with STEPS 4. While the BB5 cluster has high

memory capacity per compute node and is able to provide

12GB of memory per core for simulations (given the 32 active

processes per node), many HPC clusters commonly have the

memory capacity restriction of about 4GB per core (Zivanovic

et al., 2017), therefore only STEPS 4 simulations can be run on

those clusters.

Overall, STEPS 4 achieves a better scalability compared

to STEPS 3, with linear speedup from the diffusion operator,

and the super-linear speedup from the SSA operator. However,

the EField operator has limited scalability, reaching maximum

10x speedup relative to the baseline. This results in a great

increase of EField operator time cost in proportion to the total

computation time, from 10% in the baseline simulations to 76%

in the 214 = 16, 384 core simulations, making it the major

performance bottleneck of the series, as shown in Figure 10E.

3.2.5. Memory footprint with refined mesh

As shown in the above results, the significantly reduced

memory footprint is one of the major advantages of

STEPS 4. To further investigate the memory consumption

difference between STEPS 4 and STEPS 3, we refine the

Purkinje cell mesh and rerun both the calcium burst

background model and the complete calcium burst model

with the new mesh. The refined mesh consists of 3,176,768

tetrahedrons. For simplicity, we name the original mesh

as the “1M” mesh, and the refined mesh as the “3M”

mesh accordingly. As the 3M simulations exhibit similar

performance profiles as the 1M versions, we focus on the

memory footprint of the simulations. Performance and

scalability results of the 3M simulations can be found in the

Supplementary Section S2.3.

Figures 11A,B provide an overall view of the results. For

all simulation series, the baseline configuration, i.e., the one

with the lowest core count, has the highest memory footprint,

then progressively reduces to a consistent minimum. This is

essential as any cluster with per-core memory capacity below the

minimum can not execute the simulation regardless how many

cores are available. Thus, we hereby use the minimum memory

consumption from each series for comparison. Figure 11A

presents the memory consumption of the background model,

for both STEPS 3 and STEPS 4, and for both the 1M and 3M

meshes. For the 1M mesh simulations, STEPS 4 requires 67MB

memory per core, while STEPS 3 requires approximately 2GB,

30x of the STEPS 4 requirement. For the 3M mesh simulations,
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FIGURE 9

The performance results and scalability of the calcium burst background model. (A) Steady decrease of simulation time cost can be observed in
both STEPS 4 and STEPS 3 simulations. STEPS 4 performs slightly worse than STEPS 3 in low core count simulations, but both eventually achieve
similar performance as core count increases. (B) The memory footprint of STEPS 4 is superior compared to the STEPS 3 counterparts, requiring
about 630MB for 25 = 32 core simulations, and 67MB for 210 = 1, 024 core and above simulations. STEPS 3 consumes more than 2GB of
memory per core for the whole series. (C) Both STEPS 4 and STEPS 3 demonstrate linear to super-linear scaling speedup. (D) Component
scalability analysis of STEPS 4 suggests that the di�usion operator in STEPS 4 exhibits linear speedup until 210 = 1, 024 cores, while the SSA
operator shows a remarkable super-linear speedup throughout the series. (E) Component proportion analysis of STEPS 4. The di�usion operator
is the dominating component, taking from 65 to 95% of the overall computational time.

200MB memory per core is required by STEPS 4, while 6.6GB

is required by STEPS 3, about 33x of the STEPS 4 requirement.

Results of the complete model are shown in Figure 11B. For

the 1M series, STEPS 4 requires about 500MB of memory,

while STEPS 3 requires approximately 5.1GB, resulting in a

10x difference. For the 3M series, the memory footprint of
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FIGURE 10

The performance results and scalability of the calcium burst complete model. (A) STEPS 4 performs slightly worse than STEPS 3 in low core
count simulations, but reaches similar performance with 29 = 512 cores, and outperforms STEPS 3 afterward. (B) STEPS 4 requires about 1.5GB
for the 25 = 32 core baseline simulations. Its memory footprint quickly decreases to 500MB for 29 = 512 cores and above. STEPS 3 consumes
more than 5GB of memory per core for the whole series. (C) STEPS 4 achieves a better scalability compared to STEPS 3. (D) Component
scalability analysis of STEPS 4. The SSA operator shows super-linear speedup throughout the series. The di�usion operator also exhibits linear
speedup until 213 = 8, 192 cores. However, the EField operator shows limited scalability with maximum 10x speedup with 210 = 1, 024 cores and
above. (E) Component proportion analysis of STEPS 4. The EField operator progressively dominates the computational time, from 10% in the
baseline simulations to 76% in the 214 = 16, 384 core simulations, due to its limited scalability compared to the other operator components.

STEPS 4 increases to 770MB. We are unable to simulate the

3M complete model in STEPS 3 with 12GB of memory per

core.

To further explore the capability of STEPS 4 in supporting

super-large scale models, we refine the Purkinje cell mesh using

Gmsh, then simulate the complete model with the refined
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FIGURE 11

Memory footprint analysis and exploration of super-large scale models. In general, per-core memory consumption decreases as the core count
increases, until a stabilized minimum consumption is reached. (A) Results of the background model simulations. The memory required per core
hardly changes for STEPS 3 from 2.1GB to 2.0GB, while it declines rapidly for STEPS 4 from 626MB to 67MB. Similar results can be observed in the
3M series, where per-core memory consumption declines from 6.9GB to 6.6GB for STEPS 3, and from 2.1GB to 200MB for STEPS 4. (B) Results
of the complete model simulations. In the 1M series results, memory consumption decreases from 5.5GB to 5.1GB for STEPS 3, and from 1.5GB
to 500MB for STEPS 4. STEPS 4 in the 3M series consumes 3.2GB to 770MB of memory per core as core count increases. The 12GB memory
capacity of the cluster per core is inadequate for the 3M complete model simulations with STEPS 3. (C) Memory consumption in GB at the
initialization stage for the 1, 3, 25, and 100M meshes. (D) Total memory consumption in GB of STEPS 4 for the 1, 3, 25, and 100M mesh models.
From our estimation, the 200M mesh requires a little over the 12GB memory capacity per core in the current setup using 16,384 MPI tasks.

meshes on 214 = 16, 384 cores, and record the memory

consumption at both the initialization and execution stages.

The refined meshes have 25.4 million, 101.6 million and

203.3 million tetrahedrons, and are named “25M”, “100M”,

and “200M” meshes respectively. Due to the large scale and

consequently long execution time of thesemodels, we do not run

the full simulations but stop them after the first time point when

memory consumption is stabilized. As shown in Figure 11C,

memory consumption at the initialization stage increases from

213MB for the 1M mesh to 6.16GB for the 100M mesh. Slightly

more memory is required for the simulation stage (Figure 11D),

varying from 480MB for the 1M mesh, to 7.77GB for the

100M mesh. We are unable to initialize and execute simulations

with the 200M mesh as the 12GB memory capacity is reached.

From our estimation based on curve fitting of the results, a

successful execution of the 200Mmesh simulation would require

approximately 13GB of memory on each core.

3.2.6. Single node roofline analysis of STEPS 4

In general, STEPS 4 demonstrates similar or better

performance compared to STEPS 3 in high core count

simulations, but has lower performance in small core count

simulations. As discussed previously, one of the reasons is

the different SSA operator implementations, but other factors

may also be involved. As the performance with small core
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count simulations is also important for STEPS 4 usage,

a detailed performance analysis of current simulations is

necessary to determine the direction of future optimizations.

We choose the complete model as the profiling target since

all major operators are included in the simulation. Note

that in low core count configuration, the SSA and the

diffusion operators are the dominating components in the

simulation, thus they are the main focus of the analysis

here. This is different from the optimization of high core

count simulations, where the EField operator dominates the

computation.

The analysis is based on the Roofline model (Williams

et al., 2009), evaluating the scaling trajectory (Ibrahim et al.,

2018) of the most computationally expensive routines,

in our case, the SSA reaction operator, the Diffusion

operator, and the EField operator. The Roofline model is

one of the simplest tools to apply hardware/software co-

design, enabling investigation on the interaction between

hardware characteristics like memory bandwidth and

peak performance, and the software characteristics such

as memory locality and arithmetic intensity. Thus, it

provides essential information on whether the investigated

components are memory bandwidth or compute bound,

and consequently vital suggestions on optimization

strategies.

The Roofline model shown in Figure 12 for the Cascade

Lake node on BB5 is constructed from a measured memory

bandwidth (≈ 197GB/s) and a measured peak core performance

(≈ 78Gflop/s, where flop stands for floating-point operations).

Both metrics are measured with the likwid-bench utility

(Treibig et al., 2010). In the Roofline graph, the x-axis

is the arithmetic (or computational) intensity, computed as

the ratio of floating point operations to transferred bytes

from the main memory (DRAM traffic), and the y-axis is

the observed performance. To obtain a scaling trajectory

(Ibrahim et al., 2018) the measures are taken for varying

core counts. Additionally, we run simulations with hyper-

threading (26 = 64 processes) in order to utilize maximum

resources.

For the measurements of the routine with LIKWID, a MPI

synchronization barrier is added before and after each measured

kernel. This is done to ensure that the measured metrics (e.g.,

hardware counters) indeed belong to the respective routines.

From Figure 12, it can be seen that all routines have a

low arithmetic intensity. Each routine is represented by a

different symbol and each data point is labeled by the number

of processes. As described in Ibrahim et al. (2018), for ideal

scaling a doubling of concurrency corresponds to a change

in 1y (observed Flop/s) of ≈ 2× without a corresponding

change in 1x (arithmetic intensity), a behavior observed in

our experiments. The SSA kernel is the one with the lowest

arithmetic intensity and it is well into the arithmetic intensity

regime where we expect the kernel to be memory bound.

FIGURE 12

Roofline single-node scaling trajectories. The solid black lines
are the full node hardware limits and the dashed gray line is the
peak memory bandwidth for one socket. Each data point is
labeled by the number of processes. All the computational
kernels present a low arithmetic intensity mainly due to not ideal
data locality (not optimal cache utilization). Nevertheless, the
scaling is close to ideal (especially for the SSA and Di�usion
operators) given that the doubling of concurrency leads to a
corresponding 1y > 0. Hyper-threading at 64 cores does not
give any substantial performance increase.

The Diffusion kernel presents similar behavior but with higher

arithmetic intensity. Both kernels reach a saturation point as

they approach the peak memory bandwidth. This observation

suggests that there would be little to no gain to be had by

vectorizing these kernels, instead possible improvements would

have to come from algorithmic changes and/or cache blocking

strategies in order to either increase the arithmetic intensity or

fit the working memory set into the last level cache (LLC). For

the EField kernel, we observe both 1y > 0 and 1x > 0 as

we perform the strong scaling. This transition indicates that

the number of floating-point operations has remained constant,

so data movement must have decreased (Ibrahim et al., 2018).

Finally, for all the computational kernels hyper-threading does

not lead to any substantial performance increase.

To reach the maximum performance of a compute node,

we need to efficiently utilize the cache memory hierarchy. In

the Roofline graph, the higher the cache efficiency the higher

the computational intensity. In our case, the low arithmetic

intensity could be explained by the use of data structures that

do not favor data locality (e.g., maps/dictionaries over vectors).

Thus, a substantial improvement in the computational intensity

of STEPS 4 can be achieved by favoring data locality and thus

higher cache utilization, such as by a more extensive use of the

flat-multimap.
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4. Discussion

4.1. Achievements

With this continuous development and modernization of

STEPS, we achieved several major goals:

• We modernized the existing code base of the entire

framework adopting modern programming standards and

practices such as C++17 and continuous integration.

Particular care was posed on safety features such as

vocabulary types. These improvements provided a solid

modern foundation for STEPS 4 development.

• We developed a distributed solution that addressed the

bottlenecks of STEPS 3.

STEPS 4 achieves similar performance and scalability as

STEPS 3while dramatically reducing thememory footprint. This

is a key feature for future realistic modeling using STEPS. The

Purkinje dendrite morphology simulated in the calcium burst

model was reconstructed from light microscopic imaging. The

spines were ignored and only the skeleton of the dendrite was

preserved. It is possible to reconstruct a highly realistic Purkinje

neuron containing all visible spines from high resolution

electron microscopic imaging, however, the mesh generated

from such morphology is expected to have 10 to 100 times more

tetrahedrons than those used in current simulations. Such large

models are completely out-of-reach for STEPS 3 since even the

relatively small 3M calcium burst model already exceeds the

12GB per-core memory capacity on a state-of-the-art cluster like

BB5. Conversely, STEPS 4 showed its potential on supporting

simulations with such scale in the refined mesh simulations.

4.2. Limitations and solutions

STEPS 4 is not a complete replacement for STEPS 3.

It is a highly specialized version of the operator-splitting

solution specifically tailored for cluster-based, super-large scale

simulations. Thus, we paid particular attention to performance

optimizations whilst maintaining accuracy.

Even if STEPS 4 covers most features available in STEPS 3,

some remain missing. For instance, the diffusion of species

on surfaces (i.e., between patch triangles), and the associated

surface diffusion boundaries, are not yet available. Patches

between compartments are in principle supported but meshes

have to be partitioned in such a way that tetrahedrons on

both sides of patch triangles are owned by the same process.

In STEPS 3, this constraint is enforced by ad-hoc partitioning

adjustment; in STEPS 4 since the mesh is handled by Omega_h,

this constraint is not enforced and it is up to the modelers

to generate suitable partitioned meshes for their simulations,

which is a limitation of this approach. We plan to support

automatic partitioning adjustment with constraints in STEPS 4

in the future, however this requires further collaboration with

the Gmsh and Omega_h developers as these libraries need

further development to support such functionality. Finally, some

auxiliary features in STEPS 3 such as the Region of Interest

(ROI) functionality and visualization are not yet supported as

implementations of new STEPS modeling toolkits are required

to adapt the new distributed mesh formats and protocols.

4.3. Potential enhancements for STEPS 4

The distributed mesh backend of STEPS 4, Omega_h,

not only supports traditional MPI based distributed-memory

parallelism, but also shared-memory parallelism through

OpenMP, and GPU parallelization via the CUDA framework.

It also provides unique features such as mesh adaptation

suitable for GPUs using flat array data structures and bulk

transformations. These advanced features are currently not

utilized in STEPS 4 as it relies solely on CPU based MPI

parallelism. With the importance of GPU based fat compute

nodes in modern HPC clusters, such features will play important

roles when STEPS 4 is transitioned to other parallelism schemes.

In addition, the scalability analysis in Section 3.2 suggests

two major axes for future development. Firstly, the EField

operator is shown to be the major bottleneck in high core

count simulations due to its poor scalability. Detailed profiling

is required in the future to investigate the fundamental cause

of this bottleneck, and to address it. Secondly, the Roofline

analysis shows low computational intensity for all major kernels

(SSA, Diffusion, EField). This behavior points to unsatisfactory

use of cache memory, mainly caused by containers/data

structures with poor data locality. A more extensive use of the

flat-multimap could greatly improve cache utilization and

increase the arithmetic intensity of these computational kernels.

4.4. Choosing between STEPS 3 and
STEPS 4 in research projects

It is difficult to provide a solid guideline for choosing

between STEPS 3 and STEPS 4 in a research project as different

factors need to be considered. At the current stage, because

not all the features in STEPS 3 are supported by STEPS 4,

we recommend the researcher to firstly check if the features

required in the model are supported by STEPS 4. If the model

is supported by both implementations, then the researcher needs

to consider what platform themodel will be simulated on. Due to

the efficiency difference of the current SSA operator, simulations

on multi-core desktop workstation may be in favor of STEPS 3,

while simulations on large scale clusters with limited memory

resource may prefer STEPS 4 thanks to its memory footprint

optimization. It is also worth mentioning that converting a
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STEPS 3 model to STEPS 4 is a relatively trivial task, often only

involving several lines of code changes in the modeling script.

Therefore, the researcher can conduct a pilot benchmark with

both solutions, then choose the suitable one for later simulation

tasks based on the benchmark results.

4.5. Other current developments and
future directions

4.5.1. Vesicle modeling

Currently STEPS, as all SSA methods in general, models

molecules as points that do not occupy a significant volume

of the space in which they reside. This is an obvious

limitation if one wants to model certain types of structures

in the cell such as vesicles. Vesicles are relatively large

structures (∼40 nm diameter in the case of synaptic vesicles

for example) that play many important roles in biology,

and their complex structure and diverse functionality mean

they cannot be realistically simulated by the point-molecule

approach. Vesicles undergo processes such as endocytosis and

exocytosis, interact with cytosolic and surface-bound molecules,

and can be spatially organized into clusters such as in the

presynaptic readily-retrievable pool. In an upcoming release,

STEPS aims to support all of these features in an initial parallel

implementation.

While the vesicle modeling development has been a separate

project from STEPS 4, one tantalizing prospect is to marry many

of the novel features of STEPS 4 with the vesicle modeling

to allow bigger, more detailed simulations that can be run for

longer biological times. This will, however, require substantial

development on STEPS 4.

4.5.2. Coupling of STEPS with other simulator
software

As part of the BBP mission to create a large scale

reconstruction of brain tissue, a multi-scale approach for

simulation is deemed necessary to capture elements at various

temporal and spatial scales: one time scale for rapidly

changing neuron voltages, a different, slower time scale for

changing ion concentrations. Likewise, neuron morphologies

can be distributed among computing ranks irrespective of

geometric boundaries whereas bulk ion concentrations and

metabolism use a coarse grain division of the spatial scale.

For this purpose different simulators are used to leverage

their specialized capabilities. NEURON (Carnevale and Hines,

2009) is used to solve relevant equations for membrane

voltage and communication between neurons in addition

to calcium in astrocyte morphologies. Meanwhile STEPS is

employed to compute concentrations of diffusing ions in

the extracellular space. A more memory efficient STEPS

enables better sharing of computing resources between the two

simulators.

5. Conclusion

The STEPS 4.0 project development reported in this

article addresses several issues in previous STEPS releases,

improving the user modeling experience, as well as

modernizing the existing code base in order to aid future

development. The main contribution of this research is a new

parallel stochastic reaction-diffusion solver supported by a

sophisticated distributed mesh library. While maintaining

similar performance and scalability, the new solver dramatically

reduces the memory footprint of simulations, resolving the

major bottleneck in previous solutions. This breakthrough

empowers future neuroscience research by enabling super-large

scale molecular reaction-diffusion simulations with biologically

realistic models.
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