
ORIGINAL RESEARCH
published: 29 June 2022

doi: 10.3389/fninf.2022.884033

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 884033

Edited by:

James Courtney Knight,

University of Sussex, United Kingdom

Reviewed by:

Runchun Mark Wang,

Western Sydney University, Australia

Bernhard Vogginger,

Technical University Dresden,

Germany

*Correspondence:

Guido Trensch

g.trensch@fz-juelich.de

Received: 25 February 2022

Accepted: 23 May 2022

Published: 29 June 2022

Citation:

Trensch G and Morrison A (2022) A

System-on-Chip Based Hybrid

Neuromorphic Compute Node

Architecture for Reproducible

Hyper-Real-Time Simulations of

Spiking Neural Networks.

Front. Neuroinform. 16:884033.

doi: 10.3389/fninf.2022.884033

A System-on-Chip Based Hybrid
Neuromorphic Compute Node
Architecture for Reproducible
Hyper-Real-Time Simulations of
Spiking Neural Networks

Guido Trensch 1,2* and Abigail Morrison 1,2,3

1 Simulation and Data Laboratory Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, Jülich

Research Centre, Jülich, Germany, 2Department of Computer Science 3—Software Engineering, RWTH Aachen University,

Aachen, Germany, 3 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6),

JARA-Institute Brain Structure-Function Relationship (JBI-1/INM-10), Research Centre Jülich, Jülich, Germany

Despite the great strides neuroscience has made in recent decades, the underlying

principles of brain function remain largely unknown. Advancing the field strongly depends

on the ability to study large-scale neural networks and perform complex simulations.

In this context, simulations in hyper-real-time are of high interest, as they would enable

both comprehensive parameter scans and the study of slow processes, such as learning

and long-term memory. Not even the fastest supercomputer available today is able to

meet the challenge of accurate and reproducible simulation with hyper-real acceleration.

The development of novel neuromorphic computer architectures holds out promise, but

the high costs and long development cycles for application-specific hardware solutions

makes it difficult to keep pace with the rapid developments in neuroscience. However,

advances in System-on-Chip (SoC) device technology and tools are now providing

interesting new design possibilities for application-specific implementations. Here, we

present a novel hybrid software-hardware architecture approach for a neuromorphic

compute node intended to work in a multi-node cluster configuration. The node design

builds on the Xilinx Zynq-7000 SoC device architecture that combines a powerful

programmable logic gate array (FPGA) and a dual-core ARM Cortex-A9 processor

extension on a single chip. Our proposed architecture makes use of both and takes

advantage of their tight coupling. We show that available SoC device technology can

be used to build smaller neuromorphic computing clusters that enable hyper-real-time

simulation of networks consisting of tens of thousands of neurons, and are thus capable

of meeting the high demands for modeling and simulation in neuroscience.

Keywords: neuromorphic computing, compute node, FPGA, SoC, spiking neural networks, simulation,

performance, parallel computing

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.884033
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.884033&domain=pdf&date_stamp=2022-06-29
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:g.trensch@fz-juelich.de
https://doi.org/10.3389/fninf.2022.884033
https://www.frontiersin.org/articles/10.3389/fninf.2022.884033/full


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

1. INTRODUCTION

In the process of gaining insight into the underlying principles
of neural computation, the tools and methods developed and
provided by computational neuroscience play a key role. In
particular, we rely on the mathematical modeling of neuron,
synapse, and neural network models and their numerical
simulation to study their complex interaction and network
dynamics. Community software for modeling, such as NeuroML
(Gleeson et al., 2010), NMODL (Hines and Carnevale, 2000),
and NESTML (Plotnikov et al., 2016), and for simulation,
such as NEURON (Hines and Carnevale, 1997), Arbor (Akar
et al., 2019), NEST (Gewaltig and Diesmann, 2007), and Brian
(Goodman and Brette, 2008) provide such tools. They are
complemented by numerical tools for statistical analysis, such as
the Electrophysiology Analysis Toolkit Elephant1 as well as tool
support for model validation methodologies, for example, the
validation framework NetworkUnit2 (Gutzen et al., 2018). The
requirements in regard to efficiency, correctness, and replicability
and reproducibility of the outcomes place high demands on the
whole software ecosystem.

When investigating large scale networks, in general one
would like to simulate them as fast as possible. Whereas, real-
time simulation is interesting because of the possibility of
interacting with real-world applications, hyper-real-time would
enable the study of slow processes, such as structural plasticity
and long-term memory, and permit researchers to perform more
comprehensive parameter scans of faster processes. This is still a
major technical challenge (Friedmann et al., 2017), and not even
the fastest supercomputer available today is up to the task.

Consequently, neuromorphic computing and application-
specific novel hardware architectures are very attractive as
they promise significant acceleration. However, the technical
hurdles to making neuromorphic computing a useful tool for
neuroscientists are not insignificant either. Crucially, flexibility
and efficiency, which are both required for such a system, are
opposing goals in the choice of technology (e.g., GPP3, FPGA4

or ASIC5; Noll et al., 2010). Optimal flexibility is achieved with
traditional general purpose processors. The SpiNNaker system
(Furber et al., 2013) is an example for a neuromorphic massively
parallel computing platform that is based on digital multi-core
chips using ARM processing cores. It is fully programmable,
thus flexible in the choice and implementation of the numerical
models, and allows large-scale simulations to be performed in
real-time. The Heidelberg BrainScaleS system (Schemmel et al.,
2010) and its successor BrainScales-2 (Pehle et al., 2022), in
contrast, are capable of running simulations orders of magnitude
faster than real-time. To achieve this, the architecture builds
on the physical, i.e., analog, emulation of neuron and synapse
models (Schemmel et al., 2017) in dedicatedmixed-signal circuits
combined with digital plasticity processors (BrainsScaleS-2)

1RRID:SCR_003833; http://neuralensemble.org/elephant.
2RRID:SCR_016543; https://github.com/INM-6/NetworkUnit.
3General Purpose Processor.
4Field Programmable Gate Array.
5Application-Specific Integrated Circuit.

using a “hybrid plasticity” scheme (Friedmann et al., 2017).
Physical, analog emulation thereby restricts the system to its
built-in, “silicon-frozen” analog models, and use-cases where
technology-related effects, such as fabrication tolerances and
thermal noise, are acceptable.

During recent years, programmable device technology
and tools have greatly increased in functionality, benefiting
from the continued advances in semiconductor technology.
Modern field programmable gate arrays (FPGAs) provide
a large number of chip resources (e.g., logic cells and
memories) allowing to implement complex hardware designs
at affordable costs. High-level synthesis (HLS) tools allow
the developer to generate hardware implementations from
algorithmic descriptions, thus reducing development time and
making the technology accessible to non hardware experts.
Although the design effort remains high, programmable device
technology offers a good compromise between flexibility and
efficiency and has therefore been widely recognized as potentially
well-suited to neural network simulation. This has been exploited
by a number of digital neuromorphic architectures developed in
recent years.

In an earlier study, Maguire et al. (2007) made an inventory
and revealed the challenges associated with implementing large-
scale spiking neural networks on FPGAs, emphasizing the
importance of design decisions on system level and its impact
on the final performance. Since then, a number of architectural
approaches and implementations for different use cases have
been published. A scalable modular architecture for closed-loop
experiments with in vitro cultures is presented in Pani et al.
(2017). The platform is able to simulate small-to-medium size
networks in real-time, implementing 1, 440 Izhikevich neurons.
Bluehive (Moore et al., 2012)—a scalable custom 64-FPGA
machine—is dedicated to the simulation of large-scale networks
with demanding communication requirements. On a single
FPGA, Bluehive can simulate 64, 000 Izhikevich neurons in real-
time.NeuroFlow (Cheung et al., 2016) is a platform that builds on
top of Maxeler’s6 Dataflow Engine (DFE) technology. A 6-FPGA
system can simulate a network of 600, 000 neurons. Real-time
performance is achieved when simulating a network consisting
of 400, 000 neurons. The simulation of a plastic 1, 000 neuron
two-population Izhikevich model for 24 h biological time can be
completed in 1, 435 s, thus achieving a ~60-fold acceleration. The
platform supports several neuron and synapse model types and
a spike time dependent plasticity (STDP) rule. NeuroFlow also
provides a PyNN interface (Davison et al., 2009)—a common
Python interface for neural network simulators. In Wang et al.
(2014) and Wang et al. (2018), an architecture is proposed that
uses a procedural “on-the-fly” generation scheme for parameters
and connections and is able to simulate 20 million to 2.6 billion
leaky integrate and fire (IAF) neurons in real-time on a single
Stratix V FPGA.

Such large scales come at a price and can only be achieved by
accepting limitations regarding functionality, model complexity
and simulation accuracy. These limitations may well represent
acceptable trade-offs for the intended specific use cases, but can

6Maxeler Technologies: www.maxeler.com.

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 884033

https://scicrunch.org/resolver/RRID:SCR_003833
http://neuralensemble.org/elephant
https://scicrunch.org/resolver/RRID:SCR_016543
https://github.com/INM-6/NetworkUnit
https://www.maxeler.com
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

be severe with respect to the requirements of a platform for
general neuroscience simulations. For example, in order to save
hardware resources and reduce both computational costs and
the amount of data to be processed, hardware implementations
often use a large update interval of h = 1 ms to progress neuron
model dynamics (e.g., Moore et al., 2012; Cheung et al., 2016;
Wang et al., 2018). This is 10 times larger than the de facto
standard used in digital simulations, and comes at the cost
of numerical accuracy, especially for neuron models with stiff
equations (Hansel et al., 1998; Morrison et al., 2007; Blundell
et al., 2018b; Pauli et al., 2018). A further commonly-used trade-
off with similar advantages and disadvantages is to represent
neuron state variables in a low-precision fixed-point data format
(e.g., Moore et al., 2012; Wang et al., 2018). It has been shown,
for example, that the accuracy of the numerical integration of the
Izhikevich neuron model dynamics is insufficient when a s16.15
representation, i.e., a 32-bit signed fixed-point data format is used
(Gutzen et al., 2018; Trensch et al., 2018). Model complexity
is reduced in the architecture proposed in Wang et al. (2014)
and Wang et al. (2018) where individual synaptic connection
delays are replaced by an axonal delay, thus avoiding the large
memory structures and computational costs required to delay
and accumulate incoming spike events.

These examples clearly demonstrate that it is challenging to
reach design decisions that are simultaneously performant and
flexible. The plethora of neuron and synapse models makes it
difficult to come to design decisions that satisfy all requirements
equally. There are also many questions relevant for the design
which still lack an unambiguous answer and thus keep design
decisions in a state of uncertainty. One example is the required
numerical precision, which determines the specification of data
types and the implementation of arithmetic operations—a design
decision that effects implementation complexity, chip area and
power efficiency. So far, only a few studies have examined the
effects of numerical accuracy on simulation outcomes (e.g., Pfeil
et al., 2012; Trensch et al., 2018; Dasbach et al., 2021).

Promising new design possibilities are also enabled by the
integration on a single chip of FPGAs together with processor
cores and other components to System-on-Chip (SoC) devices.
This paves the way toward novel hybrid software-hardware
approaches for application-specific implementations and new
neuromorphic computing systems, such as the IBM Neural
Computer INC-3000; a highly scalable parallel processing system.
A single-cage system clusters 432 Xilinx Zynq SoC devices in a
high bandwidth 3D mesh communication network (Narayanan
et al., 2020). The system is highly flexible and applications can
off-load algorithms and accelerate them using the programmable
logic of the Zynq SoC devices. An example of such an application
is the implementation of the cortical microcircuit model
(Potjans and Diesmann, 2014) on the INC-3000 presented in
Heittmann et al. (2022)—a reproduction of an equivalent NEST
implementation and on the SpiNNaker neuromorphic system
(cf. van Albada et al., 2018). The model consists of 0.8 · 105

neurons and 0.3 · 109 synaptic connections, was implemented
in HLS, and utilizes 305 FPGAs. The simulation achieves an
approx. four times speed-up compared with the biological
time domain.

In this article, we introduce a novel SoC-based hybrid software
and hardware mixed architecture approach for a neuromorphic
compute node (henceforth HNC node) which is intended to
work in a multi-node cluster configuration and capable of
meeting the high demands for modeling and simulation in
neuroscience. The development builds on the Xilinx Zynq-7000
SoC device architecture (Xilinx, 2021) and takes advantage of
the tight coupling of a powerful FPGA device and a dual-
core ARM Cortex-A9 processor core. The primary goal of the
development is to provide a flexible platform for the accelerated
simulation of neural network models which may consist of up
to a few tens of thousands of neurons, a scale which covers
the vast majority of current spiking neural network modeling
studies. With the neuroscience requirement-driven design of
the HNC node architecture, our development is to be seen as
a complementary yet distinct approach to the neuromorphic
developments aiming at brain-inspired and highly efficient novel
computer architectures for solving real-world tasks.

We show that such a system can indeed be built, and that
acceleration factors with respect to real-time in the order of
10–50 are realistically achievable for moderate workloads, with
even higher factors possible for low workloads. We further
demonstrate that the use of workload and performance models
allow us to predict the performance characteristics of such
a system under varying assumptions regarding workload and
hardware design choices, some of which showing great potential
as a substrate for neural simulations.

This article is organized as follows. Section 2 first gives
an overview of the HNC node high-level architecture and
the main design ideas. Section 3 presents the results of
our performance measurements and an evaluation of the
performance characteristics. A detailed presentation of the
HNC node hardware and software architecture can be found
in Section 4, with a focus on microarchitecture details
critical to performance. In Section 5, we develop a workload
and performance model to understand the performance
characteristics of the HNC node and predict them for alternative
assumptions in design space.

2. OVERVIEW OF THE HYBRID
NEUROMORPHIC COMPUTE (HNC) NODE

The HNC node architecture concept combines software-based
and hardware-based implementations for the building blocks of
a neural network simulation engine, and tightly couples both
implementation types on a single chip; specifically, on a device
of the Xilinx Zynq-7000 SoC family (Xilinx, 2021).

The underlying algorithms and the functional principle of
the HNC node concept do not differ from those that are
typically used in pure software implementations for time-
discrete neural network simulations of point neuron models.
It follows a hybrid strategy where neuron states are updated
synchronously, time-driven, and at fixed intervals (e.g., 1t =
0.1 ms) and synapses are updated asynchronously and event-
driven, triggered when a synapse’s presynaptic neuron emits a
spike (Morrison et al., 2005).

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 1 | Hybrid neuromorphic compute (HNC) node high-level architecture. The highest architectural level of the HNC node comprises three main components: an

off-chip external memory (top), an application processing unit (APU; middle), and a programmable logic part (PL; lower dashed box). In order to distribute the

workload and parallelize operations, the PL implements 16 identical processing units (P1, P2,.., P16). The red and blue arrows indicate two distinct processes that are

critical to performance and primarily determine the performance characteristics and achievable acceleration factors. Red arrows: the process of the neuron and

synapse model state update performed by the ordinary differential equations solver pipelines (ODE pipelines) which operate on fast on-chip block RAM memories that

constitute the state variables buffer (SVBs). Blue arrows: the process of the presynaptic data distribution and processing which hold the data it operates on in the slow

external off-chip memory.

While it is sufficient to implement performance non-
critical tasks in software and let them be executed by general
purpose processors, the performance-critical algorithms profit

from mapping them to hardware. Non-critical tasks are, for
example, the processes of node configuration, operation and
simulation control, data type conversion, network instantiation,

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

and user interaction. Critical to performance and simulation
efficiency are the spike events processing and presynaptic data
distribution, and the neuron and synapse model computations.
The algorithms implemented in hardware bring the data and
the operations performed on them close together and can
thus alleviate problems which are inevitable with conventional
systems, such as the von Neumann bottleneck.

Figure 1 shows the HNC node high-level architecture
concept, which consists of three main components: (i) an off-chip
external memory (top); (ii) an application processing unit (APU;
middle); and (iii) a programmable logic part (PL; dashed box).
A more detailed description of the high-level system architecture
and the microarchitecture is given in Section 4.1.

Both the APU and the PL are connected to the off-
chip external memory. It contains the node control software
(Section 4.2) which is executed by the APU orchestrating
the overall node operation, and also holds the node-local
connectivity data of the neural network being simulated and
buffers the recorded spike data. Storing the connectivity data
in a slow, external memory is one of the decisive performance
limiting factors of the system. This aspect is discussed in detail
Section 4.3.1. However, there are two important factors leading
to this design decision. The first is a functional requirement: even
though the current development does not yet include plasticity,
in order to be able to cope with synaptic and structural plasticity
algorithms in future, the synaptic connections must be stored,
accessible, and changeable. In contrast, for static networks,
performance-efficient solutions have been developed which
makes use of a procedural connectivity generation approach
(Knight and Nowotny, 2021; Heittmann et al., 2022) where
the synaptic connections are determined algorithmically during
the simulation, thus avoiding having to retrieve them from
memory. The second is a resource constraint due to technical
limitations of the technology: fast, low-latency, on-chip block
RAM (BRAM) would be ideal to hold this data, but BRAM
is a limited FPGA resource and the memory requirement for
storing a network’s connectivity data is demanding. For example,
given a 64-bit data item to represent a single connection, a
natural dense network, such as the cortical microcircuit model
(Potjans and Diesmann, 2014) comprising 0.8 · 105 neurons and
0.3 · 109 connections requires 2.4 Gbyte of memory in total.
That is 24 Mbyte per compute node if a single node processes
103 neurons. The Xilinx Zynq-7000 SoC device used in this
work provides only 19.2 Mbit of BRAM, i.e., 10 times less
than required.

The PL, i.e., the FPGA part of the SoC, implements 16
identical hardware processing units (P1, P2,.., P16). Each is
capable of carrying out the computations for NP = 64 neurons.
This allows a total of N = 1, 024 neurons to be processed
on a single chip or HNC node, respectively. The PL and
APU are closely coupled through high performance streaming
and memory mapped interfaces which allow an efficient data
exchange between the two parts. The PL is also directly
connected to the off-chip external memory, thus enabling APU-
independent memory read and write operations.

Each processing unit processes its 64 neurons in a pipeline
fashion, updating the neuron states at fixed intervals of

1t = 0.1 ms. The neuron states yyyk are thereby held in state
vector buffers (SVB) which are implemented as fast block RAM
(BRAM) memories on the PL. The associated data paths of this
time-driven process are indicated in Figure 1 by the red arrows.

The blue arrows in Figure 1 mark the data paths involved in
the event-driven presynaptic data processing. The post-synaptic
spike events (up to 16 spike events can occur in parallel at a
time; one per processing unit) are serialized and packed for
communication and recording. This is handled by the spike
events processing module. If a spike event occurs, it initiates
read operations from external memory to obtain the network’s
connectivity data, i.e., the node-local synaptic connections of
the firing neuron, from which the synaptic inputs are derived.
The presynaptic data distribution module parallelizes this data
and delivers the synaptic inputs to the processing units (P1,
P2,.., P16); this is indicated by the dashed blue lines in Figure 1,
thereby distributing the workload generated by the incoming
presynaptic spike events. The ring buffers (RB) implement the
synaptic transmission delays and store the accumulated synaptic
inputs, i.e., the lumped excitatory iex and inhibitory iinh values.
Since the number of synapses by far predominates, the whole
process of presynaptic data distribution and processing is critical
to performance.

3. RESULTS

3.1. Single Node Performance
In the following, we consider an isolated HNC node that is not
embedded in a multi-node system for which otherwise inter-
node communication and synchronization latencies cannot be
ignored. For an isolated node, the previously explained two
distinct processes will exclusively determine performance where
the neuron state update process (red arrows in Figure 1), and
the process of presynaptic data distribution and processing
(blue arrows in Figure 1), contribute to different performance
relevant aspects. In Section 5.2, a performance model is
presented that is based on the HNC node microarchitecture
implementation details explained in Section 4.3. By additionally
taking communication latencies, inevitably occurring in a multi-
node system, into account, the model will also allow conclusions
to be drawn about the acceleration factors achievable for larger
network sizes and workloads.

The current HNC node design implements NM = 1024
neurons and allows CM = 128 target connections per source
neuron and node. This is in agreement with a connection
probability value of approx. ǫ = 0.1 observed in Braitenberg and
Schüz (1998). Note that the possible number of a source neuron’s
target connections is not restricted to the value of CM. It scales
linearly with the number of HNC nodes M in a cluster, i.e., it
yieldsMCM. A typical cortical neuron connects to between 1, 000
and 10, 000 other neurons. Consequently, a network of N = 105

where each neuron has 104 connections represents an upper limit
with regard to memory requirements and workload; beyond this,
the total number of synapses in a network scales linearly rather
than quadratically.

In order to evaluate the HNC node’s capability to perform in
different workload situations, we investigate a two-population

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

A B

FIGURE 2 | Performance as a function of workload for the HNC node and NEST. The acceleration factor (wall clock time divided by the biological time) as a function

of the average number of spike events per simulation time step ν̄k of the HNC node using a PL clock frequency of fclk = 200 MHz (A) and the neural simulation tool

NEST on an Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (Kaby Lake architecture) (B). The measurements were carried out with h = 0.1 ms simulation resolution. In

consecutive simulation runs of 5 min simulated biological time, the 1,000 neuron two-population Izhikevich neural network model described in Section 5.3 was

stimulated with an increasing external offset current iext = {−3.0 pA, ..,+100 pA}. Inset in (A) gives a log-lin representation.

network model consisting of 1, 000 neurons (see Section 5.3).
We measure the time to simulate the network and calculate the
acceleration factor as the quotient of the measured simulation
duration in wall clock time and the simulated biological time
of 300 s. We systematically vary the external input current
from iext = −3.0 pA to 100.0 pA. The increasing external offset
current causes the network to run through a wide range
of activity, from quiescence up to an average firing rate of
ν̄ = 300 spks/s and thus an increase in the workload. According
to the workload model described in Sec. 5.1, this results in an
average number of spike events per simulation time step (h =
0.1 ms) ranging from ν̄k = 0 to ν̄k = 30.

The result of the HNC node performance measurement is
shown in Figure 2A. For comparison, Figure 2B shows the
results for the same model implemented in NEST 2.20.1 (Fardet
et al., 2020) and executed on an Intel(R) Core(TM) i7-7700K
CPU 4.20 GHz (Kaby Lake architecture). If the workload is in
the range of a few spike events per simulation time step, the
HNC node outperforms the NEST simulation on the Intel Kaby
Lake CPU, and this even at ~4.5 W power consumption (see the
power report given in the Supplementary Material)—with the
Intel Kaby Lake CPU, a power consumption of several tens of
Watts is to be expected. If the external current is set to zero,
the network fires with an average rate of ν̄ = 7.0 spks/s, which
corresponds to a number of spikes per time step of ν̄k = 0.7.
For this workload, the acceleration factor achieved for the NEST
simulation is 8.4 compared to a factor of 127.0 measured for
the HNC node. The NEST simulator used for the comparison
is a runtime-optimized and flexible tool for a wide range of
neural network simulations and as such, is a good reference
in this regard. Clearly, a CPU-optimized implementation of

the specific network model can achieve even better results7.
However, the difference in performance and efficiency is such
that the HNC node performance is beyond the reach of
any CPU implementation. At low workloads, the hardware
implementation can fully utilize its capabilities. Pipelining and
the parallelization of operations increases throughput and reduce
latencies. This is mainly to be ascribed to the process of the
neuron state update, indicated by the red arrows in Figure 1. Its
implementation benefits from data-locality that is achieved by
storing variables in fast, low-latency on-chip BRAMmemories.

As the workload increases, the NEST implementation
undergoes a moderate degradation in performance. In contrast,
the performance deteriorates rapidly on the HNC node. This
is a trivial consequence of the data access latency and limited
bandwidth of the external memory decelerating the process of
the pre-synaptic data distribution and processing (marked by
the blue arrows in Figure 1), which now dominates operation.
This is examined in greater detail below for different hardware
design choices. Moreover, the measurements of the single
HNC node and CPU core performances only give an upper
baseline. For the simulation of larger networks on multi-
node or many-core systems in the following we examine the
effect on performance of the additional latencies arising from
synchronization and communication.

3.2. Performance Characteristics
Based on the HNC node microarchitecture (Section 4.3) and
their operating latencies (Section 4.3.3) a performance model

7AC-implementation of the networkmodel is provided on GitHub: https://github.

com/gtrensch/RigorousNeuralNetworkSimulations.

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2022 | Volume 16 | Article 884033

https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

A1 A2

B1 B2

FIGURE 3 | Performance as a function of PL clock frequency and workload for the HNC node and NEST. (A) Measured acceleration factors of the HNC node (blue

markers) as a function of workload for three different clock frequencies in log-lin (A1) and linear (A2) representation. Gray curves show the predictions of the

performance model (Section 5.2). (B) As in (A), but comparing the performance of the HNC node running at a PL clock frequency of fclk = 200 MHz to that of a NEST

implementation using one or four threads on an Intel(R) Core(TM) i7-7700K CPU 4.20 GHz.

is developed in Section 5.2. This model is used in the
following to evaluate the performance characteristics of the
HNC node as a stand-alone compute node and when operating
in a cluster configuration. In order to verify the correctness
of the performance model, we repeated the measurements
carried out in the previous section using three different PL
clock frequencies fclk = 100/150/200 MHz. The results are
shown in Figures 3A1,A2 where the blue markers indicate the
measured acceleration factors and the gray curves are calculated
from Equation (7) of the performance model. The predicted
acceleration factors are in almost perfect agreement with the
measured values.

The results also reveal that as the workload increases, the
achievable acceleration factor is increasingly determined—and
thus limited—by external memory access times (i.e., by the term
ν̄kLDS in Equation 7). This can not be compensated by a higher
PL clock frequency. However, an acceleration factor of ∼100 is
achieved for moderate workloads, i.e, ν̄k ≈ 1, h = 0.1 ms. Such
a workload is created, for example, by a network consisting of
N = 5, 000 neurons with an average firing rate of ν̄ ≈ 2 spks/s.

Figures 3B1,B2 compares the HNC node measurements at
a PL clock frequency of fclk = 200 MHz to the equivalent
simulation in NEST on a four-core Intel CPU. At low workloads,
the HNC node is an order of magnitude faster than the
NEST/CPU implementation. Even at high workloads, the HNC
node still simulates substantially faster than a single state-
of-the-art processor core. Such high workloads are not only
of theoretical interest in benchmarking tasks. As ν̄k increases

linearly with the network sizeN (Section 5.1), from a single-node
workload perspective and assuming a fixed number of neurons
per node, a small network at high average firing rates is equivalent
to a large network utilizing multiple nodes and exhibiting a low
average firing rate.

For example, for the cortical microcircuit model (Potjans
and Diesmann, 2014) which consists of N ≈ 0.8 · 105 neurons,
a value of ν̄k ≈ 23 can be expected8. At this workload the
HNC node achieves an acceleration factor of ∼7 while for a
single-threaded NEST simulation a factor of ∼2 was measured.
If the NEST workload is distributed, in the sense of strong-
scaling utilizing all four cores of the Intel CPU, the NEST
simulation is nearly as fast as the HNC node. Note that ν̄k ≈ 23
is a theoretical value in this case, as the current single node
implementation cannot accommodate a network as large as the
cortical microcircuit model.

Even though power efficiency was not considered in this
work, it is worth mentioning that the SoC device’s power
consumption is in the order of just a few Watts, and
thus achieves a much higher simulation efficiency than the
Intel core.

If the HNC node is to be operated in a cluster, the
adverse effect that additional inter-node communication has on
performance could influence design decisions such as the number

8A value of ν̄k = 23.24 spikes per simulation time step was determined

experimentally from a 15 minutes NEST simulation using the implementation by

van Albada et al. (2018).

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

TABLE 1 | Parameter sets.

Parameters

Prototype High

data stream

parallelism

High

proc. units

parallelism

Low

proc. units

parallelism

Number of data streams, DS 2 16 16 16

Data stream latency, LDS 110 14 14 14

Number processing units, P 16 16 32 8

Number of neurons per processing unit, NP 64 64 32 128

ODE pipeline iteration latency, ILN 64 64 32 128

Acceleration factors w/o communication

Maximum, FMAX
S = FS(ν̄k = 0) 298.5 298.5 571.4 152.7

Low workload, FS(1.0) 104.7 177.0 246.9 113.0

Medium workload, FS(10.0) 16.9 84.5 97.7 66.5

High workload, FS(20.0) 8.8 52.4 58.4 45.6

Acceleration factors with communication

Maximum, FMAX
C = FC(0) 119.8 119.8 148.1 86.6

Low workload, FC(1.0) 67.6 91.7 107.5 70.9

Medium workload, FC(10.0) 15.0 51.7 56.4 44.4

High workload, FC(20.0) 8.1 34.8 36.9 31.3

The acceleration factors are calculated using the performance model (Section 5.2) for four different parameter sets prototype; high data stream parallelism; high processing units

parallelism; low processing units parallelism, and for three different workload situations, low, medium, and high as well as with and without inter-node communication. The number

of neurons per node NM = PNP = 1024, the PL clock frequency fclk = 200 MHz, the transmission latency time TCOM = 500 ns, and the per spike event transmission latency factor

α = 0.05 (see main text and Section 5.2 for description) are the same for all parameter sets.

FIGURE 4 | Performance characteristics estimation. Performance characteristics of the HNC node are calculated using the performance model (Section 5.2) for the

parameter sets prototype; high data stream parallelism; high processing units parallelism; low processing units parallelism. See main text and Table 1 for details. The

upper panels show the achievable acceleration factors as a function of workload with inter-node communication FC(ν̄k ) (dashed curves) and without inter-node

communication FS (ν̄k ) (solid curves); the lower panels show the stacked plots of the respective contributions to the loss of performance with respect to the maximum

achievable single-node acceleration factor FMAXS of the inter-node communication PC(ν̄k ) (green) and presynaptic data distribution PS(ν̄k ) (blue) (see Section 5.2).

of neurons per node and processing unit. For illustration, we
consider four sets of design parameters. These are as follows:
prototype—the parameter set corresponding to the prototypical
implementation generating the measurements presented above,

implementing P = 16 processing units, DS = 2 data streams
(marked S1 and S2 in Figures 8, 9), and NP = 64 neurons per
ODE pipeline; high data stream parallelism—as for prototype
but assuming that each processing unit connects to its own

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

data stream (P = 16, DS = 16, NP = 64) introducing a factor
eight times reduction of external memory access latency; high
processing units parallelism—as for high data stream parallelism
but implementing twice the number of processing units in order
to halve the ODE pipeline iteration latency and increase the
maximum achievable single-node acceleration factor (P = 32,
DS = 16, NP = 32); and low processing units parallelism—
the opposite of high processing units parallelism, reducing the
number of processing units (P = 8, DS = 16, NP = 128). The
parameter sets are shown inTable 1. Note that the parameter sets,
with the exception of the prototype configuration, have not been
applied to the HNC node. The SoC device selected for this study
is limited to the prototype configuration in terms of number of
data streams.

The number of neurons per node (NM = 1024) and
the PL clock frequency (fclk = 200 MHz) are kept constant
across the parameter sets. To describe the effect of inter-
node communication on performance, the performance model
developed in Section 5.2 introduces two parameters: the
transmission latency time TCOM, and the per spike event
transmission latency factor α (for a description of the parameters
see Section 5.2). Their values were set to TCOM = 500 ns and
α = 0.05. They are the same for all parameter sets. The choice
for the transmission latency time is motivated by the temporal
resolution of h = 0.1 ms and an envisioned acceleration factor
of 100, which would be a major breakthrough for reproducible
large-scale neuroscience simulations. This assigns TCOM half of
the wall clock time that would be available to complete a single
simulation step. The value of the per spike event transmission
latency factor was arbitrarily chosen and corresponds to 5
additional clock cycles per spike event at a given PL clock
frequency of fclk = 200 MHz.

The upper panels in Figure 4 show the acceleration factors as a
function of the workload calculated according to the performance
model (Section 5.2, Equations 7, 8) both with and without
inter-node communication. In addition, the lower panels in
Figure 4 provide an alternative representation of the curves,
namely as the respective proportion of performance loss (with
respect to the maximum achievable single-node acceleration
factor for the corresponding parameter configuration) caused
by inter-node communication and by the process of the
presynaptic data distribution—mainly the effect of external
memory access latency (Section 5.2, Equations 11, 12). Table 1
shows the calculated acceleration factors for low, medium, and
high workload.

As one would expect, the additional communication latency
reduces the maximum achievable acceleration factors. For the
prototype configuration (Figure 4, prototype, upper panel), for
example, the factor decreases from 298.5 to 119.8 (Table 1). As
the workload increases, the effect becomes progressively smaller.
For the prototype configuration, for low workload, the factor
decreases by 35.5%, for medium workload by 11.2%, and for high
workload by 7.9%. For low workload, the achievable acceleration
is now determined by inter-node communication latency, but
toward higher workload external memory access time is still
the main contributor to performance degradation (Figure 4,
prototype, lower panel).

In the high data streaming parallelism configuration, we
therefore assign each processing unit its own data stream,
and by this means, introduce eight times higher parallelism
in the presynaptic data distribution—the two data streams
S1 and S2 (Figure 8) are each split into eight streams, thus
reducing external memory access times by a factor of eight.
Figure 4 (high data stream parallelism, upper and lower panel)
illustrate the effect. For medium workload and with inter-node
communication, the acceleration factor increases from 15.0 (for
the prototype configuration) to 51.7, i.e., by a factor of 3.4.

One may try to further improve performance by an increase
in the parallelism of the neuron and synapse model processing,
i.e., by introducing a higher number of processing units. The high
processing units parallelism configuration doubles the number
of processing units. This configuration achieves a very high
maximum acceleration factor of 571.4 for the single node without
inter-node communication. In a cluster such high acceleration
cannot be realized, even for low workload. Bound by inter-node
communication latency, the performance loss in relation to the
maximum acceleration is 74%, and for low workload 81.2%.
However, for high workload, external memory access time is
still the main limiting factor (Figure 4, high processing units
parallelism, upper and lower panel).

With regard to the hardware footprint and the required
FPGA resources—which is an important aspect of hardware
designs—the effect of a reduction of the number of processing
units is also of interest. The low processing units parallelism
configuration, therefore, implements half of the processing units
of the prototype configuration (Figure 4, low processing units
parallelism, upper and lower panel). For low workload and in
comparison to the high processing units parallelism configuration,
the acceleration factor decreases from 107.5 to 70.9, i.e., by 34%.
For high workload, the acceleration factor decreases from 36.9
to 31.3. This is a loss of only 15.2% and might be an acceptable
degradation when making design decisions oriented toward a
high workload scenario, given that thereby 75% of ODE pipeline
hardware resource, namely digital signal processing (DSP) units,
can be saved with this configuration. Saving hardware resources
reduces power consumption and thus increases simulation
efficiency. Considering the above, for medium workload the
high data stream parallelism configuration can be a compromise
with regard to the achievable acceleration factors for different
workload situations and the required chip resources. For the
HNC node prototype implementation the utilization of the SoC
chip resource are given in the Supplementary Material.

The current implementation of the HNC node configured
with the prototype parameter set and operated in a cluster would
achieve an acceleration factor in the order of 10–50 for medium
and small workloads. Such a workload is created, for example,
by a network consisting of N = 10, 000 neurons with an average
firing rate of ν̄ ≈ 2..10 spks/s. To simulate such a network, 10
HNC nodes would need to be clustered.

3.3. Correctness
In order to meet the requirement of an accurate and reproducible
simulation we evaluated the equivalence of the simulation
results produced by the HNC node and a ground truth.

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 5 | Quantitative comparison of statistical measures. Upper two rows from left to right: probability distribution of average firing rate (FR), coefficient of variation

(CV), and Pearson’s correlation coefficient (CC) for the excitatory (EXC) and the inhibitory (INH) population. The measures were calculated from 30 min simulated time.

For the calculation of CC, spike trains were binned at 2 ms. In order to derive the probability distributions from the calculated measures, the Freedman-Diaconis rule

was applied to select the width of the bins of the distribution histograms, and a Gaussian kernel was used for density smoothing. The bottom row shows the

Kolmogorov-Smirnov statistics calculated from the raw samples of the calculated statistical measures. During the simulations performed on the HNC node, using the

NEST simulator, and carried out using the reference C implementation, the network was stimulated with a different random input—a limitation of the HNC node

prototype and hardware implementation of the PRNG. All three simulations used the same explicit Forward Euler integration method with an integration step size of

h = 0.1 ms. All measures are in close agreement and show statistical equivalence.

In this validation process we aimed for the reproduction
of the dynamics of a selected network state obtained from
a reference implementation of the two-population Izhikevich
network described in Section 5.3. This reference implementation
was written in the C language and developed as part of an earlier
study (Trensch et al., 2018). The source code is available online9.
To create the network state, the ground truth, the network was
trained for 1 h biological time using a spike time dependent
plasticity (STDP) rule (see the description of the network given
in the Supplementary Material). After 1 h of simulated network
time, the current state of the network was captured by exporting
the network’s connectivity data. The connectivity data was then
imported back into the C simulation, and with the STDP rule
turned off, from 30 min simulated time the spikes were recorded
while the network was stimulated with a random input. This
recorded network activity data defined the ground truth, that is,
the captured network state that defines a reliable reference. For
reproduction, we loaded the connectivity data into theHNCnode
and repeated the simulation. To provide further evidence and

9 https://github.com/gtrensch/RigorousNeuralNetworkSimulations

to substantiate the correctness of the simulation result generated
by the HNC node, the connectivity data was also imported into
the NEST simulator and we repeated the simulation again. When
simulating a network, it is sufficient to communicate spike events
at intervals less or equal to the minimum synaptic delay in
the network. The NEST implementation makes use of this and
propagates spike events on a 1 ms grid - the minimal synaptic
delay in the two-population Izhikevich network. In contrast, the
HNC node communicates spike events at 0.1 ms intervals. For
progressing neuron model dynamics, an integration step size

of h = 1 ms would not be sufficient to achieve the necessary
numerical accuracy (Pauli et al., 2018). Therefore, both NEST and

the HNC node use an integration step size of h = 0.1 ms. The

NEST Izhikevich neuron model implementation was adapted

accordingly. The simulation script and the source code is
available online9.

From the three obtained data sets of network activity, the

probability distribution of the firing rates (FR), the coefficient

of variation (CV), and the Pearson’s correlation coefficient (CC)
were calculated and compared. The statistical measures are
described in the Supplementary Material. The result of the

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2022 | Volume 16 | Article 884033

https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

comparison is shown in Figure 5. All measures are in close
agreement and show statistical equivalence.

Simulation results must not only be reproducible and in
agreement with a reliable reference, but also replicable, i.e.,
spike-identical in repeated simulations. Replicability was tested
by repeatedly simulating the two-population Izhikevich network
for 20 minutes simulated time. Due to limited numerical
precision and rounding errors, operations are not commutative.
Therefore, and to strengthen the tests, the network was also
logically shifted across processing units in order to assign a
logical neuron-id to different hardware resources, and thus
force a different spike ordering and scheduling of operations.
The simulation results were successfully validated for spike-
identicality (data not shown).

4. ARCHITECTURE

4.1. System-Level Architecture
We chose the XCZ7045 SoC from the Xilinx Zynq-7000 SoC
device family (Xilinx, 2021) for the technical implementation,
and all work presented in this article was carried out on a Xilinx
Zynq-7000 SoC ZC706 development board (Xilinx, 2019e). The
XCZ7045 integrates a dual-core ARM Cortex-A9 processor (up
to 1 GHz) and a freely programmable and re-configurable logic
device, i.e., an FPGA with the size of 350, 000 configurable
logic blocks (CLBs). It provides ~218, 000 look-up tables (LUTs),
~437, 000 flip-flops (FFs), 19.2 Mbit of fast static block RAM
(BRAM) that can be customized for different configurations, and
900 digital signal processing (DSP) blocks for the implementation
of arithmetic operations.

Figure 6 shows the system-level view of the implemented
HNC node architecture. It details the major components and
modules, their interaction and functional assignments. The
operation of the HNC node is software-controlled. The program
executable is located in the external memory (top right) and
executed by the processing system’s (PS) application processing
unit (APU) (upper dashed box). For user interaction, debugging
and data exchange, the HNC node is connected to a Linux
host system (upper left) via an Ethernet (ENET) connection
for the read-out of recorded spike events, a JTAG10 connection
for programming and debugging, and a serial UART11 user
console interface.

The simulation engine’s core components are realized in
programmable logic (PL). They are shown in the lower dashed
box in Figure 6. Function-wise, the hardware components can
be assigned to four distinct steps in the process of carrying
out a simulation cycle: (i) presynaptic data distribution; (ii)
presynaptic data processing; (iii) neuron and synapse model
update; and (iv) spike events processing.

Presynaptic data distribution: triggered by postsynaptic spike
events, the PS/PL Data Transfer Module initiates read operations
from the external memory to obtain the node-local connectivity
information (see Section 4.3.1) of the firing neurons. In order
to do so and make optimal use of the read bandwidth of the

10JTAG is an industry standard named after the Joint Test Action Group.
11Universal Asynchronous Receiver Transmitter.

external memory, the PS/PL Data Transfer Module is connected
to the PS via a pair of high performance ports (HP1, HP3)
capable of working independently of one another. At its outputs,
the module connects to a series of first-in-first-out (FIFO)
buffers (in Figure 6 referred to as RB FIFOs) which compensate
for latencies and to which the presynaptic date is distributed.
The RB FIFOs connect the PS/PL Data Transfer Module to 16
identical processing units (P1, P2,.., P16). The processing units
parallelize and pipeline the computations for the presynaptic data
processing and the neuron and synapse model dynamics.

Presynaptic data processing: In order to derive the synaptic
inputs iex and iinh from the presynaptic data, the presynaptic
data is fetched from the RB FIFOs and passed through the RB
pipelines. The RB pipelines operate on the ring buffers (RBs) and
accumulate the synaptic inputs, the values of which are stored
and delayed for further processing by placing them into the RBs.

Neuron and synapse model update: The ordinary differential
equation solver pipelines (ODE pipelines) retrieve the
accumulated synaptic input values from the RBs and progresses
the neuron and synapse model dynamics; updating the models’
state vectors in the state variables buffers (SVBs). In addition,
an XNOR-shift PRNG can provide a random external network
stimulus {iP1ext, .., i

P16
ext } which is directly applied to the neurons in

the ODE pipelines.
Spike events processing: In principle, there can be as many

spike events occurring in each unit, and in a single simulation
time step k, as the number of neurons processed in a pipeline.
In other words, in extreme, 16 · NP = NM = 1, 024 spike events
need be buffered, serialized and packed for local (intra-node)
and external (inter-node) spike communication, as well as for
recording. The associated components that are related to this
process are shown at the lower right in Figure 6.

In order to enable the APU to perform software-controlled
read and write operations on the SVBs to access the state
variables, all processing units are chained to one another and
connected to a direct memory access (DMA) controller.

The aforementioned modules mainly represent the data paths
or operate on them. To orchestrate the control flow, additional
components are required for configuration, simulation control,
and synchronization. For configuration and simulation control, a
bank of 32-bit registers store node control and status information
(shown at the mid left in Figure 6). All registers are mapped into
the APU’s address space and thus accessible by the node software.
Their settings steer the operation of a finite state machine (FSM)
responsible for generating all control signal sequences for the
different operating modes (e.g., load state variables, progress
simulation by k steps, unload state variables). To preserve the
temporal causality and ensure the correct sequence of operations,
all spike events of a simulation step k must have been delivered
and the RB buffer updates must have been completed before the
next simulation step k+ 1 can be initiated. This is ensured by an
intra-node synchronization logic which monitors the operating
status of all modules. The module is shown at the lower left
in Figure 6. Technically, it implements a barrier mechanism
that synchronizes the overall processing at the end of every
simulation step. In a multi-node configuration this extends to
an inter-node barrier message—software simulators, such as

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 6 | System-level view of the HNC node hardware architecture. The on-chip components are framed by the dashed lines. The lower frame encloses all

modules that have been implemented in programmable logic (PL), while in the upper frame the components of the processing system (PS) are shown. Attached to it is

an external 1 GiB DDR RAM module (upper right). It stores the node software system executable and the data structures required for operation, for example, the state

variables and connectivity information. The external memory also functions as buffer for the recorded spike data. The PS is further connected to a Linux host system

(upper left) which provides a serial console to operate the HNC node, the Xilinx Vivado environment for development, and a TCP/IP server to collect the recorded

binary spike data.

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

NEST (Gewaltig and Diesmann, 2007) use MPI12 barrier calls for
this purpose.

The entire hardware design—with the exception of the DMA
controller and the FIFO blocks for which Xilinx soft IP cores
were used—was implemented on the register transfer level
(RTL) in VHDL. The decision to take this more arduous and
time consuming approach—rather than a high level synthesis
(HLS) implementation (Xilinx, 2019c)—is motivated by the
endeavor to maximize control over the microarchitecture details
in order to optimize the timing behavior. The current HNC
node implementation works stable up to a PL clock frequency
of fclk = 200 MHz. The software implementation was carried
out in the C language. For the development process the Xilinx
Vivado Design Suite (Xilinx, 2019d) and the Xilinx Vivado SDK
and embedded system tools (Xilinx, 2019b) were used which
provide the development tools for hardware-software co-design,
synthesis and analysis.

4.2. Software System Architecture
Figure 7 outlines the basic architecture of the HNC node
software system, which is executed by the SoC’s integrated APU.
At its lowest level, an abstraction layer provides fundamental
routines to drive the hardware functions, for example, to reset
and initialize components, to handle interrupts, to establish
a basic serial console and TCP/IP communication, and to
initiate direct memory access (DMA) transfer operations.
Helper- and low-level simulator functions, such as routines
to load and unload the state variable buffers, build on top of
this layer providing the foundation for the actual simulator
functions—the kernel of the software system. The main
components here are the Neuron Manager, responsible for
the instantiation of neurons, and the Connection Manager,
responsible for creating the synaptic connections. At the highest
level, a C-API provides Create(..), Connect(..), and
Simulate(..) function calls, which represent a minimal
set of functions required to instantiate and simulate a network.
Besides the simulator core-functionality, we implemented
functions for system configuration, testing and debugging as
well as for user-interactive node control. Access to those is
given through a serial user console interface. To minimize the
resources footprint and achieve best possible performance, the
software system was implemented as bare-metal application,
running natively without the use of any underlying operating
system. When executed, it makes use of one of the two ARM
Cortex-A9 cores that the APU provides. During the execution of
a Simulate(..) function call, no operations on the external
memory are performed by the APU. This allows the PL to make
optimal use of the bandwidth of the external memory while a
simulation is running.

4.2.1. Node-Local Network Instantiation
The current HNC node prototype requires that the neural
network model is formulated as a sequence of Create and
Connect function calls, which needs to be compiled to an

12Message Passing Interface, https://www.mpi-forum.org/.

executable. In this object-format it is loaded into the external
memory and executed when a Simulate function call is issued.
Each Create instantiates a single neuron. The function takes
as its arguments a model name, the initial values of the neuron’s
state variables, and a logical neuron-id, which identifies the
neuron on the node. The Create function calls are processed
by the Neuron Manager. It maps the logical neuron-id to
a dedicated hardware resource identified by a resource-id, i.e.,
a processing unit and a position in the ODE pipeline. This
process mainly consists of setting up the data structures for
state variables in memory while administering byte-orders and
data type conversions according to the model-specific hardware
implementation. The DMA controller operates directly on these
data structures when the processing units are “loaded” and the
state variables are moved to the SVBs—and also vice versa when
“unloaded” and the data is read back to external memory. In the
current implementation, an interrupt-controlled DMA operation
takes≈ 30µs to fill the SVBs while 16KiB of data is transferred in
order to load or unload the states of NP = 1024 neurons.

Analogous to the Create function call for the instantiation
of a neuron, a Connect function call creates a single connection.
It expects in its argument list a logical source neuron-id (for
a multi-node system extended by a node-id), a logical target
neuron-id, as well as the synapse parameters, i.e., a weight
and a delay. From the sequence of Connect function calls,
the Connection Manager builds the data structures in the
external memory that represent the network connectivity. This
structure associates each source neuron with a list of synapse
target connections.

4.2.2. Recording
The HNC node implements two different solutions for recording
the network activity data, one for recording spikes and one
for recording state variables. Recording spike events is a fully
asynchronous process which is decoupled from the simulation
scheduling. During a simulation, the spike events are grouped
together as they occur and packed to 64-bit values which
are buffered in the Recording FIFO (shown at the bottom
in Figure 6) before being written to external memory. The
high performance port HP3 is used for the write operations.
Its read channel is already assigned to the retrieving of the
presynaptic data. Sharing the port—and the external memory—
does not create any visible read-write contention. Performance
measurements carried out with and without spike recording
did not show any degradation in performance with active
spike recording and led to comparable results for the measured
acceleration factors, even at high spike rates. The current design
implements a recording buffer with a size of 60MiB capable
of caching ~15M spike events. This buffer is written by the
recording hardware in a round robin manner and emptied by
the simulation kernel’s Recording Client (Figure 7), which
transfers the data via a TCP connection to a TCP server running
on the Linux host system. For the client implementation on the
HNC node the open-source lightweight IP13 (lwIP) TCP/IP stack
was used, which comes with the Xilinx board support package,

13http://savannah.nongnu.org/projects/lwip/

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 884033

https://www.mpi-forum.org/
http://savannah.nongnu.org/projects/lwip/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 7 | HNC node software system architecture. The tiered architecture provides abstraction at different functional levels. (A) The low-level system routines hide

technical details about the operation of the implemented hardware components. Based on this, low-level simulator and helper functions (B) form the foundation for

the core component of the HNC node software (C), that is, the simulator functions. (D) At the highest level, a minimal set of functions is provided to instantiate and

simulate a network. (E) In addition, the software system implements components that are responsible for control, testing, and debugging and also enable user

interaction.

and is included in the Vivado SDK. In order to read out
state variables, a running simulation must be halted to allow
the DMA controller to access the SVBs. Consequently, capturing
state variables significantly reduces performance. On the other
hand, the DMA provides the APU with an efficient way to access
all state variables at once and at any desired interval.

4.3. Microarchitecture
The module microarchitectures presented in this section try to
bring the data and the operations performed on them as close
together as possible. The implementations aim at optimal low-
latency solutions utilizing SoC device features, such as low-
latency BRAM and high-performance streaming interfaces for
external memory access.

4.3.1. Connectivity Representation and Presynaptic

Data Distribution
The structure in which the network connectivity data is stored
in memory is determined by the microarchitecture of the PS/PL
Data Transfer Module, which is shown in Figure 8. Upon
the arrival of a spike event, it retrieves the list of synapse
target connections Cj associated with a source neuron nj, and

distributes the data items to the RB FIFO buffers for further
processing by the RB pipelines (see also Figure 6). Such a
retrieved list constitutes the presynaptic data. It is represented by
a list of quadruples Cj = {(sij, ni,wij, dij), .., ()}, where ni specifies
the target neuron, wij and dij denote the synaptic weight and
delay values, and sij is a data path control value assigning a
data item to its associated RB FIFO buffer by controlling the
demultiplexer circuits (DMUX, Figure 8). The data format of the
synaptic target list items is detailed in Supplementary Figure S1.
The demultiplexers connect the data paths alternately with the
RB FIFO buffers and thus the processing units. This architecture
detail comes in handy when removing, adding, or combining
processing units, as it helps to maintain a balanced load on
the high-performance ports. The design and implementation
of the module aim at lowest possible data access latency and
an optimal utilization of the available read bandwidth of the
external memory. Therefore, the PS/PL Data Transfer Module,
residing in the PL, is interfaced with the PS, and thus with the
external memory, through the two high-performance ports HP1
and HP3. This splits the target list into the two lists CS1

j and

CS2
j assigned to HP1 and HP3, respectively. Their assignment

(and associated data paths) are indicated in red and blue in

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 8 | Presynaptic data distribution. Upon the arrival of a spike event, the presynaptic data is read from the external memory in two independent parallel data

streams S1 and S2, indicated by the red and blue arrows, and distributed to the RB FIFOs by the demultiplexers (DMUX). While the Processing System (PS) performs

the external storage operations bypassing the APU (not shown in the figure), the PS/PL Data Transfer Module controls the two AXI data streams and the

high-performance ports HP1 and HP3 through which it connects to the PS. It calculates the memory addresses of two lists, CS1
j and CS2

j which constitute the two

data streams, that is, the presynaptic data associated with the neuron that has emitted the spike. This data is stored in two different memory regions, marked by the

red and blue boxes.

Figure 8. The two high-performance ports are capable of working
in parallel and independently of one another, while for example,
the ports HP0 and HP1 would share the same PS resources,
hindering full parallelism.

In terms of implementation, the port interfaces follow the
Advanced eXtensible Interface14 (AXI) standard (Arm Limited,

14The Advanced eXtensible Interface (AXI) standard is an extension of the

Advanced Microcontroller Bus Architecture (AMBA), which is an open standard.

2021). More precisely, they provide 64-bit AXI3 Slave interfaces.
On the PL, the PS/PL Data Transfer Module architecture bundles
two AXIMaster stream interface implementations that constitute
their counterparts. The AXI protocol is based on data bursts.
The presynaptic data to be retrieved upon the occurrence of a
single spike event is transmitted in two parallel sequences of four
bursts, i.e., four bursts on each port, where a burst consists of 16
64-bit data items. The principle is shown in Figure 9. The red
and blue colors correspond to the datapath coloring in Figure 8.

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 9 | AXI stream protocol implementation. To create data streams that are as continuous as possible, data transfers are already scheduled without waiting for

the preceding transfer to complete. Per spike event, the transfer of a sequence of four data bursts is initiated on each of the two read data channels associated with

the two streams S1 and S2 (marked red and blue). For this purpose, the memory read base addresses of the four burst data packets are transmitted as a block on

the read address channels.

The read address channels describe the address and control
information of the data bursts transferred on the read data
channels. The addresses

(

addr(CS1
j ), addr(CS2

j )
)

are calculated

from the neuron-id and node-id (nj,m) of the source neuron that
emitted the spike, the burst length (lenburst), and the memory

base addresses of the two target lists
(

addrS1base, addr
S2
base

)

.

In order to generate data streams that are as continuous as
possible, read operations that are triggered by subsequent spike

events are already scheduled even though the read data channels
are still occupied. By this means, the two data streams S1 and

S2 are created. Every spike event triggers a transfer of a 1KiB

data packet from external memory. For a single data packet,

an average transmission time of ~550 ns (fclk = 200 MHz) was
measured. This corresponds to a data transfer rate of 1818 MiB/s
which is a much higher throughput than achievable with a Xilinx
AXI DMA soft IP core (Xilinx, 2019a)—the common solution
for high-bandwidth direct memory access. The DMA soft IP
core throughput is specified with 399.04 MB/s at 100 MHz clock
frequency (Xilinx, 2019a).

The transfer parameters, the number of bursts and the size
of a burst, are configurable in control registers. They were
set as discussed above allowing a source neuron to make 128
synapses on a node. In the current prototypical implementation,

the transferred data packets are of same size for all spike
events. Unused list entries are read from memory but they are
not distributed.

The RB FIFO buffers which connect the PS/PL Data Transfer
Module with the processing units serve two purposes. First, they
buffer the synaptic input derived from incoming spike events for
the time that the ODE pipelines are operating on the ring buffers
(RBs) and blocking them for parallel read operations, and second,
they allow a clock domain crossing. We have not yet investigated
the latter, but it would allow the PS/PL Data Transfer Module to
operate at a higher clock frequency than the processing units,
which could have a positive impact on the latency of external
memory data access.

4.3.2. Ring Buffer Processing and Ordinary

Differential Equation Solver Pipeline
The HNC node’s processing units draw their ability to accelerate
computations primarily from the pipelined processing when
accumulating the synaptic inputs in the ring buffers, and when
progressing the neuron and synapse model dynamics in the
ODE pipelines. This capacity builds on the usage of fast, low-
latency on-chip BRAM for storing local variables. Figure 10
shows the involved components and their interaction for a
single processing unit. In every simulation time step, the ODE

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

A B

FIGURE 10 | Ring buffer (RB) architecture and interaction of components. Local variables are stored in the ring buffer (RB) and the state variables buffer (SVB). For

their implementation fast, low-latency on-chip BRAM memories were used. Shown is the interaction of the RB pipeline and the ODE pipeline which both operate on

the RB. To avoid additional write operations by the ODE pipeline to invalidate the RB entries when processed, each entry is provided with a time stamp kval that

indicates the RB cycle for which it is valid. The value of kval is calculated by the RB pipeline—see also the RB update algorithm (Figure 11)—and compared with the

current simulation time step to verify an entry’s validity when read by the ODE pipeline for processing. The principle is illustrated in (B) where the data path is marked in

red. The corresponding RB layout is shown in (A).

pipeline updates the state vectors of 64 neurons (yyyk → yyyk+1)
while operating on the state variables buffer (SVB). The SVB is
implemented as true dual-port BRAM enabling high pipeline-
throughput and minimal iteration latency. The state vectors are
implemented as 128-bit data words, where 120 bits are available
for use to store the state variables and 8 bits are required for
pipeline control. The representation of the 120-bit data word,
in terms of the number of state variables, their length and
type, is determined by the model’s hardware implementation
and its counterpart in the software system, namely the function
for neuron instantiation as part of the neuron manager. This
generic approach allows a certain flexibility with regard to
the choice of data types and operations according to the
numerical precision required by the model to be implemented.
This architecture is open to extensions, as the ODE pipeline
module can be exchanged to support a wide variety of neuron
and synapse models. An example implementation is given in
Supplementary Figure S3. It shows the microarchitecture of the
Izhikevich model implementation used for the performance
evaluation and validation task conducted in this work.

AnODE pipeline retrieves the accumulated synaptic inputs iex
and iinh from the RB and may also receive input from an external
source, such as a PRNG. Like the SVB, the RB is also implemented
as true dual-port BRAM. The buffer layout, shown in Figure 10A,
consists of KRB segments subdivided into NP = 64 entries -
the number of neurons in the pipeline. The RB is read in a
round-robin fashion by the ODE pipeline, such that a segment
is re-addressed after k+ KRB simulation time steps. The delay

resolution—the minimum of which is given by the simulation
resolution, i.e., dmin = h = 0.1 ms—and the number of segments
KRB determine the maximum possible synaptic delay.

RB entries that have already been processed, and are
thus outdated, remain in the buffer and may be erroneously
reprocessed by the ODE pipeline in subsequent RB cycles. In
order to avoid having to add an additional write operation to the
ODE pipeline to mark an entry as processed, and thus invalid, we
implemented a solution which turns this approach around.When
updated, an entry is marked with a time stamp kval that indicates
the RB cycle for which the entry is valid. The principle is shown in
Figure 10B. This valid time stamp is derived from the calculated
target simulation step k′ ← k+ dij excluding the lower log2(KRB)
digits. Upon entering the ODE pipeline, the higher order bits of
k and the value of kval are checked for equality. If this is the case,
iex and iinh are valid synaptic inputs. This method further avoids
the restoring of RB entries in the situation of an ODE pipeline
restart (see below). The disadvantage of this solution is a higher
consumption of the scarce BRAM resources.

In contrast to the ODE pipelines that are controlled by
a finite state machine, an RB pipeline works in a purely
event-driven fashion. When not stalled by ODE pipeline
operations, the presynaptic data buffered in the RB FIFO is
being fetched. It is then passed through the RB pipeline which
executes the ring buffer algorithm detailed in the flow diagram
in Figure 11.

The proposed design raises two issues of potential read-
before-write conflicts which need to be taken into consideration.

Frontiers in Neuroinformatics | www.frontiersin.org 17 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 11 | Ring buffer update algorithm. The algorithm is executed by the RB pipelines. The blue arrows indicate in- and out-going data items at different pipeline

stages. The dashed box is for simplified illustration and shows the algorithm for the exceptional case of static synapses where a neuron’s excitatory and inhibitory

synaptic input can be lumped together. In all other cases, the algorithm expands according to the table on the upper right.

Even though RB update operations never address an RB segment
that is processed in the current time step k, it may nevertheless
happen that an RB write operation is not considered in further
processing. This can be the case if a presynaptic data item
represents a synapse with dij = dmin, i.e., a 0.1 ms delay. The
initiated update on the k+ 1 RB segment may have no effect
as it is already being fetched into the ODE pipeline for the
next simulation step. In such a case, the ODE pipelines must
be reset and restarted. This adds an additional latency LODE to
the processing, where LODE denotes the pipeline depth. In the
proposed design the ODE pipeline restart is software controlled.
Whether a restart condition is indicated or not depends on the
synaptic delay value and is encoded in the presynaptic data
(see table in Supplementary Figure S2). This information is
passed to the finite state machine that is controlling the ODE
pipeline operation and considered when the next simulation
step is initiated. Another read-before-write conflict arises in the

RB pipeline itself, caused by BRAM read, write, and operation
latencies. These must be taken into account if consecutive
presynaptic data items initiate updates on the same RB entry.
The reading of an entry for which a previous write operation
has not yet completed will lead to a wrong synaptic input value.
This problem may only arise with multapses. It can also be
solved in software by rearranging the lists of synaptic targets
in memory.

It is also worth mentioning that a ring buffer shares its read
ports between the RB and ODE pipelines. We have investigated
the impact of read contention on performance due to concurrent
read operations.When not considering an asynchronous external
spike input and long ODE pipeline iteration latencies, only an
early arriving spike event may find the RB pipeline stalled when
placing data in the RB FIFOs. The additional latency is minimal
(in the order of a few clock cycles per simulation time step) and
thus can be neglected.

Frontiers in Neuroinformatics | www.frontiersin.org 18 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

A

B

C

FIGURE 12 | Operating latencies. The scheduling of operations and the latencies associated with it, distinguishes two basic cases. (A) If no spike events occur,

operation mainly reduces to ODE pipeline processing. (B) Normally, spike events have to be processed which changes and adds latencies. Postsynaptic spike events

must be serialized, and for incoming presynaptic spike events the presynaptic data must be retrieved from external memory. (C) Table listing relevant latencies. The

value of LDS cannot be derived from the microarchitecture; its average value was determined using an external logic analyzer.

4.3.3. Operating Latencies
In order to further examine the design, we extracted the operating
latencies from the microarchitecture VHDL implementation,
or where that was not possible, measured them with an
external logic analyzer. The timing diagrams and the table in
Figure 12 details the performance relevant operating latencies
of the HNC node in clock cycles and show the timing of the
operation scheduling.

At simulation start (and restart) the ODE pipelines are empty.
An initial memory read operation that fetches the first data items,
and the process of filling theODE pipelines results in the latencies
LRD and LODE. This is illustrated in Figure 12A for the case of
two simulation steps in which no spike events occur. The latency
LODE corresponds to the depth of the ODE pipelines and may
differ depending on the implemented model. The same holds for
the iteration latency ILN, which is the number of clock cycles
required to process allNP = 64 neurons assigned to a pipeline. At
the end of a simulation step a few clock cycles LSYNC are required
for synchronization.

Spike events can occur in every clock cycle of the ODE
pipeline operation, as depicted in Figure 12B. They are serialized
and packed, resulting in a latency of LSE (see also the table
in Figure 12C). Before the presynaptic data can be read from
external memory, its memory addresses have to be calculated.

The latencies created by this process are summarized in LIDS.
The high-performance ports and the memory controller on the
PS, as well as the external memory itself, determine the overall
read access latency, and hence the value of LDS as the data
is streamed into the RB FIFOs by the PS/PL Data Transfer
Module. The components involved are connected to different
clock domains and contribute with latencies that are determined
by the SoC technology rather than by the implemented user
logic. We therefore measured the value as the number of PL
clock cycles required for the transfer of a 1KiB data packet—the
amount of data which is read from external memory upon the
occurrence of a single spike event—for three PL clock frequencies
fclk = 100/150/200 MHz.

At the end of a simulation step in which spike events had to be
processed, the RB pipelines might still be filled, and pending RB
updates must be finalized. This adds the latencies summarized in
LRB. Finally, the HNC node goes into synchronization to prepare
for the next simulation step. This requires a few clock cycles at the
end of a simulation step compared to the situation where no spike
event occurred. This adds the latency LSESYNC to the processing.

In amulti-node system, the total latency would be extended by
inter-node synchronization times. This is not explicitly included
in the timing diagrams in Figure 12 but indicated by the
red barriers.

Frontiers in Neuroinformatics | www.frontiersin.org 19 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

5. METHODS AND MATERIALS

5.1. Workload Model
The synchronous, time-driven neuron states update process (red
arrows in Figure 1) generates a computational cost determined
almost exclusively by the number of neurons processed by
a single processing unit, and thus adds a constant operating
latency. In contrast, the computational cost of the asynchronous,
event-driven process of presynaptic data distribution and
processing (blue arrows in Figure 1) depends mainly on the
amount of presynaptic data to be processed and retrieved from
external memory. The amount of data is determined by the
average number of synapses on a node that a source neuron
connects to CM, as well as the total number of spike events
processed by the node. For a given number of neurons per node
NM—which is a hardware design parameter and a constant—a
certain number of nodes M is required to simulate a network of
size N. The connection probability ǫ of the network determines
the average in/out-degree K = ǫN, i.e., the number of in- and
out-going synaptic connections of a neuron, which grows with
the network size. Since the connections are distributed across the
nodes, the average number of synapses on a node that a source
neuron connects to remains constant for a given ǫ, even if the
network size is growing. This is expressed by Equation (1).

CM = ǫNM =
ǫN

M
(1)

Because CM is a constant, the average amount of presynaptic
data retrieved from external memory is consequently of same size
for every spike event. It is therefore practical to consider as an
indicator of computational workload the average number of spike
events processed per simulation time step k:

ν̄k = Nν̄h, with ν̄ =
1

N

∑

N

nsp(T)

T
(2)

ν̄k =
h

T

∑

N

nsp(T) (3)

where ν̄ is the average firing rate calculated over all neurons in
the network, nsp is a neuron’s total spike count in the interval
T, and h defines the temporal resolution, the step size, of the
grid-based simulation, i.e., the time interval h = 1t = tk+1 − tk.
Note that this metric is initially independent of the number of
neurons simulated.

5.2. Performance Model
We exploit knowledge of the HNC node microarchitecture
latencies to derive a performance model that allows conclusions
to be drawn about the performance characteristics in different
scenarios regarding the workload and design and technology
parameters. We make the following assumptions that represent
a scenario that maximally challenges the hardware:

• All neurons have at least one target connection with a synaptic
delay value dij = dmin.

Every spike event will initiate an ODE pipeline restart.
This adds the latencies LRD and LODE (Figure 12) to every
simulation step.
• Spike events are distributed uniformly across the neurons in an

ODE pipeline and over pipeline iterations.
We assume that the expected value for the timing of a spike
event is the middle of an ODE pipeline iteration, i.e., at ILN/2.
This is justified by the two-population Izhikevich network
used for the benchmarking (Sec. 5.3), and the placement of the
neurons on the processing units.
• All lists of synaptic target connections are the same length.

This is justified by the current design (Section 4.3.1). Upon
every spike event, a 1KiB data packet is transferred from
external memory to the RB FIFOs.

As explained in the previous section, we take the average number
of spike events ν̄k processed in a single simulation step k as a
measure of the workload. The time span to perform a single
simulation step becomes minimal if no spike events occur, and
is predominantly determined by the number of serially processed
neurons assigned to anODE pipeline. This is reflected in theODE
pipeline iteration latency ILN. Together with the synchronization
latency LSYNC, it sets the upper bound for the single-node
acceleration factor FMAX

S at a given clock frequency fclk. From the
timing diagram in Figure 12A we derive:

FMAX
S =

khfclk

LRD + LODE + k(ILN + LSYNC)
(4)

where k denotes the number of simulation steps, and h specifies
the temporal resolution of the simulation, i.e., h = 1t = 0.1 ms.
For k≫ 1 this simplifies to

FMAX
S =

hfclk

L6

(5)

where L6 = ILN+LSYNC. Analogously to L6 , which summarizes
the processing latencies for the non-spiking case, latencies
arising from processing spiking events can be summarized
according to the timing diagrams and process scheduling shown
in Figures 12A,B. This consists of the sum of the latencies for the
spike events serialization and buffering process (LSE = LSEP +
LSES + LSEF), the latencies incurred by the initiation of the data
streams S1 and S2 (LIDS = LIDSCAL + LIDSADR), see Figure 9,
and the latencies resulting from the processing of outstanding
presynaptic data items at the end of a simulation step (LRB =
LRBF + LRBP). The number of clock cycles for each latency, as
well as its description, can be found in Figure 12C. Altogether,
this results in

LSE6 = LRD + LODE +
ILN

2
+ LSE + LIDS + LRB + LSESYNC (6)

The term ILN/2 in Equation (6) reflects the assumption of a
uniform distribution of the spike events.

For an isolated node with no inter-node communication, the
acceleration factor as a function of the average number of spike
events per simulation step can now be formulated as follows:

Frontiers in Neuroinformatics | www.frontiersin.org 20 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FS(ν̄k) =



















hfclk

ν̄k(L
SE
6 + LDS)+ (1− ν̄k)L6

if ν̄k < 1

hfclk

LSE6 + ν̄kLDS
otherwise

(7)

For ν̄k < 1, the denominator in Equation (7) consists of two
terms corresponding to the spiking [ν̄k(L

SE
6 + LDS)] and the non-

spiking ((1− ν̄k)L6) case, where LDS denotes the per spike event
data stream latency. The two branches are equal for ν̄k = 1. In the
absence of spike events, FS(0) = FMAX

S applies (see Equation 5).
Please note that Equation (7) does not consider CM -

the average number of synapses on a node that a source
neuron connects to. The value of CM determines the value of
LDS that was measured since it cannot be derived from the
microarchitecture. This becomes relevant, for example, when the
number of neurons per node NM, and thus also CM changes
(Equation 1). Furthermore, it neglects the possibility that a
presynaptic data transfer could complete before all neurons are
processed, i.e., ILN/2− LDS > 0. To account for this, the value
of LSE6 would have to be corrected by adding ILN/2− LDS.
However, one would only see an effect at very low spike rates
because ν̄kLDS≫ ILN/2− LDS applies. Equation (7), therefore,
represents a good estimate of the acceleration factors that
can be achieved with the proposed HNC node design under
different workloads.

Currently, only a single-node prototype exists. In order
to estimate the performance characteristics of a multi-node
system, we expand the performance model to include inter-
node communication latencies. Strongly simplifying the complex
effects of communication network topologies, protocols, and
low-latency interconnects, we propose three basic assumptions:

• Spike events are broadcasted, i.e, communicated to all nodes.
• Inter-node connections all have the same and fixed

transmission latency time TCOM, which adds to every
simulation step. In addition to the times needed to
communicate the spike events between nodes, TCOM

also includes inter-node synchronization latencies, i.e., barrier
messaging times.
• To take into account that inter-node communication increase

with workload, every spike event adds a transmission latency
to the communication, i.e., a variable, workload dependent
portion defined as a small fraction of the transmission latency
time. It is specified by a factor α and results for a given
workload in ν̄kαTCOM.

Adding inter-node communication latencies to Equation (7)
results in

FC(ν̄k) =



















hfclk

ν̄k(L
SE
6 + LDS + αLCOM)+ (1− ν̄k)L6 + LCOM

if ν̄k < 1

hfclk

LSE6 + ν̄k(LDS + αLCOM)+ LCOM
otherwise

(8)

where LCOM denotes the transmission latency in PL clock
cycles derived from the transmission latency time, i.e.,
LCOM = fclkTCOM. Note that even in the absence of spike
events, LCOM does not vanish as it includes inter-node
synchronization times. According to Equation (4), the upper
bound for the acceleration factor with inter-node communication
then becomes:

FMAX
C =

hfclk

L6 + LCOM
(9)

From the performance characteristics derived above, the total
relative performance loss PTOT with respect to the maximum
achievable acceleration can be estimated for different workloads
as follows:

PTOT(ν̄k) = PS + PC =

(

1−
FC(ν̄k)

FMAX
S

)

· 100%. (10)

The total performance loss can be further subdivided into
the losses caused by the HNC node-local spike processing
(which mainly consists of retrieving and distributing the
presynaptic data)

PS(ν̄k) =

(

1−
FS(ν̄k)

FMAX
S

)

· 100% (11)

and the loss caused by the inter-node communication

PC(ν̄k) =
FS(ν̄k)− FC(ν̄k)

FMAX
S

· 100%. (12)

5.3. Verification, Validation, and
Benchmarking Model: Two-Population
Izhikevich Network
We use a simple two-population model as the basis for both the
performance measurements and the verification and validation
of the correctness of the HNC node hardware and software
implementation. The network consists of 1, 000 Izhikevich-type
neurons (Izhikevich, 2003), which follow the dynamics

dv

dt
= 0.04v2+5v+140−u+isyn(t)+iext(t), with isyn(t) = iex+iinh

(13)

du

dt
= a(bv− u) (14)

if v ≥ 30mV, then

{

v← c

u← u+ d
(15)

The network consists of 800 excitatory regular spiking neurons
[

(a, b, c, d) = (0.02, 0.2,−65.0, 8.0)
]

and 200 inhibitory fast
spiking neurons

[

(a, b, c, d) = (0.1, 0.2,−65.0, 2.0)
]

. The
excitatory population makes random connections to the
inhibitory population and to itself. The inhibitory population

Frontiers in Neuroinformatics | www.frontiersin.org 21 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

only projects to the excitatory population. All neurons in
the network draw their connections with a fixed in-degree
of Kin = 100 and receive additional input from an external
source. A detailed description of the network is given in the
Supplementary Material.

The choice of this model was motivated by our
previous work, where we subjected a two-population
Izhikevich network implementation on the SpiNNaker
system to a rigorous verification and validation task
(Gutzen et al., 2018; Trensch et al., 2018).

6. DISCUSSION

We presented an SoC-based hybrid software-hardware
architecture of a neuromorphic computing node. This is to
be seen as a complementary yet distinct approach to the
neuromorphic developments aiming at brain-inspired and
highly efficient novel computer architectures for solving real-
world tasks. The requirements for achieving reproducible
hyper-real-time neuroscience simulations are different, so also
the technical challenges. We examined the extent to which the
proposed architecture and Xilinx Zynq SoC device technology
is capable of meeting the high demands of modeling and
simulation in neuroscience in terms of flexibility, accuracy, and
simulation performance.

6.1. Flexibility
The HNC node design exploits the trade-off between flexibility
and efficiency offered by the Xilinx Zynq SoC device technology.
The tight coupling of programmable logic with a general purpose
processor gives the developer the flexibility to cope with rapid
developments in neuroscience and changing requirements. For
example, the plethora of neuron and synapse models require
that the operations and their scheduling performed by the
ODE pipelines can be adapted in terms of the implemented
numerical algorithms and data types. The application of code
generation techniques (Blundell et al., 2018a) can abstract
hardware implementation details away from a neuron and
synapse modeling task. Therefore, the ODE pipeline architecture
was implemented as a replaceable VHDL-module having a
defined port interface. This makes the neuron and synapse model
hardware implementations accessible to tools, such as NESTML
(Plotnikov et al., 2016). By this means a wide variety of neuron
and synapse models can be supported.

The availability of powerful, node-local processor cores also
allows us to decentralize; moving tasks onto the neuromorphic
compute nodes that are typically carried out on a host system.
For example, the generation of the network connectivity could be
carried out on a conventional system using established tools, such
as PyNN (Davison et al., 2009) or PyNEST (Eppler et al., 2009),
while the network instantiation process is parallelized by being
delegated to the processor cores of the neuromorphic compute
nodes. This would reduce network building times, especially
when repeated simulations are performed (e.g., parameter scans).
Moreover, the integration with the existing workflows for neural
network modeling and simulation becomes easier to reach.

The HNC node architecture is open for extension, for
example, the implementation of synaptic plasticity rules.

Although plasticity models were deliberately left out for the
current HNC node prototype, it was considered in the design
decisions. In future developments, we intend to exploit the
hybrid software-hardware architecture concept of the HNC
node in such a way that plasticity algorithms programmed
in software run on a dedicated plasticity processor—executed
on the APU using the second, so far unused, ARM processor
core—supported by accelerators implemented in programmable
logic. To enable the implementation of spike-based plasticity
rules (Morrison et al., 2008), the network connectivity data as
well as the recorded spike events are stored in the external
memory, thus keeping synaptic weights adjustable and spike
history accessible to the processor cores. There are a number of
different forms of plasticity (Magee and Grienberger, 2020) and
a rapid development in the field which entails some technical
challenges. The HNC node provides here a flexible platform as
a means to explore novel architecture concepts to implement
plasticity algorithms.

6.2. Numerical Precision
Particular care must be taken with respect to mathematical
operations. Both the choice of data types and algorithms as
well as their technical implementation require special attention.
The design decisions made regarding the example Izhikevich
neuron model ODE pipeline implementation (see Section 4
in the Supplementary Material), e.g., the data types and the
numeric integration scheme, are based on the results of our
earlier studies (Gutzen et al., 2018; Trensch et al., 2018). By
conducting a calculation verification task15, we concluded that
a 32-bit signed fixed-point data type (s16.15) does not provide
the necessary numerical precision to capture the dynamics of
the Izhikevich neuron model (Izhikevich, 2003) with sufficient
accuracy. For the processing unit’s ODE pipelines, we therefore
implemented a 40-bit signed fixed-point data type (s16.23)—a
decision also made to avoid expensive floating point operations.
In combination with an explicit Forward Euler ODE solver
method and an integration step size of h = 0.1 ms, we achieve
sufficient accuracy—even though it is the simplest numerical
method available. Analogously to the calculation verification
task carried out in the studies mentioned, we verified the ODE
pipeline operation by comparing the subthreshold dynamics
and the spike timing to the results of an explicit Runge-Kutta-
Fehlberg(4, 5) method with an absolute integration error of
10−6.

6.3. Verification of Implementations
During implementation, hardware and software components
cannot be considered independently of each other and must
therefore be developed in parallel in a co-development process.
The HNC node software system is written in C and almost all
hardware components were developed in VHDL. In contrast
to a high-level synthesis approach, where a hardware design is
formulated at an algorithmic level in the C language, for example,
and the synthesis tool chain generates a reliable hardware

15Calculation verification tasks assess the level of error that arises from various

sources of error in numerical simulations as well as to identify and remove them

(Thacker et al., 2004).

Frontiers in Neuroinformatics | www.frontiersin.org 22 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

description from it, the implementation in VHDL at the RTL
level is rather error-prone. A well thought-out test strategy
is therefore essential. It must consider the verification of the
correctness of the technical implementation of the hardware and
software components as well as the validation of the outcome of
the simulations performed on the HNC node.

Our approach was that of an embedded hardware-software
co-verification, in the sense of a directed software-controlled
functional testing. For this purpose, the hardware components
under test were connected to the APU of the SoC device through
memory-mapped AXI-interfaces and subjected to a series of
hierarchical functional tests written in C. These tests range from
simple to complex and are executed on the APU. They include
basic hardware and software functional tests, integration tests,
as well as complex functional tests that also became part of the
HNC node software system. Examples of such complex tests
are memory read-write pattern tests. They ensure the correct
implementation and operation of the DMA data transfer to and
from the SVBs and verify data type and endianness conversion.
Another example of a complex test scenario is the functional
verification of the RB pipeline and RB buffer operation, where
a software-controlled spike injection and a subsequent RB
read out is used to verify the correctness of the presynaptic
data processing.

6.4. Performance
Software developers of spiking neural network simulation tools
invest much effort in the optimization of their codes to achieve
best possible performance and simulation efficiency. They are
well aware of the performance-critical nature of retrieving
the presynaptic data from memory and its distribution, its
accumulation in the ring buffers, and the update process of
the neuron and synapse model dynamics performed at every
simulation time step. The challenges in finding optimal solutions
and implementations are manifold. For example, in large-
scale networks, synaptic processing substantially dominates the
computational load, and the irregular, random access pattern
in retrieving the presynaptic data reduce a processor’s cache hit
rate and increases data access latencies (see e.g., Kunkel et al.,
2014). The tools of trade here are algorithms that implement high
parallelism in computations, “cache-friendly” data structures,
and the application of techniques for latency hiding, such
as data prefetching (Pronold et al., 2022). The proposed
HNC node design aims to address these problems—which
on conventional computer architectures are a consequence of
the von Neumann bottleneck—by implementing performance-
critical tasks in hardware. Specifically, the process of neuron
and synapse model update benefits from the data-locality
of state variables stored in fast on-chip BRAM memories.
Storing the network connectivity data in an external memory,
however, undermines this concept, and toward higher workloads,
performance will be bound by external memory access latency.
For larger systems and higher workloads, it is therefore crucial
to aim for an architecture design that also allows data-locality for
the presynaptic data processing. The design of the HNC node is
constrained in this respect by the limited BRAM resources.

The ability to model the performance behavior for different
design parameters is of great value as it can guide future

developments and design decisions. We developed such a model
for the HNC node architecture. The implementation strategy,
based on the hardware description on register-transfer level
(RTL) in the VHDL language has allowed us to derive an accurate
performance model from the implemented microarchitecture.
To this end we made several simplifying assumptions, in
particular, with respect to the inter-node communication
latencies. Network technologies are typically optimized for
throughput, but not for latency. The value of the transmission
latency time (TCOM = 500 ns) assumed for the performance
evaluation is already ambitious. However, low-latency inter-
node communication is as important for performance as data-
locality is for the computations. Despite these simplifications,
the model achieves a good approximation of the performance
characteristics. Extrapolating from the single node performance,
we predict that small clusters capable of simulating in hyper-real-
time networks comprising a few tens of thousands of neurons
would achieve acceleration factors in the order of 10 to 50.

6.5. Cluster Operation
Although cluster operation is not the focus of this article,
some related considerations that influenced design decisions are
worth mentioning. Three communication bottlenecks can be
identified in the simulation flow that are relevant to the overall
performance of a cluster system: the spike exchange between
nodes, inter-node synchronization, and external communication
for system configuration and operation including the unload
of recorded simulation data. The requirements of these tasks
differ in regard to latency and bandwidth. Inter-node spike
communication and node synchronization require an ultra-low
latency interconnect but not high bandwidth. The demand for
external communication is completely different. For loading
and unloading larger amounts of data, high bandwidth is
desirable to achieve low system setup times and eventually real-
time recording capability. We are therefore aiming at three
different solutions tailored to the respective task, although our
cluster concept is not yet fully developed. The HNC node
encodes spike events using an Address Event Representation
(AER; Mahowald, 1992). AER-based communication is well
established in neuromorphic computing and the basis for low-
latency spike-communication. In order to achieve the predicted
cluster performance (cf. Section 3.2), it is crucial that the
transmission latency time of TCOM = 500 ns for inter-node spike
communication assumed by the performance model can be
attained in a cluster consisting of a few tens of HNC nodes. The
Xilinx Zynq SoC device used for the implementation of the HNC
node prototype provides various hardware interfaces that would
allow us to establish an efficient chip-to-chip communication,
for example, a number of serial gigabit transceivers (GTX/GTH),
PCI Express, and low-voltage differential signaling (LVDS)
user I/Os (Xilinx, 2021). A solution for a low-latency spike
communication in a 64-node FPGA cluster is, for example,
presented in Moore et al. (2012). It exploits high-speed serial
links and achieves a hop-latency of 50 ns in a 3D torus
topology. For inter-node synchronization, we favor a simple one-
wire (e.g., wired-or) solution where a global barrier signal is
derived from the intra-node synchronization logic (cf. Figure 6).
External communication with the HNC node is established

Frontiers in Neuroinformatics | www.frontiersin.org 23 June 2022 | Volume 16 | Article 884033

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

using a 10/100/1000 Mb/s tri-speed Ethernet PHY and the TCP
protocol—currently used only to stream the recorded simulation
data to a host system. For a cluster, we aim at a parallel data move
solution, in which each HNC node is connected to its own host
system or host node, respectively.

The proposed technology and architecture is an ideal basis
for prototyping and design space exploration—the primary
domain of programmable logic devices—and for elaborating
novel architectures. The reconfigurable logic allows extensive
freedom in the implementation of the numerical models while
the processor cores opens an elegant way to achieve system
integration. They can be an intermediate step toward next-
generation neuromorphic systems and neuroscience simulation
platforms. In this sense, the proposed HNC node design
complements the existing neuromorphic system architecture
approaches of SpiNNaker and BrainScales, in regards both to
technology and the trade-off between flexibility and efficiency.

DATA AVAILABILITY STATEMENT

The simulation scripts and source codes used in this
work to demonstrate correctness are available online
at: https://github.com/gtrensch/RigorousNeuralNetwork
Simulations (doi: 10.5281/zenodo.6591552).

AUTHOR CONTRIBUTIONS

GT developed the System-on-Chip based hybrid architecture
and implemented the prototype, developed the workload and

performance model, and performed the experiments. GT
and AM designed the experiments and wrote the paper.
All authors contributed to the article and approved the
submitted version.

FUNDING

This project has received funding from the Helmholtz
Association’s Initiative and Networking Fund under project
number SO-092 (Advanced Computing Architectures,
ACA). Open access publication funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation)—491111487.

ACKNOWLEDGMENTS

We are grateful to Tobias Noll, Georgia Psychou, Eqbal Maraqa,
Tom Tetzlaff, and Michael Schiek for the fruitful discussions
throughout the project. We would especially like to thank
Arne Heittmann for his comments on an earlier version of the
manuscript and to our colleagues in the Advanced Computing
Architectures (ACA) Project and the Simulation and Data
Laboratory Neuroscience for continuous collaboration.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.884033/full#supplementary-material

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Kusters, A., Klijn, W., Peyser, A., et al.

(2019). “Arbor-a morphologically-detailed neural network simulation library

for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia: IEEE), 274–282. doi: 10.1109/EMPDP.2019.8671560

Arm Limited (2021). AMBA AXI and ACE Protocol Specification. Arm Limited.

Available online at: www.arm.com.

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.

(2018a). Code generation in computational neuroscience: a review of tools and

techniques. Front. Neuroinform. 12:68. doi: 10.3389/fninf.2018.00068

Blundell, I., Plotnikov, D., Eppler, J. M., and Morrison, A. (2018b). Automatically

selecting an optimal integration scheme for systems of differential equations in

neuron models. Front. Neuroinform. 12:50 doi: 10.3389/fninf.2018.00050

Braitenberg, V., and Schüz, A. (1998). Cortex: Statistics and Geometry of

Neuronal Connectivity. Berlin; Heidelberg: Springer Berlin Heidelberg.

doi: 10.1007/978-3-662-03733-1

Cheung, K., Schultz, S. R., and Luk, W. (2016). NeuroFlow: a general purpose

spiking neural network simulation platform using customizable processors.

Front. Neurosci. 9:516. doi: 10.3389/fnins.2015.00516

Dasbach, S., Tetzlaff, T., Diesmann, M., and Senk, J. (2021). Dynamical

characteristics of recurrent neuronal networks are robust against low synaptic

weight resolution. Front. Neurosci. 15:757790. doi: 10.3389/fnins.2021.757790

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et

al. (2009). PyNN: a common interface for neuronal network simulators. Front.

Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Eppler, J., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).

PyNEST: a convenient interface to the nest simulator. Front. Neuroinform. 2:12.

doi: 10.3389/neuro.11.012.2008

Fardet, T., Vennemo, S. B., Mitchell, J., Mòrk, H., Graber, S., Hahne, J., et al. (2020).

Nest 2.20.1. Zenodo.

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier,

K. (2017). Demonstrating hybrid learning in a flexible neuromorphic

hardware system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142.

doi: 10.1109/TBCAS.2016.2579164

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et

al. (2013). Overview of the spinnaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). NeuroML: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks

in python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.

(2018). Reproducible neural network simulations: Statistical methods formodel

validation on the level of network activity data. Front. Neuroinform. 12:90.

doi: 10.3389/fninf.2018.00090

Hansel, D., Mato, G., Meunier, C., and Neltner, L. (1998). On numerical

simulations of integrate-and-fire neural networks.Neural Comput. 10, 467–483.

doi: 10.1162/089976698300017845

Heittmann, A., Psychou, G., Trensch, G., Cox, C. E.,Wilcke,W.W., Diesmann,M.,

et al. (2022). Simulating the cortical microcircuit significantly faster than real

time on the IBM INC-3000 neural supercomputer. Front. Neurosci. 15:728460.

doi: 10.3389/fnins.2021.728460

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.

Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Frontiers in Neuroinformatics | www.frontiersin.org 24 June 2022 | Volume 16 | Article 884033

https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://doi.org/10.5281/zenodo.6591552
https://www.frontiersin.org/articles/10.3389/fninf.2022.884033/full#supplementary-material
https://doi.org/10.1109/EMPDP.2019.8671560
https://www.arm.com
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fninf.2018.00050
https://doi.org/10.1007/978-3-662-03733-1
https://doi.org/10.3389/fnins.2015.00516
https://doi.org/10.3389/fnins.2021.757790
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.1162/089976698300017845
https://doi.org/10.3389/fnins.2021.728460
https://doi.org/10.1162/neco.1997.9.6.1179
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

Hines, M. L., and Carnevale, N. T. (2000). Expanding NEURON’s

repertoire of mechanisms with NMODL. Neural Comput. 12, 995–1007.

doi: 10.1162/089976600300015475

Izhikevich, E. M. (2003). Simple model of spiking neurons. Trans. Neur. Netw. 14,

1569–1572. doi: 10.1109/TNN.2003.820440

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain

simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.

doi: 10.1038/s43588-020-00022-7

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J.,

et al. (2014). Spiking network simulation code for petascale computers. Front.

Neuroinform. 8:78. doi: 10.3389/fninf.2014.00078

Magee, J. C., and Grienberger, C. (2020). Synaptic plasticity forms and functions.

Annu. Rev. Neurosci. 43, 95–117. doi: 10.1146/annurev-neuro-090919-022842

Maguire, L., McGinnity, T., Glackin, B., Ghani, A., Belatreche, A., and Harkin, J.

(2007). Challenges for large-scale implementations of spiking neural networks

on FPGAs. Neurocomputing 71, 13–29. doi: 10.1016/j.neucom.2006.11.029

Mahowald, M. (1992). VLSI analogs of neuronal visual processing: a synthesis of

form and function (Ph.D. thesis). Califpionia Institute of Technology, Pasadella,

CA, United States.

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., and Mujumdar,

A. (2012). “Bluehive - A field-programable custom computing machine

for extremescale real-time neural network simulation,” in 2012 IEEE 20th

International Symposium on Field-Programmable Custom Computing Machines

(Toronto, ON: IEEE), 133-140. doi: 10.1109/FCCM.2012.32

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann,

M. (2005). Advancing the boundaries of high-connectivity network

simulation with distributed computing. Neural Comput. 17, 1776–1801.

doi: 10.1162/0899766054026648

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007).

Exact subthreshold integration with continuous spike times in

discrete time neural network simulations. Neural Comput. 19, 47–79.

doi: 10.1162/neco.2007.19.1.47

Narayanan, P., Cox, C. E., Asseman, A., Antoine, N., Huels, H., Wilcke,

W. W., et al. (2020). Overview of the IBM neural computer architecture.

arXiv:2003.11178 [cs]. arXiv: 2003.11178. doi: 10.48550/ARXIV.2003.11178

Noll, T. G., von Sydow, T., Neumann, B., Schleifer, J., Coenen, T., and

Kappen, G. (2010). “Chapter 2: Reconfigurable components for application-

specific processor architectures,” in Dynamically Reconfigurable Systems,

eds M. Platzner, J. Teich, and N. Wehn (Heidelberg: Springer), 25–49.

doi: 10.1007/978-90-481-3485-4_2

Pani, D., Meloni, P., Tuveri, G., Palumbo, F., Massobrio, P., and Raffo, L. (2017).

An FPGA platform for real-time simulation of spiking neuronal networks.

Front. Neurosci. 11:90. doi: 10.3389/fnins.2017.00090

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing

polychronization: a guide to maximizing the reproducibility of spiking network

models. Front. Neuroinform. 12:46. doi: 10.3389/fninf.2018.00046

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann,

Y., et al. (2022). The BrainScaleS-2 accelerated neuromorphic system

with hybrid plasticity. Front. Neurosci. 16:795876. doi: 10.3389/fnins.2022.

795876

Pfeil, T., Potjans, T., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M., et al.

(2012). Is a 4-bit synaptic weight resolution enough? - constraints on enabling

spike-timing dependent plasticity in neuromorphic hardware. Front. Neurosci.

6:90. doi: 10.3389/fnins.2012.00090

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., and Rumpe,

B.(2016). “NESTML: amodeling language for spiking neurons,” inModellierung

2016 (Karlsruhe), 93–108.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking

network model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/

bhs358

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and

Kunkel, S. (2022). Routing brain traffic through the von neumann

bottleneck: Parallel sorting and refactoring. Front. Neuroinform. 15:785068.

doi: 10.3389/fninf.2021.785068

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of the 2010 IEEE International Symposium on Circuits

and Systems (Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.5536970

Schemmel, J., Kriener, L., Muller, P., and Meier, K. (2017). “An accelerated analog

neuromorphic hardware system emulating NMDA- and calcium based non-

linear dendrites,” in 2017 International Joint Conference on Neural Networks

(Anchorage, AK), 2217–2226. doi: 10.1109/IJCNN.2017.7966124

Thacker, B. H., Doebling, S. W., Hemez, F. M., Anderson, M. C., Pepin, J. E., and

Rodriguez, E. A. (2004). Concepts of Model Verification and Validation. Los

Alamos, NM: Los Alamos National Lab.

Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (2018).

Rigorous neural network simulations: a model substantiation methodology for

increasing the correctness of simulation results in the absence of experimental

validation data. Front. Neuroinform. 12:81. doi: 10.3389/fninf.2018.00081

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,

Stokes, A. B., et al. (2018). Performance comparison of the digital

neuromorphic hardware spinnaker and the neural network simulation software

nest for a full-scale cortical microcircuit model. Front. Neurosci. 12:291.

doi: 10.3389/fnins.2018.00291

Wang, R., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014). “An FPGA

design framework for large-scale spiking neural networks,” in 2014 IEEE

International Symposium on Circuits and Systems (Melbourne, VIC: IEEE),

457–460. doi: 10.1109/ISCAS.2014.6865169

Wang, R. M., Thakur, C. S., and van Schaik, A. (2018). An FPGA-based

massively parallel neuromorphic cortex simulator. Front. Neurosci. 12:213.

doi: 10.3389/fnins.2018.00213

Xilinx (2019b). Embedded System Tools Reference Manual v2019.2 (UG1043).

Available online at: www.xilinx.com (accessed January 13, 2022).

Xilinx (2019c). Vivado Design Suite User Guide High-Level Synthesis v2019.1

(UG902). Available online at: www.xilinx.com (accessed January 13, 2022).

Xilinx (2019d). Vivado Design Suite User Guide v2019.1 (UG893). Available online

at: www.xilinx.com (accessed January 13, 2022).

Xilinx (2019e). ZC706 Evaluation Board for the Zynq-7000 XC7Z045 SoC User

Guide (UG945). Available online at: www.xilinx.com (accessed January 13,

2022).

Xilinx (2021). Zynq-7000 SoC Technical Reference Manual (UG585). Available

online at: www.xilinx.com.

Xilinx. AXI DMA v7.1 LogiCORE IP Product Guide (2019a). Available

online at: https://www.xilinx.com/support/documentation/ip_documentation/

axi_dma/v7_1/pg021_axi_dma.pdf (accessed January 13, 2022).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Trensch and Morrison. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 25 June 2022 | Volume 16 | Article 884033

https://doi.org/10.1162/089976600300015475
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1146/annurev-neuro-090919-022842
https://doi.org/10.1016/j.neucom.2006.11.029
https://doi.org/10.1109/FCCM.2012.32
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.48550/ARXIV.2003.11178
https://doi.org/10.1007/978-90-481-3485-4_2
https://doi.org/10.3389/fnins.2017.00090
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.3389/fnins.2012.00090
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fninf.2021.785068
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/IJCNN.2017.7966124
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1109/ISCAS.2014.6865169
https://doi.org/10.3389/fnins.2018.00213
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture for Reproducible Hyper-Real-Time Simulations of Spiking Neural Networks
	1. Introduction
	2. Overview of the Hybrid Neuromorphic Compute (HNC) Node
	3. Results
	3.1. Single Node Performance
	3.2. Performance Characteristics
	3.3. Correctness

	4. Architecture
	4.1. System-Level Architecture
	4.2. Software System Architecture
	4.2.1. Node-Local Network Instantiation
	4.2.2. Recording

	4.3. Microarchitecture
	4.3.1. Connectivity Representation and Presynaptic Data Distribution
	4.3.2. Ring Buffer Processing and Ordinary Differential Equation Solver Pipeline
	4.3.3. Operating Latencies


	5. Methods and Materials
	5.1. Workload Model
	5.2. Performance Model
	5.3. Verification, Validation, and Benchmarking Model: Two-Population Izhikevich Network

	6. Discussion
	6.1. Flexibility
	6.2. Numerical Precision
	6.3. Verification of Implementations
	6.4. Performance
	6.5. Cluster Operation

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


