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In the field of neuroscience, the core of the cohort study project consists
of collection, analysis, and sharing of multi-modal data. Recent years have
witnessed a host of efficient and high-quality toolkits published and employed
to improve the quality of multi-modal data in the cohort study. In turn,
gleaning answers to relevant questions from such a conglomeration of studies
is a time-consuming task for cohort researchers. As part of our efforts to
tackle this problem, we propose a hierarchical neuroscience knowledge base
that consists of projects/organizations, multi-modal databases, and toolkits,
so as to facilitate researchers’ answer searching process. We first classified
studies conducted for the topic “Frontiers in Neuroinformatics” according
to the multi-modal data life cycle, and from these studies, information
objects as projects/organizations, multi-modal databases, and toolkits have
been extracted. Then, we map these information objects into our proposed
knowledge base framework. A Python-based query tool has also been
developed in tandem for quicker access to the knowledge base, (accessible
at https://github.com/Romantic-Pumpkin/PDT_fninf). Finally, based on the
constructed knowledge base, we discussed some key research issues and
underlying trends in different stages of the multi-modal data life cycle.

data life cycle, project, multi-modal database, toolkit, knowledge base

Introduction

Most chronic diseases in epidemiology take time to form, and many risk factors for
the disease may cause the occurrence of diseases in this process. A longitudinal cohort
study is a common research method in epidemiology, which is an effective way to obtain
pathogenic risk factors and evaluate intervention measures based on the correlation
between “exposure” and “outcome” (Louis and Tampone, 2019). In recent years, some
large-scale longitudinal cohort studies have been carried out and achieved good results,
such as IMAGEN (Schumann et al., 2010), ABCD (Luciana et al., 2018), and UK-Biobank
(Littlejohns et al., 2020).

It can be seen that the core contents of the longitudinal cohort study are prospective
in multi-modal data collection, multi-modal data analysis, and multi-modal data sharing.
Take the neuroimaging data as an example, the whole data life cycle can be shown
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in Figure 1. However, in the process of traditional cohort
construction, some major problems need to be solved urgently:
(1) A variety of experimental data and metadata are collected
and stored based on paper-based records; (2) The calculation
efficiency of data quality control (QC) was low, and timely
feedback on and corrections of the data quality are difficult
to receive; (3) Data management standards are difficult to
unify, and multi-modal data are difficult to integrate and share
effectively. Therefore, in recent years many efficient and high-
quality data information platforms, technologies, toolkits, and
standards for cohort study construction have been published and
applied in multiple cohort data research stages such as multi-
modal data collection, data QC analysis, computational analysis
modeling, and data sharing. Thus, researchers ultimately hope
to improve the quality of multimodal data for cohort studies.
From the perspective of cohort construction researchers,
how many related works have been published? What application
effects have been achieved in the data life cycle of cohort
construction? What other key issues need to be further resolved?
With these questions, we tried to search the corresponding
literature retrieval database, such as the Web of Science,
to seek answers to these questions. However, most of the
retrieved article topics focus on a single point of technology and
method improvement. As a result, we did not find a complete
matching study to answer the above questions. Therefore, to
help researchers more efficiently retrieve and reference the
existing technical and functional architecture solutions, we
mainly make the following contributions in this study: (1) We
proposed a hierarchical knowledge base framework consisting
of projects, toolkits, and databases of the neuroinformatics
ecosystem, and developed an open source knowledge base query
tool, PDT_fninf, in order to help researchers quickly search the
corresponding content from the knowledge base; (2) According
to the content of the knowledge base, the main research progress,
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and trends in each stage of the data life cycle are analyzed and
discussed, which provide some guidance for follow-up research.

The rest of this article will be organized as follows: (1) the
“Methods” section is to describe the principle of categorizing
articles topics in Frontiers in Neuroinformatics, and the
construction process of the knowledge base, (2) sections 3~8
beginning with “Multi-modal” summarize and discuss the main
contributions of existing studies and their underlying trends
from different stages of the data life cycle, and (3) the section
of “Conclusions” summarizes our main contributions and our
future works.

Methods

In order to complete the neuroinformatics ecosystem of
cohort studies, we selected the Frontiers in Neuroinformatics
journal as the input instances of the knowledge base in
this study, which has published some works on existing
neuroscience databases, and novel tools for data acquisition,
analyses, visualization, and dissemination of nervous
system data. Specifically, we first divided the Frontiers
in Neuroinformatics journal articles into different topics
according to the data life cycle of the cohort study. Then, the
information objects in these articles are filled and associated
with the knowledge base framework. Finally, we open source
the corresponding knowledge base query tool based on the

constructed knowledge base.

Categorize articles by data life cycle

First, we searched all the articles published in this journal
from 2007 to 2021 on the Web of Sience database and
obtained a total of 723 articles. We imported them into
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Data life cycle in neuroimaging research.
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TABLE 1 The categories of all articles published in Frontiers in
Neuroinformatics.

Category Keywords Num
Multi-modal data capture Collect/acquisition/capture 6
Multi-modal data quality control ~ Quality control/assessment 5
Multi-modal data mining analysis ~ Analysis/pipeline/workflow/ 82

process/calculate
Multi-modal data visualization Visualize/browse/view/3D/construct ~ 48
Multi-modal data management Manage/open science/xnat 47
Multi-modal data sharing Sharing/atlas/dataset/database/ 40

Others BCl/review/survey/meta/ 495

reproduce/....

“Endnote” software for grouped literature management. Then,
two authors of this paper classified these articles in a double-
blind mode, according to the initial categories associated with
the cohort data life cycle, into six categories, “Multi-modal data

» o«

collection”, “Multi-modal data quality control”, “Multi-modal

» «

data mining analysis”, “Multi-modal data visualization”, “Multi-
modal data management” and “Multi-modal data sharing”.
It is worth noting that the third person will introduce a
centralized voting decision-making mechanism when some
articles aren’t uniformly classified or can’t be classified. Finally,
all articles are assigned a different category label as shown in
Table 1. Meanwhile, the keywords list of these articles is also
updated synchronously.

We mainly focus on the various stages of the data life cycle
in the construction of the cohort data information platform.
According to the article categories shown in Table 1, we
summarized and discussed the main contributions of these 228
articles to the construction of the neuroinformatics ecosystem.

A hierarchical knowledge base
framework

Researchers mainly carry out different neuroscience research
in the form of projects or working groups, such as the
HCP project (Marcus et al., 2011) for mapping all the neural
connections in the human brain and the ADNI Project for
searching the biomarkers of Alzheimer’s disease (Mueller et al.,
2005; Jack et al., 2010). These projects collect multimodal
data for solving different research problems. Meanwhile, at
different stages of the data life cycle, a variety of information
toolkits have been developed to support the implementation
of these projects. Among them, the data types of multi-modal
data mainly include clinical/behavioral data, neuroimaging data,
electrophysiological data, and molecular data. The data life cycle
stages mainly include data capture, data QC, data analysis, data
visualization, data management, and data sharing.
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In order to help researchers quickly sort out and trace the
research progress of existing projects on multi-modal databases
and information toolkits, we propose a hierarchical knowledge
base framework that consists of projects, databases, and toolkits,
as shown in Figure 2. The databases and toolkits are the main
products of the project/organization. of these, the databases can
be mapped into a matrix composed of multi-modal data types
and different diagnostic groups. Similarly, the toolkits can be
mapped into a matrix composed of multimodal data types and
the data life cycle stage.

Knowledge base filling

Information object recording: we used the “5W-4M-6P”
information collection framework to summarize and sort
information objects about the projects/organizations, databases,
and toolkits, obtained from the 228 articles in the Frontiers in
Neuroinformatics (Table 2).

Information object mapping: the summarized information
objects were mapped into the proposed hierarchical knowledge
base framework, as shown in Figure 3. Among them, we
classify information objects into projects/organizations, multi-
modal databases, or information toolkits modules based on
the “Which” field. In the multi-modal databases and toolkits
module, we associate the information object with a specific
project/organization through the “Project” property in the
“Where” field. Meanwhile, the data types and data life cycle
phases involved in the information object are marked as gray in
the “4M” and “6P” modules, respectively.

Information object coding: in order to define the
information object and its related connections, we construct the
data dictionary for the information objects of different modules
in the knowledge base (Figure 4). And, we use the primary
foreign key to establish the connection between information
objects in the projects/organization module (PID_0001) and
the information objects in multi-modal databases (DID_0001)
and the toolkits module (TID_0001). Among them, it is worth
noting that in the multi-modal databases matrix and toolkits
matrix, each cell is filled by a list element composed of similar
information objects, such as both NDAR (National Database
for Autism Research) and ABIDE (Autism Brain Image Data
Exchange) provide a large amount of neuroimaging data for
the study of the autism population. In addition, we use the
“Keywords” field in the data dictionary to represent the cell
position of the information objects (red rectangle) in the
multi-modal databases matrix and toolkits matrix.

Knowledge base query and statistics
We developed PDT_fninf, a knowledge base query tool

based on Python (https://github.com/Romantic-Pumpkin/
PDT_fninf), which can help researchers access this knowledge

frontiersin.org
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FIGURE 2
A hierarchical knowledge base framework consists of projects, databases, and toolkits.

base. As shown in Figure 5, researchers retrieved the answers to
the question “What are the shared neuroimaging Databases for
autism?” They can first click the “Database” button to enter the
multi-modal database module. Then, they can give keywords
in the search box, such as “Autism, Neuroimaging”. Finally,
press Enter key to obtain the relevant information objects in the
knowledge base, and more instructions can be found in Readme
module in the above Github repository.

The multi-modal databases contain a total of 83 information
objects, which are mapped to a matrix composed of research
groups and multi-modal data types. As shown in Figure 6, we
use a log-normalized heat-map to represent the number of
informative objects distributed in each cell, where red indicates
a high number of informative objects in that cell, and blue
indicates alow number of that. It's worth noting that the research
groups involved in these databases can be roughly divided into 4
categories: normal people (“Healthy”), mental illness (“Autism”,
“ADHD”, “Schizophrenia”, “Bipolar disorder”, “Sleep”, and
“Epilepsy”), organic disease (“Traumatic brain injury”, “Stroke”,
“Cancer”, “AD”), and other.

The information toolkits contain a total of 484 information
objects, which are mapped to a matrix composed of different
phases of the data life cycle and multi-modal data types. As
shown in Figure 7, we also use a log-normalized heat-map
to represent the number of informative objects distributed in
each cell, where red indicates a high number of informative
objects in that cell, and blue indicates a low number of that.
In particular, the information objects in the data capture
phase mainly include tools for multi-modal data acquisition;
the information objects in the data QC phase mainly include
tools for multi-modal data quality evaluation; information
objects in the data analysis phase mainly include tools for
simulation analysis, format conversion, data annotation, and
data modeling of multi-modal data signals; the information
objects in the data management phase mainly include tools that
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support integration and storage of multi-modal data; and the
information objects in the data sharing phase mainly include
tools that support anonymization, citation, and sharing of multi-
modal data.

addition, the 110
information objects, and 43 connections are established with

In projects/organizations contain
the information objects in the multi-modal database and
the information toolkits through the project attribute in the
information object dictionary.

In summary, it can be seen that a large number of multi-
modal databases and toolkits have been derived in different
data life cycles of cohort studies, and a complete cohort study
community has been gradually constructed. Next, based on
the content of the constructed knowledge base, we will discuss
some major research advances and underlying trends in different
stages of the data life cycle.

Multi-modal data capture

As the first step of the data flow, the data capture process
pays much attention to data quality assurance. From the
data validity in a single modal to the collaboration of multi-
modalities, the emerging electronic data capture (EDC) software
upgrade itself to adapt to both common and special occasions
and environments.

Data validity in EDC

Data verification is a verification operation to ensure data
integrity and validity. When the scale of data collection changes
from a single modal to multi-modal signals, at the source of data
generation, data verification has always been established as the
first line of protection.

frontiersin.org
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TABLE 2 A summary and collation framework for projects, databases,
and toolkits.

5w

4M

6P

Column name

Which

Who

What

Where

When

Clinical/behavioral

Neuroimaging

Electrophysiology

Molecular

Data Capture
Quality Control
Data Analysis
Data Visualization
Data Management

Data Sharing

Meaning

Annotation information objects belong to
projects, databases, or toolkits.

Record the name of the information object in
abbreviated (full name) format.

Record the content or main function descriptions
of the information object.

Record the source of the information object,
including its project, published articles, and access
address information.

Record the generation time of the information
object.

Recordings about clinical information and
reactions made in response to different stimulus of
the subject.

Produced brain images by noninvasive techniques
(such as computed tomography and magnetic
resonance imaging).

Electrical signals associated with a physiological
process (such as the function of a body or bodily
part).

Data resources of, relating to, consisting of, or
produced by molecules.

Multi-modal data capture phase.

Multi-modal data quality control phase.
Multi-modal data analysis stage.

Multi-modal data visualization stage.
Multi-modal data management phase.

Multi-modal data sharing phase.

The labor-intensive process of transcription from paper
records to electronic records results in delay and random errors
in large-scale research (Babre and Deven, 2011). Thus, the EDC
becomes prevalent, but the misspelling and illegal input remain
here. To solve this problem, the electronic data capture systems,
such as Redcap (Harris et al., 2009), CARAT (Turner etal,, 2011),
CIGAL (Voyvodic, 2011), and OpenClinia N incorporate the
data verification functions to check the specific logic problems
and symbolic problems, in order to ensure the integrity and
validity of the collected data.

Not the field of
clinical/behavioral/electrophysiological data collection, but

only in
also in multi modalities data capturing, the data verification
function plays an essential role in multi-modal EDC, such

as ACQ4 provides an event detection module to monitor
the collection of multi-modal data, and other examples in

1  www.openclinica.com.
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electrophysiology, photo-stimulation, and imaging (Luke et al.,
2014). Like ACQ4, Epus is useful for meeting the needs of
researchers to capture electrophysiology and photo-stimulation
together (Benjamin, 2010).

Although the existing EDC systems present a data
verification mechanism to ensure multi-modal data integrity
and validity, areas for future development include support for a
wider range of acquisition devices, and support for allowing data
link to the high-throughput analysis workflow modules, with
consistent data capture and provenance information, to extend
the functionality of the EDC system.

Time alignment of multi-modal data

Time alignment refers to aligning different modal data
signals on the same time axis. It helps researchers not only to
reveal the statistical relationship between two or more modal
data signals in large-scale data sets but also to purify single modal
data signals with the auxiliary of other modalities.

Platforms providing association mining across multiple
modalities bind different modal data to achieve novel
mechanisms or patterns in neuroscience. Brainliner, one
of such platforms, provides time-aligned data signals across
neurophysiological and behavioral data for assisting data-driven
neuroscience and neural decoding. For example, visual images
can be reconstructed and decoded from brain functional
magnetic resonance imaging (fMRI) data (Emi et al., 2018).

Since the multi-modal data signals interact with each
other, the collected data signals are not simply induced by
experimentally designed cognitive tasks (Chang et al., 2009;
Glover et al,, 2015). As a result, the data signals contain extra
noise, which affects the accuracy of the experimental results.
For example, fMRI signals could be affected by physiological
signals such as breathing and heart rate during the experiment.
Therefore, the CIGAL software purifies the fMRI signals with
the auxiliary of electrophysiological data including the heart rate
(Voyvodic, 2011).

The benefits of time-aligned multi-modal data are obvious.
However, because wearing a heart rate collection device on
the tip of the left finger will cause inconvenience to keyboard
operations, there is an uncertain delay deviation in the real
behavior signal record. Therefore, paying attention to the
convenience of experimental operation can further ensure
the authenticity of the time alignment results of different
data signals.

Offline mode and local feedback of EDC

Due to the long-term and large-scale temporal-spatial
distributed characteristic of the multi-sites cohort study,
EDC software should meet the needs of use in special

frontiersin.org
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Map information objects to a hierarchical knowledge base framework.
occasions or environments with limited internet access, such Visual QC

as remote rural areas, prisons, and medical centers. In
such occasions or environments, local caching and local
QC become a solution to solve offline data collection
and transmission.

In order to solve the aforementioned challenges, there are
currently two techniques. First, the offline mode is equipped
within EDC to achieve offline caching capabilities of data. Most
prevalent EDC software, such as REDCap Mobile (Borlawsky
etal,2011) and CARAT (Turner et al., 2011) have realized such
functions. Second, the data QC program can be executed locally
to obtain the data validity check results, instead of waiting for
feedback from the central site, to solve the time delay problem of
data quality feedback in an offline environment.

It can be seen that some main functions of the EDC system
can be used without internet or network access. However,
asynchronous updates may result in duplicate data or existing
data in the centralized data management system, so these data
can’t be overwritten. In addition, the consistency of the EDC
system version should be considered in the multi-site study.

Multi-modal data quality control

Multi-modal quality control (QC) is a prerequisite for the
data validity of most single or multi-site scientific research
projects. Take the QC of neuroimaging data as an example,
researchers performed qualitative and quantitative QC on the
neuroimaging data to meet the needs of neuroscience research
for repeatability measurement of large-scale and cross-sites
neuroimaging data.
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In the process of neuroimaging scanning, due to factors such
as head motion, gradient effects, and intensity inhomogeneity,
many types of artifacts affected the final image quality. Using
these image data containing artifacts without QC may lead to
deviations in subsequent analysis and even wrong conclusions
in neuroimaging studies. For example, studies have confirmed
that these artifacts can cause inaccuracies in the segmentation of
anatomical MRI images (Keshavan et al., 2017).

For this reason, researchers usually resort to the visualization
functions provided by image analysis software to visually inspect
different image modalities. For sMRI volumes, FSLView allows
researchers to inspect neuroimaging slices in the axial, sagittal,
and coronal planes (Jenkinson et al., 2012). For fMRI volumes,
MRICron? supports switching options for fMRI time series and
offers some brain slices for visual inspection. For DTI volumes,
in addition, to providing the FA, MD, and ADC images, LONI
Viewer also provides the magnetic field gradient direction table
for researchers to proofreading these images (Kim et al., 2019).
There have also been efforts made for the quality assurance of
the preprocessed neuroimaging data, such as fiber tractography
extracted from DTI data (Sommer et al., 2017) and brain
registration in fMRI studies (Benhajali et al., 2020).

It is not difficult to imagine that in the visual inspection
of large-scale images, factors such as the professional level,
fatigue degree and participation motivation of image quality
raters are usually difficult to be fully and effectively controlled,
thus increasing the risk of inconsistency in QC results across

2 http://www.sph.sc.edu/comd/rorden/mricron/.
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raters. Although researchers can avoid these effects to some
extent by aggregating multiple ratings from a large pool of raters
(Benhajali et al., 2020), the root cause is the lack of a standard
and validated protocol to perform visual QC. Therefore, the
development of standardized protocols for visual QC will
produce QC ratings of higher quality on large amounts of
data, which will in turn help to train machine learning models
to perform automated QC, thereby reducing the burden of
visual inspection.

Automated QC and comparison to visual
inspection

Some studies such as IMAGEN (Schumann et al., 2010),
HCP (Marcus et al., 2011) or ABCD (Caseya et al., 2018) have
obtained huge MRI datasets, in order to meet the demand for
data volume in the era of big data analysis. It is very time-
consuming and tedious when using visual inspection for QC
of these massive datasets. Therefore, researchers have tried to
use automated QC to substitute the manual QC procedure.
The automated QC quantifies the image QC metrics and
automatically flags images of poor quality by setting their
cutoff values.

At present, some automated QC systems have been
developed for checking the QC of different image modalities. For
example, Oguz et al. developed the DTIPrep tool to perform QC
on DTT images (Liu et al., 2014); Pizarro et al. (2016) proposed
several QC metrics to describe the artifacts of sMRI images and
trained a classifier based on these metrics to evaluate the quality
of sSMRI images. These tools usually execute QC procedures of
specific image modalities on personal computers or small-size
computing clusters. As a result, the use of these tools in large-
scale, multi-modal image data QC work is limited. To this end,
researchers have calculated a comprehensive set of standard QC
metrics that have been described in the literature and developed
aweb-based LONIT Pipeline QC system for sMRI, fMRI, and DTI
(Kim et al., 2019).

However, the results from automated QC do not always fully
agree with the visual inspection results (Pizarro et al., 2016;
Esteban et al., 2017). There are two possible reasons for this
phenomenon. First, the deterioration in image quality is caused
by multiple types of noise, and the single QC metric may be
used to detect one type of image artifact. In contrast, the visual
assessment is often a comprehensive assessment. Second, the
setting of thresholds along with the number of simultaneously
occurring “bad” QC metrics may affect the consistency of the
final classification results.

The development of quantitative QC metrics is critical in
solving the subjectivity in visual assessment and is helpful for the
development of automated QC systems for neuroimaging data.
Thus, the methods of QC assessment can be replicated across
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multi-site datasets. However, due to the difference in the image
sequence and weighting method, as well as the different degrees
of motion artifacts in children and adults, the optimal cutoff
values for auto QC may be allowed to be flexible scaling by the
user. In addition, compared to univariate analysis that only relies
on QC metrics separately, a machine learning method using
multivariate modeling of QC metrics distribution may improve
the accuracy of image quality classification (Pizarro et al., 2016;
Fonov et al., 2022).

Multi-modal data mining analysis

Brain network analysis has been widely considered an
important method to understand the pathophysiological
mechanism of many neurodegenerative diseases and mental
diseases, including cognitive impairment (Chen et al.,, 2017;
Javaria et al., 2018; Xia-An et al,, 2018), Parkinson’s disease
(Schumacher et al., 2019) major depression disorder (Liao
et al,, 2018), and autistic spectrum disorder (Yu et al., 2020).
Sometimes it behooves us to decide whether conclusions are
obtained through a rigorous data analysis process. In making
the data analysis process transparent, the development of
workflow technology has increasingly satisfied our pursuit of
scientific repeatability in neuroscience research.

Multi-level analysis of brain connectivity

Human perception, cognition, and action are supported
by a sophisticated, interconnected network of brain structures
and functions. Thus, a number of studies analyzed brain
connectivity at the macroscopic or microscopic scales, providing
an important foundation for revealing the neurophysiological
mechanism behind normal brain function and disease-
related dysfunction. At the macroscopic scale, sophisticated
neuroimaging techniques have opened up new possibilities
to infer the structural and functional connectivity of brain
regions. For example, Anastasia et al. proposed an automatic
probabilistic reconstruction of white matter pathways based
on DTT and demonstrated automatic tractography analysis in
schizophrenia patients and healthy subjects (Anastasia, 2011).
At the microscopic scale, Markus et al. show three-dimensional
polarized light imaging (3D-PLI) can generate fiber orientation
vectors of the human brain, which can be used as the basis for
high-resolution fiber tract reconstruction in the human brain
(Markus et al., 2011).

Recent advances in multi-scale data acquisition methods
have made it easier to collect data for studying human
structural and functional connectivity networks. However, since
these connectivity data usually rely on indirect connectivity
measures, such as DTI and fMRI, researchers need robust
statistical methods to verify the validity of these connectivity
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data (Leergaard et al., 2012). For example, researchers have
used causal reasoning algorithms to obtain effective brain
connectivity information from fMRI data (Daniel and Stefano,
2014; Martin et al., 2014). Based on these effective connections,
alarge number of network analysis methods have been proposed
to reveal complex spatiotemporal dynamics of the human
developing brain. For example, by comparing the changes
in the network architecture of the same brain at different
spatial resolutions, Echtermeyer et al. (2011) clarified that the
spatial scale and resolution play an important role in drawing
conclusions based on network analysis. Similarly, He et al.
(2018) proposed a developmental meta-network decomposition
(DMD) approach to decompose the developmental networks
into a set of temporally smooth developmental meta-networks
(DMs), which may reveal the underlying changes in connectivity
over brain development.

Obviously, mapping multi-scale brain connectivity analysis
is the basis for comprehending the brain’s complex function.
Despite the numerous brain connectivity studies, we still
know little about neuroanatomy and functional connectivity
remains limited. In this case, researchers propose using
workflow technologies to standardize the process of brain
connectivity data collection and analysis. The technology will
help researchers to effectively compare and combine these
brain connectivity data of previous studies. These data will
provide a solid foundation for the long-standing goals of
achieving complete connectome maps for the human brain in
the neuroscience community.

Data processing workflow for
neuroimaging

Scientific workflows are normally visualized as a collection
of modules with pipes to represent the data flow from the
output ports of one module to the input ports of another. With
neuroscience datasets continually expanding in size, scope, and
complexity, a large number of efficient processing tools need
to be developed to mine more useful information from these
datasets. Workflow technologies can link these tools into high-
throughput processing pipelines, in order to provide the means
for wide dissemination and validation of research protocols and
scientific findings.

Taking neuroimaging data processing as an example, some
sophisticated neuroimaging processing tools (e.g., AFNI (Cox,
1996), FSL (Jenkinson et al., 2012), ANTs (Avants et al., 2008) 3,
SPM 4, FreeSurfer (Fischl, 2012), and Nipy (Millman and Brett,
2007) ®) have been designed to analyze multimodal imaging data.

3 http://sourceforge.net/projects/advants/.
4 http://www fil.ion.ucl.ac.uk/spm/.
5 http://nipy.org/.
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However, these tools are accessed and interfaced with in different
ways, such as shell scripting (AFNI, FSL, ANTs, FreeSurfer),
MATLAB (SPM), and Python (Nipy). Thus, there is no unified
way to use or execute these tools in the existing pipelines.
For example, SPM, written in MATLAB, does not provide a
command line interface. This has resulted in the LONI pipeline
(Ivo, 2009) can’t interact with SPM. In this case, researchers have
proposed Nipype, an open source, python-based open source
software that easily interfaces with existing tools for efficiently
processing of neuroimaging data (Krzysztof et al., 2011). Based
on Nipype, several pipelines have been proposed for specific
research purposes, such as MRIQC used for the QC of sMRI
and fMRI data (Esteban et al., 2017), and Pypes used for pre-
processing Positron Emission Tomography (PET), sMRI, fMRI,
and DTTI data (Savio et al., 2017).

Methodological improvements in the neuroimaging
pipeline, such as non-linear spatial normalization and Bayesian
Markov Chain Monte Carlo approaches, can dramatically
increase the computational burden. Neuroimaging tools benefit
from the growing number of parallel hardware configurations
(multi-core, clusters, clouds, and supercomputers), and thus
help facilitate data processing workflow for solving specific
research problems (e.g., image registration, image segmentation,
and statistical analyses). For instance, researchers have proposed
BROCCOLI for parallel analysis of fMRI data on many-core
CPUs and GPUs (Anders et al, 2014). Similarly, researchers
have proposed ATPP © to realize the framework of brain
parcellation with massive parallel computing. ATPP implements
parallel computing across and within machines by means of
SGE and MATLAB PCT, respectively.

Workflow technologies address the need for transparency,
efficiency, and repeatability in cohort studies by providing
valid and complete process records. Meanwhile, workflow
technologies also provide an important opportunity to compare
and combine results from previous studies via meta-analytic
and data mining approaches. Thus, as the diversity of research
applications increases, workflow technologies must be flexible
for diverse research applications while being able to include
new applications without modification, in order to reduce
the learning curve for researchers to leverage and improve
these workflows.

Multi-modal data visualization

The brain is such an extremely complex organ, requiring
researchers to interpret it from multiple levels. Benefiting from
the development of multi-scale measurement methods, more
and more data mining results are presented. Visualization
provides an important way for researchers to gain new insights

6 https://www.nitrc.org/projects/atpp.

frontiersin.org


https://doi.org/10.3389/fninf.2022.902452
http://sourceforge.net/projects/advants/
http://www.fil.ion.ucl.ac.uk/spm/
http://nipy.org/
https://www.nitrc.org/projects/atpp
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Li and Liang

into extracting, disseminating, and interpreting these data
mining results.

Multi-scale data interactive visualization

The purpose of scientific visualization is to represent multi-
modal data graphically and to facilitate the extraction and
interpretation of useful information from multi-modal data
by leveraging humans’ abilities for pattern recognition, and
intuition. To make the most of these capabilities, researchers
resort to interactive visualization tools, in order to assist the
analysis process of multi-scale data.

To date, a large number of interactive visualization tools
have been developed to assist researchers in multi-modal data
visualization. These tools focus on data visualization at the
micro scale neuronal circuits and at the meso/macro scale brain
regions. At the micro scale neuronal circuits, Visimpl supports
researchers in visually analyzing complex neuron-level detailed
brain simulations (Galindo et al., 2016). Relevant works include
ShuTu (Jin et al,, 2019) and VIOLA (Senk et al., 2018). At
the meso/macro scale brain regions, visualization tools fall into
two categories. The first is the visualization tool for a single
mode, such as EEGVIS (Robbins, 2012), BrainBroswer (Tarek
et al.,, 2014), Procortex (Gao et al., 2015), Fiberweb (Louis-
Philippe et al., 2017), and webTaDat (Li et al., 2021); the second
category is the visualization tools compatible with multi-modal
data, such as DataView3D (Gouws et al., 2009), the virtual brain
(Marmaduke et al., 2014), iBrainEEG (Rojas et al., 2016), and
Visbrain (Combrisson et al., 2019).

Although much effort has been devoted to providing
visualization tools compatible with multi-modal data, several
areas for future development include making these tools
fully compatible with Jupyter to embed the visual function
into notebooks and iPython for the interactive shell, and
the development of automated algorithms for automatic
annotation and tracking of multi-modal data, in order
to improve the efficiency of data visualization analysis
by researchers.

Visual representation of data mining
results

Visualization of the data mining results may help researchers
to understand their data as well as in the dissemination
and exchange of knowledge. In neuroscience, the neural
network model and brain atlas are important products of data
mining results.

When the data mining result is applied to the neural
network model, it usually appears in the publication in
the form of technical illustrations supplemented with text
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descriptions. The description of the neural network model
mainly includes the network structure, connectivity, and
neuron and synapse types. With the increasing complexity
of network and the demand of researchers for spatial
structure information representing network connections, the
traditional geometric box and arrow diagrams can no longer
convey the author’s true intentions clear. For this reason,
in addition to using box and arrow diagrams to provide
network structure information, researchers have proposed the
Connectivity Pattern Tables (CPTs), which are generated by
ConnPlotter to represent the spatial connection information
of the network (Nordlie and Plesser, 2010). In addition,
considering neuroscience is an interdisciplinary field, Neural
Schematics was proposed as a unified formal graphical
representation method for neural network structure, in order
to further eliminate obstacles when researchers from different
domains communicate neural network ideas and concepts
(Matthias and René, 2013).

When the data mining result is the brain atlas, some atlas
viewing tools are developed for specific atlases, for example, the
BrainExplorer for the Allen Brain Map (Sunkin et al., 2012).
However, the close integration of the atlas viewer and the
specific atlas limits its interoperability with other atlas resources.
Therefore, to decouple the atlas viewer from the specific atlas,
there have been some efforts to provide standardized data
exchange formats and visual viewing tools for all publicly
available brain atlas, such as the Human Atlas Working Group
(HAWG) data format allows atlas sharing viewing tools, data
editors, and other atlas creation software. Based on this data
format, researchers presented the Open Anatomy Browser
(OABrower), an experimental anatomy atlas viewer for atlas
interoperability (Michael et al., 2017).

Although the researchers’ visualization work on complex
neural network models and brain atlases validated the usefulness
of Neural Schematics and HAWG concepts, respectively.
However, it is worth noting that models and modeling concepts
are constantly changing. Thus, the concepts built around them
should be constantly changing with the need of different
application domains, in order to ensure these concepts are
universally applicable.

Multi-modal data management

In neuroscience research, more and more multi-scale
data are collected and archived for different research topics.
Researchers have designed a large number of data management
systems, in order to support the storage and retrieval of these
data. The data management system needs to standardize data
formats and resource description schemes for heterogeneous
data, in order to facilitate the knowledge representation and

integration of neuroscience.
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Some data repositories and data
management systems

With the increase in the scale of research projects, some
research laboratory-level data management systems are facing
challenges from new technologies (e.g., data scale, QC, and
complex data analysis) and society (e.g., system maintenance
staff turnover and data sharing needs) (Buckow et al., 2016).
Therefore, instead of reinvesting manpower to develop new
software, a more practical method is to use existing solutions.
These solutions can realize the electronic collection and
management of neurophysiological data, and automatically
upload data to the central repository for archiving.

The central data repository promotes the availability of
neurophysiological data and is one of the important guarantees
for reproducible research (Gorgolewski et al., 2015). The central
data repository can be divided into three main categories. The
first category is the original database for special populations,
such as ADNI (Mueller et al., 2005; Jack et al., 2010), ABIDE
(Martino et al.), NDAR (Dan et al., 2012), and ADHD-200
(Fair et al, 2013). The second category is modality-specific
repositories, such as OpenfMRI 7 (Poldrack et al., 2013),
NITRC &, NeuroVult (Gorgolewski et al., 2015). The third
category is derived repositories with highly processed data, such
as SumsDB ° (Dickson et al., 2001), BrainMap *° (Laird et al.,
2005), Neurosynth !* (Yarkoni et al., 2011).

For multi-modal data storage and management purposes,
some data management systems are designed. The existing data
management systems can be mainly divided into two categories.
The first category is the research project management system
based on full data hostings, such as COINS *?* (Adam et al.,
2011), NiDB (Book et al., 2013), LORIS ** (Samir et al., 2011),
XANT * (Marcus et al., 2007), Redcap (Harris et al., 2009),
LabIS (Dimiter, 2011) and HiveDB (J-Sebastian et al., 2013).
The second category is the lightweight data management system,
such as odML (Lyuba et al., 2016), Expipe (Lepperd et al., 2020),
Clowdr (Kiar etal., 2019), and NeuroManger (David et al., 2015).

Due to the division of the above-mentioned databases may
overlap in particular research areas, the data management
system further needs to support cross-database joint queries.
Take AD data retrieval as an example, in addition to ADNI
repository specifically for the AD population, OPENFMRI may
also include FMRI resources for the purpose of AD diagnosis.

7 https://openfmri.org/.

8 http://www.nitrc.org.

9 http://sumsdb.wustl.edu/sums/.

10  http://www.brainmap.org.

11 http://www.neurosynth.org.

12 http://coins.mrn.org/.

13 https://www.nitrc.org/projects/loris/.

14 http://www.xnat.org.
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In addition, different data management systems have their
own independent characteristics. For example, both Redcap
and XNAT systems can provide an API for automating data
management tasks, LORIS and NiDB can be installed and
managed locally in personal laboratories. Thus, researchers need
to carefully evaluate the research conditions and requirements
when choosing proper data management systems.

Manage metadata and experimental data

Experimental neuroscience collects data with a wide range
of techniques including clinical/behavioral tasks, imaging,
electrophysiology, and genetics. These data cover multiple
spatial and temporal dimensions. Thus, in order to meet
researchers’ management needs for standardized data structures,
the data management process needs to deal with a wide range of
metadata and experimental data formats generated by different
experimental paradigms.

In neuroscience, the experimental data generated various
data formats with different vendor software. For example,
the formats for clinical and behavioral data are CSV, XLSX,
and TXT. For imaging data, the common data format
standardization includes ANALYZE 7.5, DICOM, NIFIT,
GIFTI, ECAT, GE, MGH, HRRT Interfile (Cradduck et al.,
1989), NRRD, Interfile, and MINC (Vincent et al., 2016).
For electrophysiological data, the common data format
standardization includes Opne Ephys (Adrian et al., 2014), NIX
(Adrian et al., 2014). For biological samples, the common data
format standard includes BioSig (Vidaurre et al., 2011), Neo *°,
EDF+ (Kemp and Olivan, 2003), NeuroShare'®, SignalML'
(Durka and Ircha, 2004), and Pandora®®.

Metadata, which refers to the structure of data, describes
other data. It can be extracted from experimental data and used
as an index to retrieve experimental data. For example, an image
may include metadata that describes the picture size, the color
depth, the image resolution, and when the image was created.
The information is self-evident for subsequent image analysis.
However, metadata is rarely provided in a unified structured,
comprehensive, and machine-readable form, which makes it
difficult to retrieve across multiple datasets. In order to solve
the above problems, researchers proposed an “open metaData
Markup Language” (odML) based on extended key-value pairs
(Jan et al., 2011; Lyuba et al., 2016). It uses odMLtables, which
are normally represented in tabular, to organize and store
complex metadata in a hierarchical structure (Sprenger et al.,
2019). Similar to odML, the Neurodata Without Borders (NWB)

15 http://neuralensemble.org/neo/.
16 http://neuroshare.org/.
17  www.signalml.org.

18 http://userwww.service.emory.edu/~cgunay/pandora/.
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format is defined for storing neurophysiological data and its
related metadata (Jeek et al., 2020).

Furthermore, in order to better integrate and hierarchically
manage metadata and experimental data in neuroscience,
some open data storage specifications have been continuously
proposed. These specifications include the Brain Imaging
Data Structure (BIDS) for neuroimaging (Gorgolewski
et al., 2016), and Hierarchical Data Format (HDF5) format
(Teeters et al., 2015) as well as Exdir for the general field
(Svenn-Arne et al., 2018).

In consideration of the latest use of multi-modal data,
metadata acts as the indexing role. Due to the flexibility of
the key-value representation of metadata, researchers could
add experiment-related information arbitrarily, thus making
metadata lose its meaning in sharing information across
multiple datasets. Therefore, metadata inspection, through
which researchers can check whether all mandatory fields exist
in the data file and verify the consistency of the information
in these fields, should be seriously considered and needs
further discussion.

Knowledge representation and
integration in neuroinformatics

Researchers with specific research questions usually need to
read up on the subject to retrieve relevant information. This
retrieval process is undoubtedly time-consuming. Therefore,
researchers propose a knowledge base management system for
answering neuroscience questions, which can quickly help to
answer research questions, thereby expediting the exposure of
the still controversial or missing parts of neuroscience.

Neuroscience research has produced a lot of resources
including tools, protocols, and data, to expound on the
mechanism of different neuroscience phenomena. However,
these resources are scattered and difficult to integrate (Bono
and Hunter, 2012). A key cause of this situation is the lack of
a unified semantic framework in neuroscience, which refers to
unifying naming rules and granularity of resource annotations
in specific fields (Gardner et al., 2008). Without the framework,
the terms in the neuroscience field are full of synonyms,
partial correspondences, and even homophones, making
otherwise effective scientific communication unnecessarily
difficult. Take neuroanatomy as an example, based on BAMS
2010),
researchers use the projection translation method to achieve the

Neuroanatomical Ontology (Bota and Swanson,
unified correspondence of terms across different nomenclatures.

Similar works include NeuroLex.org, a semantic wiki-based
website as well as a knowledge management system in the
neuroscience field. It brings neurobiological knowledge into
a framework, in order to allow neuroscientists to review
the concepts of neuroscience, and then link thisknowledge
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to data sources and descriptions of important concepts in
neuroscience (Larson and Martone, 2013). Another related
work, ApiNATOMY (Kokash and de Bono, 2021), as a
topological and semantic assembly framework, can help
physiologists to capture the process interactions between
neuroanatomical entities in multi-scale physiological route
modeling, such as the Nephron engages in multiple coalescences
with Blood Vessel leaf-distal lyphs.

Therefore, building a unified semantic framework can
help to create a machine-processable multi-scale neuroscience
knowledge base. Possible future expansion directions include
the development of graphical tools and automated algorithms to
detect the novel topological relationships between neuroscience
terms in the knowledge base, in order to accelerate the
construction process of the neuroscience knowledge base.

Multi-modal data sharing

Data sharing plays an essential role in open scientific
research and contributes to the reproducibility of the research,
the cost performance of the funding, and the small effect
identification. By sharing the research data, the low quality data
features, such as missing value and noise, could be uncovered
with multiple datasets comparison, thus making it possible to
verify the reproducibility. Due to the costly process of data
collection, sharing what we have obtained could increase the
cost-benefit ratio of the funding, which obviates the need for
repetitive data collection for the same research goal. Moreover,
small effects could be easy to be identified by combining the
shared data into large databases.

Although the benefits of data sharing are obvious, the
challenges of preventing researchers to share data are self-
evident, which are the concern over ethical and privacy issues,
the non-standardized data sharing schema, and the low level of
motivation to share from the authors. Specifically, data owners
first worry about whether the content of shared data meets the
ethical and legal requirements for data privacy and security
(Poline et al., 2012; Poldrack et al., 2013; Gorgolewski et al.,
2015). Second, they may find it difficult to integrate the shared
data due to the metadata management of heterogeneous data is
complex and standards are not unified (Garcia and Fourcaud-
Trocme, 2009; Poline et al., 2012; Poldrack et al., 2013; Christian
et al., 2014; Vaccarino et al., 2018). Moreover, the lack of widely
accepted quantitative methods to highlight the contribution
of shared data also restricts the motivation of data owners to
participate in data sharing (Poline et al., 2012; Poldrack et al.,
2013; Honor et al., 2016).

In order to overcome the aforementioned challenges,
researchers and organizations have done abundant work in data
security and privacy, sharing standards and schema as well as
highlighting the contribution of the data owner.
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Data security and privacy

Data is usually collected in the context of solving specific
scientific research problems. However, due to some public
data privacy violations, the subjects’ privacy is under attack.
For example, researchers can combine DNA sequences with
publicly available, recreational genealogy databases to re-identify
subjects (Gymrek et al., 2013), which makes subjects worried
about their identifiable health information being shared with
unknown parties and used for an unauthorized purpose,
such as advertising research or insurance (Wardlaw et al,
2011). Therefore, under the premise of complying with the
ethical requirements of data privacy, some emerging technical
means should also be adopted to strengthen the protection of
data security.

Obtain an informed consent document from the subject is
the premise of data sharing, which is the legal requirement of two
international initiatives, namely the Health Information Privacy
and Accountability Act (HIPAA) and the Protected Health
Information (PHI). Theoretically, once we get the informed
consent document from the subject, we will have the right to
publish data. Practically, the Institutional/Ethical Review Boards
(IRB/ERB) rarely grant researchers such right under the context
of extensive data sharing in informed consent (Poline et al,
2012; Dylan et al., 2014). Therefore, to address the dilemma
between data sharing and data privacy, researchers now could
conduct data sharing by setting the authorized access rights
of the data, such as Open Database Commons Public Domain
and Dedication License (PDDL), Open Database Commons
Attribution License (ODC-BY) and custom data license method
(Gorgolewski et al., 2015; Makoto et al., 2016).

Although we get permission from the subject that we can
publicize the data under a certain license, some data processing
techniques should be applied to these data to ensure data
security and privacy, such as data desensitization, data leakage
prevention, and sharing highly processed derived data. To be
specific, neuroimaging data should be de-identified by using
customized anonymous tools (Christian et al., 2014; Vaccarino
et al., 2018), such as mri_deface (Bischoff-Grethe et al., 2007),
a deidentification tool for structural brain magnetic resonance
images. Network and database security environments should be
designed to reduce the risk of data privacy leakage, especially
when allowing for querying archived data (Dylan et al., 2014).
In addition, researchers have also actively advocated the sharing
of highly processed derived data (Poldrack et al., 2013; Sarwate
et al., 2014), such as SumsDB (Dickson et al., 2001; Van Essen
etal., 2003), BrainMap (Laird et al., 2005), Neurosynth (Yarkoni
et al., 2011) and BrainSpell ** have shown that using differential
privacy strategies uin neuroscience research is feasible (Sarwate
etal., 2014; Peng et al., 2021).

19 http://brainspell.org.
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Thus, in order to alleviate the concern about the
privacy and security of data sharing, standards for
different data modalities sharing, for example, what
content and to what extent should be anonymized as
well as how to anonymize it, should be formulated.
On this basis, the IRB/ERB would be able to provide
guidelines for preparing ethics applications for data sharing,
which could help the researchers to share data as freely
as possible.

Data sharing standards and schemes

Data collected by different equipment consist of metadata
(descriptive information) and experimental data, among
which there are multiple modalities, such as clinical and
behavioral data, neuroimaging data, electrophysiological data,
and genetic data (Vaccarino et al, 2018). However, due to
the lack of a standard for data management, the metadata,
and heterogeneous experimental data are organized and
managed based on the privatization of different data platforms.
As a result, data needs to be frequently customized and
modified when integrating data, which in turn limits the
communication between heterogeneous databases (Poline
et al., 2012; Poldrack et al., 2013). Therefore, standardized data
sharing principles, and a unified data description are urgently
needed to meet the core requirement of interoperability in
data integration.

Data sharing principles such as the Neurolmaging Data
Model (NIDM) (Keator et al, 2013), the Cognitive Atlas
Ontology (Poldrack et al., 2011), and OntoNeuroLOG (Gibaud
et al., 2012), are all for special modal data annotation, have
been proposed in order to win the consensus among researchers,
publishers, and funders. Above all, a high-level guidelines for
sharing standardized data, the FAIR Data Principles (Findability,
Accessibility, Interoperability, and Reusability) have been
released (Wilkinson et al., 2016), which have become the current
international standard for scientific data management. Under
the guidance of principles, existing studies have made progress
in establishing a standard data description schema (data models,
ontologies), such as XCEDE (Gadde et al., 2012) and CDISC
(Souza et al., 2007).

Researchers have realized that the lack of data management
standards is a hindering factor that can’t be ignored in the data
sharing stage, and carried out some work to establish unified
data management standards. However, it is worth noting that
the metadata for a specific research question still needs to be
customized according to its research goals (Poldrack et al,
2013). Thus, how to obtain the balance between generalization
and specifications of the schemes or to promote the nowadays
models in order to be compatible with both occasions needs to
be further studied.
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Highlight data sources and contributions

Even if we address the aforementioned two challenges, the
lack of motivation from researchers to share data is not ignorable
(Poline et al., 2012; Christian et al., 2014). It is undeniable
that the research data is considered worthy of formal citation
(MOONEY and Hailey, 2011), but what makes the low-level
motivation is the lack of quantitative measurement of the impact
of shared data which is a proxy of the contribution of the data
owner. Therefore, while data sharing enhances the usability and
discoverability of the scientific research community, without
emphasizing the influence of shared data, it's hard to attract
data owners to share data only by means of devoting themselves
(Honor et al., 2016).

H-index is increasingly used as an important indicator
to measure scientific research contribution and the influence
of an individual. Similarly, it could be utilized to denote
the influence of the dataset. For example, the ADNTIs user
agreement requires the ADNI consortium to be listed on all
related publication’s author lists, which may not meet the
standards of authorship of scientific publications (Rohlfing
and Poline, 2012). For this reason, some organizations have
begun to develop data citation standards or guidelines,
such as the Research Data Alliance (RDA) and the Joint
Declaration of Data Citation Principles (JDDCP) (Starr
et al, 2015). These data citation standards or guidelines
aim at quantitatively measuring the impact of shared data,
thus proposing a series of methods for identifying and
citing data.

Researchers have investigated a variety of data identification
and citation schemes, such as RRID (Bandrowski et al,
2016), Thomson Reuters PermID %°, PURL 2!, Handles %,
and determined that the Digital Object Identifier (DOI)
% is the most widely accepted and widely supported
data identification and citation method. The Neuroscience
Information Framework (NIF) assigns DOI to the resources and
tools used in research, which are then included in publications
and subsequently indexed by Google Scholar and PubMed
(Gorgolewski et al., 2015).

Though the benefit of utilizing DOI in quantitatively
measuring the impact of the dataset is obvious, we still need
to pay attention to the existence of a single dataset appearing
in multiple data repositories for avoiding the duplication of
DOL Moreover, the monitoring of improper identifiers and the
standard of the landing pages of DOI should be taken into
consideration as well.

20 https://permid.org/.

21 http://handle.net/index.html.
22 http://handle.net/index.html.
23 https://www.doi.org/.
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Conclusion

Faced with floods of information, such as that stored
in databases targeting patients with an autism spectrum
disorder or Alzheimer’s disease, researchers will waste plenty
of time before obtaining answers to particular questions in
cohort studies. Obviously, building a neuroscience knowledge
base is believed to help resolve this problem. Thus, we
firstly propose a knowledge base framework that consists of
projects/organizations, multi-modal databases, and toolkits
related to cohort study. Then, we take the information objects
about the projects/organizations, multi-modal databases,
and toolkits in the Frontiers in Neuroinformatics journal as
a sample input, forming the knowledge base. Meanwhile,
we develop an open source complementary query tool,
PDT_fninf (https://github.com/Romantic-Pumpkin/PDT_
fninf), which allows interested researchers to quickly retrieve
information objects from the knowledge base in question.
Finally, based on the collection of information objects at
different stages in the data life cycle, we analyze its research
trends and draw key lessons that facilitate the discovery of
new knowledge.

Although we have preliminarily constructed a knowledge
base for cohort studies which has brought about the desired
effect, the information objects in the knowledge base are
incomplete to some extent for we merely use Frontiers in
Neuroinformatics journal as input data. In our future work,
therefore, we will improve the knowledge base in two ways:

Firstly, we advocate the use of the “5W-4M-6P” framework
in describing different information objects in the knowledge
base. Meanwhile, we hope that more researchers will transfer
the framework to other journals such as Neurolmage,
Neuroinformatics, Human brain mapping, etc., and contribute
their findings to the open source knowledge community.

Secondly, we will employ topic mining based on natural
language processing to expand knowledge base information
objects. With continuous improvement, the knowledge base will
provide more experience, knowledge, and innovative ideas for
cohort studies, and then help yield more revealing insights based
on the multi-modal databases.
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