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Depression affects many people around the world today and is considered a

global problem. Electroencephalogram (EEG) measurement is an appropriate way to

understand the underlyingmechanisms of major depressive disorder (MDD) to distinguish

depression from normal control. With the development of deep learning methods, many

researchers have adopted deep learning models to improve the classification accuracy

of depression recognition. However, there are few studies on designing convolution filters

for spatial and frequency domain feature learning in different brain regions. In this study,

SparNet, a convolutional neural network composed of five parallel convolutional filters

and the SENet, is proposed to learn EEG space-frequency domain characteristics and

distinguish between depressive and normal control. The model is trained and tested by

the cross-validation method of subject division. The results show that SparNet achieves a

sensitivity of 95.07%, a specificity of 93.66%, and an accuracy of 94.37% in classification.

Therefore, our results can conclude that the proposed SparNet model is effective in

detecting depression using EEG signals. It also indicates that the combination of spatial

information and frequency domain information is an effective way to identify patients

with depression.

Keywords: SENet, SparNet, space-frequency domain characteristics, depression, EEG

1. INTRODUCTION

Major depressive disorder (MDD, also known as unipolar depression) is a physical disease of the
brain, also known as a mental health disorder. It mainly affects the process of thought, behavior,
and mood, and also can lead to the loss of interest and energy, interpersonal relationships, and job
performance. According to the statistics of the World Health Organization, more than 300 million
people in the world suffer from depression, and about 800,000 people die of depression every year
(Belmaker and Agam, 2008; Olesen et al., 2012;Whiteford et al., 2013). Early and accurate diagnosis
of depression is crucial for patients who need timely clinical treatment.

Most of the previous diagnoses of depression are based on the questionnaires as a
judgment and screening tool. One of the major drawbacks of this method is that it
requires experienced doctors. Therefore, finding a suitable and effective way to detect
depression is an emerging research area. Currently, various physiological measurement
tools are developing rapidly, such as functional magnetic resonance imaging (fMRI),
electroencephalogram (EEG), and positron emission tomography (PET). Many studies attempt to
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measure psychological data and develop auxiliary diagnostic
methods in clinical practice (Van Der Stelt and Belger, 2007;
Michel andMurray, 2012; Olbrich and Arns, 2013; Kerestes et al.,
2014; de la Salle et al., 2016). The quantitative measurement of
EEG signals is a neuroimaging technique with obvious practical
advantages because it does not involve invasive manipulation,
and it is easy tomanage, well-tolerated and relatively inexpensive.
In addition, the prevalence and persistence of depressive
symptoms make scalp recording EEG an appropriate method to
understand the underlying mechanisms of depression.

Most of the existing deep learning methods take the original
data of EEG signals or transform them into frequency-domain
signals as input, thus losing the spatial features between multiple
brain regions and the whole brain. Liao et al. (2017) and Jiang
et al. (2021) showed the effectiveness of spatial information
in distinguishing depression. Considering that the irregular
EEG network is one of the possible physiological symptoms of
depression, the EEG activity has spatial characteristics originating
from different brain regions, so the spatial EEG characteristics
extracted from different brain regions can be used to identify
depression. Cai et al. (2018) also found that the features in
the frequency domain were more likely to distinguish patients
than those in the time domain. By fusing these two features
of comprehensive mixed information, it is expected to achieve
richer and more accurate identification of depression. Although
it is possible to explore the spatial information of the brain
based on the internal structure of neural networks, there are
seldom studies that have explored the spatial information of
the various brain regions in depression based on the whole
brain structure from EEG signals. The purpose of this study is
to combine the spatial information and the frequency domain
information of each brain region, and integrates them with
deep learning.

The main contributions of this study are as follows.
First, phase space reconstruction is used to denoise the EEG
signals in the time domain and smooth the feature in the
frequency domain. Second, a new model called SparNet is
proposed to capture more specific information about depression
in this study. It is a parallel convolutional network used
to extract the features of different brain regions, and the
attention mechanism module is added to the network. Third,
the channels for each brain region are selected to explore
the local spatial-frequency domain features. The frequency
domain and the spatial features of each brain region are
combined by the multi-layer parallel convolutional filter. By
adding the attention mechanism, our deep learning model
can assign the weights to different channels in the local
brain region and also to different contribution degrees in the
global brain region.

2. RELATED STUDY

All approaches to depression identification fall into two broad
categories: those based on the manual features and those based
on the raw data. Hosseinifard et al. (2013) used a large EEG
recording dataset of 90 subjects (45 normal subjects and 45

depressed subjects) and found that in non-linear features, the
correlation dimension is a powerful feature for analyzing EEG
signals and identifying the depressed and the non-depressed
subjects. Cai et al. (2018) through three-electrode channel
acquisition, found that features were mainly concentrated in the
frequency domain, and achieved the best accuracy of 79.27%
with KNN. Their recent study, Cai et al. (2020b) compared
KNN, DT, and SVM on the same data set. Their KNN model
achieved the highest accuracy of 89.98%. Liao et al. (2017)
proposed a nuclear feature filtering group common space Mode
(KEFB-CSP) based on the scalp EEG signals. The signals were
decomposed into each frequency band and then the spatial
features were extracted by the CSP algorithm. Mumtaz et al.
(2017) conducted the time-frequency decomposition of an EEG
data and constructed EEG data matrix. Compared with other
time-frequency methods such as STFT and EMD, the wavelet
analysis has the highest classification accuracy of 87.5%. Mahato
and Paul (2020) found that the average theta asymmetry of
normal people was higher than that of patients with depressive
people. In SVM, the classification accuracy of alpha2 and theta
asymmetric combination is 88.33%. Peng et al. (2019) collected
128 electrodes of the subjects, and the research results showed
that depression would affect the brain activity of almost the entire
cerebral cortex, and the accuracy of 92.73% was achieved by
using SVM and full frequency band features. Sun et al. (2020a)
found that there were far more functional connections within
hemispheres than between hemispheres. High frequency parietal
occipital lobe plays an important role in depression recognition.
They Sun et al. (2020b) achieved the highest classification
accuracy of 82.31% by using the ReliefF feature selection method
and LR classifier on the same data set. They further indicated
that the functional connection feature plays an important role in
depression recognition. Jiang et al. (2021) proposed an effective
EEG based spatial classification detection method for depression,
task-related common spatial pattern (TCSP), which significantly
improved the accuracy of depression classification by using
spatial information.

Although feature extraction and machine learning can
effectively identify patients with depression, manual feature
extraction and selection are required, which is time-consuming
and laborious. There are many studies that use raw EEG data or
pre-processed data as model input. Zhang et al. (2020) extracted
the temporal and spatial characteristics of EEG signals by
1DCNN and added the population attention mechanism. They
suggested that the combination of EEG signals and demographic
factors could be better for patients with depression. Fan et al.
(2020) combined CNN and LSTM to better extract time and
space information. Ke et al. (2020) designed a lightweight CNN
model for the online identification of patients with depression.
Wan et al. (2020) proposed a convolutional neural network
HybridEEGNet composed of two parallel lines for learning
synchronization and regional EEG features. Seal et al. (2021)
found that the right extreme value of the subjects with depression
was significant, while the left extreme value of normal subjects
was significant. Sharma et al. (2021) proposed a computer-aided
(CAD) hybrid neural network based on EEG, that used CNN for
time learning and LSTM architecture for sequence learning.
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In the detection of depression, the spatial and frequency
domains are two important factors, but there are no suitable
neural networks to combine them together. Therefore, we
propose the SpatNet neural network to combine the two features
to improve the detection of depression.

3. MATERIALS AND METHODS

3.1. Participants
The dataset used in this study is from Lanzhou University.
The dataset (Cai et al., 2020a) mainly includes data from
patients with depression and the normal control group. Prior
to the experiment, all participants signed the written informed
consent. The consent and study design were approved by
the Local Biomedical Research Ethics Committee of Lanzhou
University Second Hospital in accordance with the World
Medical Association rules. There were 48 participants, including
24 patients with depression (13 men and 11 women; 16–56 years
old) and 24 healthy controls (17 men and 7 women; 18–55 years
old). All patients with depression underwent a structured MINI
interview, which met the diagnostic criteria for depression in
the DSM-IV-based Diagnostic and Statistical Manual of Mental
Disorders (DSM). Patients with MDD were selected based on
their PHQ-9 (Kroenke and Spitzer, 2002), GAD-7 (Spitzer et al.,
2006), and PSQI scores. Participants should be between 18 and 55
years old and have primary or higher education. For depression,
inclusion criteria were MINI meeting the diagnostic criteria,
patient health Questionnaire (PHQ-9) score of 5 or greater, and
no psychotropic medication in the past 2 weeks.

3.2. Data Acquisition and Preprocessing
Subjects were asked to stay awake and still, and to reduce head
and body movements and eye movements to reduce EMG and
EOG, respectively, which record a 5-min resting state of closed
eyes. EEG signal acquisition equipment is 128-channel HydroCel
Geodesic Sensor Net. The sampling rate is 250 Hz. The reference
electrode is Cz. The skin impedance of each electrode channel is
kept below 70 k�.

The resting EEG signals are further processed using MATLAB
2021b. In the first step, the infinite impulse response digital
filter IIR is used to perform 1–40 Hz band-pass filtering on
the signal, and the order of the filter is set as 6. The filter can
eliminate the “baseline drift” caused by low frequency noise
and electrical interference from the 50 Hz-line noise. In the
second step, independent principal component analysis is used
to remove the EOG and EMG. Meanwhile, the integrity of
channel recording signals is checked. If the invalid channels are
detected, spherical interpolation is used for interpolation. The
EEG signals of depressed patients and normal people are shown
in Figure 1. In the third step, the processed time-domain signal
is decomposed and reconstructed to remove the noise. A phase
space reconstruction of a time-domain signal is decomposed into
three signals, and then the new signal is reconstructed through
the least square interpolation. The fourth step is to keep the same
sample size between the subjects. The sliding window with the 2s
non-overlap method is adopted for sectioning (Siuly et al., 2015),
and the sample size of each subject is 148*2s. In the process of
beginning and ending the experiment, the interference of brain
electricity would be relatively large, so we discarded the first
sample and the last sample.

3.3. The Time-Domain Denoising
3.3.1. Phase Space Reconstruction
Compared with normal EEG signals (Knott et al., 2001;
Puthankattil and Joseph, 2012; Sharma et al., 2018), inhibited
EEG signals have stronger stability and lower complexity. Hence,
the phase space reconstruction is used to better analyze the
complexity and non-stationary behavior of normal and depressed
EEG signals in two-dimensional space, and the unstable noises
are removed. In Sharma and Pachori (2015), Bhattacharyya
and Pachori (2017), the two-dimensional diagrams of EEG
signals have been used for seizure detection. The phase space
reconstruction was first proposed in 1980. There are mainly
two methods for phase space reconstruction: the derivative
reconstruction method and the coordinate delay reconstruction
method. The data set is collected in the resting state, so the
signal is generally stable. The current signal feature can be

FIGURE 1 | Electroencephalogram (EEG) signals from (A) normal and (B) depressed subjects.
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predicted by the previous signal feature and the following feature.
Based on this characteristic, the coordinate delay reconstruction
method is finally adopted. The generation of the PSR requires
the determination of delay time t and embedding dimension d,
which can be obtained by mutual information (MI) (Roulston,
1999; Bradley and Kantz, 2015) and false nearest Neighbor (FNN)
(Bradley and Kantz, 2015), respectively. Supposing the time series
is x(i): i = 1, 2, . . . , n, the d dimensional phase space vector is
constructed by different delay time t of one-dimensional time
series x(i), as shown in Equation (1).

y(i) = (x(i), . . . , x(i+ (d − 1)t)), 1≤i≤n− (d − 1)t (1)

The initial application of the PRS is in the chaotic time series.
According to Takens’ embedding theorem (Stark et al., 1997;
Muldoon et al., 1998; Kukavica and Robinson, 2004), we can
reconstruct a phase space from one-dimensional chaotic time
series that is the same as that of the prime motorial system in the
sense of topology. According to this principle, the EEG signals as
the general time series can reconstruct a phase space topologically
identical to the original signal by determining the delay time t
and d dimensions of the phase space. Since the EEG signal is
collected by the subject in the resting state with eyes closed, the
brain activity is relatively stable, and the characteristics of the
current signal can be determined by the characteristics of the
front and rear signals. If there are interference noises at this time,
the original signal will have a mutation in the waveform. We can
determine and correct the reconstructed phase space.

3.3.2. Least Square Fitting
After the original EEG signal is reconstructed in the phase space,
the reconstruction is selected as a three-dimensional phase space
vector. Then, the linear least square method by Kiers (1997)
is used to fit each point inside, because the EEG signal in the
resting state would not have mutations. Thus, the current signal
point could be fitted according to the characteristics of the signals
before and after. Given n points (xi, yi), i = 1, 2, 3, . . . , n. xi is not
the same, as shown in Equation (2).

f (xi) = a1r1(xi)+ a2r2(xi)+ · · · + amrm(xi) (2)

f (x) is closest to all the data points. We assume that the
current data point is i (unknown) and all known points before
and after are taken to determine the fitting function. Where,
the steps to determine the coefficient ak are as follows: First,
the error function of the fitting curve and the original curve
is Equation (3).

J(a1, a2, . . . , am) =

n
∑

i=1

δ2 =

n
∑

i=1

[f (xi − yi)]
2 (3)

For a1, a2, . . . , am minimizes J, use the necessary extreme
conditions: ∂J/∂ak = 0 (k = 1, . . . ,m) to get the linear
Equation (4).

n
∑

i=1

rj(xi)[

m
∑

k=1

akrk(xi)− yi] = 0, (j = 1, . . . ,m) (4)

FIGURE 2 | Phase space reconstruction and the least square method were

used to detect EEG signals before and after denoising in patients with

depression.

make R=







r1(x1) · · · rm(x1)
...

. . .
...

r1(xn) · · · rm(xn)






, A = [a1, . . . , am]

T , Y =

[y1, . . . , yn]
T , so we can rewrite this equation as Equation (5).

RTRA = RTY (5)

Thus, when the equation satisfies r1(x), . . . , rm(x) linearly
independent,R column full rank,RTR invertible, there is a unique
solution Equation (6).

A = (RTR)−1RTY (6)

For the selection of function rk(x), we use the polynomial curve to
better fit the EEG signal. Figure 2 shows the comparison before
and after denoising EEG signals of patients with depression by
using phase space reconstruction and the least square method.

3.4. Characteristics of Feature Smoothing
Pham et al. (2015) proposed the importance of feature smoothing
for emotional EEG classification. The denoised EEG signal is
converted into the frequency domain signal by the fast Fourier
transform. The frequency domain signal is used as the input
of the neural network. Each sample is segmented according to
the time sliding window. Therefore, the transformed frequency
domain signals are also smoothed according to 148 time points
(each sample size). The EEG signals are collected by the subjects
with their eyes closed, so the changes in the EEG signals in the
frequency domain are not particularly obvious. Equations (7) and
(8) are used to calculate the difference between the signals at each
time point and the mean value of the signals.

δij = |yij − E(Y)i|, 1≤i≤40, 1≤j≤148 (7)

E(Y)i =
1

J

J
∑

j=1

yij (8)
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Where Y represents the amplitude, i represents the frequency,
and j represents the time point. E(Y) is the mean of a sample of
a subject at frequency i. δij is the error between each sample point

and the mean.

δij − 3

√

√

√

√

√

1

J

J
∑

j=1

(yij − E(Y)i)2 > 0 (9)

Mark yij as an outlier if the value of yij differs from the

mean by more than three standard deviations as shown in
Equation (9). After the outliers are detected, the yij sample points

marked before are smoothed by the method of before-and-
after mean interpolation. In this way, the influence of abnormal
features can be further cleaned up, while maintaining the overall
trend of frequency domain features. At the same time, it can
reduce the risk of over-fitting during the training of the neural
network.

3.5. Attention Module
The attention mechanism is a special structure embedded in
a machine learning model, which is used to automatically
learn and calculate the contribution of input data to output
data. The attention mechanism is a signal processing
mechanism discovered by some scientists in the study of
human vision. Some practitioners in the field of artificial
intelligence have introduced this mechanism into some
models. At present, the attention mechanism has become
one of the most widely used “components” in the field of
deep learning, especially in the field of natural language
processing. The classic ones are BERT, Transformer (Devlin
et al., 2018; Wang et al., 2019), and other models or structures
that are highly exposed in the past 2 years. In this article,
we adopt the SENet (Squeeze-and-Excitation Networks)
(Hu et al., 2018) module incorporated with the channel
attention mechanism.

In our proposed network model, the EEG signals are
converted into frequency domain features and then used as the
input of the SENet module. The SENet module is originally used
to process the two-dimensional images, in this article, we use it in
one-dimensional signal processing. It can mainly use the global
information to selectively emphasize the information features
and suppress the less useful features by assigning different weight
values to each channel. This is a combinatorial function of five
consecutive operations: channel global average pooling (Lin et al.,
2013), complete connection layer, Relu, complete connection
layer, and finally Sigmoid. The sigmoid activation plays an
important role as the channel weights that adapt the input specific
descriptors. Due to the fully connected layer and pooling layer,
the number of parameters and the computation load increased
slightly. The unique structure of this extrusion and excitation
network, shown in Figure 3, can be used with any standard
architecture.

FIGURE 3 | Structure diagram of SENet network applied to one dimensional

EEG signal. The weight of each channel of EEG signal before processing is

equal, so the color of the channel is the same. The different channels after

processing were assigned different weights, with different colors representing

this change.

3.5.1. Squeeze
SENet implements compression operations through the global
average pooling to generate channel statistics. Where Z∈RC, and
the kth element zk of Z is calculated by Equation (10).

zk = Fsq(uk) =
1

L

L
∑

i=1

uk(i), k = 1, 2, · · · ,C (10)

where Fsq(·) is the compression operation, and uk is the feature
on the kth channel. C is the total number of channels.

3.5.2. Excitation
The excitation operations help to capture channel dependencies
and greatly reduce the number of parameters and calculations.
The excitation part is mainly composed of two fully connected
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layers and two activation functions, which can be written as
Equation (11).

S = Fex(Z,W) = σ (γ (Z,W)) = σ (W2δ(W1Z)) (11)

where S = s1, s2, . . . , sC,sk∈R
L(k = 1, 2, . . . , L). Fex(·) is the

excitation operation. W1∈R
C
r ×C, W2∈R

C× C
r , W1, and W2 are

the weights of the two fully connected layers used for dimension
reduction and dimension enhancement. Z is the fully connected
input after global average pooling. r is a hyperparametric ratio,
which can change the capacity and calculation cost. δ(x) is
the activation function Relu used to prevent the gradient from
disappearing (Gu, 2017). σ (x) = 1

(1+e−x)
is a sigmoid function.

Equation (12) is used to calculate the final output x̃k(k =

1, 2, · · · ,C). The output is obtained by multiplying the input
channels by their respective weights.

x̃k = Fscale(uk, sk) = uk · sk (12)

where x̃k ∈ RL refers to the multiplication above the channel. skis
the processed channel weight. uk is the original eigenvector.

4. PROPOSED DEEP LEARNING SCHEME

Convolutional Neural Network is a special type of neural network
which is widely used in image processing and classification
tasks. It is a state-of-the-art deep learning method consisting
of many stacked convolutional layers. The network consists of
a convolution layer, pool layer, and final complete connection
layer. The EEG signals are one-dimensional time series signals.
After converting them into frequency domain signals, multi-
channel one-dimensional frequency domain signals are input.
Therefore, 1DCNN is used in the convolutional neural network.
The features in the frequency domain can be fully combined with
the spatial information between channels.

4.1. Convolution Layer
At the convolution layer, 1DCNN carries out the convolution
operation on the local area of the input signal to generate
the corresponding one-dimensional feature map. Different
convolution kernels extract different features from the input
signal respectively. Each convolution kernel detects the specific
features of all positions on the input feature graph to achieve
the weight allocation on the same input feature graph. The
characteristics of the local connectivity and weight sharing
effectively can reduce the complexity of the network and the

FIGURE 4 | The proposed architecture of the CNN model based on SENet and SparNet. Where ** represents the level of the convolution filter. Conv1d is a

one-dimensional convolution operation.
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number of training parameters. If the L layer is the convolution
layer, Equation (13) of the one-dimensional convolution layer is

xlj = f (

M
∑

i=1

xl−1
i ∗ klij + blj) (13)

where k represents the convolution kernel, j represents the
number of convolution kernels, and M represents the number
of channels of the input x(l − 1) of the upper layer. b is the
offset of the convolution kernel, and * stands for the convolution
operation. f (·) is the activation function.

4.2. Activation Layer
What is done in the convolution layer of the upper layer is to
process the input features in the way of convolution, i.e., to assign
a weight to each pixel point. This operation is linear. But for
samples, they are non-linear separable instead of linear separable.
Thus, we add the activation function Relu Equation (14) here.

f (x) = max(0, x) (14)

As a non-linear factor, the activation function added to the model
can make the model more expressive and better fit the data.

4.3. Pooling Layer
The downsampling stage is after the convolution layer and the
number of feature graphs increases. This leads to the expansion
of the data dimension, which is not conducive to calculation.
Therefore, the average pooling or maximum pooling is used
to process each feature map in this stage. The average pool
is calculated according to the size of the predetermined pool
window, and the maximum pool method selects the maximum
parameter within the predetermined window range as the output
value. In our study, the maximum pooling operation is adopted.
The pooling kernel size is 1*2, the step size is 1, and there is
no filling.

4.4. Connection Layer
After passing through the convolution layer, the data scale
is channel×features, and the feature dimension needs to
be straightened into one dimension. At this point, the full
connection layer of the node is connected with all neuron nodes
output from the feature mapping of the previous layer, and the
activation function is softmax function. If the final pooling layer
is l+1 and output to the full connection layer, then the output of
the full connection layer is Equation (15).

h(x) = f (wl+1 · xl+1 + bl+1) (15)

where w represents the weight of each feature, and b represents
the offset. F(·) represents the activation function.

4.5. Loss Function
It is used to calculate the error between the classification
prediction label and the actual label. The classification cross
entropy is used as the loss function, and the probability
distribution is compared with the real distribution. L1, L2, . . .,

TABLE 1 | Detailed information about the proposed SparNet deep model.

No Names of layers Kernel size Parameters of layers

0 Input — —

1 SENet(1−5) — Reduction = 2

2 Conv1D(1)(3−5) 12*5 Stride = 1

Conv1D(2) 25*5 Activation = Relu

3 MaxPooling1D(1−5) 2 Stride = 2

4 SENet — Reduction = 2

5 Conv1D 5*2 Stride = 1, Activation = Relu

6 MaxPooling1D 2 Stride = 2

7 Dense — Neurons = 2

8 Softmax — —

The ** represents the level of the convolution filter: SENet(1−5) represents the SENet of the

1st to 5th layers.

TABLE 2 | Channels in different brain regions are selected.

C E36-E104,E30-E105,E41-E103,E37-E87,E42-E93,E47-E98

F E19-E4,E22-E9,E24-E124,E27-E123,E32-E1,E33-E128

O E70-E83,E71-E76,E69-E89,E74-E82,E73-E83,E75,E81

P E52-E92,E60-E85,E51-E97,E67-E77,E59-E91,E72,E62

T E58-E96,E45-E108,E114-E44,E100-E46,E102-E57,E50-E101

and LT are represented by the one-hot encoding strategy. The loss
function can be calculated as Equation (16).

Loss = −

T
∑

i=1

M
∑

j=1

Li,j ∗ logpi,j (16)

where T is the number of verification data samples, M is the
number of classes, pi,j is the predicted value obtained from the
fully connected layer, and Li,j is the true value.

4.6. SparNet
In view of the advantages of CNN, one-dimensional CNN is
used to extract the spatial frequency features of EEG signals. In
the proposed SparNet network architecture, each layer is directly
connected to each other in feedforward mode. In Figure 4,
the SparNet network consists of six sub-CNNs. Each sub-CNN
consists of a SENet, Conv1d, Relu, and Maxpooling. Five of them
are at the same level to form a network of parallel structures to
operate the brain region, and the last convolutional operation
performs a processing operation on the global brain. Finally,
there is a fully connected layer output result. The SENetmodule is
added to each sub-network to increase the attention mechanism
between channels and brain regions. Table 1 details each layer of
the proposed SparNet network and the parameters of each layer.

First of all, the same sample size is kept between the subjects.
We use the sliding window 2s non-coincidence method to slice,
and the sample size of each subject is 148*2s. In this study, since
the recognition features of depression patients are mainly in the
frequency domain signals, we manually extracted the features in
this step. The EEG signals are transferred from the time domain
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to the frequency domain (1–40 Hz) by a fast Fourier transform,
and the frequency domain signal is used as the input of the neural
network. The channels are sorted out before entering the first
layer of the model. The channels are divided into five regions
according to the brain regions. At this point, the data size of each
brain region is channeled *40. Before entering the convolution
layer, the SENet module will adjust the weight of each channel,
and then the space frequency domain features of each brain
region will be extracted through convolution operation and
maximum pooling. The features of five brain regions will be
spliced to form a feature scale of 5*features, where 5 represents
five brain regions. The SENet module then weights each brain
region based on global features. After the convolution operation,
the output of the full connection layer is entered. Figure 4 shows
the whole signal processing process of the network.

4.7. Characteristics in the Space
Frequency Domain
Peng et al. (2019) and Jiang et al. (2021) showed that the EEG
signals of depressed patients had better feature representation in
the frequency domain, where absolute power and relative power
in the frequency domain were of great help in identifying patients
with depression. Moreover, the expression of EEG signals in the
power spectrum of patients with depression is obviously different
from that of healthy people. Stark et al. (1997) and Lin et al.
(2013) showed that in the spatial domain of channels, the brain
functional connections of patients with depression were different
from those of normal people, and the accuracy of classification of
patients with depression was significantly improved.

Therefore, this article aims to combine frequency domain and
spatial domain to effectively identify patients with depression

FIGURE 5 | The division of the brain between different brain regions.
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in space-frequency domain. Based on the characteristics of the
brain, it is divided into five brain regions. First, the local space-
frequency domain is explored, and then the feature extraction
of the global space-frequency domain is carried out. The brain
regions are shown in Table 2.

In order to explore the influence of various brain regions on
patients with depression, we divide the brain into five parts as
shown in Figure 5: central region, frontal lobe region, occipital
lobe region, parietal lobe region, and temporal lobe region. The
first layer of the SparNet network has five parallel sub-CNNs
corresponding to the five brain regions. Due to the tightness
between brain regions, we initially select 12 channels in each
brain region to carry out space frequency domain characteristics
of brain regions. In order to accurately locate the channels in
each brain region, we obtained the channel location information
from Luu and Ferree (2005) by referring to the 128-channel
HydroCel Geodesic Sensor Net device. Each channel contains
spatial information about the brain. Additionally, in order to
avoid the influence of multiple brain regions on a single channel,
we select 12 channels distributed in the central location of each
brain region without selecting channels at the edge of the brain
region. The channels are then added individually according to
each brain region’s contribution to the recognition of depression.
The selection of preliminary channels is shown in Table 2.

5. RESULTS

5.1. Evaluation
There are 48 subjects in total. In order to better generalize the
model, we adopt dataset division among subjects. A total of 24
sets are obtained by combining a depressed patient with healthy
control, using the one-subject cross-validation (LOSOCV) to
assess the generalization ability of each classification model.

In this study, accuracy, sensitivity, and accuracy based on
the confusion matrix are used as the performance evaluation
indexes. Sensitivity (recall rate) is defined as the percentage of
patients with MDD predicted in all MDD patients (TP+ FN),
and precision is defined as the percentage of healthy controls
predicted in all healthy controls (TP+FP). Accuracy is defined
as the percentage of correctly classified patients with MDD
and healthy controls. F1 index takes into account both model
accuracy and recall rate and is defined as the harmonic mean of
model accuracy and recall rate.

Accurary =
TP + TN

TP + TN + FP + FN
(17)

Sensitivity =
TP

TP + FN
(18)

Precision =
TP

TP + FP
(19)

F1Score = 2×
Precision×Sensitivity

Precision× Sensitivity
(20)

FIGURE 6 | Network structure diagram of brain regions.

The Receiver Operating characteristic (ROC) curve is used for
evaluation. The ROC curve is widely used in binary classification
evaluation, which evaluates sensitivity and specificity against
several thresholds.

5.2. Partial Results
The brain is divided into five regions: frontal, central, parietal,
occipital, and temporal. In order to more effectively identify
people with depression, we explored the importance of different
brain regions. The importance of 12 channels in each brain region
is evaluated. 1DCNN is performed on each of the five brain
regions, and the evaluation index is the average accuracy after
each fold. The neural network model of brain regions is shown
in Figure 6.

Each subject is included in the test set by a 24-time retention
cross-validation method for each brain region. The accuracy of
each brain region is shown in Figure 7.

As can be seen from the results, the frontal lobe has a greater
contribution to the identification of patients with depression
compared with other brain regions, which is consistent with the
results of Jiang et al. (2021), indicating the feasibility of the frontal
lobe channel detection for depression. Wan et al. (2020) also
prefer the frontal lobe channel in terms of channel selection.
Depression patients with low moods will lead to emotional
differences from normal people. Since the frontal lobe is the main
brain area for emotional processing, the frontal lobe is more
important for the identification of depression patients. Thus, in
order to better explore the characteristics of the global space
frequency domain, the number of channels in the frontal lobe is
increased to 25 channels, E19-E4, E22-E9, E24-E124, E27-E123,
E32-E1, E33-E128, E15, E11, E1 - E32, E27 - E123, E13 - E112,
E29 - E111, E28-117, the E6, E121 - E38, E34 - E36, combined
with the cerebral cortex region occupied by the frontal lobe.
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FIGURE 7 | The accuracy of different brain regions in identifying people with depression.

5.3. Global Results
The software Matlab 2020b is used to preprocess the data, and
the EEG data are segmented with a 2s window length. After that,
the time domain signal is converted to the frequency domain
as the characteristic input of the model. The space frequency
domain features of the EEG signal will be extracted by a two-layer
convolution operation. In addition, in the convolution operation,
each channel will be adjusted according to the parameters of a
convolution kernel, and will not be affected by the parameters
of other channels. Therefore, the channel grouping order has no
significant impact on performance.

For training the model, the batch size is 8, and each network
is trained with 50 epochs. The cross entropy is selected as the
loss function. In the optimization stage, the RMS algorithm is
selected to obtain better results and a shorter running time. If
the loss function is verified not to improve after 10 consecutive
epochs, the early stop criterion is used. Figure 8 shows the
calculation results for each fold. The ROC and AUC values of
the above methods are shown in Figure 9 for each fold. Due
to the differences between the subjects, the minimum AUC

area obtained is 0.829, and there are 16-fold AUC areas over
0.95, which also demonstrates the effectiveness of the model.
The results of cross-validation are statistically analyzed. The
mean values of F1, Acc, Precision, Sensitivity, Specificity are
0.947, 0.953, 0.937, 0.951, and 0.942, respectively. The standard
deviation of F1, Acc, Precision, Sensitivity, Specificity are 0.054,
0.056, 0.082, 0.063, 0.056, respectively.

The results of 24-folds are combined and analyzed, and the
evaluation indexes obtained are shown in Table 3, in which the
accuracy rate reaches 94.37%. At the same time, the ROC and
AUC values of the above methods are shown for the overall
results, including the ROC and AUC values of the individual
categories of normal people and depressed patients, as shown
in Figure 10. The AUC area of the overall data is 0.9682. All
the evaluation indicators decrease when the input characteristics
in SparNet are time domain signals. The results are shown
in Table 4, named “With Time Domain”. Thus, the frequency
domain feature is more effective than the time domain feature.

For the proposed model, in order to verify the effectiveness of
the attention mechanism in identifying patients with depression,
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FIGURE 8 | Twenty-four-fold cross-validation results including accuracy, precision, sensitivity, specificity, and F1 evaluation indicators.

six SENet modules are removed from the model and the
comparison before and after the results are shown in Table 4.

It can be seen from the results that adding an attention
mechanism into the model can improve the learning ability
of the model. The accuracy rate of depression identification
is improved by 3.13%, and all the evaluation indicators are
also improved.

In this article, after converting the EEG signals into the
frequency domain, the smoothing operation is performed on
the frequency domain features. The comparative experiments
are conducted before and after feature smoothing, and the
experimental results are shown in Table 4.

It can be seen from the results that the accuracy is improved
by 4 % using the smoothed features as the input. Furthermore,
we can observe that all the evaluation indicators are improved at
the same time. The calculation cost of the network is calculated.
The parameter number of the SparNet network is 8,725, and
the network parameter without the SENet module is 455.
The number of network parameters without smooth is 8,725,
mainly to illustrate the necessity of feature smoothing for neural
networks. The SparNet parameters are mainly contributed by the
SENet module.

6. DISCUSSION

Screening for depression is very important for early diagnosis
and treatment. However, the previous diagnosis of depression
is confined to a manual questionnaire survey and feature
extraction, which is subject to many limitations. For example, a
questionnaire survey required experienced doctors, while feature
extraction required a lot of manpower to find the characteristics
of relevant indicators. The deep learning methods can overcome

this limitation and can be used anywhere without highly trained
experts. In this study, we use feature smoothing and deep
learning for the automatic detection of patients with MDD
and healthy controls with good performance. The attention
mechanism is combined with 1DCNN, and the spatial-frequency
domain features are extracted by brain regions. The accuracy rate
of our model reaches 94.37%.

The main innovation of this study is to make full use of the
spatial and frequency domain characteristics of the brain. We
also try to smooth the input of the neural network. Experimental
results show that the frequency domain characteristics of
the input smoothing processing can effectively improve the
identification accuracy of patients. In addition, due to the
characteristics of the convolutional neural network, the brain
is divided into different regions for feature extraction of
parallel structures.

It can be seen from the final results that adding the SE module
into the 1DCNN neural network can make the model have
higher accuracy. This is because the convolutional layer provides
a powerful feature fusion technology, although the weights
between channels are unified by default. The SE module can
better highlight the importance of different channels. At the same
time, although there has been a feature of converting the EEG
signal into the frequency domain as the input, the segmentation
of brain regions according to the brain’s structure can make
the spatial information of brain regions better interpreted. The
results for each brain region and the final results for the whole
brain region show that although each brain region is helpful in
identifying depression, the characteristics of the whole brain are
better. It could be thought that a large amount of space-frequency
information is lost for a single brain region and cannot get a
significant effect.
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FIGURE 9 | Twenty-four-fold cross-verified ROC curves and areas.

TABLE 3 | Performance values obtained when testing the SparNet model using EEG data.

Class
Predicted

depression Normal Acc Precision Sensitivity Specificity F1

Actual Depression 3,327 225 0.9437 0.9375 0.9507 0.9366 0.9440

Normal 175 3,377 0.9500 0.9366 0.9507 0.9432

Table 5 is a comparison of results on the same data
set. It can be seen that the accuracy of this study is
higher than that of traditional machine learning methods
for linear and non-linear extraction. Additionally, compared
with Peng et al. (2019), we use fewer channels to achieve
better accuracy and obtain the best results in this dataset in
automated detection of patients with depression and healthy

controls, which could provide better solutions for future
clinical applications. Compared with Zhang et al. (2020), the
combination of multi-parallel 1DCNN and SE modules in
this study tests the importance of space-frequency information
and other advantages. However, the main shortcoming of this
study is the data size to train the network, which can be
overcome by simplifying the deep model. Our future goals

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2022 | Volume 16 | Article 914823

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Deng et al. SparNet: A CNN for EEG

FIGURE 10 | Receiver Operating characteristic (ROC) curves and area of overall EEG data tests.

TABLE 4 | Comparison of results before and after adding SENet module.

Acc Precision Sensitivity Specificity F1

SparNet 0.9437 0.9375 0.9507 0.9366 0.9440

With time domain 0.8851 0.9189 0.8607 0.9104 0.9130

Without the SENet 0.9124 0.8953 0.9341 0.8907 0.9143

Without smooth 0.9037 0.9099 0.9042 0.9104 0.9070

TABLE 5 | The confounding matrix and evaluation index are used to compare the classification results of SparNet and correlation methods in the same data set.

References Methods Channels number Classification methods Accuracy (%)

(Sun et al., 2020b) Linear features, non-linear features, PLI 16 Channels ReliefF, LR 82.31

(Peng et al., 2019) PLI 128 Channels Kendall rank correlation coefficient+SVM 92.73

(Sun et al., 2020a) Linear features, non-linear features, PLI, network measures 128 Channels C4.5, BFDT, LR 84.18

(Zhang et al., 2020) Time domain feature 3 Channels 1DCNN 75.29

SparNet Frequency domain feature 73 Channels 1DCNN 94.37

The bold value is the accuracy derived from the SparNet.
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are to further expand the experimental space, collect more
samples, and apply the developed methods to other types of
EEG data.

7. CONCLUSION

The main study in this article is using the novel neural
network called SparNet based on the EEG signals to identify
depressed people or not. First, the denoising method of the
phase space reconstruction is used to denoise and clean the
data. Second, the input features are smoothed before the
frequency domain features are input into the model. Third, a
new model called SparNet is proposed to extract the space-
frequency domain features of the local brain regions and
the whole-brain. Finally, the cooperating of the attentional
mechanisms to the model improves the identification accuracy of
the patients with depression. Compared with other methods, the
proposed model can obtain a better classification performance.
From the results of the local brain regions, it can be seen
that the frontal lobe plays a better role in the identification
of patients with depression. From the results of the global
brain region, it can be seen that the combination of the
spatial features and the frequency domain features can
effectively improve the accuracy of depression identification.
The combination of features of the different brain regions may
be the focus of future research. The methods and findings
of this study may contribute to the wider application of
the diagnosis of deep depression in clinical applications and
neuroscience research.
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