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Early detection is crucial to control the progression of Alzheimer’s disease and to

postpone intellectual decline. Most current detection techniques are costly, inaccessible,

or invasive. Furthermore, they require laborious analysis, what delays the start of medical

treatment. To overcome this, researchers have recently investigated AD detection based

on electroencephalography, a non-invasive neurophysiology technique, and machine

learning algorithms. However, these approaches typically rely on manual procedures

such as visual inspection, that requires additional personnel for the analysis, or on

cumbersome EEG acquisition systems. In this paper, we performed a preliminary

evaluation of a fully-automated approach for AD detection based on a commercial

EEG acquisition system and an automated classification pipeline. For this purpose,

we recorded the resting state brain activity of 26 participants from three groups: mild

AD, mild cognitive impairment (MCI-non-AD), and healthy controls. First, we applied

automated data-driven algorithms to reject EEG artifacts. Then, we obtained spectral,

complexity, and entropy features from the preprocessed EEG segments. Finally, we

assessed two binary classification problems: mild AD vs. controls, and MCI-non-AD

vs. controls, through leave-one-subject-out cross-validation. The preliminary results

that we obtained are comparable to the best reported in literature, what suggests

that AD detection could be automatically detected through automated processing and

commercial EEG systems. This is promising, since it may potentially contribute to

reducing costs related to AD screening, and to shortening detection times, what may

help to advance medical treatment.
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1. INTRODUCTION

Alzheimer’s disease (AD) is a neurogenerative disease that
represents 60–70% of the dementia cases (Amezquita-Sanchez
et al., 2019). According to the 2018 World Alzheimer’s Report,
more than fifty million people suffer from dementia and this
prevalence is likely to triple by 2050 (Patterson, 2018). AD
patients experience a progressive decline in multiple cognitive
areas, such as memory, orientation, and reasoning, to the extent
of interfering with their daily-life activities. Although this disease
was initially documented in 1906, its etiology is still uncertain,
and a final diagnosis can only be performed at brain autopsy.
However, according to the literature, two major hallmarks begin
to form before the impairment is noticeable: amyloid plaques
and neurofibrillary tangles (Serrano-Pozo et al., 2011). Amyloid
plaques are deposits of proteins that lose their normal structure
and accumulate around the neurons. Likewise, neurofibrillary
tangles are thickened fibrils that surround the neuron nucleus. In
this context, mild cognitive impairment (MCI) is often referred as
a condition between normal aging and AD (Petersen et al., 2001).
MCI patients experience unexpected memory losses for age but
these do not interfere with their daily-life activities. Nonetheless,
MCI patients transition to AD at a faster rate than healthy
individuals of the same age. Although presently there is no cure
for AD, early detection can help control the progression of the
disease and postpone intellectual decline. This, alongside the high
prevalence of the disease, evidence the need for non-invasive
accessible detection techniques.

The purpose of AD detection techniques is to reveal
the physical and cognitive symptoms linked to the disease.
Traditionally, this is accomplished through neuropsychological
tests and medical procedures. Neuropsychological tests are
designed to evaluate cognitive areas affected early in the AD
course, such as memory, language, and orientation (Carnero-
Pardo et al., 2007; Ciesielska et al., 2016; Matias-Guiu et al.,
2017). Although neuropsychological tests are extensively applied,
previous works have evidenced their lack of sensitivity and high
variability (Mendiondo et al., 2000; Kuslansky et al., 2004).
Conversely, medical procedures aim to unfold the damages
produced to specific brain structures. Among these procedures,
cerebrospinal fluid (CSF) analysis is the most reliable. However,
this fluid is extracted via lumbar puncture, an invasive medical
procedure with reported side effects (Virhammar et al., 2012).
Alternatively, medical imaging techniques are designed to render
functional or static images of the brain. The most extended
techniques include: magnetic resonance imaging (MRI) (Farooq
et al., 2017; Hojjati et al., 2017), positron emission tomography
(PET) (Li et al., 2015; Lu et al., 2018), and single photon emission
computed tomography (SPECT) (Gorriz et al., 2011; Bi and
Wang, 2019). Although these techniques yield accurate results,
they present some drawbacks: they usually involve long waiting

lists, their analysis is often based on visual inspection, and some

of them require invasive procedures.
In this context, for the past decade researchers have studied

the role of electroencephalography (EEG) for AD detection.
EEG is a neurophysiology technique to measure the electrical
activity of the brain through electrodes placed on the scalp. EEG

is portable, non-invasive, and affordable compared to medical
imaging procedures. Consequently, it represents a promising
approach for the detection of neurological diseases. Indeed,
researchers have recently combined EEG signal processing and
machine learning algorithms to discriminate AD and MCI
patients from age matched controls (Trambaiolli et al., 2011,
2017; Aghajani et al., 2013; McBride et al., 2013; Wang et al.,
2015; Kashefpoor et al., 2016; Cassani et al., 2017; Fiscon et al.,
2018; Ruiz-Gomez et al., 2018; Durongbhan et al., 2019; Khatun
et al., 2019; Ieracitano et al., 2020; Perez-Valero et al., 2022).
These works typically analyze the EEG signals in terms of
spectral content, complexity, and synchronization, since previous
studies have found these features are affected in AD patients.
For instance, in Gallego-Jutgla et al. (2015), the authors classified
AD patients and controls based on frequency and power features
using linear discriminant analysis. Likewise, in Wang et al.
(2015), researchers performed cluster analysis on power spectral
density (PSD) and coherence features to differentiate AD patients
and controls. Additionally, the authors of McBride et al. (2015)
andMcBride et al. (2013) implemented a support vector machine
(SVM) to classify early stage AD and MCI patients based on
coherence and entropy measures, respectively.

These works demonstrate the scientific community has
made unquestionable progress toward EEG-based AD detection.
Furthermore, recent advances in computational neuroscience
have provided new insights about the collective behavior of
the brain by attempting to explain the mechanisms driving
the interaction between neuronal and synaptic processes,
what may contribute to deepening our understanding of how
neurodegeneration evolves over the course of AD (Caligiore et al.,
2020; Jones et al., 2022). Indeed, in recent studies, researchers
endeavor to bridge the gap in efficiency and cognitive skills
between actual models and their biological equivalents (Yang
et al., 2022a,b). In this context, to understand the complexity
of the human brain, models are required to account for the
morphological features responsible for neural dynamics and
the high-level scale of the human neural network. For this
purpose, approaches such as Yang et al. (2020), based on a
reduced compartmental model, have been proposed recently.
Furthermore, to implement large-scale neuromorphic systems,
online learning, and fault-tolerant operation is mandatory (Vu
et al., 2019; Yang et al., 2021). With regard to actual AD
detection approaches, there are still methodological decisions
that hinder the application of automated detection models.
This includes the use of clinical EEG acquisition systems, EEG
artifact cleaning through visual inspection and annotations, and
complex electrode montages. To tackle this, in this paper, we
wanted to perform a preliminary evaluation of a automated EEG
classification approach for AD. To simplify the electrode setup,
we used a commercial EEG acquisition device with only sixteen
electrodes. Furthermore, to automatically process the acquired
signals, we applied the Autoreject algorithm and independent
component analysis (ICA). Then, we extracted spectral and
complexity features from all the EEG channels. Finally, to assess
the general performance of our model, we implemented leave-
one-subject-out (LOSO) cross-validation. In order to evaluate
our approach, we conducted a preliminary study in collaboration
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with the Cognitive and Behavioral Neurology Unit (CBNU) at
Hospital Universitario Virgen de las Nieves de Granada (Spain)
to discriminate MCI-non-AD patients, mild AD patients, and
healthy controls. Although the sample size that we studied
is reduced, the results that we obtained are promising, as
our automated approach yielded classification results that are
comparable to the best in literature. We believe the results
derived from this work may contribute to opening the door to
forthcoming ubiquitous, affordable, and accurate detection of
mild AD and MCI-non-AD, nonetheless, further studies must
validate the conclusions drawn in this study.

This paper is structured as follows: first, we report themethods
and materials that we employed throughout the study; then, we
describe the results that we obtained; subsequently, we discuss
these results, and we compare our approach with analogous
studies; finally, we draw conclusions, evaluate the impact and
limitations of this research, and provide some guidelines for
future studies.

2. MATERIALS AND METHODS

Throughout the following subsections, we describe the main
aspects of the study methodology, including participants,
experimental procedure and setup, EEG signal processing,
feature extraction, and classification.

2.1. Participants
Twenty-six volunteers participated in the study. However, due to
poor signal quality (participants 21 and 26), lack of cooperation
(participants 9 and 18), and presence of a condition that may
have impacted the analysis (participant 12), we excluded the
data from five participants. Consequently, we only studied the
recordings from 21 participants. The head of the CBNU at
Hospital Universitario Virgen de las Nieves de Granada recruited
the participants the week before the experiment. Table 1 displays
the group, age, and sex distributions of the participants. Thirteen
of the participants were patients of the neurology unit at Hospital
Universitario Virgen de las Nieves. Due to memory complaints,
all these patients had undergone one of the following twomedical
trials during the past year: (a) measurement of Aβ42, p-tau, and
total tau in CSF, or (b) β-amyloid PET (florbetaben PET). We
cataloged the participants whose medical trials yielded positive
biomarkers as mild AD, otherwise, we cataloged them as MCI-
non-AD. The remaining participants were healthy controls. We
conducted the study following a protocol approved by the local
ethics committee at Hospital Universitario Virgen de las Nieves
de Granada. Additionally, the participants signed an informed
consent before the experiment onset, and CBNU personnel
monitored them throughout the study session.

2.2. Experimental Procedure and Setup
First, we asked the participants to read and sign the informed
consent. Then, we briefed them on the study details and the basics
of EEG acquisition. It is worth to note that the participants of this
study were recruited with two objectives in mind: (1) go through
a cognitive test, and (2) participate in the study reported in this
paper. The cognitive test consisted of two tasks of approximately

TABLE 1 | Group, sex, and age distributions of the participants engaged for this

study.

Group Females Males Age

NC 7 1 67 ± 3.5

MCI-non-AD 0 5 73.4 ± 7.1

Mild AD 5 3 68.8 ± 4.9

The values reported in the Age column represent the mean ± the standard deviation.

10min whose details are out of the scope of this paper. In parallel,
we recorded 3 min of the eye-open resting state activity of the
participants in three key moments: before the first task, after the
first task, and after the second task. To avoid edge effects, we
only considered the central 2-min window of each recording.
For the analysis reported in this paper, we concatenated the
three recordings, thus, we ended up with an effective 6-min EEG
recording per participant.

For the acquisition, we used the Versatile system by Bitbrain
(Zaragoza, Spain), a commercial wearable device consisting of an
EEG cap with semi-dry electrodes and a Bluetooth acquisition
module that works at a fixed sampling rate of 256 Hz. This
sampling rate has been previously used in related studies (Garn
et al., 2017; Gouw et al., 2017; Amezquita-Sanchez et al., 2019;
Ieracitano et al., 2019). For the electrode montage, we selected
sixteen channels located at positions Fp1, Fp2, F5, Fz, F6, T7,
T8, C3, Cz, C4, P5, Pz, P6, O1, Oz, and O2 of the extended 10-
20 International System, and we referenced them to the left ear
lobe. We used this setup to uniformly cover the scalp according
to previous AD detection studies (Wang et al., 2015; Kulkarni
and Bairagi, 2017; Fiscon et al., 2018). Figure 1 shows the
electrode montage selected for this study alongside the Versatile
EEG system.

2.3. Signal Preprocessing
We applied the procedure described in this subsection to the
6-min EEG recordings of the participants. First, we filtered the
raw EEG using a 1690 order FIR filter with 1–45 Hz bandpass
and zero phase-shift. We used a FIR filter instead of an IIR filter
because our study did not involve high throughput constraints
(Ifeachor and Jervis, 2002), and we prioritized filter stability and
control. Then, we segmented the filtered EEG into 4-s epochs
without overlapping. According to the systematic review on
resting state EEG for AD diagnosis by Cassani et al. (2018),
this epoch length lays within one of the most common epoch
length ranges considered in literature (see Table 17 in the
aforementioned review article).

Regarding artifact rejection, in order to keep our approach
automated, we applied the Autoreject algorithm. Autoreject
is a data-driven artifact rejection algorithm that combines
cross-validation and Bayesian optimization to find a separate
threshold per channel. It also marks bad trials when most
channels display high-amplitude artifacts, and allows channel
interpolation. Therefore, bad data segments can be repaired
instead of discarded. In terms of performance, Autoreject
has been validated against multiple datasets, and reportedly
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FIGURE 1 | (Left) Sixteen-channel montage used for the present study (in green) in the extended 10-20 International System. We selected this montage to evenly

cover the scalp area. (Right) Versatile semi-dry EEG acquisition system utilized for the data capture. The system includes a Bluetooth acquisition module placed

below the occipital area and an EEG headset with semi-dry electrodes. Please, note that the right panel image does not represent the actual montage used in this

study and it was included to illustrate the acquisition system and headset.

performed equally or better than common artifact processing
approaches. We refer the interested reader to Jas et al.
(2017), where the developers of the algorithm provide an
exhaustive interpretation of this validation. Additionally, we
also implemented blink artifact rejection through independent
component analysis (ICA). ICA enables the decomposition of
a signal made from the combination of multiple sources into
those sources and a mixing matrix (Schlink et al., 2017; Echtioui
et al., 2020). Since EEG represents the combination of internal
neurological sources, ICA is usually applied to identify and
remove artifactual components such as blinks. Blink components
display high variance and present a spatial distribution toward
the frontotemporal region of the head (Shahbakhti et al., 2022).
Therefore, to identify them, we followed an automated electro-
oculogram proxy approach. To this end, we determined the
ICA component whose correlation with Fp1 time series was the
highest, and we reconstructed the EEG without that component.
Figure 2 represents the signal processing pipeline described in
this subsection.

2.4. Feature Extraction
After preprocessing, we used MNE Python toolbox to extract
three features per channel from each of the preprocessed 4-s EEG
epochs: relative power (RP) in the five main EEG bands, Hjorth
complexity (HC), and spectral entropy (SE). Consequently, we
extracted a total of 112 features (80 for the RP, 16 for the HC, and
16 for the SE) per epoch. We considered these features since they
have been already applied in analogous studies (Poil et al., 2013;
McBride et al., 2014; Wang et al., 2015; Trambaiolli et al., 2017;
Houmani et al., 2018). RP represents the fraction of the total
power of the signal that is contained in a particular frequency
band. To estimate this parameter, we applied the default MNE

Python settings, that include the use of Welch’s method for the
calculation of the PSD. On the other hand, HC is one of the three
Hjorth parameters (activity, mobility, and complexity), and is
calculated as the ratio between the mobility of the first derivative
of the signal and the mobility of the signal itself (Paivinen et al.,
2005). Finally, SE is defined as the Shannon entropy of the power
spectrum of the signal. SE represents the uniformity of the power
spectrum distribution, and, hence, the irregularity of the EEG.
SE is minimal for a pure sine wave and maximal for white noise
(Inouye et al., 1991). The formulas for the extracted features are
presented in Equations (1)–(3).

RP =

∑fo
fi
P

∑
∀f P

(1)

HC =
σs′′/σs′

σs′/σs
(2)

SE = −

∑

f

S(f ) ∗ log2 S(f ) (3)

In Equation (1), fi and fo represent the lower and upper
frequencies of an EEG band, and the denominator represents the
total power of the EEG signal. We estimated RP for the main
EEG frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta (13–30 Hz), and gamma (> 30 Hz). In Equation
(2), σs, σs′ , and σs′′ represent the standard deviations of the signal
epoch under analysis, of its first, and of its second derivative,
respectively. Finally, in Equation (3), f represents frequency, and
S represents the normalized power spectrum.
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FIGURE 2 | EEG signal processing pipeline. First, we applied a FIR filter with bandpass 1–45 Hz to remove the power line interference and retain the spectral content

in the desired frequency range. Then, we segmented the filtered EEG into 4-s epochs without overlapping. Finally, we performed automated artifact removal through

Autoreject algorithm and ICA.

FIGURE 3 | EEG-based feature extraction and classification pipeline. First, we performed feature extraction on the 4-s clean epochs from all the participants. This

yielded a feature matrix with 112 columns (features) and as many columns as the total number of epochs (N). Next, we averaged every S consecutive epochs to

enhance the SNR of the features (we evaluated values of 6, 8, 10, and 12 for S). Then, we implemented a grid search cross-validation procedure to find the best

hyperparameters for two possible classifiers (SVM and LR). We selected a LOSO strategy for cross-validation. Finally, we estimated the classification performance

metrics across all the participants.

To create the feature matrix, we vertically concatenated the
features extracted for each participant. Consequently, we ended
up with a feature matrix with 112 columns (features) and asmany
rows as the total number of epochs from all the participants (see
Figure 3). Then, we averaged every S consecutive rows in the
feature matrix following to the approach described in Fraga et al.
(2013).We followed this approachwith two objectives inmind: to
enhance the signal to noise ratio of the features, and to reduce the
size of the feature matrix. We evaluated four values for S: 6, 8, 10,
and 12, and we reported the best for each classification problem
(MCI-non-AD vs. NC and mild-AD vs. NC) in the Section 3.
Therefore, for each classification problem, we utilized a feature
matrix (RP, HC, and SE) and a target array holding the cohort
corresponding to each row (epoch) in the feature matrix.

2.5. Classification
To solve the two binary classification problems examined in this
study, we used scikit-learn Python module (Pedregosa et al.,
2011) to implement a three-step classification pipeline including
a feature scaler, a feature selector, and a classifier. The feature
scaler normalizes each feature in the range between zero and
one, in a way that those with higher order of magnitude are not
favored during classification. Subsequently, the feature selector

selects the most relevant features according to a particular
strategy. In our case, we applied the chi-square test included as
part of scikit-learn feature selection module to find the features
most related to the target. We selected this method due to its
intrinsic speed. We refer the interested reader to Chandrashekar
and Sahin (2014) for a comprehensive overview of feature
selection strategies. Finally, for the classifier, we evaluated two
algorithms: SVM with a radial basis function kernel and logistic
regression (LR). To find the best hyperparameters for the
classification pipeline we implemented grid search. For the SVM,
we explored different values for the regularization parameter
(C) and the kernel coefficient (γ ). The C parameter refers
to the strength of the regularization that is applied to avoid
overfitting. In particular, C influences the selection of the SVM
hyperplane margin and its amplitude is inversely proportional to
the regularization strength. On the other hand, the γ parameter
defines the kernel function used by the SVM algorithm to define
a notion of similarity between input data and transform the data
in the feature space. Likewise, for the LR, we explored different
values for the regularization parameter (C) and the weights
associated with the classes. In the case of logistic regression, the
regularization parameter controls a penalty term added to the
loss function in order to avoid overfitting by penalizing extreme

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2022 | Volume 16 | Article 924547

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Perez-Valero et al. Automated Detection of Alzheimer’s Disease

FIGURE 4 | Comparison of the results yielded for the two binary classification problems as a function of the number of epochs averaged during processing. Error bars

indicate the standard error of the mean. For each case, we have also included the name of the best performing classifier. For the mild AD vs. Control problem and the

MCI-non-AD vs. Control problem, SVM with 10 and 8 epochs used for the average, yielded the best performance, respectively.

parameter weights. On the other hand, the class weight parameter
allow the algorithm to associate different weights to the classes
based on their support. We examined the default option using no
class weights, and the balanced option that adjusts the weights
inversely proportional to class frequencies. Figure 3 illustrates
the pipeline described in this subsection.

To evaluate the generalization ability of the classifier, we
performed cross-validation using a LOSO strategy. Under this
strategy, data is split into as many folds as participants. For each
fold, the training set includes data from all the participants but
one, whose data is reserved for the test set. Hence, information
from a participant is never in the training and the test set
simultaneously, what prevents from positive bias. Furthermore,
according to the comprehensive review by Cassani et al. (2018),
this cross-validation strategy is the most extended across the
studies that aim to classify AD groups from resting state EEG.

For the sake of clarity, it is important to note that, during
cross-validation, the parameters corresponding to the three
stages of the classification pipeline (feature scaling, feature
selection, and classification) are estimated using the training set,
and subsequently, those parameters are applied on the test set.
This avoids overfitting and prevents from artificial positive bias.

3. RESULTS

In this section, we present the results that we obtained for the two
binary discrimination problems evaluated in this study: mild AD
vs. NC andMCI-non-AD vs. NC, based on the 16-channel resting
state EEG recordings that we acquired (see Section 2.2).

Figure 4 shows the average F1-score obtained during cross-
validation as a function of the number of consecutive epochs
averaged after feature extraction (see Section 2.4). To create this
figure, we evaluated the classification pipeline on four different
feature matrices (considering 6, 8, 10, and 12 consecutive epochs
for the average).

Table 2 presents the hyperparameter values that we inspected
through grid-search. We have also included the combination of
hyperparameters that yielded the best cross-validation results. As
shown in the right-most column of this table, the SVM classifier
yielded the best performance for the two binary discrimination
problems that we considered. Note that, in this table, we have not
reported the best hyperparameters for the LR because the SVM
outperformed this classifier on the two classification problems.

Table 3 holds the confusion matrices for the mild AD vs.
NC and the MCI-non-AD vs. NC problems. As outlined in
the previous paragraph, these results were yielded by the SVM
classifier. The values outside the parenthesis represent the epoch-
level confusion matrix, whilst the values inside the parenthesis
represent the participant-level confusion matrix. To estimate the
epoch-level matrix, we gathered the predictions and the true
labels from all the cross-validation test sets, and we computed
the percentage of correct predictions per class. Alternatively,
for the participant-level matrix, we evaluated how well the
classifier grouped each participant into one of the two groups
for each binary classification problem. Consequently, if the
classifier correctly guessed more than 50% of the epochs from a
participant, we considered it correctly classified the participant;
otherwise, we considered it missclassified the participant.

Table 4 shows the per-cohort cross-validation metrics yielded
by the classification pipeline for the mild AD vs. NC and the
MCI-non-AD vs. NC problems. We derived these metrics from
the epoch-level confusion matrices described above.

4. DISCUSSION

The goal of this study was to perform a preliminary evaluation
of an automated approach for the discrimination of AD cohorts.
For this purpose, we recorded the EEG of a group of volunteers,
and we proposed an approach based on a commercial EEG device
with a reducedmontage and an automated classification pipeline.
The preliminary results that we obtained from a reduced sample
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TABLE 2 | Hyperparameter values inspected using grid-search cross-validation.

Hyperparameter Range
Best

Mild AD vs. NC MCI-non-AD vs. NC

% Features to keep [10, 25, 50, 75, 100] 100 25

C (SVM) [10−4, 10−3, ..., 104] 102 101

γ (SVM) [Scale, auto] auto scale

C (LR) [10−4, 10−3, ..., 104] - -

Class weight (LR) [None, balanced] - -

“Best” column indicates the values of each hyperparameter that resulted in the best

performance. We have not reported the best values for the LR because the SVM algorithm

yielded superior results.

TABLE 3 | Confusion matrices for the two binary classification problems.

Mild AD vs. NC MCI-non-AD vs. NC

PAT HC PAT HC

PAT 0.88 (8) 0.12 (0) 0.88 (4) 0.12 (1)

HC 0.17 (1) 0.83 (7) 0.01 (0) 0.99 (8)

They were estimated from the predictions yielded by the SVM, which was the best

performing classifier for both problems. The values outside and inside the parenthesis

represent the results for the epoch-level and the participant-level classification,

respectively. The highlighted cells denote the true positives and true negatives.

TABLE 4 | Classification metrics for the mild AD vs. NC and MCI-non-AD vs.

Problem Cohort Precision Recall F1-score

Mild AD vs. NC
Mild AD 0.83 0.88

0.86 ± 0.06
NC 0.88 0.83

MCI-non-AD vs. NC
MCI-non-AD 0.98 0.88

0.96 ± 0.03
NC 0.92 0.99

NC problems. The right-most column indicates the average cross-validation F1-score ±

the standard error of the mean.

suggest that such an approach can precisely discriminate mild
AD and MCI-non-AD participants from healthy controls.

In Figure 4, we examined the epoch average procedure that
we applied to the feature matrix. According to this figure,
performance increased with the number of averaged epochs and
then plateaued for both classification problems, what supports
the application of the epoch average step described in Section
2.4. Regarding the classification problem of mild AD vs. NC, in
view of the results presented in Table 3, our approach yielded
promising results, both at the epoch and the participant levels.
More specifically, according to the results presented in Table 4,
recall for the mild AD cohort was the highest performance metric
(0.88). This is particularly important because it evidences the
capability of the classifier to detect the participants affected by
the disease, what is crucial in studies that aim to discriminate
clinical cohorts. Similarly, for the classification of MCI-non-AD
vs. NC, the confusion matrices presented in Table 3 illustrate the
sound performance of the classifier both at the epoch and the
participant levels. According to the metrics reported in Table 4,
the average performance of the classifier was higher for the MCI-
non-AD vs. NC problem than for themild AD vs. NC problem, as

evidenced by average F1-scores of 0.96 and 0.86, respectively. An
analogous study also reported better discrimination performance
for the MCI vs. NC classification problem (Fiscon et al., 2018),
although the reasons behind this result remain still unexplained.
An evaluation of the presented approach on a larger sample size
could contribute to elucidating this circumstance.

In terms of recording conditions, most studies in literature
typically use between 17 and 32 electrodes (Cassani et al., 2018).
However, to minimize participant distress, we selected only 16
electrodes. A similar number of electrodes was considered in
related works (Wang et al., 2015; Kulkarni and Bairagi, 2017;
Chen et al., 2018; Yu et al., 2020). With respect to epoch length,
since EEG signals are non-stationary, we utilized an intermediate
length of 4 s (Cassani et al., 2018), comparable to the duration
selected in analogous works (Coronel et al., 2017; Mammone
et al., 2017; Durongbhan et al., 2019). Regarding artifact rejection,
works on AD detection traditionally have applied manual epoch
selection for artifact removal (Simons et al., 2015; Azami et al.,
2017; Mammone et al., 2017; Chen et al., 2018; Ruiz-Gomez
et al., 2018), what may be counterproductive from the early
detection standpoint. Alternatively, since we wanted to perform a
preliminary evaluation of an automated classifier, we decided to
perform artifact processing through Autoreject and automated
ICA. The rationale behind the use of Autoreject was the
interpolation of bad data spans supported by the algorithm,
and its capability to perform data-driven rejection of artifactual
segments. Regarding ICA, multiple works have used this analysis
in a semi-automated way to identify and remove artifactual
components (Vecchio et al., 2017). Alternatively, in other works,
researchers implemented an automated version of ICA (Echtioui
et al., 2020). We followed the latter approach to remove blink
artifacts and comply with the automation constraints of our
approach. Particularly, we identified the blink artifact component
through correlation with the Fp1 channel time series.We selected
this channel because it has the position that most resembles
an electro-oculogram channel. With respect to cross-validation,
the three main strategies adopted in literature are leave-one-
out (Simons and Abasolo, 2017; Yang et al., 2019), k-fold
(Durongbhan et al., 2019; Ieracitano et al., 2020), and leave-one-
subject-out (Trambaiolli et al., 2017; Fiscon et al., 2018; Ruiz-
Gomez et al., 2018). We selected LOSO because with this cross-
validation strategy, data from a participant is not in the training
and the test set simultaneously. This prevents the classifier
from positive bias and thus, from rendering unrealistically good
predictions. Lastly, in terms of performance, our results are
comparable to similar works in literature (Kulkarni and Bairagi,
2017; Trambaiolli et al., 2017; Fiscon et al., 2018; Mazaheri et al.,
2018), or even superior in some cases (Morabito et al., 2016;
Cassani et al., 2017; Amezquita-Sanchez et al., 2019; Liu et al.,
2020).

The preliminary results that we obtained hint at the potential
of fully automated AD discrimination approaches. The use of
wearable commercial EEG acquisition systems may enhance the
accessibility of electrophysiology-based screening. Additionally,
automated processing techniques such as those considered in the
approach presented in this paper may contribute to reducing
the personnel required for AD screening practice. Jointly, this
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could contribute to reducing the costs associated to AD screening
and to speeding-up medical treatment. Consequently, we believe
this preliminary study along with further research, may help to
open the door for fast and portable EEG-based AD detection
approaches that could integrate into the clinical ecosystem in
the near future. Nonetheless, this preliminary study also presents
some limitations. First, the sample size that we considered is
too small to yield definitive conclusions. Therefore, future works
must evaluate the presented approach on a larger sample to
validate the conclusions drawn in this study. Furthermore, the
participants that we recruited for this study do not represent the
typical patient who attend the neurology services. Often, patients
suffer from additional pathologies accompanied by symptoms
that could overlap with those from dementia. Obviously, the
inclusion of such participants would represent an important
challenge for researchers, nonetheless, we believe the study of
typical patients is crucial in order to potentially transfer these
approaches into daily medical practice. Finally, although an
automated AD detection approach could bring benefits in terms
of economical costs and waiting times, it would also require
the clinicians to be properly trained to use a commercial EEG
acquisition system (wear the EEG headset, monitor channel
impedance, and control the graphical user interface of the device,
among other tasks).

5. CONCLUSIONS

In this paper, we preliminarily evaluated the feasibility of an
automated pipeline based on EEG activity for the discrimination
of mild AD and MCI-non-AD. For this purpose, we recorded
the resting state activity of a reduced sample of volunteers using
a commercial EEG device, and we designed our approach to
automatically perform signal processing, feature extraction, and
classification. We applied the Autoreject algorithm and ICA for
artifact rejection. Then, we estimated the relative power, the
Hjorth complexity, and the spectral entropy of the preprocessed
epochs. Lastly, we assessed two binary classifiers (SVM and
LR) for the discrimination of the three cohorts of interest
via leave-one-subject-out cross-validation. The results that we
obtained are comparable to the best reported in literature,
what is promising toward the implementation of automated AD
detection approaches based on commercial acquisition devices.
Since we analyzed a reduced sample size, further studies must
evaluate the presented approach on larger samples to validate
the conclusions yielded in this paper. Nonetheless, the results
obtained in this work are promising, as they suggest that AD
detection could be performed automatically using a few minutes
of resting state EEG activity and a commercial acquisition
device. With this in mind, we believe the future inclusion

of this kind of approaches into AD screening practice could

contribute to reducing the costs linked to AD detection, and also
enable the early detection of the disease, what could potentially
advance medical treatments. Nonetheless, further research is also
required to investigate the feasibility of automated EEG-based
approaches in participants that suffer from additional pathologies
whose symptoms overlap with those of dementia. This is often
the case in daily-life neurological practice, hence, such cases
must be comprehensively studied before future patients can
take advantage from fast, accurate, and affordable detection
techniques that enhance their standards of living.
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