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Three dimensional deformable image registration (DIR) is a key enabling

technique in building digital neuronal atlases of the brain, which can model

the local non-linear deformation between a pair of biomedical images and

align the anatomical structures of di�erent samples into one spatial coordinate

system. And thus, the DIR is always conducted following a preprocessing of

global linear registration to remove the large global deformations. However,

imperfect preprocessing may leave some large non-linear deformations that

cannot be handled well by existing DIR methods. The recently proposed

cascaded registration network gives a primary solution to deal with such

large non-linear deformations, but still su�ers from loss of image details

caused by continuous interpolation (information loss problem). In this article,

a progressive image registration strategy based on deep self-calibration is

proposed to deal with the large non-linear deformations without causing

information loss and introducing additional parameters. More importantly,

we also propose a novel hierarchical registration strategy to quickly achieve

accurate multi-scale progressive registration. In addition, our method can

implicitly and reasonably implement dynamic dataset augmentation. We have

evaluated the proposed method on both optical and MRI image datasets with

obtaining promising results, which demonstrate the superior performance

of the proposed method over several other state-of-the-art approaches for

deformable image registration.

KEYWORDS

biomedical image registration, progressive registration, hierarchical registration, deep

self-calibration, dynamic dataset augmentation

Introduction

The development of high-resolution light microscopy, sparse labeling techniques,

neuronal tracking methods, and several advanced microscopic imaging pipelines have

made it possible to map the entire mammalian brain at single-cell resolution, such as the

fluorescence micro-optical sectioning tomography (fMOST), the light-sheet fluorescence

microscopy (LSFM), and the serial two-photon tomography (STPT). However, those
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biological scans captured by different imaging pipelines at

different locations or periods show certain differences in voxel

intensity, image texture, and brain anatomy, which make

it difficult to explore biological working mechanisms from

multiple sources of information. In order to make full use

of these precious data resources, it is important to align

the anatomical structures of those scans into one coordinate

system by image registration. In particular, deformable image

registration (DIR) can handle local non-linear deformation of

biological organs and has become an important technology in

biomedical image processing and analysis.

A practical image registration generally includes a global

linear registration and a local non-linear registration. The

global linear registration always consists of a series of

linear transformations, such as scaling, translation, and affine

transformation, to achieve the alignment of the main structure

of images. Then, the remaining local non-linear deformations

are aligned by DIR algorithms. In the past few years, researchers

have proposed many DIR methods. The traditional registration

methods such as Elastix (Klein et al., 2010) and ANTs (Avants

et al., 2009) aimed at optimizing a pair of images by continuous

iteration and promoting the smoothness of the registration

mapping relationship at the same time. They are effective and the

registration task of various biological organs can be completed

without training specific models. Recently, with the widespread

application of deep learning in the field of computer vision,

deep learning-based biomedical image registration algorithms

have become a hot and attractive research direction (Litjens

et al., 2017; Haskins et al., 2020). The current deep learning-

based biomedical image registration algorithms can be divided

into supervised learning methods and unsupervised learning

methods on whether the training labels (ground truth) are

required. The registration accuracy of supervised learning-

based registration methods can be improved with the accuracies

of supervised labels. However, labeling biomedical images is

usually time-consuming and laborious, which promotes the

development of unsupervised learning methods.

Unsupervised registration methods always utilize the

training data after global linear registration to learn the local

non-linear deformation displacement vector field (Balakrishnan

et al., 2018; Zhang, 2018; Qu et al., 2021), which usually

focuses on describing small local deformations. Most of the

existing methods cannot handle large deformation due to the

smooth constraints imposed on the displacement vector field

during the training phase. Although some cascaded registration

methods (Cheng et al., 2019; Zhao et al., 2019a,b) and multi-

scale registration methods (Kim et al., 2021; Shao et al., 2022)

have been proposed to alleviate this issue, these still have

some problems. For example, the multi-stage alignment process

of cascaded methods may cause a serious information loss

problem. Figure 1 shows the registration process of a three-stage

cascaded registration network. The moving image is aligned

onto the fixed image step by step through three registration

networks by which the large deformation is transformed into

three smaller ones. Although the large deformation problem

is alleviated by this method, the information loss caused by

interpolation is unavoidable at each stage of the warping process.

As shown in Figure 1, as the number of interpolation increases,

the structural boundary of the warped image in the orange

box becomes more and more blurred. Furthermore, the multi-

stage cascaded approach also tends to cause error accumulation.

In addition, existing progressive registration methods (Cheng

et al., 2019; Zhou et al., 2020; Kim et al., 2021; Zhang

et al., 2021) integrate the displacement vector field by direct

addition. However, the same position on the two adjacent

displacement vector fields may not be the displacement of

the same corresponding point, so it is unreasonable to obtain

the total deformation field by directly summing the multiple

deformation fields.

In this article, we aim to leverage the progressive registration

idea of cascaded networks to deal with large deformations

without causing information loss and increasing network

parameters. Specifically, we propose a progressive registration

network based on a deep self-calibration strategy. The main

contributions of this article can be summarized as follows:

(1) We propose a novel progressive registration strategy to

reduce the cascaded information loss, in which an iterative

registration strategy is implemented to decompose large

deformation into small ones in multiple iterations. To avoid

the cascaded information loss, we design a new displacement

vector field integration algorithm to integrate the learned

displacement vector field in each iteration into the total

displacement vector field, and then the finally warped image

can be generated with this total displacement vector field in

one interpolation process.

(2) We propose a new hierarchical registration strategy to

achieve a fast and coarse-to-fine progressive registration to

improve registration accuracy. The progressive registration

strategy is implemented on a cascaded network with one

low-resolution and one original-resolution network. With

this hierarchical registration deployment, the images can be

aligned on multiple scales to improve registration accuracy.

Moreover, the low-resolution deformation field quickly

learned by the low-resolution network can be upsampled

and used as the initial value for the high-resolution network.

Since the coarse-grained alignment of images is already done

by the low-resolution network, using this deformation field

can greatly improve the convergence speed of the high-

resolution network.

(3) The proposed progressive registration strategy can generate

abundant training data during the training phase. By setting

the number of iterations, the amount of training data

generated can be controlled to achieve a dynamic data

augmentation, thus effectively alleviating the limitations

caused by the lack of training data.
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FIGURE 1

The example of three-stage cascaded network registration methods. Three di�erent colored modules represent registration models with the

same structure but no shared parameters.

The rest of the article is organized as follows. We review the

related works about deformable biomedical image registration

in Section Related works, followed by specifically introducing

our proposed method and the detailed network structures

in Section Method. Then the datasets, comparison methods,

implementation, and evaluation metrics are described in Section

Experiments configurations. The results are presented and

analyzed in Section Results and analysis. Finally, Section

Conclusion gives the conclusion of this work.

Related works

Traditional image registration methods

Traditional image registration methods here mainly refer

to those non-learning-based algorithms, including intensity-

based methods and landmark-based methods. Several popular

non-learning-based methods have been designed for deformable

registration such as elastic mapping (Bajcsy and Kovačič, 1989),

Demons (Thirion, 1998), and HAMMER (Shen and Davatzikos,

2002). Diffeomorphic methods have also made a significant

achievement in different computational tasks while preserving

topology such as the large diffeomorphic distance metric

mapping (Oishi et al., 2009; Zhang et al., 2017) and standard

symmetric normalization (SyN) (Avants et al., 2008). Moreover,

there were many existing biomedical registration pipelines such

as the aMap (Niedworok et al., 2016), ClearMap (Renier et al.,

2016), MIRACL (Goubran et al., 2019), ANTs (Avants et al.,

2009), Elastix (Klein et al., 2010), and BIRDS (Wang et al., 2021).

Most of the abovementioned methods solve the

registration task by iteratively exploring the space of potential

transformation parameters based on a predefined objective

function, which are always computationally intensive and

time-consuming, and such characteristics also prevent these

methods from being used in real-time clinical applications.

Learning-based image registration
methods

Supervised registration methods

Supervised learning-based registration methods need real

or generated deformation fields as training labels to guide

the network training. Dosovitskiy et al. (2015) proposed

the FlowNet for 2D MRI brain registration, which utilizes

statistical appearance models to generate ground truth to guide

network training. Cao et al. (2017) extracted the patches of

image pairs and used the spatial transformation relationship

of corresponding patches generated by SyN (Avants et al.,

2008) as labels to train the network. Ito and Ino (2018)

utilized a convolutional neural network (CNN) to learn

plausible deformations for ground truth generation. Fan et al.

(2019) proposed the BIRNet which uses hierarchical and dual-

supervised learning to predict the deformation field for 3D brain

MR registration. Ni et al. (2021) proposed the DeepMapi by

designing a sub-feedback strategy and a hierarchical registration

strategy for 3D fMOST mouse brain registration.

While supervised learning methods have achieved

considerable registration accuracy under the guidance of

ground truth and high-quality synthetic labels, the difficulty in

collecting label information greatly restricted their applications.

Unsupervised registration methods

The proposal of the spatial transformer network (STN)

(Jaderberg et al., 2015) has led to the rapid development

of unsupervised registration methods. Balakrishnan et al.
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(2018) proposed the VoxelMorph framework to implement

a fast unsupervised end-to-end registration network. Zhao

et al. (2019b) developed the VTN which achieves both end-

to-end affine and non-rigid registration by cascading affine

subnetworks. Zhao et al. (2019a) designed the recursive cascaded

network which improves the registration performance by

sequentially warping the image pairs through multiple cascaded

sub-registration networks. Cheng et al. (2019) employed the

U-Net cascaded separable convolution to complete large

deformation and small deformation step by step. Zhang

(2018) proposed the ICNet which adds the inverse-consistent

constraint and anti-folding constraint to the loss function of

the network in order to avoid local overlapping of deformation

fields. Kim et al. (2021) devised CycleMorph which utilizes the

topology consistency before and after registration to constrain

the network and adopts the multi-scale and global-to-local

registration strategy. Qu et al. (2021) designed the TIUNet to

apply the inter-image deformation consistency constraint to

network training.

Avants et al. (2008) declaimed that dice scores above 0.6 for

smaller structures and 0.8 for larger structures are considered to

be well-aligned. On this basis, we define the initial dice score of

small structures in the data lower than 0.6 as large deformations

and higher than 0.6 as small deformation. We call the initial

dice score of larger structures in the data lower than 0.8 as

large deformations and higher than 0.8 as small deformations.

Existing unsupervised registration methods focus on aligning

small local deformations between pairs of images. Therefore,

these methods generally require global linear registration pre-

processing to eliminate large linear deformations. However,

there inevitably exist some large non-linear deformations in the

pre-processed images due to imperfect pre-processing. Solving

this large non-linear deformation is critical to improve the

performance of the registration algorithm.

Method

The goal of the learning-based unsupervised registration

method is to estimate the non-linear transformation between

two or more pairs of images without supervised information.

The general objective function of the unsupervised registration

method can be formulated in Equation (1),

L (M,F,DVF)= Lsim ((M ◦ φ) ,F)+ α ∗ Lsmooth (DVF) (1)

where M and F represent the moving and fixed image,

respectively. DVF indicates the displacement vector field and φ

represents the deformation field. The relationship between DVF

and φ is formulated in Equation (2),

φ
(

x,y,z
)

=
(

x,y,z
)

+ DVF
(

x,y,z
)

(2)

Additionally, Lsim represents the similarity loss between the

warped image M ◦ φ and the fixed image F, and the

smoothness constraint Lsmooth is utilized to prevent the over-

distortion of the area and too sharp displacement vector

field. α is a weight parameter that controls the proportion of

Lsmooth in the total loss function. Since the smooth constraint

is achieved by constraining the difference between adjacent

points in the displacement vector field, it constrains the

displacement between the large deformed anatomical region

and its surrounding smooth region, thus limiting the ability of

general one-shot deformable registration methods to perform

large deformation registration.

The overview of our proposed method is shown in Figure 2.

In order to solve the large non-linear deformation, we have

designed three tailored registration strategies, including: (1) the

progressive registration strategy, (2) the hierarchical registration

strategy, and (3) the matching loss function. We will detail these

novel designs in the rest of this section.

Progressive registration strategy

Figure 2A demonstrates the progressive registration

framework of the proposed method. A group of convolutional

neural network (CNN) modules with shared weights are

conducted to generate multi-stage deformation fields.

Meanwhile, the aggregate flow (AF) module is designed

to integrate multi-stage deformation fields into a total

deformation field.

Shared weight module

Each yellow module in Figure 2A is a UNet-based

registration module with shared parameters. The shared

parameters are used iteratively in the non-training stage. The

structure of the shared weight module is shown in Figure 2B.

The displacement vector field between the input image pair can

be learned by this module. The backbone of this module is a

UNet as shown in Figure 3 which has been successfully applied

to a variety of biological image segmentation and registration

networks. The network consists of a decoder and an encoder

with skip connections. In the encoder, each resolution stage

has one 4 × 4 × 4 convolution layer, and the stride is set

to 2 to down-sample the feature maps between each stage. In

the decoder, each resolution stage has one upsampling layer

and 3×3×3 convolution layer with a stride of 1. And the last

two stages have two 3 × 3 × 3 convolution with a stride of

1 for finer estimation in detail. Each CONVblock is followed

by a LeakyReLU. Finally, a 3 × 3 × 3 convolution without

LeakyReLU is utilized to estimate a DVF with three channels for

the deformation of each voxel in the x, y, and z-directions.
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FIGURE 2

The pipeline of the proposed method. (A) Schematic diagram of the progressive registration strategy. (B) The structure of the yellow shared

parameter module in (A). (C) Schematic diagram of orange AF module in (A). (D) Schematic diagram of total registration strategy.
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FIGURE 3

Overview of the CNN framework used in our proposed method.

Aggregate flow module

Inspired by the invertibility loss formula in VTN (Zhao

et al., 2019b), we propose the aggregate flow module. The

detailed structure of the AF module is shown in Figure 2C.

The inputs of the Aggregator in Figure 2C include Flow(n)

and Flow(n+1) (n ≥ 0) which stand for the displacement vector

fields output by the network for two adjacent iterations. The

function of the Aggregator is to integrate the displacement

vector fields obtained from two adjacent iterations into a total

displacement vector field. In the following formula, we use

Flow_Agg(n,n+1) to represent the total displacement vector

field formed by integrating Flow(n) and Flow(n+1) with the

Aggregator. And we adopt F
(

x, y, z
)

and M
(

x, y, z
)

to indicate

the pixel point with the spatial coordinate of (x, y, z) on the fixed

and moving image, respectively. I represents the displacement

vector field (flow), and I
(

x, y, z
)

indicates the pixel point

in the displacement vector field whose spatial coordinate is

(x, y, z). φ represents the deformation field, and φIn indicates the

deformation field obtained by inputting Flow(n) into STN. The

symbol ◦ represents the warp operation, and M ◦ φ indicates

the moving image warped by the deformation field φ. The

aggregator can be expressed as (In+1 +
(

In ◦ φn+1
)

), and its

specific derivation process is detailed as follows.

Ideally, the moving image can be warped by the deformation

field (φ) to obtain the same image as the fixed image as

formulated in Equation (3),

F
(

x, y, z
)

= (M ◦ φ)
(

x, y, z
)

. (3)

Combining Equations (2) and (3), we can obtain,

(M ◦ φn)
(

x, y, z
)

= M
(

(x, y, z)
′)

,

(x, y, z)
′
=

(

x, y, z
)

+ In
(

x, y, z
)

,

(

M ◦ φIn

) (

x, y, z
)

= M
((

x, y, z
)

+ In
(

x, y, z
))

. (4)

And from Equation (4), we can derive,

((

M ◦ φIn

)

◦ φn+1
) (

x, y, z
)

=
(

M ◦ φIn

) ((

x, y, z
)

+ In+1
(

x, y, z
))

= M
[(

x, y, z
)

+ In+1
(

x, y, z
)

+ In
((

x, y, z
)

+ In+1
(

x, y, z
))]

.

(5)

The combination of Equations (4) and (5) can finally be

rewritten as Equation (6),

M
[(

x, y, z
)

+ In+1
(

x, y, z
)

+
(

In ◦ φIn+1

) (

x, y, z
)]

= M
[(

x, y, z
)

+ [In+1 +
(

In ◦ φIn+1

)

]
(

x, y, z
)]

= M ◦ φ(

[In+1+
(

In◦φIn+1

)

](x,y,z)
) (6)

Therefore, from the above formula derivation, the

Flow_Agg(n,n+1) can be equivalent to (In+1 +
(

In ◦ φn+1
)

).

The above formulae are extended to integrate the output

Flow of n iterations of the network into a total displacement

vector field Flow_Agg(0,...,n), as shown in Equation (7),

Flow_Agg(0,1) = I1 + (I0 ◦ φ1) ,

Flow_Agg(0,1,2) = I2 +
(

Flow_Agg(0,1) ◦ φ2

)

,

. . .

Flow_Agg(0,...,n) = In +
(

Flow_Agg(0,...,n−1) ◦ φn

)

. (7)

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2022.932879
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Sun et al. 10.3389/fninf.2022.932879

Therefore, the Flow_Agg(0,...,n) can be gradually obtained with

n-1 AF Module integrations.

Elaboration of strategy

Figure 2A is the flow chart of our proposed progressive

registration strategy. We iteratively use the registration module

with shared parameters and complete the large displacement in

space bymultiple iterations without adding network parameters.

The progressive registration strategy is detailed as follows.

Initial registration (zero iteration of the registration): Input

the moving image and the fixed image into the shared weight

module to generate Flow(0). Then, the moving image and

Flow(0) are inputted into the STN to get the initial registration

result, which is denoted asWarped(0).

The first iterative registration: The Warped(0) is utilized as

the new moving image and inputted into the shared weight

module with the fixed image again to generate Flow(1). Then,

the AFModule is conducted to integrate the displacement vector

fields Flow(0) and Flow(1) to synthesize a total displacement

vector field Flow(0,1). Subsequently, the moving image is warped

toWarped(0,1) by the Flow(0,1).

The second iterative registration: The Warped(0,1) and the

fixed image are inputted into the shared weight module again

to obtain Flow(2). Then, the Flow(0), Flow(1), and Flow(2) are

integrated into a total deformation field Flow(0,1,2) by the

Equation (7). Same as the previous iteration, the moving image

is warped intoWarped(0,1,2) by the Flow(0,1,2).

By extending the above procedure to a general form, we can

obtain Warped(0,...,n) by a total deformation field Flow(0,...,n)

in one interpolation process. We need to set the number of

iterations of n_train and n_test of the network before the

training and testing procedures which are independent of each

other. The optimal numbers of n_train and n_test in this article

are determined by comparing the experimental results.

Hierarchical registration strategy

Figure 2D shows the overall registration architecture of

our proposed method. We conduct two iterative registration

networks with the same structure (as shown in Figure 2A)

to build a cascade and multi-scale training. This multi-

scale architecture has two advantages for fast and accuracy

registration. First, the low-scale network has a larger field of

perception, so it is capable of handling large deformations.

Additionally, the smaller input size of the low-scale network

leads to a smaller number of parameters, which could achieve

coarse-grained fast registration. Second, we up-sample the

deformation field generated from the low-scale network as the

initial value of the original-scale network, which will facilitate

the speed convergence of the original-scale network.

Specifically, as shown in Figure 2, the Down Sample (M) and

Down Sample (F) are the images obtained by down-sampling the

moving and fixed images.We cascade the Down Sample (M) and

Down Sample (F) into the low-scale registration network, that is,

the blue Base Module in Figure 2D. Then, the low-scale image

pairs are registered by the progressive registration strategy as

proposed in Section Progressive registration strategy.We denote

the final output of the low-scale network as flow-low scale. Then,

the flow-low scale is upsampled two times and each pixel value

is enlarged to two times the original value to obtain the flow-up

sample, as formulated in Equation (8), where Up2 represents the

double upsampling,

FlowUp Sample = Up2
(

FlowLow Scale

)

× 2 (8)

Loss function design

The proposed loss function consists of similarity loss and

smooth loss. Specifically, the similarity loss is utilized to restrict

the alignment between the warped moving image and its

corresponding fixed image. We employ the local normalized

cross-correlation loss (LLNCC) as the similarity loss. The smooth

loss is utilized to prevent excessive deformation. We utilize

spatial gradient regularization as the smoothness loss (Lsmooth)

of the displacement vector field.

We use the function G to indicate the shared weight module,

whose input is the registration image pair, and the output is

the three-channel displacement vector field (Flow). During the

training process, assuming that the number of iterations is n

(n>0), then, the smooth loss of Flow(n) can be formulated in

Equation (9),

Flow(n) = G
(

Warped(0,...,n−1), F
)

,

Lsmooth

(

Flow(n)
)

=
∑

p∈�

∥

∥

∥
∇Flow(n) (

p
)

∥

∥

∥

2
. (9)

According to Section Elaboration of strategy, we conduct the

AF Module to integrate Flow(0), . . . , Flow(n) into the total

deformation field Flow(0,...,n) and input it to the STN module

together with the moving image to obtain the registration result

Warped(0,...,n) of the nth iteration, as shown in Equation (10),

Warped(0,...,n) = STN
(

M, Flow(0,...,n−1)
)

(10)

The similarity loss between theWarped(0,...,n) and fixed image is

calculated by Equation (11),

LSimilarity = LLNCC

(

Warped(0,...,n), F
)

. (11)

Therefore, the objective function of the nth iteration registration

can be expressed as Equation (12),

Loss = −LLNCC

(

Warped(0,...,n), F
)

+ λ∗Lsmooth

(

Flow(n)
)

(12)
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TABLE 1 The average dice scores (%) and average registration times

(sec) of all competing methods on the mouse brain test set.

Methods Average dice score (%) Average time (sec)

Affine-Only 84.2954 N/A

SyN 86.6761 16.9177 (CPU)

VoxelMorph 87.3396 0.1543 (GPU)

VoxelMorph-Diff 87.3958 0.1571 (GPU)

Proposed 87.9893 0.5090 (GPU)

The best indicators are shown in bold.

where λ is the weight parameter that controls the proportion

of Lsmooth in the total loss function. The objective function

calculated by Equation (12) is used for back-propagation to

update the network parameters after the network completes the

nth iteration,

Elaboration of self-calibration

During the training process, the input moving item of the

nth iteration is the registration result of the (n−1)th iteration.

And the output warped image of the nth iteration is generated

by warping the primary moving image with the integrated

displacement vector field of the nth iteration. This training

strategy can enable the network to learn the registration error of

the previous (n−1)th iteration with the displacement vector field

calibration of the nth output, and we call it the self-calibration

capability of the network. Additionally, since the final warped

image is obtained by interpolating the primary image once

with the integrated displacement field of the nth iteration, the

accumulation of warping errors caused by multi-stage cascaded

networks could be avoided.

Experiments configurations

Datasets

We conduct a series of experiments on three datasets to

verify the effectiveness of our proposed method, including one

private dataset of the mouse brain and two public datasets of

human brain.

The mouse brain dataset contains 21 mouse brain images

and their corresponding segmentation labels, each image

is submicron high-resolution multi-channel CT acquired by

fMOST. The segmentation label for each image is divided

into hypothalamus (HY), caudoputamen (CP), midbrain

(MB), hippocampal formation (HPF), cerebral cortex (CTX),

cerebellar cortex (CBX), and ventricle, where HPF and

CP are divided into the left and right brain regions. We

perform standard preprocessing for all images, including spatial

normalization and intensity normalization. Specifically, all

brains are pre-aligned to the standard mean template brain of

Allen CCF with the RPM (Chui et al., 2003) algorithm, and all

images are sampled from the original size 568 × 320 × 456 to

192 × 160 × 192, as well as rescale pixel values to 0–255. We

randomly select 17 brains for training and the remaining four

brains for testing.

The human brain datasets utilized in the experiments are

LPBA40 (Shattuck et al., 2008) and OASIS-TRT. The LPBA40

contains 40 MRI images, each comes with a segmentation

ground truth of 56 anatomical structures. We randomly selected

34 images as the training set and six images as the test set.

The OASIS-TRT dataset is a subset of Mindboggle101 (Klein

and Tourville, 2012). It contains 20 MRI images, each comes

with a segmentation ground truth of 107 anatomical structures.

We merge them into the same 16 anatomical segmentation

structures referring to the labels utilized in VoxelMorph. We

also implement standard preprocessing for all images of two

human brain datasets, one reference image is randomly selected

from the LPBA40 dataset, then, all human brains are pre-aligned

to this reference image. The pre-alignment operation mainly

includes affine registration and intensity normalization.

Comparison settings

To demonstrate the effectiveness of our method, we

compare the proposed algorithm with three existing widely

used registration algorithms, including a traditional algorithm

SyN (Avants et al., 2008) and two unsupervised learning-

based algorithms, VoxelMorph (Balakrishnan et al., 2018)

and VoxelMorph-diffeomorphic (Dalca et al., 2019). The

traditional algorithm SyN is integrated into the publicly

available advanced normalization tools (ANTs) which utilizes

mutual information as a similarity measure for iterative

optimization. The unsupervised learning-based algorithms

VoxelMorph and VoxelMorph-diffeomorphic use LNCC and

Smooth Regularization as the loss function. The window

size of LNCC was set to 9 × 9 × 9. We manually tune

optimized regularization parameters of the smooth losses

of two unsupervised algorithms. Additionally, a baseline

method named Affine-only is set by only performing a global

affine alignment.

Implementation detail

We implement our method with PyTorch and accelerate

training with NVIDIA GeForce RTX 3090. We use the ADAM

optimizer (Kingma and Ba, 2014) with a learning rate of 10–

4, and the batch size is set to 1. Our implementation includes

a default of 30,000 iterations. We also train our method with

different smoothness parameters λ until the network converges.
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FIGURE 4

The boxplots of average dice scores of nine anatomical structures in mouse brain. We show the results of ANTs, VoxelMorph, and

VoxelMorph-di� compared with our proposed method. We also mark the median values of test results with black horizontal lines.

We also implement VoxelMorph and VoxelMorph-diff with

NVIDIA GeForce RTX 3090 and ANTs (SyN) with Inter(R)

Core(TM) i7-10700K CPU@3.80GHZ.

Evaluation metrics

We employ a dice score to quantitatively evaluate the

registration accuracy. The dice score uses voxels to calculate

the degree of overlap between the corresponding anatomical

segmentation regions. The calculation formula of the dice score

can be formulated as,

Dice
(

SkW , SkF

)

= 2 ∗ Skw ∩ SkF

Skw ∪ SkF

(13)

where Skw and SkF indicate the warped image and the fixed

image corresponding to the kth anatomical region of the

segmentation label. A dice score equal to 1 means that the

corresponding anatomical regions overlap completely, and equal

to 0 means that the corresponding anatomical regions do

not overlap.

Results and analysis

Overall performance comparison

The results for mouse brains

We first verify the registration accuracy of all competing

methods on the mouse brain dataset. Table 1 shows the average

dice scores over all subjects and structures in the test set of

mouse brain. As shown in Table 1, all the competing methods

have improved the affine alignment significantly. Our proposed

method shows 0.6–1.3% higher than the other existing state-of-

the-art methods, which demonstrates that our proposed method

can handle more complex deformation than the other methods.

We also test the average registration times of all deformable

registration methods. The computation time of the proposed

method is about 0.5 s which is longer than the VoxelMorph and

VoxelMorph-diff. This is reasonable, because we conduct multi-

scale network cascade and iteration to achieve more accurate

registration. Moreover, compared to the traditional method, our

time-consuming is acceptable.

In order to demonstrate the registration accuracy for each

individual anatomical structure of mouse brain, we visualize the

distributions of dice scores for the nine anatomical structures as

shown in Figure 4. We can find that the median dice score of our

method on each individual anatomical structure is continuously

higher than the other methods which verify the advancement of

our proposed method.

Figure 5 shows the visualization results of a randomly

selected image pair in the test set by different methods

[ANTs (SyN), VoxelMorph, VoxelMorph-diff, and ours].

And we have performed multi-channel color blending of

the registration results with the fixed image for a more

intuitive observation. The visualization results are divided

into three slices to display, and the spatial positions of

three slices in the mouse brain are mutually independent. By

comparison, it can be observed that the registration results

obtained by our proposed method are more aligned with

the fixed image in terms of intensity and structure than

the other methods. Especially for the part in the blue box,

those visually visible large non-linear deformations are well-

resolved.
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FIGURE 5

The registration results of di�erent methods on the mouse brain test set. The 2–5 rows show 2D slices of multi-channel color blend between

the registered results and the fixed image by di�erent methods [ANTs (SyN), VoxelMorph, VoxelMorph-di�, and our proposed method] on the

mouse brain test set. The red channel is the fixed image and the green channel is the di�erent registration results. The blue box is the part we

want to highlight.
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TABLE 2 The average dice scores (%) of all competing methods on the

LPBA40 test set and OASIS-TRT test set.

Methods Average dice score (%)

LPBA40 OASIS-TRT

Affine-Only 54.679 60.155

SyN 69.339 74.249

VoxelMorph 68.624 72.041

VoxelMorph-Diff 68.884 72.159

Proposed 71.052 75.100

The bold values indicate the best indicators in the columns.

The results for human brains

We also verify the effectiveness of our proposed method

on two human brain datasets, the average dice scores of all

competing methods are shown in Table 2. Our proposedmethod

shows 1.7 to 2.4% higher than the other competing methods

on the LPBA40 test set and 0.8 to 3.0% higher than the

other competing methods on the OASIS-TRT test set. These

results demonstrate that our method is also effective for human

brain registration.

Figure 6 is the 2D slice visualization of registration results

of several randomly selected samples from the LPBA40 and

OASIS-TRT test sets. It can be seen that the registration results

obtained by our method match better with the fixed image in

terms of brain structure and brightness than the other methods,

especially for the part circled in the red box.

Iteration parameter discussion

The hyperparameters n_train and n_test are the critical

parameters in the proposed method, which denote the numbers

of iterations in training and testing procedures, respectively, as

described in Section Elaboration of strategy. In particular, the

number of training iterations directly affects the registration

accuracy. When n_train is set too small, the network may not

be able to well learn this progressive registration strategy. In

contrast, if n_train is set to big, the network may spend most

of the time learning small deformations, which will reduce the

ability of the network to handle large deformations. In order

to obtain optimized hyperparameters n_train and n_test, we

conduct grid search experiments of multi-scale networks on

the mouse brain dataset. We increase n_train from 1 to 11

and n_test from 1 to 5, and record the dice score under each

set of parameter configurations. We will demonstrate these

results and discuss their effects on low-scale and original-scale

networks separately.

The grad search results on low-scale network are shown

in Table 3. From the observation of Table 3, we can obtain

the following conclusions. First, after a column-by-column

comparison, we find that the dice scores first increased and

then decreased with the increase of n_train, this phenomenon

is consistent with the conclusion of our analysis in the previous

paragraph. Second, by comparing row by row, we find that

the dice scores reach the best values when n_test is set to 3

or 4. Therefore, we choose to train the low-scale model with

five iterations and utilize the results of three test iterations as

the coarse registration output as well as the initial input of the

original-scale network.

Table 4 demonstrates the grad search results on the original-

scale network, we can obtain the following conclusions. First,

in the original-scale network, the changes in n_train and n_test

have little effect on the registration results, this may be because

most of the alignment has been done in the low-scale network,

and the original-scale network only adjusts the detail areas.

Second, the best dice score is achieved by setting the n_test to

2 or 3. By comprehensive consideration, we set n_train to 9 and

n_test to 2 for the original-scale network.

Ablation study

The progressive registration strategy and hierarchical

registration strategy are two key strategies proposed in our

registration method. In order to verify the effectiveness of

the individual strategy, we construct two comparing methods

by only using the progressive registration strategy and only

using the hierarchical registration strategy, which is named

as progressive-only and hierarchical-only. Specifically, the

hierarchical-only method is constructed by setting n_train and

n_test to 1 in both low-scale and original-scale networks,

and the progressive-only method is constructed by removing

the low-scale network and training the original-scale network

with progressive registration strategy. We refer to the optimal

number of training iterations for a single scale in Table 3 and set

the number of training iterations to five for the progressive-only

method. The experimental results are shown in Table 5. It can

be seen that each strategy in our proposed method improves the

registration accuracy compared with the baseline methods, and

the contribution of the progressive registration strategy to our

method is greater than that of the hierarchy registration strategy

at the same time. The lack of any strategy in our method will

result in a decrease in registration accuracy, which reflects the

effectiveness of our proposed strategies.

Dynamic datasets augmentation

The proposed method implicitly implements the DSS

strategy (a data augmentation strategy) in DeepRS (He et al.,

2020). We can dynamically augment the dataset by changing

the number of training iterations. When the number of training

iterations is increased once, the training dataset is implicitly
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FIGURE 6

The visual 2D section of the image pair registration results randomly selected by di�erent methods in datasets LPBA40 and OASIS-TRT.

TABLE 3 The average dice scores (%) of low-scale network with di�erent parameters on mouse brain test set.

Iteration number: 1 Iteration number: 2 Iteration number: 3 Iteration number: 4 Iteration number: 5

Iteration number: 1 86.7183 87.1718 87.1433 86.9792 86.7433

Iteration number: 2 86.7895 87.2469 87.2578 87.1514 87.0137

Iteration number: 3 87.2113 87.6310 87.6884 87.6066 87.4976

Iteration number: 4 86.9859 87.5079 87.5665 87.5214 87.4324

Iteration number: 5 86.9678 87.5518 87.6898 87.6815 87.6385

Iteration number: 6 86.9066 87.4464 87.5343 87.5250 87.4656

Iteration number: 7 86.9492 87.5052 87.6174 87.6225 87.5793

Iteration number: 8 86.8978 87.4347 87.5231 87.5337 87.4961

Iteration number: 9 86.8077 87.4605 87.6254 87.6455 87.6207

Iteration number:

10

86.8908 87.4963 87.6454 87.6827 87.6735

Iteration number:

11

86.7796 87.2318 87.3211 87.3327 87.2993

The first column is the number of training iterations; the first row is the number of test iterations. The optimal value for each row is bolded and the overall optimal value is bolded

and italicized.
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TABLE 4 The average dice scores (%) of original-scale network with di�erent parameters on mouse brain test set.

Iteration number: 1 Iteration number: 2 Iteration number: 3 Iteration number: 4 Iteration number: 5

Iteration number: 1 87.8657 87.8920 87.8315 87.7403 87.6295

Iteration number: 2 87.9047 87.9591 87.9573 87.9267 87.8861

Iteration number: 3 87.9273 87.9643 87.9401 87.9060 87.8613

Iteration number: 4 87.9183 87.9780 87.9875 87.9735 87.9448

Iteration number: 5 87.9275 87.9849 87.9821 87.9589 87.9213

Iteration number: 6 87.8932 87.9366 87.9203 87.8895 87.8548

Iteration number: 7 87.9007 87.9549 87.9687 87.9573 87.9361

Iteration number: 8 87.8755 87.9249 87.9211 87.9020 87.8730

Iteration number: 9 87.9221 87.9893 87.9867 87.9643 87.9374

Iteration number: 10 87.8773 87.9243 87.9237 87.9002 87.8728

Iteration number: 11 87.9021 87.9509 87.9542 87.9376 87.9093

The first column is the number of training iterations, the first row is the number of test iterations. The optimal value for each row is bolded and the overall optimal value is bolded

and italicized.

TABLE 5 The results of ablation experiments on the mouse brain dataset.

Methods Average dice score (%)

ANTs(SyN) 86.6761

VoxelMorph 87.3396

VoxelMorph-Diff 87.3958

Hierarchical-Only Progressive-Only Average dice score (%)
√

87.5124
√

I_N: 1 I_N: 2 I_N: 3 I_N: 4 I_N: 5

86.797 87.582 87.806 87.859 87.870
√ √

87.9893

The hierarchical-only and progressive-only stand for the two constructed competing methods, the last row indicates the proposed method contained both progressive and hierarchical

registration strategies. I_N means the number of test iterations. The bold values indicate the best indicators.

TABLE 6 Study on dynamic data augmentation at di�erent scales.

Training iteration number Average dice score (%)

Low scale Original scale

Iteration number: 1 86.7183 87.8657

Iteration number: 2 86.7895 87.9047

Iteration number: 3 87.2113 87.9273

Iteration number: 4 86.9859 87.9183

Iteration number: 5 86.9678 87.9275

Iteration number: 6 86.9066 87.8932

Iteration number: 7 86.9492 87.9007

Iteration number: 8 86.8978 87.8755

Iteration number: 9 86.8077 87.9221

Iteration number: 10 86.8908 87.8773

Iteration number: 11 86.7796 87.9021

The number of test iterations in this table is set to 1. The bold values indicate the best

indicators in the columns.

doubled. We conduct an experiment to verify the inference,

the results are shown in Table 6. A number of iterations of

TABLE 7 The average dice scores (%) between the conventional

recursive cascade method with information loss and our proposed

method on the mouse brain test set.

Methods Average dice score (%)

Affine-Only 84.2954

SyN 86.6761

VoxelMorph 87.3396

VoxelMorph-Diff 87.3958

Recursive cascade method 87.6885

Proposed 87.8700

We also compare these two methods with other competing methods. The bold values

indicate the best indicators.

one mean that no data augmentation is performed, and this

is set to the baseline. We can observe that the average dice

scores obtained with other iteration numbers are all higher than

the baseline, which proves the effectiveness of our implicitly

dynamic augmentation strategy.
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FIGURE 7

The intermediate registration results generated by our method and conventional cascade registration methods with information loss in the

iterative process. The green arrow points to the iterative registration process of the conventional recursive cascade method with information

loss, and the blue arrow points to the iterative registration process of our method.

The self-calibration capability verification

To verify the effectiveness of the self-calibration capability of

the progressive registration strategy, we compare the proposed

method with a conventional recurrent cascade network. These

methods are trained with the same number of iterations, and

we only perform the progressive registration strategy in our

proposed method to eliminate the effect of the hierarchical

registration strategy.

We compare these two methods with other competing

methods in Table 7. After comparison, it can be concluded that

the average dice score of our method on the mouse brain test set

is higher than the conventional recurrent cascade network with

information loss. However, it can also be seen from Table 7 that

the conventional recurrent cascade network with information

loss can, indeed, improve registration accuracy compared with

other competing methods. The information loss of the warped

moving image is caused by the recursive cascade network that

interpolates and deforms the moving image many times. As

the number of iterations increases, the details of the images

to be registered in the input sub-network are lost more and

more seriously. So that the subsequent registration sub-network

cannot repair and make good use of the detailed information of

the image.

In order to intuitively show the process of information loss

in the conventional recurrent cascade network, we plot some

intermediate results of registration in Figure 7. The direction

of the green arrow is the visualization result of the recursive

cascade network with information loss, and the blue arrow is

the visualization result of our proposed method. By comparing

the parts in the orange and yellow boxes, we can conclude that

as the number of iterations increases, the edge details of the

conventional recursive cascade method warped moving images

become more and more blurred. However, as the number of

iterations increases, the warped moving image generated by

our method in the registration process can always maintain a

clear boundary.

Figure 8 shows the visualization results of randomly

selected instance image pairs (17,545–17,781) for registration

between our method and the conventional recursive cascade

registration method in the mouse brain test set. Figure 8

also shows the visualization of 2D slices multi-channel color

blend between the two registered results and the fixed image.

The visualization results are divided into three sections to

display. The spatial positions of the slices in the mouse

brain are independent of each other. By comparing these

visualization slices, especially the part in the orange box, it

can be seen that the registration results obtained by our

method have clear boundaries and details compared with

those obtained by the conventional recursive cascade method.

The registration results obtained by the conventional recursive

cascade method have certain losses in terms of intensity
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FIGURE 8

The registration results of the conventional cascade registration method with information loss and our method on the mouse brain test set. And

the visualization of 2D slices multi-channel color blend between the two registered results and the fixed image. The red channel is the fixed

image and the green channel is the di�erent registration results. The orange box is the part we want to highlight.

and details. And the registration results obtained by our

proposed method are more aligned with the fixed image in

both intensity and structure than the conventional recursive

cascade method.

Conclusion

In this article, we have proposed a progressive network

based on deep self-calibration for deformable biomedical image
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registration, which leverages the idea of progressive cascaded

networks to handle the large non-linear deformation and

reduce the problem of information loss existing in the existing

progressive registration. The proposed method consisted of

two registration strategies, the progressive registration strategy

was designed to reduce the cascaded information loss, and the

hierarchical registration strategy was conducted to achieve a

fast and coarse-to-fine registration. In addition, our proposed

progressive registration strategy could generate abundant

training data during the training procedure, which has a

significant advantage for biological image analysis with fewer

available data. However, our proposed method focuses on the

mono-modal registration task, and the multi-modal registration

still remains challenging in biomedical deformable registration.

Generally, the modal disparity of cross-modal images is large,

and it is difficult to obtain satisfactory results in a one-shot

registration. Therefore, further work will be done on our

proposed progressive registration network to meet the cross-

modal registration.
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