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Background: Tinnitus, known as “ringing in the ears”, is a widespread and

frequently disabling hearing disorder. No pharmacological treatment exists,

but clinical management techniques, such as tinnitus retraining therapy (TRT),

prove e�ective in helping patients. Although e�ective, TRT is not widely

o�ered, due to scarcity of expertise and complexity because of a high level of

personalization. Within this study, a data-driven clinical decision support tool

is proposed to guide clinicians in the delivery of TRT.

Methods: This research proposes the formulation of data analytics models,

based on supervised machine learning (ML) techniques, such as classification

models and decision rules for diagnosis, and action rules for treatment

to support the delivery of TRT. A knowledge-based framework for clinical

decision support system (CDSS) is proposed as a UI-based Java application

with embedded WEKA predictive models and Java Expert System Shell (JESS)

rule engine with a pattern-matching algorithm for inference (Rete). The

knowledge base is evaluated by the accuracy, coverage, and explainability of

diagnostics predictions and treatment recommendations.

Results: The ML methods were applied to a clinical dataset of tinnitus

patients from the Tinnitus and Hyperacusis Center at Emory University School

of Medicine, which describes 555 patients and 3,000 visits. The validated

ML classification models for diagnosis and rules: association and actionable

treatment patterns were embedded into the knowledge base of CDSS. The

CDSS prototype was tested for accuracy and explainability of the decision

support, with preliminary testing resulting in an average of 80% accuracy,

satisfactory coverage, and explainability.

Conclusions: The outcome is a validated prototype CDS system that is

expected to facilitate the TRT practice.

KEYWORDS

clinical decision support systems, tinnitus, knowledge-based systems, knowledge
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1. Introduction

1.1. Tinnitus

Tinnitus is a highly prevalent and frequently severely

impairing hearing disorder with a worldwide impact. Often

described as “ringing in the ears”, tinnitus is the sensation of

sound perception without an external sound source—“phantom

auditory perception” (Jastreboff, 1990). The U.S. Centers for

Disease Control estimates that nearly 15% of the general

public—over 50 million Americans—experience a form of

tinnitus. In addition, close to 90% have experienced at least

temporary tinnitus, making it one of the most common health

conditions in the United States. While about 20 million people

struggle with burdensome chronic tinnitus, 2 million have

extreme and debilitating cases (American Tinnitus Association,

2018). There are millions of general practice consultations every

year where the primary complaint is tinnitus, equating to a

major burden on healthcare services. Tinnitus has been the

#1 claimed service-related disability for the American Veteran

Administration for more than a decade (US Department

of Veterans Affairs, 2019). Chronic disabling tinnitus has a

devastating impact on the quality of life and psychosocial aspects

of those affected (Makar et al., 2017). The disorder has a

considerable heterogeneity and no single mechanism is likely to

explain the presence of tinnitus in all those affected. Tinnitus can

be associated with head and neck injuries, hearing loss, acoustic

neuromas, drug toxicity, ear disease, and depression (Savage and

Waddell, 2014).

1.2. Treatment of tinnitus

The heterogeneity and current limited knowledge about the

pathophysiology of the different forms of tinnitus are reasons

that hamper the identification of good candidates for an effective

pharmacological treatment for tinnitus. Despite its growing

prevalence and often-devastating effects, tinnitus remains a

severely underfunded condition. There are no Food and Drug

Administration (FDA) approved drugs available, and the quest

for a new treatment option for tinnitus focuses on important

challenges in tinnitus management (Swain et al., 2016). Clinical

management strategies include counseling (education and

advice), sound enrichment using ear-level sound generators or

hearing aids, tinnitus masking, relaxation therapy, cognitive

behavior therapy (CBT), and tinnitus retraining therapy (TRT)

(Makar et al., 2017). Although a variety of therapeutic

interventions are available, the complexity of tinnitus makes the

management of the condition challenging. Evaluating results in

the field of tinnitus is a difficult task, as no objective tinnitus

measurement exists. It means there is no objective method for

detecting the presence and the extent of tinnitus.

1.3. Tinnitus retraining therapy

During the last decades, advances in neuroimaging methods

and the development of an animal model of tinnitus have

contributed to an increasing understanding of the neuronal

correlates of tinnitus (Langguth, 2015). TRT is a clinical

implementation of the neurophysiological model of tinnitus

(Jastreboff and Hazell, 2004). It is the habituation therapy used

for the management of chronic subjective tinnitus. It includes

counseling (TC) during structured sessions in combination

with sound therapy (ST) to reduce the patient’s tinnitus-

evoked negative reaction to, and awareness of, tinnitus. ST

sound stimulation is performed with low-level broadband sound

generators and aims to mask tinnitus at the sound perception

level. By reducing the tinnitus perception, TRT successfully helps

patients to achieve control over their tinnitus, live a normal

life, and participate in everyday activities (Reddy et al., 2019).

Clinical studies confirm that TRT is an effective and robust

treatment for chronic decompensated tinnitus (Zhao and Jiang,

2018; Nemade and Shinde, 2019). The majority of published

clinical studies indicate TRT offers notable help for about 80%

of patients and the severity of tinnitus decreases in a clinically

significant and persistent manner. Furthermore, TRT offers an

approach to treat other hearing disorders: hyperacusis, which is

reduced tolerance to sounds, phonophobia, which is the fear of

sound, and misophonia, increased sound sensitivity (Jastreboff

and Jastreboff, 2000). TRT, although effective, is a complex

treatment and must be highly individualized. Counseling and

teaching are tailored to the needs of the patient, and therefore,

they cannot be performed as group therapy (Jastreboff and

Jastreboff, 2006). Sound therapy involves different types/models

of instruments, and they must be fitted optimally at the “mixing

point” to achieve habituation in the most effective manner

(Jastreboff and Jastreboff, 2006). Because TRT has to focus on

the individual needs and profile of a patient, it consequently

requires significant time involvement of the personnel. Although

promising, it is expensive and spans from several months to a

couple of years. Despite its high effectiveness and international

recognition, the therapy is not widely offered, mainly due to a

lack of expertise and experience in its delivery. Themain obstacle

to the widespread adoption of this technique is a lack of trained

and experienced audiologists.

1.4. Tinnitus data analytics

Data-driven approaches have the potential to reveal

novel insights into tinnitus heterogeneity. However, there are

limitations in data-driven studies for tinnitus management

proposed so far. Most efforts involve applying traditional

statistical methods, such as correlation and regression (Langguth

et al., 2017). New forms of discovery via machine learning

and big data methods have not been widely investigated.
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Data mining/machine learning methods proposed on tinnitus

data were mostly confined to association analysis, predictive

modeling, and clustering analysis. However, these studies were

limited in terms of analyzed variables or provided inconclusive

results (Anwar, 2013; van den Berge et al., 2017). The status

quo of tinnitus data analytics lacks the application of discovery

methods for actionable and personalized knowledge needed

by medical practitioners. The outcomes are not analyzed with

regard to treatment methods in order to seek actions leading to

improvement. Also, the temporality of data is not considered.

So far, data analytics efforts focus on variables describing

psychoacoustic measures of tinnitus. These measures, although

routinely obtained in many clinics and as part of research

studies, have not been validated for being diagnostic, prognostic,

discriminative, or responsive (Henry, 2016; Watts et al.,

2018). Medical history and evaluation, review of the patient’s

medications, and assessment of an individual’s distress or

handicaps are also crucial for effective diagnosis and treatment

(Kari et al., 2010). Finally, most research efforts conclude by

presenting analytics without any further developments in the

decision support tool. No integration into health IT systems nor

plans on how to utilize the findings in clinical decision-making

is currently being proposed. To date, this research is the first to

propose a decision support system for TRT.

1.5. Technological perspectives on
tinnitus

The postal survey of general practitioners (GPs) concluded

that there was a substantial discrepancy between the scientific

and technological perspectives on the management of tinnitus

and the actual day-to-day practice in the primary care setting

(Hall et al., 2011). Many GPs expressed an unmet need for

a specific and concise training on tinnitus management. Low

satisfaction with available treatment options was unequivocally

mentioned by both GPs and ENTs (ear-nose-throat specialists)

from all developed countries investigated by Hall et al. (2011).

The results of that survey highlight the need for an effective

therapy option, particularly for chronic subjective tinnitus.

Despite a variety of options, the low success of the available

tinnitus treatment options leads to the frustration of physicians

and patients alike. Effective therapeutic options with guidelines

about key diagnostic criteria are urgently needed.

2. Materials and methods

Clinical decision support (CDS) is a process for enhancing

health-related decisions and actions with pertinent, organized,

clinical knowledge, and patient information to improve

health and healthcare delivery. Systems, known as clinical

decision support systems (CDSS), offer intelligent support for

human-oriented diagnosis and treatment of patients. “CDS

provides clinicians, staff, patients, or other individuals with

knowledge and person-specific information, intelligently filtered

or presented at appropriate times, to enhance health and

healthcare” (Osheroff et al., 2007). They were proposed for

various diseases, including traumatic brain injury, diabetes,

Parkinson’s disease, and other health-related decisions such as

drug dosing (Ciecierski, 2013; Nielsen et al., 2014; Fartoumi

et al., 2016; Torrent-Fontbona and López, 2019). Yet, nobody

developed a clinical decision support system for tinnitus

management. It was hypothesized that DSS can improve the

accuracy and time efficiency of tinnitus management, but a

design or implementation of such a system was not attempted

(Thompson et al., 2007; Anwar, 2013). Within this research, we

proposed a knowledge-based clinical decision support system

(refer to Figure 1). The knowledge base is developed with

validated models extracted from data mining experiments.

2.1. Knowledge discovery methods

The proposed knowledge discovery from tinnitus data,

as opposed to previous research in this area, provides

multidimensional evaluation beyond the psychoacoustic

characteristics of tinnitus. Since the clinical data available

describes temporal changes in tinnitus score and particular

areas of a patient’s life affected, it is possible to perform an

analysis of changes and increased involvement in life activities

that were previously prevented or interfered with by tinnitus (or

hyperacusis). This approach will help in a better understanding

of complex auditory, psychological, and medical conditions and

aid in selecting the most significant variables to consider in TRT.

We propose a variety of data mining methods to extract novel

knowledge about TRT diagnosis and treatment. This includes

predictive and descriptive models, which are extracted from the

pre-processed and transformed data. The following software

was used for knowledge discovery:

• WEKA—Open-source data mining software which offers

a wide choice of algorithms for feature selection and for

prediction as well as a user-friendly interface and feature to

build a complete “knowledge flow” (Bouckaert et al., 2014).

It also allows using Java API to embed machine learning

models into a Java program.

• LISp-Miner—An academic system that offers exploratory

data analysis, including modules for association rule

discovery (4ft-Miner) and action rule discovery (Ac4ft-

Miner) (Simunek, 2014).

2.1.1. Dataset

To evaluate our data-driven approach to building CDSS,

we use clinical data collected at the Tinnitus and Hyperacusis
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FIGURE 1

The architecture of the proposed data-driven clinical decision support system for tinnitus diagnosis and treatment.

Center of Emory University School of Medicine. The dataset

contains records of tinnitus patients and the records for

their sequential visits to the clinic. The dataset was collected

over a period of several years and describes 555 unique

patients and 3,000 visits in total. The raw data resides in 11

separate tables describing demographics, interview response,

audiological measurements, pharmacology, additional medical

evaluation, and visits. The visit data contains treatment methods

applied by the physician at the visit (sound therapy with

instruments/counseling, real ear measurements to help fit the

instruments) along with the measure of the treatment progress

using the Tinnitus Handicap Inventory (THI). The raw data

were exported to the relational database system to ensure

the structure, consistency, and integrity of the data (refer to

Figure 2).

2.1.2. Data pre-processing and feature
selection

Various data-preprocessing techniques were applied to

cleanse the data and handle real-life data issues, such

as inconsistencies, incompleteness, duplication, and other

problems. Data cleansing removed all inconsistencies, such

as missing values, outliers, and duplicate data (e.g., duplicate

visit numbers for the same patient). To handle missing

data in the total score of the tinnitus handicap inventory

(THI), an algorithm for data imputation was developed and

validated. Additional transformations were applied, such as

alphanumeric to numeric encoding, aggregation, and handling

data temporality. Feature selection was proposed to reduce the

data to a manageable and relevant size. Only the most relevant

variables were involved in developing an analytical model. A

more detailed description of the challenges with the real-world

data and applied data-preprocessing methods to mitigate those

can be found in our previous publication (Tarnowska et al.,

2017).

2.1.3. Feature extraction

Additional features describing the patient and characteristics

of tinnitus were developed from the text attributes to make the

dataset more suitable for machine learning:

• Tinnitus background: STI (stress-induced), NTI (noise-

induced), HLTI (hearing-loss-induced), DETI (depression-

related), AATI (auto accident-related), OTI (surgery-

related), and OMTI (induced as a symptom of another

medical condition).

• Temporal features: DTI (date tinnitus induced), AgeInd

(the patient’s age when tinnitus induced), AgeBeg (the

patient’s age when treatment began), binary features

denoting how many days/weeks/months/years ago the

hearing problem started.

• Binary attributes that represent the intake of medication.

• Attributes that keep track of a patient’s improvement over

time: ChTsc (change in the THI’s total score from the

previous visit) and PerChTsc (relative change measuring

the percentage change in the THI’s total score from the

previous visit).

A comprehensive list of the attributes from the clinical database,

as well as extracted features, can be found in our previous

publication by Tarnowska et al. (2017).
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FIGURE 2

The relational database structure to store tinnitus-related data.

2.1.4. Predictive models

The first type of machine learning applied is supervised

machine learning to build predictive models. The goal is to

build an analytical model predicting a target measure of interest.

In our domain, it is the category of the hearing problem,

which determines the TRT treatment protocol. TRT protocol

differentiates the following five categories, which differ in further

treatment protocol: C0 (tinnitus minimal problem), C1 (tinnitus

significant problem), C2 (tinnitus significant and hearing loss

present), C3 (tinnitus irrelevant, hyperacusis significant), and

C4 (prolonged tinnitus/prolonged exacerbation of hyperacusis).

The proposed classification model, built using supervised

machine learning methods, is used to predict the category

of an unseen patient under consideration. The following ML

algorithms in WEKA are used for classification models: tree-

based J48, random forest, and probabilistic-based Naive Bayes.

2.1.5. Descriptive models

The goal is to extract valid and useful medical patterns

in tinnitus diagnosis and treatment. The patterns describe

patients’ diagnosis/treatment and are used to develop the

domain knowledge for TRT. The descriptive methods

used in this research include association rules and action

Frontiers inNeuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2022.934433
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Tarnowska et al. 10.3389/fninf.2022.934433

FIGURE 3

Mining associations between questionnaire and interview answers, audiology variables, medications, and category of a hearing problem for

decision support in diagnosis in TRT.

rules. Rules are characterized by statistical measures

quantifying their strength. Support and confidence are

two key measures to quantify the strength and relevance

of a rule. The support reflects the usefulness of a rule and

confidence—its certainty. To find the significant associations,

support and confidence must be set at a certain minimum

threshold value (usually 1% for support, and 80% for

confidence).

2.1.5.1. Association rules for diagnosis in TRT

The TRT diagnosis is to be supported by the descriptive

models based on the association (decision) rule discovery, as

supplemental to predictive models.

A decision rule is a rule r in the form (φ ⇒ δ), where φ is

called antecedent (or assumption), and δ is called descendant

(or thesis). Each rule is characterized by support and confidence.

Support(r) is defined as the number of objects matching

the rule’s antecedent. Confidence(r) is the relative number of

objects matching both the rule’s antecedent and descendant

of the rule. The data mining experiments for decision rule

discovery were modeled after the TRT diagnosis process, which

involves an initial interview, audiology and medical evaluation

(refer to Figure 3). Association rules mining aims at detecting

frequently occurring associations between variables in TRT.

Accordingly, associations between audiological measurements,

demographics, questionnaire responses, pharmacology, and the

category of tinnitus were extracted using LISP-Miner software

for data mining (Simunek, 2014).

2.1.5.2. Action rules for treatment in TRT

The concept of an action rule was first proposed by Ras

and Wieczorkowska in 2000 (Ras and Wieczorkowska,

2000), and since then, its application was proposed,

among others, for business, medicine, and music indexing

(Ras and Wieczorkowska, 2000, 2010; Wasyluk et al.,

2008; Tarnowska et al., 2020). Action rules are especially

promising in the field of medical data, as a doctor can

examine the effect of treatment decisions on a patient’s

improved state. This technique is also particularly

useful for building knowledge-based decision support

systems.

Action rule r is a term [(ω)∧ (α → β) ⇒ (θ → ψ)], where

(ω ∧ α) ⇒ θ and (ω ∧ β) ⇒ ψ are classification rules, ω is a

conjunction of stable attribute values, (α → β) shows changes

in flexible attribute values, and (θ → ψ) shows the desired effect

of the action. In this domain, it is proposed to apply action rules

to recommend effective methods of treatment in TRT (refer to

Figure 4). Such rules, extracted from large sets of data, represent

actions to undertake (e.g., treatment methods) to improve the

defined state (e.g., tinnitus awareness) when specified conditions

hold (e.g., the current patient’s state and profile). Action is

understood as changing certain (“flexible”) variables to achieve

the desired results. The purpose is to analyze data to seek specific

actions to enhance the decision-making process. Action rules

applied for TRT will suggest, with a certain confidence, the

most effective treatment method for an individualized profile

of a patient (defined by “stable” attributes), at a particular time

(considering temporal variables).

2.2. Knowledge base

Within this research, we propose a knowledge-based

clinical decision support system. The knowledge is developed

with models extracted from knowledge discovery experiments.

These experiments yield a vast number of diagnostic and

treatment patterns. These are general clinical rules already

known by experts, or they represent novel and unknown

patterns useful for future diagnosis/treatment. We propose

interpreting and validating the results from analytical modeling

with clinical expertise and including only validated patterns
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FIGURE 4

Mining action rules for changes in the type of counseling and tuning sound generators for decision support in TRT treatment.

with the highest confidence in the framework of the built

system.

2.2.1. Knowledge translator (encoder)

The goal of the Knowledge Translator (“Encoder” in

Figure 1) component is to automatically encode the rule-based

knowledge from the output files of data mining software into

the CDSS knowledge base. The knowledge translating procedure

reads rules one by one, parses, interprets them, adds the

explanation in natural language, and encodes them into the

syntax used in the knowledge base of CDSS. The rules encoded

in KB are “if-then” like statements and each rule encodes a small

piece of the expert’s knowledge available through the dataset.

The pseudocode for the knowledge translating procedure is

depicted in Table 1.

2.2.2. Inference engine

With knowledge encoded in the form of “if-then” rules,

an automatic inference component is used to control the

application of the rules. Each rule has a left-hand side (“if ”

statement—the antecedent of a rule) and a right-hand side

(“then” statement—consequent of a rule). The left-hand side

contains information about certain facts about the patient.

If the left-hand side of the rule (antecedent) is matched, its

right-hand side (consequent) is executed. Once a new patient’s

characteristics are entered into the system, the inference module

will fire the matching rules from its knowledge base. Consequent

clauses decide on the diagnosis/treatment decision suggested to

the physician. The JESS library for Java-based programs was

used to implement an inference engine based on the efficient

pattern-matching algorithm, called Rete (Forgy, 1982).

2.3. Graphical user interface

The user interface (UI) of the system constitutes the mode

of interaction between the physician and the underlying CDS

model. The prototype GUI was developed in Java Swing, with

customary component extensions for screen development. The

developed UI supports clinical processes in

• Storing and managing the data related to

– Tinnitus patients—demographics, medical history,

audiology evaluations, and structured interviews

(Jastreboff and Jastreboff, 1999);

– TRT visits—diagnoses, treatment applied (sound

therapy and counseling), and the outcome evaluation

with standardized forms, such as Tinnitus Handicap
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TABLE 1 Steps in the Knowledge Translator procedure.

Step # Step description

1 Read a rule.

2 Extract confidence, category, and other components from the rule.

3 Split the rule’s hypothesis into partial cedents.

4 Parse each partial cedent and create an object representing the cedent.

5 Develop an explanation for each partial cedent.

6 Create a rule object containing the cedent objects and explanations.

7 Encode that rule object to a file in KB.

Inventory (THI) (Newman et al., 1995) and Tinnitus

Functional Index (TFI) (Meikle et al., 2011).

• Providing evidence-based diagnostic and treatment

decision support with explanations and quantifiable

predictive outcomes.

Prior to designing the appearance of the user interface,

several factors were taken into account. For this process, several

ideas explored in Carroll et al. (2002) were considered. The

article proposes the following guidelines for designing a user

interface for clinical decision support systems, which provided

a basis for research methods for effective GUI design for CDSS

for tinnitus:

• “All clinical data should be represented clearly in a format

familiar to clinicians and easily understood by patients.”

• “The system should be easy to learn and navigate around.”

• “All information processing should be ‘invisible’ to the

user.”

• Consider both the physician and the patient as primary

stakeholders.

• Use visual aids to describe data such as sliding bars and

color codes, where applicable.

3. Results

Within this section, results on feature selection, machine

learning experiments, and the evaluation of KB and CDSS

are described.

3.1. Feature selection

The feature selector used in WEKA was used based on

a chi-square measure to identify a subset of most predictive

attributes. Table 2 shows the results of feature selection, from

around 603 attributes that describe the TRT visits dataset

(questionnaires, interviews, audiology, and pharmacology).

TABLE 2 Feature selection results for categorizing patients based on

chi-squared ranking in WEKA.

Feature Feature description Ranking score

LR4 LDL (RE) at 4 kHz 725.1

Th L Hearing threshold (LE) 712.7

LR3 LDL (RE) at 3 kHz 688.0

LR2 LDL (RE) at 2 kHz 683.4

LR1 LDL (RE) at 1 kHz 683.1

T LR Tinnitus Loudness Match (RE) 672.6

LR8 LDL (RE) at 8 kHz 670.57

LL3 LDL (LE) at 3 kHz 667.47

Th R Hearing threshold (RE) 618.94

LL2 LDL (LE) at 2 kHz 617.06

Audiological measurements were indicated as the most relevant

factors in the TRT categorization process. The results point out

various audiological measurements, such as loudness discomfort

level (LDL), the threshold of hearing (Th), and loudness

match as primary in relation to classifying (diagnosing) patients

into categories.

3.2. Machine learning models

WEKA was used to test different classification algorithms

and determine the classification model with the highest

accuracy. The evaluation was carried out by splitting the dataset

into training and test subsets using cross-validation with 10

folds. Performance measures for predictive models include

classification accuracy (the percentage of correctly classified

patients) and precision (how many of the predicted categories

are actually in that category). Preliminary results of predictive

models with different algorithms are presented in Table 3.

The tests were performed on different types of datasets and

using different feature selection methods. Pat-vis is a dataset

with each visit of a patient as a separate instance. Pat-vis-

med dataset additionally includes binary attributes for all types

of medications, that is, each visit instance is repeated for a

medication that a patient is taking. Pat-vis0 includes only initial

visits (Visits with ordering number 0 or 1), that is when the

diagnosis and categorization of a patient are decided by a

clinician. Depending on the feature selectionmethod chosen, the

dimensionality of datasets (# features) was reduced accordingly.

ML algorithms tested included tree-based (J48), random forests,

and Naive Bayes. The most reliable results were obtained using

the dataset with the initial visit only, but due to the reduction in

the number of data instances, the best accuracy was 57.4% with

the Naive Bayes. It is expected that once more data on initial

visits is collected, the more precise the trained models become.
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TABLE 3 Results on patient classification using WEKA using di�erent data pre-processing, feature selection, and algorithms.

Dataset # instances # features J48 (%) Naive Bayes (%) Random forest (%)

Pat-vis-med 6,991 80 88.5 75.2 89.3

Pat-vis-med 6,991 20 87.5 81.5 87.1

Pat-vis 3,125 603 70.2 55.4 71

Pat-vis 3,125 488 69.7

Pat-vis01 1,090 603 52.1 46 49.2

Pat-vis0 599 603 43.2 52 53.4

Pat-vis0 599 100 41.0 57.4 49.2

The best results are in bold.

3.3. Rule mining

The results described in this section include results from

rule mining with LISp-Miner 4ft-Miner (association rules) and

Act4ft-Miner (action rules) (Simunek, 2014).

3.3.1. Association rules for diagnosis

Experiments on decision rule discovery were carried out

to complement results on predictive models for diagnostic

decision-making. The variables investigated included 593

variables describing the patient and their tinnitus. Audiology

variables include a pure-tone audiogram (up to 12kHz) and the

determination of pure tone loudness discomfort levels (LDL)

measured for all frequencies in the audiogram. For example, R6

describes the right ear (R) pure-tone threshold for 6kHz. LDL is

the audiological measure crucial for TRT diagnosis. For example,

LR1/LL1 describes LDL for the right ear/the left ear tests with

1 kHz. Patients’ responses to initial/follow-up questionnaires

are another important source of information for determining

the category in TRT. The questions provide a structure for

the interview with a patient and allow physicians to track

the progress of the treatment. Variables describing subjective

tinnitus are measured on a Likert scale (0–10) and patients are

asked to assess them “on average over the last month”.

Table 4 shows examples of extracted associations between

audiological measurements, questionnaire responses, and a

category of a hearing problem.

These rules are interpreted as follows:

• If an audiometric value of R3 (audiogram at 3 kHz for the

right ear) is in the range < 15; 20) and annoyance over

tinnitus TAn is greater than or equal to 8, then a patient falls

under Category 1 with 94% confidence.

• If hyperacusis Hpr and hearing loss HLpr are not indicated

as problems, but tinnitus Tpr indicated a problem—then a

patient falls under Category 1 with 85% confidence.

• If an audiometric value of L2 (audiogram at 2kHz for the

left ear) is greater or equal to 50 and R6 (audiogram at 6kHz

for the right ear) is less or equal to 75, then a patient falls

under Category 2 with 87% confidence.

• If a patient was taking Norvasc and tinnitus was its side

effect, then a patient falls under Category 2 with 67%

confidence.

• If the score for tinnitus as a problem Tpr was in the

range < 0, 2.5), annoyance over hyperacusis HAn in range

< 1.5; 3.5) and severity of hyperacusis HSv in range <

1.5; 3.5), then a patient is categorized into Category 3 with

83% confidence.

In general, many such rules are generated and each rule

represents a small chunk of knowledge available through a

clinical dataset. For example, patients in Category 1 have a

significant tinnitus problem (TPr—Tinnitus as a Problem) but

without hyperacusis (H) and there is no significant hearing

loss (HL). Category 2 is characterized by a significant hearing

loss, as indicated by lower values of the pure-tone audiogram

(L2 and R6). Patients in Category 3 are on the other hand

characterized by a significant hyperacusis problem (HAn—

Hyperacusis annoyance and HSv—Hyperacusis severity). The

experiments also yield novel and unknown patterns such

as dependencies between certain medications and their side

effects (T side) being tinnitus symptoms. Experiments between

demographics of patients and a TRT category indicated, that

tinnitus in elderly patients was frequently related to hearing

loss and was affected by many other medical conditions, such

as hypertension and age-related afflictions, and associated with

Category 2. Patients in Category 1 (C1) were middle-aged, and

their tinnitus was associated with psychological disorders, such

as depression, anxiety, and panic. Category 3 was frequent in the

younger group (30–38 years) and association rules indicate, for

men: background in noise exposure, occupation, type of work;

and for women: background in stress and hormonal therapy.

These findings lead to a hypothesis that a personalized approach

to tinnitus treatment based on a patient’s profile could be

effective. For example, for C1-patients personalized counseling

is expected to bemore effective, as it is frequently associated with

psychological disorders. C2 would be most effectively treated
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TABLE 4 Examples of discovered decision rules for the category of a hearing problem determined based on the interview and audiometric values.

Sample association rule for diagnostics in TRT Confidence (%)

R3(< 15; 20)) ∧ TAn ≥ 8 ⇒ Category(1) 94

Hpr(< 0; 0.5)) ∧HLpr(< 0; 0.5)) ∧ Tpr(< 6; 8)) ⇒ Category(1) 85

L2 ≥ 50 ∧ R6 ≤ 75 ⇒ Category(2) 87

Norvasc(yes) ∧ Tside(yes) ⇒ Category(2) 67

Tpr(< 0; 2.5)) ∧ HAn(< 1.5; 3.5)) ∧ HSv(< 1.5; 3.5)) ⇒ Category(3) 83

TABLE 5 Results on actionable knowledge discovery for recommending treatment in TRT.

A sample treatment action rule Conf. (%)

G(m) ∧ NTI(yes) :(Insvis(01)(GHH) → Instvi(01)(GHS)) => Ch(better) 80

Tside(yes) ∧ OMTI(yes) :(Insvis(01)GHH → V) ∧ FU(0 → T) ⇒ Ch(better) 82

Ins(SG) :(MixRSL(< 11; 12) →< 9; 10)) ⇒ Ch(better) 100

FU(A) ∧ Insvis(01)(GHI) ∧ FreqLE(< 3000; 3150)) :(treat(< 5; 6) →< 6; 8))⇒ Ch(better) 88

with hearing aids and instrument fitting, as it is frequently

associated with hearing loss.

3.3.2. Action rules for recommending treatment

Action rules are methods proposed within this research to

support treatment within TRT protocols. The attribute used

as a decision attribute is THI’s total score (T sc), which keeps

track of the treatment progress. In case the total score is

missing in the data, the tinnitus awareness score (Taw) was used

instead. The action rule mining was set up to extract patterns

that bring changes in THI’s total score/tinnitus awareness for

the better (ChTsc/ChTaw-change in the total score/awareness

from the previous visit and PerChTsc/PerChTaw—percentage

change of the previous). The action rule mining experiments

involved checking variables related to changeable (“flexible”)

treatment methods within TRT and setting other attributes as

“stable” (patient demographics, tinnitus characteristics), with

the goal to improve metrics measuring the severity of tinnitus.

Sound therapy with instruments involves choosing the right

instrument and fitting the instrument with the optimal setting

over time at subsequent visits. There are different types of

instruments, as described by the category variable (Ins): hearing

aid (HA), sound generator (SG), and combination instrument.

There are different SGmodels, e.g., General Hearing Instrument

(GHI): soft/hard, Viennatone (V), and many others. A specific

fitting of instruments is a significant aspect and real-ear

measurements (REM) assist in instrument fitting. Sound therapy

is accompanied by counseling. The variable FU describes the

types of follow-up contact: audiology and counseling (A),

counseling (C), telephone-based (T), and e-mail based (E). The

results of the sample extracted patterns are presented in Table 5.

The rules present different actions in treatment

leading to a change in patients for the better,

as measured by the total score of THI and

tinnitus awareness. These rules are interpreted as

follows:

• If a patient is a male and tinnitus is noise-induced then

changing sound therapy from the instrument model of GH

hard (GHH) to GH soft (GHS) at the first visit improves a

patient with 80% confidence.

• If tinnitus was induced by another medical condition

(OMTI) and as a side effect of taking medications (Tside),

then changing the sound generator model GH hard (GHH)

to the Viennatone model (V) at the first visit and changing

the follow-up contact to the telephone-based (T) improves

patient with 82% confidence.

• If the current treatment involves sound generator SG, then

changing the mixing point for the right ear MixRSL from

< 11; 12) to < 9; 10) improves a patient’s state with 100%

confidence.

• If the current treatment involves audiology (FU(A))

with the GHI instrument and frequency in the left

ear measured by REM -FreqLE—in the range of

< 3000; 3150) then prolonging that treatment from

5–6 weeks to 6–8 weeks brings improvement with

88% confidence.

The extracted rules offer high precision, e.g., how to

fit a particular model of a particular type of instrument

(Ins(SG) :(MixRSL(< 11; 12) →< 9; 10))) or how to

change the length of treatment with a specific method [e.g.,

treat(< 5; 6) →< 6; 8]: change the length of treatment

from 5–6 to 6–8 weeks. This approach also offers high

personalization: the treatment actions leading to improvement

are extracted for the individual patients’ profiles, as described

by demographics [e.g., G(m) - gender: male] and the tinnitus
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TABLE 6 Runtimes for encoding and parsing diagnosis (total of 2,192

rules) and action rules (total of 1,348).

Rule type Total encoding

time (s)

Total parsing

time (s)

Time to parse

a rule (ms)

Diagnosis rule 0.29 0.22 0.098

Treatment rule 0.24 0.13 0.094

background (e.g., NTI - noise-induced tinnitus, OMTI - other

medical-induced tinnitus, Tside - tinnitus as a side effect of

pharmacology).

3.4. Knowledge translator

The Knowledge Translator was tested within CDSS for

efficiency and scalability. The runtimes of various steps of the

Knowledge Translator are depicted in Table 6. The encoding

step encompasses all operations from reading the files with rules

to writing the rules into KB. Parsing, in this case, only refers

to parsing the rule and creating an object in memory, but it

does not include any I/O operations. The tests were run using

2,192 diagnosis rules and 1,348 treatment rules. An average from

running one test 5 times is presented in Table 6.

As one can see from the results in Table 6, the developed

Knowledge Translator encodes and parses a massive amount

of extracted rules in a relatively very short time. This provides

an important step in the future scalability of the CDS system.

When comparing the time to parse a single rule by the

Knowledge Translator (less than 0.1 ms) vs. the same task

performedmanually (manual encoding by a human, which takes

approximately 2 min at least to read, interpret and encode a rule

in a correct syntax), the time gain is enormous. Additionally,

the developed Knowledge Translator encodes the human-

understandable explanations, which are critical for clinical use

and support in the accurate diagnosis of the category of a

hearing problem and treatment actions recommendations (refer

to Figure 5).

3.5. CDSS evaluation

The evaluation study was to determine whether the built

CDS system does what it was intended to and at an adequate

level of accuracy. The expectation from the proposed CDSS is

to generate accurate, patient-specific, and interpretable clinical

suggestions. This will encourage efficient and effective use of

tinnitus retraining therapy for the management of hearing

disorders. The evaluation study involved:

1. Developing a user-friendly interface to input the patient’s

data.

2. Identifying a set of representative test cases of patients from

the dataset not used for building the model.
3. Running inference on the chosen test cases entered into the

system (refer to Figures 5–7).
4. Performing quantitative and qualitative evaluation of the

system based on the results from the above.

The metrics used for this evaluation of the system include:

• Accuracy—The number of correct predictions vs. the

total number of predictions. To compute the accuracy we

compare the system’s recommendations with the actual

diagnosis/treatment decision made by a physician.

• Coverage—The number of test cases matched against the

knowledge base.

• Interpretability—If the recommendations are explainable

and understandable by humans.

3.5.1. Test cases

The representative cases from each of the 5 categories, were

identified. Future testing will involve identifying more cases

per category. The chosen test cases reflect the heterogeneity of

the hearing problem and patient profile; a test patient for each

etiology and each category of the hearing problem was identified

from the tinnitus patient database (refer to Table 7).

Tables 8, 9 provide the diagnostic and treatment inference

results for all test cases.

3.5.2. Diagnostic decision support

The diagnosis prediction was 80% accurate and covered

100% of cases (refer to Table 8). The average confidence in the

primary diagnosis inference was 83.51%. The only incorrect

prediction was for test case 5. After closer investigation, this

case was annotated by the physician as a “discrepancy in

information” in interview data, and “inconsistent results” in

audiological evaluation, which are the reasons that misled the

predictive model (as an “outlier” data point). Moreover, the

actual protocol followed was the same as for the category

predicted by the system.

3.5.3. Treatment decision support

The treatment recommendations were generated for 3 out

of 5 patient test cases (refer to Table 9). The other two cases were

not covered, that is, no action rule was matched with the patient

profile, due to a limited number of rules encoded manually in

KB at the time of testing.

For all the tested cases, both the diagnostic and

the treatment recommendations were explained with a

human-comprehensible message/reason. The explanations

were provided by means of the premises of the rules

in KB that were matched against the current patient’s
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FIGURE 5

The diagnostic/treatment inference results for test case 1 (noise-based, middle-aged male) based on audiometry: (1) primary diagnosis of

category 4 with 66.7%, and (2) treatment recommendation for changing the instrument type with the expected decrease in tinnitus severity by

41% points.

profile/visit data. The predictions’ probabilities were

quantified by means of the matched rules’ confidence

metric.

4. Discussion

Data mining is an active field and helps uncover

links between variables, with the goal to develop optimal

strategies for tinnitus management. This will open new

horizons for TRT, which does not have a stagnant protocol

but continues to evolve based on information gathered

from treatments of patients (Jastreboff, 2015). TRT has

successfully been used in a clinical setting to help patients

with tinnitus and decreased sound tolerance since 1988, but

the method of TRT underwent many modifications since its

first description.

4.1. Strengths

The proposed analytical models applied to a clinical dataset

detected both trivial and known patterns in TRT, but also

unexpected, unknown, and potentially interesting patterns. The

extracted knowledge utilizes clinical knowledge available from
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FIGURE 6

The diagnostic inference for test case 2 based on audiometry/initial interview. The explanation for Category 3 with 100% confidence included a

high score for hyperacusis as a problem.

FIGURE 7

The diagnostic/treatment inference results for test case 4: (1) category 1 was inferred based on the audiometry results and initial interview

(annoyance over tinnitus high); (2) recommendation included the change of the sound instrument from GH soft and shorten its application time

to 9–14 weeks with an expected gain of 34.4% points.

the TRT expert through the dataset. The prime characteristic

of the approach is its capability of expressing knowledge in

a linguistic way allowing a system to be described by simple

“human-friendly” rules. Knowledge represented in form of rules

is closely related to human thinking and can be explained

natively. It also offers an approach for modeling the uncertainty

and the imprecision typical of human reasoning. As knowledge

is created based on feedback from an expert, users can also rely

on it. It can be used for educational purposes as a training tool

to spread expertise in TRT. The knowledge once encoded will

be preserved permanently and utilized on any hardware. New

patient data can be analyzed by inferring from rules with the goal

of providing a prediction of optimal diagnosis and treatment.

This computer-based approach will help clinicians reveal the
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TABLE 7 Patient test cases—patient profile, etiology of their hearing

problem, the diagnosed category, and the treatment protocol

determined by the physician.

Test

case

Patient profile Etiology Diagnosis Treatment

protocol

1 Male, age 38, KY Noise exposure Category 4 Category 4

2 Male, age 49, GA Ear surgery Category 3 Category 3

3 Female, age 77, FL Hearing loss Category 2 Category 2

4 Male, age 53, GA Stress-related Category 1 Category 1

5 Male, age 36, GA Car accident Category 0 Category 1

mysteries of tinnitus heterogeneity and decrease the impact of

this major health problem on the patient and society.

4.2. Limitations

The currently identified limitations include limited access

to clinical TRT datasets and a lack of standardization in data

management techniques among clinics offering TRT. The more

data, including from many providers, and the more recent

the data (since TRT is still evolving) the more accurate and

useful the CDSS tool. The key to the successful adoption of

the system is a collaboration between the system’s developers

and clinicians/clinics. At the current stage, mostly the prototype

version was designed and developed, which nevertheless has to

be tested for usability in real-world environments and undergo

rigorous testing.

The main so-far identified problem is the quality of the

data, and particularly its sparsity. Data is available from only

one expert, which provides consistency of knowledge, but also

limited records of data. Generally, the more data, the more

accurate the results. Missing values and a limited amount of data

results in extracting rules characterized by relatively low support

and confidence. Additional strategies will be investigated to

develop algorithms for the reliable imputation of missing values.

Another potential problem is the computational complexity of

learning analytical models. The strategy to handle this issue

is to investigate alternative efficient algorithms for mining

that make use of multiple cores and distributed processing.

Additionally, the hardware platform will be scaled adding RAM

and CPU power.

The validation of CDSS accuracy is a challenge. System

reliability and trustworthiness depend on the quality of the

rules. In the current testing design, retrospective patient data

will be used to design and test the system. CDS logic may

not precisely fit the patient. Therefore, if coverage results

prove to be unsatisfactory, more rules will be extracted/added.

Another potential problem is that the user interface proves to

be unsatisfactory. In that case additional, alternative UI designs

will be proposed, evaluated, and compared. If the attractiveness

of the interface will be insufficient, alternative technologies for

UI development will be investigated, e.g., Java FX.

4.3. Future study

In the future, the system is to be used as a TRT assistant by

medical professionals to support both the efficient and effective

management of tinnitus.

The tasks to be performed in the longer term, related to the

development of the CDS system include:

• Expanding the knowledge base with new clinics and

new/updated treatment methods. Adding new data sources

to the system, such as patient and treatment datasets

from other clinics, to expand the knowledge base of

the system. Both clinics in TRT as well as other

tinnitus treatment methods should be included. The

goal central repository should be made available to

participating TRT clinicians and researchers (Landgrebe

et al., 2010). Additional approaches for tinnitus treatment

will be investigated, such as music therapy, brain

stimulation, or cognitive therapy. It is expected more

data available from more than one TRT expert will

improve the accuracy and coverage of the knowledge

base in TRT.

• Applying machine learning methods to investigate

additional factors and variables that may help understand

and treat tinnitus. Some of the considered factors

include magnetic resonance imaging (MRI) data, e.g., to

understand how sound therapy changes neuronal activity

and modulates the brain network (Han et al., 2019); or

associations between gene variants and tinnitus states

(Pulley et al., 2012).

• Expanding AI-based methods to provide decision support,

i.e., natural language processing from the clinical text

data, i.e., doctor’s comments (Tarnowska and Ras., 2019,

2021). Another potential is to utilize natural language

understanding to develop conversational agents, that

can help in delivering counseling to tinnitus patients.

Additionally, machine learning methods based on

clustering techniques to develop new models for more

personalized treatment can be investigated.

• Integration with other software used in audiology

(Rajkumar et al., 2017), i.e., software for sound

generators’ tuning; investigating computer methods

to generate personalized sound used in tinnitus

habituation (Barozzi et al., 2017); integrating music

therapy and music recommendation into the system

(Tarnowska, 2021).

• Expanding modes for the system—i.e., publicly-available

touch-screen stations or developing mobile applications
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TABLE 8 Results on predicting diagnosis by the system on the chosen patient test cases—actual category vs. category predicted by the system,

characterized by confidence, and explanation.

Test

case

Actual Prediction Conf. Explanation

1 Cat 4 Cat 4 66.7% LSD<= 100, L4< 10, and LL3< 75

2 Cat 3 Cat 3 100 LL3 in< 85; 91), Hyper. Annoy ≥8,

H Eff on Lif ≥8, and H Sev ≥7.5

3 Cat 2 Cat 2 96.2 LR8 ≥ 999, R6 ≥ 75, and Tsv ≥ 8

4 Cat 1 Cat 1 94.4 LL3 in< 15; 20) and Tin. annoy. ≥ 8

5 Cat 0 Cat 1 60.3 A patient often irritable by tinnitus (E14)

and tinnitus makes him anxious (E22)

TABLE 9 Results on recommending treatment actions, characterized by an expected improvement gain in percentage points and explanation(s) for

the patients’ test cases.

Test

case

Recommended action(s) Gain Explanation

1 Change instrument from GHH to GHS 41 pp A male whose tinnitus was induced by noise

4 Change instrument from GHS to GHI, 34.8 pp Cat1, instr. duration

use it for 9–14 weeks greater than 22 weeks

5 Change Freq LE from<2,800; 3,000) to<2,670; 2,800) in REM 8.4 pp Instrument used GHS

to improve personalization and streamline data collection

from the patients (Blome, 2015).

The long-term goal of this research is to deploy such

a system in a clinical setting to enhance health-related

decisions in TRT delivery. This step will be preceded by

testing the system in the clinical environment and testing

its usability within real physician-patient consultation. More

extensive testing involving more test cases and new patients

will be conducted in the future. Usability evaluation with

actual clinical users should be performed to determine its

acceptability. In the future, the system should be integrated

with health IT systems and electronic health records (EHR)

to fit into the workflow of clinical decision-making. The

electronic health record (EHR) with embedded clinical decision

support is recognized as an important component in providing

improvement in patient safety, healthcare quality, and efficiency,

as promised by HITECH (Health Information Technology for

Economic and Clinical Health) policy initiatives (Blumenthal

and Glaser, 2007). The project is intended to connect primary

care providers and TRT specialists using a knowledge-driven

computational engine that aids in diagnosing and planning

treatment for tinnitus patients. Decision support, delivered

using an information system with the electronic medical

record as the platform, will provide decision-makers with tools

making it possible to achieve large gains in performance,

narrow gaps between knowledge and practice, and improve

tinnitus habituation rates. The proposed novel and efficient

approach to developing a data-driven CDSS can be applied

to various other medical domains. The results are replicable

by others, and useful to tinnitus researchers and other

medical practitioners.

5. Conclusion

The main contribution of this study is proposing and

evaluating a data-driven clinical decision support system to

assist audiologists in the diagnosis and treatment of hearing

disorders, such as tinnitus, hyperacusis, and misophonia. Up

to date, no CDSS specialized in tinnitus diagnosis and therapy

has been designed and implemented. Collaboration between

experts in the fields of both data analysis and tinnitus is

of utmost importance to prepare and validate optimal CDSS

that will be reliable and efficient. Such decision support will

bring advantages such as speed, accuracy, and long-term

storage of information. Medical users will receive rapid and

synchronous advice. With the user-friendly interface, non-

computer professionals will be able to easily operate the

system and interpret its results. Documented knowledge can

be used for future training and educational purposes. This

type of research is expected to provide an important step

toward the widespread and effective use of TRT knowledge

in clinical practice. This is significant because the diagnosis

and treatment of TRT is a complex task. It requires a very

high level of expertise to operate accurately and efficiently.

Data and information being used in tinnitus management are

becoming heterogeneous and large in volume, and therefore,
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they are overwhelming. A CDSS needs to be developed once and

customized locally to the clinic’s needs. It can be used frequently

in many places by many people without location restrictions.

The system offers a scalable architecture that can be extended

by new knowledge.
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