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Yong-Jie Xue1, Jing-Long Li1, Wei-Xian Bai1, Miao-Fei Han2,
Qing Zhou2, Feng Shi2 and Jing Wang3*
1Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, Affiliated
Hospital of Northwest University, Xi’an, China, 2Department of Research and Development,
Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China, 3Department of Medical Imaging,
Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China

Objective: To explore the feasibility of a deep learning three-dimensional

(3D) V-Net convolutional neural network to construct high-resolution

computed tomography (HRCT)-based auditory ossicle structure recognition

and segmentation models.

Methods: The temporal bone HRCT images of 158 patients were collected

retrospectively, and the malleus, incus, and stapes were manually segmented.

The 3D V-Net and U-Net convolutional neural networks were selected

as the deep learning methods for segmenting the auditory ossicles. The

temporal bone images were randomized into a training set (126 cases),

a test set (16 cases), and a validation set (16 cases). Taking the results

of manual segmentation as a control, the segmentation results of each

model were compared.

Results: The Dice similarity coefficients (DSCs) of the malleus, incus, and

stapes, which were automatically segmented with a 3D V-Net convolutional

neural network and manually segmented from the HRCT images, were

0.920 ± 0.014, 0.925 ± 0.014, and 0.835 ± 0.035, respectively. The

average surface distance (ASD) was 0.257 ± 0.054, 0.236 ± 0.047, and

0.258± 0.077, respectively. The Hausdorff distance (HD) 95 was 1.016± 0.080,

1.000 ± 0.000, and 1.027 ± 0.102, respectively. The DSCs of the malleus,

incus, and stapes, which were automatically segmented using the 3D U-Net

convolutional neural network and manually segmented from the HRCT

images, were 0.876 ± 0.025, 0.889 ± 0.023, and 0.758 ± 0.044, respectively.

The ASD was 0.439 ± 0.208, 0.361 ± 0.077, and 0.433 ± 0.108, respectively.

The HD 95 was 1.361 ± 0.872, 1.174 ± 0.350, and 1.455 ± 0.618, respectively.
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As these results demonstrated, there was a statistically significant difference

between the two groups (P < 0.001).

Conclusion: The 3D V-Net convolutional neural network yielded automatic

recognition and segmentation of the auditory ossicles and produced similar

accuracy to manual segmentation results.

KEYWORDS

auditory ossicles, automatic segmentation, computed tomography, convolutional
neural network, deep learning

Introduction

Hearing impairment caused by lesions of the auditory
ossicles is a common clinical disease, and both the destruction
of the auditory ossicles caused by inflammation and tumors
and malformation or dysplasia of the auditory ossicles can
lead to hearing impairments, and even to hearing loss (Juliano
et al., 2013, 2015). The ossicle chain, which comprised the
three auditory ossicles (the malleus, incus, and stapes), acts
as a mechanism for conducting sound in the middle ear
(Figure 1). As its structure is small and fine, it can be difficult
for clinicians to find abnormal auditory ossicles by physical
means, making an auditory ossicle reconstruction operation
difficult and requiring high-risk technology. However, accurate
auditory ossicle evaluation is important for the diagnosis and
pre-treatment evaluation of patients with hearing impairment.
Therefore, it is critical to correctly master the anatomy of
deformed auditory ossicles to formulate a surgery plan.

High-resolution computed tomography (HRCT) of the
temporal bone can achieve submillimeter resolution and is the
established standard for the clinical detection of anatomical
abnormalities of the temporal bone in patients with ear disease
(Jäger et al., 2005). In addition to clarifying the location
and degree of the lesions, it can play a decisive role in
evaluating illnesses, such as auditory ossicle malformation,
trauma, inflammation, and temporal bone tumor; it can also
provide a reliable basis for understanding the location and scope
of the lesions, selecting surgery methods, and improving the
safety of these methods (Tatlipinar et al., 2012).

The morphological characteristics of the auditory ossicles
are accurately displayed by HRCT. However, the structure of
the auditory ossicles is quite small; the total length of an
adult stapes is approximately 3 mm (Noussios et al., 2016). In

Abbreviations: AI, artificial intelligence; ASD, average surface distance;
CPR, curved planar reconstruction; CT, computed tomography;
DSC, Dice similarity coefficient; ENT, Ear, Nose, and Throat; FCN,
convolutional network; HD, Hausdorff distance; HD 95, Hausdorff
distance (HD) 95; HRCT, high resolution computed tomography; MPR,
multiplanar reformation; VR, volume rendering.

addition, not all parts of the auditory ossicles can be displayed
on the same level in conventional transverse axial CT images.
It can thus be challenging to accurately evaluate them using
conventional axial images.

In clinical practice, the entire image can be displayed
only after post-processing reconstruction of a curved planar
reconstruction (CPR), multiplanar reformation (MPR), and
volume rendering (VR). This post-processing reconstruction
process is time-consuming and requires a higher level of
expertise and experience from ear, nose, and throat (ENT)
radiologists, which may result in reduced work efficiency and
an increase in missed diagnoses or misdiagnoses.

With the maturity of computer-aided diagnosis technology,
medical imaging artificial intelligence (AI)-aided diagnosis
equipment has been widely used to study several organ
structures (e.g., the lung, liver, breast, and bone) (Hosny
et al., 2018). As an important branch of AI, deep learning
technology, which has made significant progress since 2012,
has been widely used in image classification (He et al., 2020),
lesion detection, and segmentation (Ren et al., 2017; Falk
et al., 2019). In some respects, it has reached or exceeded the
diagnostic level of clinicians, as is the case in the diagnosis
and prognosis evaluation of hepatobiliary malignant tumors
(Ibragimov et al., 2018; Zhou et al., 2019), the early diagnosis and
pathological classification prediction of lung cancer (Coudray
et al., 2018), the establishment of a breast cancer diagnosis
model to predict malignant breast cancer (Li, 2021), and the
automatic detection of fundus images identifying glaucoma and
diabetic retinopathy (Schmidt-Erfurth et al., 2018; Ting et al.,
2019).

Despite these technological advancements, few
mature studies exist on the AI-aided diagnosis of
smaller structures, e.g., the auditory ossicles. This
study aims to explore a computer segmentation and
recognition technology of auditory ossicles, based on
HRCT images, which could assist radiologists in making
more accurate evaluations and diagnoses of potential
auditory ossicle abnormalities, such as destruction, absence,
malformation, or dysplasia.
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FIGURE 1

An anatomical illustration of auditory ossicles located in the middle ear, including the malleus, incus, and stapes.

Materials and method

Data and structure labeling

The 158 samples used in this study were from adult
patients (aged older than 18 years, mean age, 38.60 ± 18.05),
who underwent temporal bone CT scanning in Xi’an Central
Hospital and Xi’an No.3 Hospital from 2015 to 2019. Senior
ENT radiologists confirmed the absence of any structural
abnormalities of the external ear, middle ear, or inner ear from
the samples provided. A Philips Brilliance iCT 256 was used
for scanning using the following settings: scanning parameters,
120 kV, 200 mAs; rotation speed 0.4 s/360◦; collimation,
0.625 mm; field of view, 250 mm × 250 mm; reconstruction
matrix, 1024× 1024; reconstruction interval, 0.2–0.3 mm; bone
algorithm reconstruction. All scans were made from the lower
edge of the external auditory canals to the upper edge of the
petrous bones, with a scanning length of 1.5 cm. The samples
were divided into three groups as follows: 80% were randomly
selected from the data set as the training set, including the CT
data of 126 cases of unilateral normal temporal bone images;
10% were selected as the test set, including the CT data of
16 cases of unilateral normal temporal bone images; 10% were
selected as the validation set, including the CT data of 16 cases
of unilateral normal temporal bone images.

Manual labeling of the auditory ossicle structure was
conducted as follows: the original DICOM data of the HRCT
images of the temporal bones were imported into ITK-SNAP
3.2, and the malleus, incus, and stapes were manually labeled
under the “bone” window. The labeling process was performed

by two ENT radiologists. One radiologist completed the specific
segmentation and the second performed the review.

Method

Model establishment and implementation of
the deep learning method

The neural network applied in this study was constructed
as follows: two cascaded neural networks (from low to high
resolution) were adopted as shown in Figure 2. The network
structure was combined with the bottleneck structure, based
on the V-Net backbone. Due to using the bottleneck structure,
the network was labeled a VB-Net (“B” denoting “bottleneck”),
which reduced the network parameters and increased the
network depth. As shown in Figure 2, the VB-Net comprised
one input block, four down blocks, four up blocks, one output
block, and one Softmax module. In each block, the channel of
the output feature map and the number of bottlenecks is shown
in the brackets, respectively. The down block comprises one
convolution module and some bottlenecks, and the up block
includes one de-convolution module and some bottlenecks. The
kernel and stride size of the convolution and de-convolution
modules are set as k and s, respectively. The bottleneck structure
is illustrated in the dotted rectangular box.

The algorithm flow chart is shown in Figure 3. At a low
image resolution, the general positions of the malleus, incus,
and stapes could initially be located. Then, the edges of the
three auditory ossicles were finely segmented at a relatively high
image resolution.

Frontiers in Neuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2022.937891
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-937891 August 25, 2022 Time: 14:21 # 4

Wang et al. 10.3389/fninf.2022.937891

FIGURE 2

The VB-Net network structure.

FIGURE 3

Algorithm flow chart.
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FIGURE 4

(A–C) The manual segmentation of the auditory ossicles; (D–F) the automatic segmentation of the auditory ossicles using the V-Net method.

Model training

The two segmentation tasks concerning the auditory ossicles
and the image background were trained at a low resolution.
First, the outline markers of the malleus, incus, and stapes
were combined, and a three-dimensional (3D) morphological
expansion algorithm was adopted with a 1 cm expansion in
each direction as the ground truth of the coarse locating model.
Then, the HRCT image was resampled to [1, 1, 1 mm], a
point was randomly selected on the entire image, and an image
block of [96, 96, 64] was cut out using this point as the center
area. This image block was input into the 3D VB-Net for low-
resolution locating model training. The window level of the
image normalization was 1,000 HU, and the window width
was 3,000 HU. The intensity value, with a CT value between –
2,000 and 4,000 HU, was linearly normalized to [–1, 1]. The
intensity values greater than 4,000 HU were normalized to 1,
and those below –2,000 HU were normalized to –1. A single-
class Dice loss function and a cross-entropy loss function were
selected as the loss functions, but the weights of both loss
functions were equal.

At a high resolution, the malleus, incus, stapes, and the
background were segmented. The HRCT image was resampled
to [0.2, 0.2, 0.335 mm]. Then, a random point was selected
within 20 pixels of the malleus, incus, and stapes masks as the
center point to cut out a [96, 96, 96] image block, which was
subsequently input into the 3D VB-Net for high-resolution fine
segmentation model training. The normalization method was
the same as that of the coarse-resolution model training noted

above. The loss functions were a multi-class Dice and a cross-
entropy loss function, respectively, but the weights of both loss
functions were equal. When calculating the loss function, the
weights of each class were equal.

Model reasoning

Unlike the image block input in the training stage, the
test stage was subject to the network reasoning of the entire
image. A multi-resolution strategy was used to connect the low-
and high-resolution networks. The goal of the low-resolution
network was to roughly locate the position of the organ (the
segmentation target: the malleus, incus, and stapes). The entire
image was resampled to an isotropic spacing of 1 mm, and
the network only focused on the overall region of interest of
the auditory ossicles at a lower image resolution. At a high
resolution, only the region of interest (extended by 2 cm),
obtained from the low-resolution network, was resampled and
input into the trained high-resolution network to create the
accurate segmentation of each organ boundary under a fine
image resolution. A combination of coarse and fine resolutions
was adopted for the post-processing of the model.

Segmentation accuracy test
This study verified the stability and effectiveness of the

presented model using five-fold cross-validation. That is, 158
sample data sets were randomly divided into a training set, a
validation set, and a test set according to an 8:1:1 ratio, and the
average accuracy of the model was obtained by averaging the

Frontiers in Neuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2022.937891
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-937891 August 25, 2022 Time: 14:21 # 6

Wang et al. 10.3389/fninf.2022.937891

five-fold network’s accuracy. The manual segmentation results
of the ENT radiologist served as the ground truth (Powell et al.,
2017), and the 3D V-Net and a 3D U-Net model were employed.
The following evaluation indicators were used to measure the
performance of the segmentation method in this study (Taha
and Hanbury, 2015). The dice similarity coefficient (DSC), with
a value range from 0 to 1, was used to reflect the similarity
coefficient between the automatic and manual segmentation.
A value closer to 1 indicated a better model. When the DSC
was more than or equal to 0.7, the automatic and manual
segmentations were considered to indicate good consistency
(Zhong et al., 2021). The DSC is defined as,

DSC =
2∗
(
Rp∗Rt

)
Rp + Rt

∗100%

where Rt and Rp are denoted as the gold mask and the predicted
mask, respectively.

The average surface distance (ASD) referred to the average
deviation of the surface distance of all points on the average
surface. The ASD is defined as,

ASD(X,Y) =
∑
x∈X

miny∈Yd(x, y)/ |X|

where X and Y are the set of points on the boundary of Rt and
Rp, respectively. d(x, y) is denoted as the Euclidean distances
between two points.

The maximum Hausdorff distance is defined as,

HD(X,Y) = max
x∈X
{min
y∈Y
{d
(
x, y

)
}}

where X and Y are the set of points on the boundary of Rt and
Rp, respectively. d(x, y) is denoted as the Euclidean distances
between two points.

The HD95 is the 95th percentile of Hausdorff distance set.

Statistical method
The SPSS Statistics 22.0 (IBM Company, Armonk, NY,

United States) software program was used to conduct paired
t-tests on the measured values that were obtained by different
methods; P < 0.05 indicated a statistically significant difference.

Implementation details
The Adam optimizer (initial learning rate = 0.01) algorithm

was chosen to minimize the loss of neural network. The specific
loss of dice is adopted in our method. The dice loss function is
defined as,

LDice = 1−
2∗
(
Rp∗Rt

)
Rp + Rt

∗100%

where Rt and Rp are denoted as the gold mask and the predicted
mask, respectively.

The optimal training epoch of each model was selected,
based on the minimum loss of validation data, and the

training process was considered to have converged if the
loss stopped decreasing for 20 epochs. The framework was
implemented in PyTorch 1.7.0 with one Nvidia Tesla V100
graphics processing unit.

Results

For the CT scan of the temporal bone, the ITK-SNAP
3.2 software was used to manually segment all the auditory
ossicles, and the manual annotation of the malleus, incus, and
stapes were used for the automatic segmentation training of
the 3D V-Net and U-Net network structures. The network
parameters were obtained through data learning, and the
comparison between segmentation of model and expert is
shown in Figure 4.

As listed in Table 1, patch size and spacing were effective
parameters for the model’s performance. To select suitable
experimental configurations, the model’s performance, using
different training configurations, was compared in accordance
with the DSC, the ASD, and the HD 95 (see Table 2). Table 2
indicates that in the coarse model training configuration, the
best patch size and spacing were [96, 96, 64] and [1, 1, 1]
mm, respectively. The best patch-size and spacing values in
the fine model training configuration were [96, 96, 96] and
[0.2, 0.2, 0.335] mm, respectively. According to the comparison
experiments, the following performance was achieved by
the 3D V-Net and 3D U-Net networks using the above-
noted configurations.

On completion of the V-Net network structure training,
the auditory ossicles and the manual segmentation images were
compared for accuracy using the test set and evaluated in
accordance with the DSC, the ASD, and the HD 95. The specific
results are shown in Tables 3–5. Compared with the U-Net
method, the 3D V-Net method delivered a segmentation effect
similar to that of manual segmentation, and the difference was
statistically significant.

TABLE 1 The detailed configuration for coarse-to-fine
segmentation network.

Configuration Coarse network Fine network
Resample [1, 1, 1] mm [0.2, 0.2, 0.335] mm

Patch size [96, 96, 64] [96, 96, 96]

Normalize z-score with fixed mean
(1000) and standard

(3000/2) and clipping to
[–1, 1]

z-score with fixed mean
(1000) and standard

(3000/2) and clipping to
[–1, 1]

Learning rate Step learning rate
schedule (initial, 1e-2)

Step learning rate
schedule (initial, 1e-2)

Optimizer Adam
[momentum = 0.9,

decay = 1e-4,
betas = (0.9, 0.999)]

Adam
[momentum = 0.9,

decay = 1e-4,
betas = (0.9, 0.999)]

Software PyTorch PyTorch

Hardware Nvidia Tesla V100 GPU Nvidia Tesla V100 GPU
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TABLE 2 Comparison of segmentation performance between different experiment settings (patch size, patch spacing) under 3D V-Net.

DSC

Malleus Incus Stapes
Es1 0.800± 0.018 0.787± 0.051 0.528± 0.103

Es2 0.920± 0.014 0.925± 0.014 0.835± 0.035

Es3 0.836± 0.242 0.846± 0.237 0.799± 0.236

Es4 0.809± 0.048 0.797± 0.057 0.609± 0.102

Es5 0.817± 0.045 0.797± 0.059 0.618± 0.103

ASD

Malleus Incus Stapes
Es1 0.654± 0.047 0.642± 0.040 0.580± 0.108

Es2 0.257± 0.054 0.236± 0.047 0.258± 0.077

Es3 28.990± 110.4 31.8± 120.1 26.2± 102.4

Es4 0.636± 0.170 0.700± 0.210 0.649± 0.168

Es5 0.638± 0.170 0.706± 0.217 0.652± 0.168

HD95

Malleus Incus Stapes
Es1 1.439± 0.170 1.594± 0.664 4.393± 2.368

Es2 1.016± 0.080 1.000± 0.000 1.027± 0.102

Es3 31.3± 113.7 33.9± 123.6 28.2± 104.7

Es4 1.740± 1.965 1.332± 0.188 1.475± 0.0383

Es5 1.332± 0.236 1.351± 0.208 1.334± 0.237

Es1: In the coarse model training configuration, patch size and spacing were set as [96, 96, 64] and [2.5, 2.5, 2.5] mm, respectively. In the fine model training configuration, patch size and
spacing were set as [96, 96, 96] and [0.5, 0.5, 0.75] mm, respectively.
Es2: In the coarse model training configuration, patch size and spacing were set as [96, 96, 64] and [1, 1, 1] mm, respectively. In the fine model training configuration, patch size and
spacing were set as [96, 96, 96] and [0.2, 0.2, 0.335] mm, respectively.
Es3: In the coarse model training configuration, patch size and spacing were set as [96, 96, 64] and [0.5, 0.5, 0.5] mm, respectively. In the fine model training configuration, patch size and
spacing were set as [96, 96, 96] and [0.1, 0.1, 0.2] mm, respectively.
Es4: In the coarse model training configuration, patch size and spacing were set as [128, 128, 96] and [1, 1, 1] mm, respectively. In the fine model training configuration, patch size and
spacing were set as [128, 128, 128] and [0.2, 0.2, 0.335] mm, respectively.
Es5: In the coarse model training configuration, patch size and spacing were set as [64, 64, 48] and [1, 1, 1] mm, respectively. In the fine model training configuration, patch size and
spacing were set as [64, 64, 64] and [0.2, 0.2, 0.335] mm, respectively.
Bold fonts represent the best performance among all training configurations.

The 3D display of the segmentation result is shown
in Figure 5A. The left area of the figure shows the entire
auditory ossicle structure, while the right side shows

the malleus, incus, and stapes, respectively. Compared
with the ground truth, the result of the method was
consistent and showed little difference concerning surface
distance. Figure 5B shows a comparison of the results
of the U-Net and 3D V-Net methods. The result of the
U-Net method shows a significant difference between the
(green) ground truth reconstruction and the (red) segment
reconstruction result.

The image segmentation time evaluation proceeded as
follows. The average daily work time required for two senior
physicians, two intermediate physicians, two junior physicians,
and two resident physicians to manually segment 50 cases of
auditory ossicles was counted. The average time required for
these eight physicians to manually segment the ossicles was
220.31–387.42 s, and the average time required for the model
to automatically segment the ossicles was 1.66 s (0.83 s required

to segment the left and right ossicles). These results are shown
in Table 6.

Discussion

The clinical practice significance of
high resolution computed tomography
ossicular chain segmentation

The ossicular chain, comprising the malleus, incus, and
stapes, is deeply situated within the ear and covered by
the tympanic membrane. It acts as a device for conducting
sound in the middle ear, and changes in the morphology,
position, and density of each auditory ossicle may cause
hearing disorders. An accurate evaluation of the auditory
ossicles is important for the diagnosis and pretherapeutic
evaluation of patients experiencing hearing loss. However,
the ossicular chain is situated deep inside the ear, small
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TABLE 3 Comparison of DSC between automatic segmentation and manual segmentation under two neural networks.

Network structure DSC

Malleus Incus Stapes

3D V-Net 0.920± 0.014 0.925± 0.014 0.835± 0.035

U-Net 0.876± 0.025 0.889± 0.023 0.758± 0.044

T –13.602 –11.762 –11.727

P < 0.001 < 0.001 < 0.001

TABLE 4 Comparison of ASD between automatic segmentation and manual segmentation under two neural networks.

Network structure ASD

Malleus Incus Stapes

3D V-Net 0.257± 0.054 0.236± 0.047 0.258± 0.077

U-Net 0.439± 0.208 0.361± 0.076 0.433± 0.108

T 7.4500 12.1940 11.965

P < 0.001 < 0.001 < 0.001

TABLE 5 Comparison of HD95 between automatic segmentation and manual segmentation under two neural networks.

Network structure HD95

Malleus Incus Stapes

3D V-Net 1.016± 0.080 1.000± 0.000 1.027± 0.102

U-Net 1.361± 0.872 1.174± 0.350 1.455± 0.618

T 3.4559 4.3487 5.4810

P < 0.001 < 0.001 < 0.001

and delicate, and making a diagnosis related to it is
often challenging.

High-resolution computed tomography is an indispensable
examination method because it can be used to accurately and
clearly reflect the structure of the auditory ossicles (Hiraumi
et al., 2019). However, the auditory ossicles are small and
are not all located on the same plane. Therefore, it is
difficult to observe the auditory ossicles on a conventional
CT axial image. Additionally, radiologists must thoroughly
observe hundreds of images and conduct post-processing
reconstruction of the auditory ossicles (i.e., MPR, CPR, and
VR) to evaluate them, which relies heavily on the clinical
experience and proficiency of the radiologist as it concerns
post-processing techniques and is a time-intensive process
that is accompanied by a probability of misdiagnosis or
missed diagnosis.

Although the AI-assisted diagnosis technique has been
widely applied, research on the AI-assisted diagnosis of small-
scale structures, such as the auditory ossicles, is rare. The
present study adopted HRCT-based AI to create fully automatic
segmentation of the auditory ossicles, thereby contributing to
satisfying the needs of patients with ear diseases. Automatic
identification and segmentation of the auditory ossicles can
significantly assist radiologists and clinicians in making an
accurate diagnosis.

Comparison between the artificial
intelligence algorithm and other
algorithms, and a summary of its
advantages and disadvantages

The technical method of computer segmentation of the
auditory ossicle structure in the research literature is mainly
based on mapping, neural networks, and deep learning.
The Powell algorithm is used to automatically segment the
anatomical structure in CT images of the temporal bone based
on anatomical atlas. The results indicated that the DSC of
the malleus and incus on both sides was greater than 0.80,
and the DSC of the left and right stapes was 0.58 and 0.48
(Powell et al., 2017), respectively. Mapping-based automatic
segmentation delivers excellent results in the normal anatomical
structure, but the registration accuracy limits the method, and
any anatomical variation may cause the failure of automatic
identification and segmentation (Noble et al., 2009; Powell et al.,
2017, 2019).

The neural network and deep learning method make
up for the deficiency of the above method. Currently, with
respect to the neural network structure, the most common
network architecture includes a fully convolutional network
(FCN) (Shelhamer et al., 2017), a U-Net (Ronneberger et al.,
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FIGURE 5

(A) A three-dimensional display of the segmentation results. On the left side is the segmentation result of the ground truth and the 3D V-Net
method. The right side shows the difference in the surface distance between the two results. The auditory ossicles comprise the malleus, incus,
and stapes. In this paper, positive values represent over-segmentation, and negative values represent under-segmentation. The left side of the
figure corresponds to the left auditory ossicles, and the right corresponds to the right auditory ossicles. (B) Comparison of the segmentation
results. The segmentation results of the two methods are compared with the surface coincidence degree of the ground truth. Green is the
ground truth reconstruction, and red is the segmentation result reconstruction.

2015), a 3D U-Net (Iek et al., 2016), and a V-Net (Milletari
et al., 2016). The FCN was a pioneer of image segmentation
and the deep learning technique and adopted an end-to-
end convolutional neural network and deconvolution for
upsampling. However, as it is not sensitive to image details
and can cause a partial loss of information, its segmentation
accuracy is low for small structures. Ronneberger et al.
(2015) proposed a U-Net method, based on an FCN, and
applied the full convolutional network to the field of medical
image segmentation. However, the FCN and U-Net can only
be used for the identification and segmentation of two-
dimensional images, whereas a 3D U-Net and V-Net can
be used for the identification and processing of 3D images.

Compared to a 3D U-Net, V-Net training gradually became
the primary method of medical image segmentation due to
its high velocity and the short time it requires to complete
(Milletari et al., 2016). Fauser adopted a U-Net method to
segment the temporal bone before surgery; in this instance,
the DSC of the auditory ossicles was up to 0.75 (Fauser
et al., 2019). Lv et al. (2021) applied the W-Net, 3D U-Net,
and V-Net methods to automatically segment the temporal
bone to obtain the DSCs of the auditory ossicles, which were
0.85, 0.84, and 0.83, respectively. Li et al. (2020) adopted a
3D Deep Supervised Densely (DSD) algorithm to obtain the
DSCs of the malleus and the incus, which were both 0.82;
however, the stapes was not segmented. Ke et al. applied
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TABLE 6 Average time for manual segmentation and model
segmentation of auditory ossicles.

Average segmentation
time/second (s)

Senior Physician 1 220.31

Senior Physician 2 225.64

Intermediate Physician 1 253.53

Intermediate Physician 2 258.12

Junior Physician 1 300.78

Junior Physician 2 310.56

Resident Physician 1 375.31

Resident Physician 2 387.42

3D U-Net 2.00

3D V-Net 1.66

TABLE 7 Comparison of DSC values with other related studies.

DSC

Malleus Incus Stapes

Atlas-based
segmentation

0.80 0.83 0.58(L),0.48(R) Powell et al., 2017

U-Net 0.75* Fauser et al., 2019

3D-DSD 0.82 0.81 Li et al., 2020

W-Net 0.85* Lv et al., 2021

3D U-Net 0.84* Lv et al., 2021

V Net 0.83* Lv et al., 2021

Atlas-based
segmentation

0.83 0.84 0.36 Ding et al., 2021

Multi-view fusion
algorithm

0.94 0.95 0.76 Zhu et al., 2021

PWD-3DNet 0.89 0.89 0.82 Nikan et al., 2021

U-Net 0.88 0.89 0.76

3D V-Net 0.92 0.93 0.84

DSC, Dice Similarity Coefficient; L Left; R Right. *DSC of whole ossicle chain.
Bold fonts represent the results of this study.

a 3D convolutional neural network to successfully realize
the automatic segmentation of the labyrinth, the auditory
ossicles, and the facial nerve in both conventional and
abnormal temporal bone CTs and achieved excellent results
(Ke et al., 2020; Ding et al., 2021; Wang et al., 2021). Other
scholars applied multi-view fusion and deep learning algorithms
to design an accurate segmentation of the malleus and the
incus and further improved the segmentation accuracy of
the stapes with an active contour-loss constraint method
(Zhu et al., 2021).

In clinical practice, most auditory-related diseases only
involve one or two auditory ossicles. The three auditory
ossicles are typically segmented as a whole in most of the
existing literature (Lv et al., 2021), which fails to satisfy the
needs of a clinical diagnosis and treatment, and restricts
clinical application. The size of the combined three auditory
ossicles is small and, as such, the segmentation accuracy will
be reduced if they are segmented separately. However, the
present study’s method adopted two cascade neural networks

(from a low to high resolution) and added a bottleneck
structure to approximately locate the combined auditory ossicles
using low image resolution, then segmenting the delicate
structures with high-resolution imaging. The results of this
study indicated that the model image of the auditory ossicles
was full, the delicate structure displayed was clearer than
in a manual sketch, and the DSC of the malleus and the
incus was 0.92. The DSC of the stapes was 0.86, which
met clinical standards. Meanwhile, the test result of the five-
fold cross-validation test proved the stability and validity of
this study’s model.

The algorithm adopted in this research significantly
improved the segmentation accuracy of the auditory
ossicles, particularly that of the stapes. The stapes is the
smallest in volume among the auditory ossicles and the
most difficult to segment. The existing research adopted
different technical methods to do so, but the most DSCs
of the stapes was less than that of the other two auditory
ossicles. Ke et al. (2020) applied mapping to segmenting
the temporal bone, and the obtained DSC of the stapes
was less than 0.60. Zhu et al. (2021) adopted a 10-µm
grade ear specialized CT data-based multi-view fusion
algorithm and an active contour loss constraint method
to improve the DSC of the stapes to 0.76. Nikan et al.
(2021) carried out a PWD-3DNet algorithm to obtain the
DSC of the stapes, which was 0.82, whereas the DSCs
of the malleus and incus were lower than that of our
approach.

The current study is the first to approximately
locate the auditory ossicles, separate local images from
the located part, and segment each section of the
auditory ossicles using high-resolution images. The coarse
positioning and fine segmenting method improved the
segmentation accuracy and delivered a stapes DSC of
up to 0.84 at a higher image segmentation speed. In
Table 7, relevant recent studies are summarized and
compared with the present study. The results show that
the model of the current algorithm achieved a good
performance.

Time is another issue to be considered in clinical
application, considering that the manual reconstruction
of the auditory ossicles is time-consuming. Over 1 year,
the average time to reconstruct the unilateral auditory
ossicles was 4 min each time, even for an expert radiologist.
However, the automatic segmentation of the auditory
ossicle structure, completed by the equipment and
algorithms adopted in this research, took an average
time of 1.66 s, which cannot be achieved by manual
segmentation. Therefore, the clinical application of this
model will significantly reduce the image post-processing
time for the radiologist, thereby largely improving
work efficiency.
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Prospects and limitations for
application of the research

This research has the following limitations: (1)
only automatic segmentation of the auditory ossicles
was achieved; other major anatomical structures in
the temporal bone, such as the cochlea, semicircular
canal, and facial nerve were not segmented, thus
limiting the clinical application scope of this model;
(2) only normal auditory ossicles were identified
and segmented; the dysplastic temporal bone was
not researched, thus limiting the application of the
model in cases of malformed temporal bones in
clinical application. Future research on these topics
will be conducted.

The existing computer-aided diagnosis system can
facilitate disease diagnosis. This study evaluated the normal
anatomical structure of the auditory ossicles and achieved
an initial positive effect in the automatic reconstruction
of the auditory ossicles. In the future, this deep learning
technique can be applied to research the absence of
the auditory ossicles, the malformation of the cochlea
and semicircular canals, as well as deformity of the
aquaeductus Fallopii to improve ear lesion diagnosis and
differential diagnosis models to achieve medical diagnosis
informatization and automation. Doing so will improve the
work efficiency of medical staff and lower the misdiagnosis rates
of ENT diseases.

Conclusion

This study used a deep learning method to create an
automatic approach to the recognition and segmentation
of the auditory ossicles. The results indicated that
the 3D V-Net convolutional neural network could
accomplish high-precision and high-efficiency outcomes
to describe the structure of the ossicular chain. It
is anticipated that this will benefit the diagnosis and
treatment of selected auditory system diseases, such
as ossicle destruction, ossicle absence, and ossicle
malformation or dysplasia.
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Bogunović, H. (2018). Artificial intelligence in retina. Prog. Retin Eye Res. 67, 1–29.
doi: 10.1016/j.preteyeres.2018.07.004

Shelhamer, E., Long, J., and Darrell, T. (2017). Fully convolutional networks
for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651.
doi: 10.1109/TPAMI.2016.2572683

Taha, A. A., and Hanbury, A. (2015). Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMCMed. Imaging 15:29. doi: 10.1186/
s12880-015-0068-x
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