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Toward learning robust
contrastive embeddings for
binaural sound source
localization

Duowei Tang*, Maja Taseska† and Toon van Waterschoot

Department of Electrical Engineering (ESAT-STADIUS), KU Leuven, Leuven, Belgium

Recent deep neural network based methods provide accurate binaural

source localization performance. These data-driven models map measured

binaural cues directly to source locations hence their performance highly

depend on the training data distribution. In this paper, we propose a

parametric embedding that maps the binaural cues to a low-dimensional

space where localization can be done with a nearest-neighbor regression.

We implement the embedding using a neural network, optimized to map

points that are close to each other in the latent space (the space of source

azimuths or elevations) to nearby points in the embedding space, thus the

Euclidean distances between the embeddings reflect their source proximities,

and the structure of the embeddings forms a manifold, which provides

interpretability to the embeddings. We show that the proposed embedding

generalizes well in various acoustic conditions (with reverberation) di�erent

from those encountered during training, and provides better performance than

unsupervised embeddings previously used for binaural localization. In addition,

the proposed method performs better than or equally well as a feed-forward

neural network based model that directly estimates the source locations from

the binaural cues, and it has better results than the feed-forwardmodel when a

small amount of training data is used.Moreover, we also compare the proposed

embedding using both supervised and weakly supervised learning, and show

that in both conditions, the resulting embeddings perform similarly well, but

the weakly supervised embedding allows to estimate source azimuth and

elevation simultaneously.

KEYWORDS

manifold learning, non-linear dimension reduction, siamese neural network, binaural

sound source localization, deep learning

1. Introduction

Sound source localization is aiming to estimate a sound source position

in terms of azimuth, elevation, and distance. A large part of the source

localization literature focuses on the azimuth and elevation estimation

only, hence this is also the scope we adopt in this paper. The human

auditory system is capable of localizing acoustic signals using binaural cues
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such as the Interaural Phase Differences (IPDs) and Interaural

Level Differences (ILDs) (Blauert, 1997). Computational

localization algorithms in robot audition (Argentieri et al.,

2015), hearing aid (Farmani et al., 2018), virtual reality (Keyrouz

and Diepold, 2007), etc., aim at mimicking this process and

therefore estimate the binaural cues from binaural microphone

signals. The binaural microphones are typically two identical

microphones that are mounted at the entries of two ear canals

of an artificial head. In a sound source localization scenario,

the human/artificial head together with the pinna and the

torso act as filters that modify the incident sound waves. This

filter effect is crucial for sound source localization, especially

vertical sound source localization (i.e., elevation estimation),

and can be characterized by the Head-related Transfer Function

(HRTF) (Risoud et al., 2018).

Acoustic artifacts such as noise and reverberation, introduce

uncertainties in the binaural cues. Although the existence

of reverberation can aid distance localization (Risoud et al.,

2018), the resulting noisy and reverberant binaural cues make

sound source localization challenging. Traditionally, robustness

to reverberation has been tackled with statistical model-

based approaches (Mandel et al., 2010; May et al., 2011;

Woodruff and Wang, 2012), which outperform lookup tables

and template matching methods that rely on an anechoic

assumption (Raspaud et al., 2010; Karthik and Ghosh, 2018).

Some works propose to estimate the direct-path relative transfer

function, which encodes the source azimuth information, in

order to avoid the contamination of audio from reverberation

noise, however, this type of methods highly rely on the onset of

the source acoustic events (Li et al., 2016).

In contrast, data-driven approaches are able to learn

the non-linear functions that map binaural cues to source

locations (Datum et al., 1996). Recently, Deep Neural Networks

(DNNs) has been used to learn the relationship between azimuth

and binaural cues, by exploiting head movements to resolve

the front-back ambiguity (Ma et al., 2017), and by combining

spectral source models to robustly localize the target source in a

multiple sources scenario (Ma et al., 2018). Additionally, a few

works use DNNs to enhance the binaural features so that they

can eliminate reverberation and additive noise (Pak and Shin,

2019; Yang et al., 2021). In Yalta et al. (2017) and Vecchiotti

et al. (2019), the authors utilize DNNs to directly map the audio

spectrogram or its raw waveform to the source azimuth in an

end-to-end manner, which is also applicable to reverberant and

noisy environments. However, those works only consider source

azimuth estimation and the localization is done by classification

(i.e., the predictions can only be in a pre-defined grid).

A different data-driven approach was used in Deleforge

and Horaud (2012) and Deleforge et al. (2015), where the

relationship between source locations and binaural cues was

modeled with a probabilistic piecewise linear function. By

learning the function parameters, sources can be localized

by probabilistic inversion. An implicit assumption of the

piecewise linear model in Deleforge and Horaud (2012) and

Deleforge et al. (2015) is that similar source locations result

in similar binaural cues. The same assumption is also used

in non-parametric source localization algorithms based on

manifold learning in Laufer et al. (2013) and Laufer-Goldshtein

et al. (2015). In this paper, we focus on data-driven source

localization approaches, inspired by low-dimensional manifold

learning (Laufer et al., 2013; Laufer-Goldshtein et al., 2015).

Manifold learning in sound source localization is aiming

to find a non-linear transformation that transforms acoustic

measurements to a low-dimensional representation that

preserves the source locality information. Manifold learning

methods in Laufer et al. (2013) and Laufer-Goldshtein et al.

(2015) rely on smoothness in the measurement space with

respect to the underlying source locations, an assumption that

might generalize poorly to varying acoustic conditions. The

uncertainties in the binaural cue measurements introduced by

reverberation, introduce variations in the measurement space

neighborhoods that might not be consistent with their source

locations. To preserve neighborhoods in term of the source

location, we are inspired by the “siamese” neural network in

the machine learning community that is optimized with a

contrastive loss function (Hadsell et al., 2006). This particular

model learns a similarity metric defined in the latent space

(i.e., written digit classes and orientation of air plane pictures

in Hadsell et al., 2006). This paradigm, which doesn’t rely

on an explicit neighborhoods definition in the measurement

space, is suitable for problems that have a large amount of

classes and in each class there are only a few training examples,

such as face verification (Chopra et al., 2005; Taigman et al.,

2014) and signature verification (Bromley et al., 1993), and can

also be used in sound source localization. We have proposed

and published earlier a regression method for binaural sound

source localization based on the “siamese” neural network and

contrastive loss in Tang et al. (2019). This method converts

binaural cues into a low-dimensional embedding, and there is

a small Euclidean distance between the embeddings obtained

from binaural cues of similar source locations. A similar work

using triplet loss somewhat resembles our idea (Opochinsky

et al., 2019), but in their work, a model directly maps the

binaural cues to source location predictions, and pre-defined

proximity for both positive and negative cases (i.e., points with

similar and dissimilar source locations) have to be present at the

same time for the triplet loss.

In this paper, we first propose an update on the model

architecture introduced in Tang et al. (2019), and then validate

its robustness with respect to three aspects:

1. mismatched audio content between the training and testing

sets,

2. the presence of unknown reverberation and noise,

3. and the availability of only a small amount of annotated

training data,
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through abundant experiments in fixed and varying acoustic

scenarios, respectively. Afterwards, we extend our method to

a weakly supervised learning scheme, where the annotation

of source directions (i.e., azimuth and elevation) is no longer

required for training the embeddings, but only the relative

source position proximity is needed for any pair of training

examples. Unlike the supervised approach proposed in Tang

et al. (2019), which treats azimuth and elevation estimation in

two separate tasks, this weakly supervised embedding can be

used to estimate both the source azimuth and elevation at the

same time, and providing a good visualization of the manifold.

The proposed methods have potential in a number of

practical applications where the location of a sound source is

to be identified, for example in signal processing front-ends for

hearing aids, and in an intelligent interactive dialogue systems,

to localize the speaker for denoizing beamformers, or for a

synthesizer to render stereo sounds. Note that the proposed

methods start from binaural signal features, which implies that

binaural rather than bilateral hearing aids are required when

using these methods for sound source localization in hearing

aid systems, and the issue of binaural hearing aids that need to

transmit and synchronize the binaural features needed for this

model is beyond the scope of this paper. Yet there is a large body

of research literature that addresses this issue, and the reader is

referred to Kreisman et al. (2010), Ibrahim et al. (2013),Wei et al.

(2014), and Geetha et al. (2017).

The paper is organized as follows. In Section 2, we first revise

the binaural cue extraction and formulate the source localization

problem. Then, in Section 3, we provide a brief overview of

the related manifold learning work that has been applied in

binaural sound source localization. Next, the proposed method

is presented in Section 4 and finally, experimental results are

shown in Section 5.

2. Data model and problem
formulation

2.1. Binaural cue extraction

Let s1(τ ) and s2(τ ) denote the signals captured at the left and

right microphones in a binaural recording setup in a noisy and

reverberant environment. In this work, we extract the binaural

cues in the Short-time Fourier transform (STFT) domain, as

in Raspaud et al. (2010) and Deleforge et al. (2015).

Let S1(t, k) and S2(t, k) denote the STFT coefficients of s1(τ )

and s2(τ ), where t and k are the time frame and frequency index,

respectively. At a time-frequency bin (t, k) an ILD αtk and an

IPD φtk are defined as

αtk = 20 log10
|S1(t, k)|

|S2(t, k)|
, φtk = 6

S1(t, k)

S2(t, k)
. (1)

Assuming that a single sound source is active, we follow

the binaural feature extraction approach from Deleforge et al.

(2015), and compute time-averaged ILDs and IPDs across T

frames as follows

ak = T−1
T
∑

t=1

αtk, pk = T−1
T
∑

t=1

exp(jφtk). (2)

By concatenating the ILDs, and the real and imaginary parts

of the IPDs in selected frequency ranges [k1, k2] and [k3, k4], the

binaural information is summarized in a measurement vector

x ∈ X ⊂ R
D,

x = [ak1 , . . . , ak2 , R{pk3},I{pk3}, . . . ,R{pk4 },I{pk4 }]
T (3)

with dimensionality D = k2 − k1 + 2(k4 − k3).

It is known that IPDs carry reliable location cues below

2 kHz (Blauert, 1997), while ILDs contribute to localization at

higher frequencies as well (Deleforge et al., 2015). Hence, we

used the ranges
fs
K [k̃1, k̃2] = [200; 7, 000] Hz for ILDs and

fs
K [k̃3, k̃4] = [200; 2, 500] Hz for IPDs, where fs denotes the

sampling frequency and K is the Discrete Fourier transform

(DFT) size used in the STFT, and ki = round(k̃i), i = 1, 2, 3, 4,

where the round() operation rounds k̃i to the closest integer. For

a typical audio recording with sampling rate fs = 16 kHz, and

the DFT size K = 1, 024, the dimensionality D is equal to 729

(i.e., a 729-dimensional feature vector x).

2.2. Measurement to embedding
transformation

From the above binaural cue extraction process, a pair of

signals s1(τ ) and s2(τ ) is associated to a vector x ∈ X . We refer

toX as themeasurement space. Let the unknown source location

be denoted by u ∈ U . We refer to U as the latent space. U is one-

dimensional if one considers azimuth or elevation separately,

or two-dimensional if the localization angles are considered

simultaneously. Given a training set ofN pairs T = {(xi, ui)}
N
i=1,

the localization problem consists of finding a function h

û = h(x), h :X → U . (4)

that accurately maps measurements to latent variables.

Although, one can implement h with a powerful non-

linear model (e.g., a DNN), the proposed approach of first

transforming the measurement space to an embedding space

and then performing the localization in the embedding space

comes with several advantages:

1. Learning the transformation from measurement space to

embedding space does not necessarily require the latent space

annotation information, thus enables the possibility of semi-

supervised learning and weakly supervised learning.
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2. The low-dimensional embedding can preserve the latent

space neighborhood relationships (in which the Euclidean

distance in the embedding space roughly corresponds to

the latent space “semantic” relationship) and the embedding

eliminates useless information, which can be used to study or

visualize the latent space structure. A vanilla example of this

is the Principal Component Analysis (PCA).

3. By learning the structure of the latent space, the training of

the model will be less dependent on the distribution of the

training data. In contrast, if the mapping from measurement

space to latent space is learned directly, the model is more

likely to over-fit to the dense part of the training data and its

generalization capability decreases when there is not enough

annotated training data.

Therefore, our main objective in this work is to learn

an embedding function f that maps the vectors x to a low-

dimensional space which preserves latent space neighborhoods,

i.e.,

z = f (x), f :X → Z ⊂ R
d, d << D. (5)

We propose a neural network framework to learn a

parametric function f that satisfies these properties both in a

supervised and weakly supervised manner. A nearest-neighbor

regression function h :Z → U is then used for localization.

3. Baseline manifold learning
method

If the microphone location in a given room is fixed, the

authors in Laufer-Goldshtein et al. (2015) showed that features

extracted from binaural signals can be embedded in a low-

dimensional space Z , in a way that recovers source locations.

The framework in Laufer-Goldshtein et al. (2015) is based

on unsupervised manifold learning, in particular, Laplacian

eigenmaps (LEM) (Belkin and Niyogi, 2003).

The Laplacian Eigenmaps (LEM) method defines the

neighborhood relationships of the data using a similarity matrix

K ∈ R
N×N , with entries K[i, j] related to the Euclidean

distances ‖xi− xj‖2 between feature vectors xi and xj, with i, j ∈

[1,N]. One way to compute K is using nearest-neighbors, i.e.,

K[i, j] = K[j, i] = 1 if xi is among theM nearest neighbors of xj,

or if xj is among the M nearest neighbors of xi (in Euclidean

distance). A second way is using an exponentially decaying

kernel function, such as the Gaussian kernel

K[i, j] = exp

(

−
‖xi − xj‖

2
2

ε

)

, (6)

where ε is the kernel bandwidth. Such kernel is used for

source localization in Laufer-Goldshtein et al. (2015).

Given the similarity matrix K , the neighborhood-preserving

optimization problem of LEM to find the embeddings

z1, z2, . . . , zN is given by (Belkin and Niyogi, 2003)

arg min
z1,...,zN

N
∑

i,j=1

‖zi − zj‖
2
2 K[i, j],

subject to Z
T
DZ = I

(7)

which enforces that points xi, xj with large similarity K[i, j],

are to be mapped to points zi, zj with a small Euclidean distance

‖zi − zj‖2 where D is a diagonal matrix with entries D[i, i] =
∑N

j=1 K[i, j].

The optimization problem (7) has a closed-form solution,

given by the eigenvectors of P = D
−1

K corresponding to the

largest eigenvectors. If {ψ i}
N
i=1 denote the eigenvectors of P,

with eigenvalues 1 = λ1 > λ2 ≥ . . . ,≥ λN , the d-dimensional

LEM embedding is given by (Belkin and Niyogi, 2003)

zi = f (xi) =
[

ψ2[i], ψ3[i], . . . , ψd+1[i]
]T

, (8)

where the constant eigenvector ψ1 is not included (Chung,

1997; Belkin and Niyogi, 2003) and [i] denotes the vector

element index. The LEM embedding f is non-parametric, and

the low-dimensional representation z of a new measurement

x is obtained as a linear combination of the training points

{zi}
N
i=1 (Bengio et al., 2003). However, this procedure is often

insufficiently accurate and represents a disadvantage of LEM and

of spectral embeddings in general. One can include every new

testing data and re-run the unsupervised training to get a more

accurate representation for the new testing data, however, this

may prolong the training time, especially for large datasets, and

due to the fact that the kernel matrixK isN×N, the computation

of eigenvectors will dramatically increase for a large N.

Besides the promising performance of spectral embeddings

for localization (Laufer et al., 2013; Laufer-Goldshtein et al.,

2015; Taseska and vanWaterschoot, 2019), theirmajor drawback

is the assumption that the neighborhoods in the measurement

space are consistent with the source locations. Although the

assumption is shown to hold when all signals are recorded

in one room for fixed microphone locations (Deleforge and

Horaud, 2012; Laufer-Goldshtein et al., 2015; Taseska and van

Waterschoot, 2019), this is not the case when the signals are

filtered by various acoustic channels in different enclosures.

4. Contrastive embedding for
localization

We propose a parametric embedding, designed to preserve

neighborhoods in terms of sound source locations. Such

embeddings are robust to unseen room reverberation and small

training set size (e.g., when the training set does not contain the

complete latent space annotations). The proposed framework
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firstly includes the definition of the neighborhoods, which can

be supervised (Section 4.1) or weakly supervised (Section 4.2)

depending on whether one uses the azimuth/elevation label

or the source relative proximity. Secondly it includes the

transformation from the measurement space to the embedding

space by training a DNN which is optimized on a contrastive

loss function (Sections 4.3 and 4.4). Finally the sound source

localization will be performed in the embedding space using

nearest-neighbor regression (Section 4.5).

4.1. Supervised neighborhoods definition

Consider two labeled measurements (xi, ui) and (xj, uj)

where ui and uj are denoted as scalars since we estimate

azimuth and elevation separately. To avoid the phase wrapping

ambiguity, we define du(ui, uj) = min(|ui−uj|, 360
◦−|ui−uj|)

denote the shortest possible distance in the latent space U , where

ui, uj corresponds to the source azimuth or elevation angles in

degree. A neighborhood indicator yij ∈ {0, 1} is defined as

yij =







0, if du(ui, uj) > ǫu

1, if du(ui, uj) ≤ ǫu,
(9)

for a user-defined threshold angle ǫu.

4.2. Weakly supervised neighborhoods
definition

As an alternative to directly using the latent space label

information to define the neighborhoods, we can also use

the relative proximity between sound sources. Here, we only

consider the sound sources at the ball with radius8 and centered

at the receiver, or sources whose relative position to the receiver

can be found (then the source locations can be firstly projected

onto a ball with radius 8 around the receiver by distance

normalization).

In order to define the weakly supervised neighborhoods,

we can use the physical distance ds(Si, Sj) between two sound

sources Si and Sj which corresponds to the Euclidean distance

between the Cartesian coordinate vectors of Si and Sj. Similarly,

y′ij =







0, if ds(Si, Sj) > ǫs

1, if ds(Si, Sj) ≤ ǫs,
(10)

for a user-defined threshold distance ǫs. The threshold ǫs and

ǫu are related as ǫs represents the arc length of the angle ǫu on a

circle with radius 8 and hence,

ǫs ≈ ǫu · 8 · π/180◦ (11)

In particular, in our proposed method, one can also

implicitly define the similarity indicator y′ij by using it as a

training data label. For example, consider a scenario when

multiple recordings are acquired from excitations at each of

the pre-defined sound source locations, then y′ij equals to 1 for

recordings acquired at the same or at close source locations, and

y′ij equals to 0 for recordings acquired at different or far source

locations.

4.3. Contrastive loss

We seek to learn a parametric function fW :X → Z ⊂ R
d,

with parametersW, that maps xi and xj to their low-dimensional

embeddings zi and zj. If yij = 1, the Euclidean distance ‖zi−zj‖2

should be small, and if yij = 0, then ‖zi − zj‖2 should be large.

For a given embedding function fW , we have

‖zi − zj‖2 = ‖fW (xi)− fW (xj)‖2. (12)

A contrastive loss function over the parameters W, tailored

for neighborhood preservation has been proposed in Hadsell

et al. (2006) for non-linear dimensionality reduction, and is

given by

L(W) =

N
∑

i=1

N
∑

j=1

(

yij ‖fW (xi)− fW (xj)‖
2
2

+ (1− yij)max(0,µij − ‖fW (xi)− fW (xj)‖2)
2
)

. (13)

The parameter µij is a positive real-valued margin, such that

µij/2 can be interpreted as the same radius of circles centered

on zi and zj. If the circles intersect and yij = 0, the two

dissimilar pairs are too close in the embedding space, thus

increasing the contrastive loss in (13). On the other hand, if

yij = 1, large distances are penalized, enforcing fW to preserve

neighborhoods.

Intuitively speaking, during the training, each example

in a mini-batch is subjected to two “forces.” One force is

between the similar pairs, pulls them closer to each other in

the embedding space. The other force between dissimilar pairs

is repulsive and it pushes the dissimilar pair away from each

other in the embedding space (if they are too close when

‖fW (xi) − fW (xj)‖2 < µij). During training, the embeddings

are moving according to the forces they encounter, and thus will

eventually lead to an equilibrium (i.e., convergence). Globally,

the embedding space convergences to a manifold. Since the

forces are subjected to latent space similarities, this will result

in meaningful distances between each pair of embeddings (i.e.,

the distance between a pair of embeddings somewhat indicates

the proximity of their corresponding sound sources).

It is important to note that in Hadsell et al. (2006), where

the contrastive loss was first proposed for classification, µij ≡ µ
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is a constant margin. In our application, the latent space of

azimuths and elevations is continuous. To accurately preserve

its geometry, we propose an adaptive margin as follows,

µij =
exp

(

dij
)

exp
(

dij
)

+ 1
. (14)

As dij decreases, the margin µij decreases as well. One

can compute dij either in a supervised manner using the

azimuth/elevation, thus dij = du(ui, uj), or in a weakly

supervised manner, where dij = ds(Si, Sj). In the case that there

is no quantitative measure in the latent space, a constant margin

can be used (e.g., µ = 1).

4.4. Learning the embedding

We implement fW with a DNN as shown in Figure 1A.

The DNN architecture consists of two fully-connected hidden

layers withD neurons in each layer. Between the fully connected

layers, we add batch-normalization layers (Ioffe and Szegedy,

2015) to speed up the convergence and dropout layers to

prevent the model from over-fitting (Srivastava et al., 2014).

The output layer has three neurons, corresponding to a three-

dimensional embedding space, i.e., d = 3. The hidden neurons

have Sigmoid non-linear activations, and the output neurons

have linear activations. In order to train the DNN model

to minimize the cost function in (13), we use the siamese

architecture that was proposed in Bromley et al. (1993) and

used for various tasks in Chopra et al. (2005) and Hadsell

et al. (2006). This special DNN architecture consists of two

identical branches that are sharing the same model parameters.

Taking a pair (xi, xj) as an input, the measurements xi and

xj are passed through the branches (one per branch) and

hence produce their corresponding embeddings zi and zj.

Then the cost is evaluated in (13) using the neighborhood

indicator yij and the outputs zi and zj of the branches.

Finally, the gradient per model parameter is calculated and

back-propagated to update the model parameters. Depending

on which definition for the neighborhood indicator is used,

we call the corresponding embedding Supervised Contrastive

Embedding (SCE) if the supervised neighborhoods definition is

used, or Weakly-supervised Contrastive Embedding (WSCE) if

the weakly supervised neighborhoods definition is used.

A key aspect of the proposed framework is the selection

of pairs (xi, xj) for training. For small datasets, one could

consider all pairs and proceed with training on all training data

pairs. However the polynomial growth of the number of pairs

results in memory problems even for moderately large datasets.

To solve this problem, we use mini-batches and calculate the

neighborhood indicator yij for every pair of examples in each

mini-batch. To be noted, we suggest to choose a large enough

batch size so that there are both similar pairs and dissimilar pairs

in one batch. Because a randomly selected mini-batch generally

contains examples from sources of different locations (i.e., those

examples will be defined as dissimilar pairs), if the batch size is

too small, the probability of having similar pairs in a batch will be

very low, so that the loss will be inaccurately evaluated and thus

slow down the convergence rate. Intuitively, if there is no similar

pair in a batch, the embeddings will not be subjected to a pulling

force to their similar points. This would lead to the embeddings

that just randomly reside in the embedding space and form local

clusters.

4.5. Nearest-neighbor localization

Once the weights of fW are optimized, we compute the

embedding of a new x by a forward-pass through the DNN

model. Let z1, . . . ,zK denote the K nearest-neighbors of z in the

training set. The latent variable (azimuth or elevation) is then

estimated as

û =

K
∑

i=1

wiui, with wi =

exp

(

−
‖z−zi‖

2
2

ε

)

∑K
j=1 exp

(

−
‖z−zj‖

2
2

ε

) . (15)

The bandwidth ε of the exponential kernel is obtained as the

median of the squared distances from the K neighbors, i.e.,

ε = median
(

‖z − z1‖
2
2, . . . , ‖z − zK‖

2
2

)

. (16)

Note that if the embedding is accurately preserving

neighborhoods, the choice of regression weights is not critical.

For instance wi can be inversely proportional to ‖z − zi‖
2
2.

However, in our experiments, the latter generally leads to less

accurate location estimates than exponentially decaying weights.

5. Experiments

5.1. Experimental settings

To evaluate the proposed SCE in terms of the localization

error and robustness, we compare the SCE with two baseline

methods:

1. The LEM embeddings (Laufer et al., 2013; Laufer-Goldshtein

et al., 2015) with nearest neighbor localization.

2. A feed-forward neural network which is optimized with the

Mean Squared Error (MSE) loss. This feed-forward neural

network has the same structure as one of the branches in the

proposed siamese structure except for an additional output

layer with tanh activation functions that outputs the source

location predictions, shown in Figure 1B. Since the tanh

activation function has a range of (−1, 1), we normalize the

training labels also to the same range by ûi = ui/180
◦,
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FIGURE 1

Model architecture. The proposed contrastive embedding model in (A), and the feed-forward model in (B).

and i = 1 . . .N. Note that, the original labels have a range

[−180, 180◦]. During testing, the feed-forward predictions

are firstly converted back to degree before calculating the

localization errors.

As the neighborhoods for LEM are defined in the input

space, a single embedding is used to estimate both azimuth and

elevation. Similarly, our proposed method can be trained to

estimate azimuth and elevation simultaneously as well by using

the weakly supervised neighborhoods definition introduced in

Section 4.2. However, a system with two separately trained

embeddings might provide better results for the same amount

of data, which we will compare for SCE and WSCE in the later

experiments.

For the nearest neighbor regression in (15),K = 5 neighbors

are used in all localization experiments. A few threshold values

ǫu in (9) and (11) are tested for both azimuth and elevation.

We choose ǫu in {5, 15, 30◦} to have a big span so that we can

evaluate its impact on the localization results. Essentially, ǫu

is a hyper-parameter that can be tuned with a validation set.

We implemented the LEM using a nearest neighbor kernel K

with M = 10 nearest neighbors, which in our experiments,

provided better results than the Gaussian kernel used in Laufer-

Goldshtein et al. (2015) and Taseska and van Waterschoot

(2019).

For DNN training, we use the Adam optimizer (Kingma and

Ba, 2015) with a learning rate equal to 10−3 that is automatically

halved if the validation performance does not improve after 20

epochs. The mini-batch size is set to 128, and this will result

8,128 pairs of measurements per mini-batch for training. We

select the model based on the best validation performance,

and then the selected model is used to calculate the testing set

predictions.
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All audio files are sampled at 16 kHz. To extract the ILD and

IPD features, we use the STFT with a cosine window of 1,024

samples at 16 kHz, 75% overlapping.

5.2. Datasets

5.2.1. Fixed acoustic conditions

With the first dataset, we want to verify the effectiveness of

our proposed methods for preserving the locality information

of the audio source when the training and the testing set have

different audio content (and different spectral distribution).

We employ the CAMIL dataset which consists of binaural

recordings and was gathered using a Sennheiser MKE 2002

dummy head in a real-life reverberant room (i.e., a room

with a few furnitures and background noise; Deleforge et al.,

2015). To generate recordings that have different azimuth

and elevation angles, a loudspeaker (i.e., the source) is placed

at a fixed position, 2.7m from the dummy head (i.e., the

receiver). The dummy head is mounted on a step-motor which

generates 10,800 pan-tilt states. This results in source azimuth

and elevation angle in the range [−180, 180◦] and [−60, 60◦],

respectively (with 2 ◦resolution). To only evaluate the methods

in localizing frontal sources, we select the recordings that have

source azimuth and elevation angle in the range [−90, 90◦]

and [−45, 45◦], respectively. The CAMIL dataset consists of a

training set made using white noise (1 s per recording), and a

testing set made using 1–5 s speech samples from the TIMIT

corpus (Garofolo et al., 1993). We further randomly divide the

whole training set into a smaller training set (consisting of 70%

samples from the original training set), and a validation set

(consisting of the remaining 30% samples from the original

training set). Finally, spatially uncorrelated white noise with a

Signal to Noise Ratio (SNR) of 15 dB is added to the testing set.

5.2.2. Varying acoustic conditions

With the second dataset, we want to verify the robustness of

the proposed methods for varying acoustic conditions. We use

the VAST dataset (Gaultier et al., 2017) of simulated binaural

room impulse responses of a KEMAR dummy head (Gardner

and Martin, 1995; Schimmel et al., 2009). The training set

consists of 16 different rooms with reverberation time 0.1–0.4 s.

For each room we select spherical grids of source positions

with radii 1, 1.5, and 2m, centered at nine predefined receiver

positions (inside each room). Similarly to the fixed acoustic

conditions in Section 5.2.1, we use 70% of randomly selected

data as the training set, and the remaining 30% as the validation

set. The receiver’s height is fixed at 1.7m. Then two testing sets

are provided:

• Testing-set-1: The source and receiver are placed at random

positions in the same 16 rooms as the training set.

• Testing-set-2: The source and receiver are placed in shoebox

rooms of randomwidth and length between 3× 2 and 10×

4m, with absorption profiles randomly picked from those

of the training rooms. Those rooms have reverberation time

0.1–0.4 s.

All the training set’s and testing sets’ Head-related impulse

responss (HRTFs) are simulated using the image source

method (Allen and Berkley, 1979) and provided by the VAST

dataset (Gaultier et al., 2017).

As in Section 5.2.1, we have only selected recordings

that have frontal angles. To focus on the influence of

the varying room acoustics while exciting all frequencies,

2 s white noise source signals were considered in

this experiment.

5.3. SCE for unidimensional source
localization

5.3.1. Tuning the dropout rate

We first determine an optimal dropout rate for both the

SCE method and the feed-forward model by line search. We test

dropout rate values in {0.0, 0.2, 0.5, 0.8}, and similarity threshold

values ǫu for SCE equals to 5 and 15◦ (denoted by “_sim5” and

“_sim15,” respectively). The azimuth/elevation localization error

of the validation sets for both the CAMIL dataset and the VAST

dataset are plotted in Figure 2.

In Figures 2A,B, the azimuth and elevation estimation

results for the CAMIL dataset are illustrated, respectively. We

can observe that the SCE has better validation performance than

the feed-forward model for all testing dropout rates, and its

localization error is essentially equal to zero when using either

similarity threshold value, i.e., 5 or 15◦. The feed-forwardmodel

exhibits a clear concave curve in median localization error and

has the lowest localization error at the dropout rate value of 0.2,

thus indicating that a dropout rate equal to 0.2 is an optimal

value for the feed-forward method.

In Figures 2C,D, the median azimuth and elevation

localization error for the VAST dataset are illustrated

respectively. Both the SCE and the feed-forward model in

this case exhibit a concave curve in median localization

error and they both exhibit an optimal dropout rate of

0.2. We also observe that, in the VAST azimuth validation

performance, the SCE_sim5 performs equally well as the

feed-forward model when dropout rate is 0.2, which is

slightly better than SCE_sim15. In the elevation estimation,

SCE_sim5 performs the best over the feed-forward model

and SCE_sim15.

Based on the validation results, we choose the dropout rate

equal to 0.2 for both the SCE and the feed-forward methods for

the next experiments.
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FIGURE 2

Validation performance across di�erent dropout rates for CAMIL validation set (A,B), and VAST validation set (C,D). The dropout rate is tested for

both the proposed SCE with similarity threshold angle ǫ u equal to 5 and 15 (denoted by_sim5 and _sim15, respectively), and the baseline

feed-forward method. Both methods are tested for source azimuth (denoted by _az) and elevation (denoted by _el) estimation. Localization

errors are in degrees.

5.3.2. Comparison with the baseline

In this experiment, we compare the localization

performance of the proposed SCE with the baseline LEM

embedding and the feed-forward model. For the proposed

SCE, we evaluate a small threshold angle (i.e., ǫu = 5 ◦) and a

large threshold angle (i.e., ǫu = 15 ◦), denoted by “_sim5” and

“_sim15,” respectively.

The testing set results are illustrated in Figure 3. It can be

seen that in the fixed acoustic condition with the CAMIL dataset,

the proposed SCE performs better than the LEM embedding

and the feed-forward model in terms of median error and

maximum error. Especially when using the small similarity

threshold, the SCE performs excellent, as the SCE_sim5 has

almost zero median error in azimuth and elevation estimations.

It can also be noted that the feed-forward model performs

slightly better than the LEM embedding, with a median

error equal to 0.61 and 0.29◦ for azimuth and elevation

respectively, whereas the LEM model has median errors equal

to 0.72 and 0.49◦ for azimuth and elevation, respectively. In

summary, in the fixed acoustic condition, the proposed SCE

can almost perfectly preserve the source location information

even when reverberation and additive white noise are present,

while the feed-forward model performs better than the LEM

embedding, but both exhibit some estimation error. This

could be due to the fact that the feed-forward model highly

depends on the training data, and due to the presence of

audio content mismatch between the training and testing

sets, the feed-forward model has some difficulty to generalize

to unseen audio contents, thus negatively influencing the

localization performance.

In the varying acoustic conditions with the VAST testing

sets, the proposed SCE_sim5 performs slightly better than the

SCE_sim15 and equally well as the feed-forward model. The

SCE_sim5 and feed-forward model achieve VAST testing-set-

1 azimuth median errors equal to 1.96 and 1.95◦, VAST

testing-set-1 elevation median errors equal to 3.32 and 3.24◦,

VAST testing-set-2 azimuth median errors equal to 2.1 and

2.01◦, and VAST testing-set-2 elevation median errors equal

to 3.94 and 3.99◦, respectively. Since in the various acoustic

conditions, the source excitations are white noise in both the

training and testing set, the SCE and the feed-forwardmodel can

both generalize well to unseen acoustic environments, and show

robustness toward reverberation and noise.

The LEM embedding performs the worst in the presence

of various reverberations. It achieves median errors equal to

3.3 and 11.7 for azimuth and elevation in VAST test-set-1,

respectively, and 3.1 and 13.3 for azimuth and elevation in VAST

test-set-2, respectively. This may indicate that the LEM, which is

easily affected by geometric distortion in the measurements, is

not robust to reverberation.

5.3.3. Reduced training-set

A common problem related to data-driven methods is

the model generalizability, or in other words, how can a

trained model generalize to unseen data. In the source

localization scenario, the training set may not include training

recordings from every pair of azimuth/elevation angles, hence

it is desirable that the model can somehow interpolate the

predictions that lie in-between the training points. In this

experiment, we are aiming to evaluate the robustness of

the proposed SCE toward the training size. With a smaller

training size, there will be more source locations that are

not included in the training. We use a similarity threshold

angle ǫu = 5 ◦ for SCE in this experiment and all

methods are conducted with 10, 25, 50, and 70% randomly

selected training sets. The median localization errors are

illustrated in Figure 4.

As illustrated by these results, all methods show a decreasing

trend in localization error when a larger training set is used,
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FIGURE 3

Testing set localization performance for the baseline LEM, the baseline feed-forward and the proposed SCE methods. Localization errors in (A)

the fixed acoustic condition using the CAMIL testing set, and (B,C) the localization performance in the varying acoustic condition using the VAST

testing sets. “_sim5” and “_sim15” denote the use of similarity threshold angles ǫu equal to 5 and 15◦ , respectively.

FIGURE 4

Localization performance on the CAMIL testing set (A), the VAST testing-set-1 (B), and the VAST testing-set-2 (C). 10p, 25p, 50p, and 70p

denote the cases when 10, 25, 50, and 70% of the original training data is used, respectively.

however, themedian localization error of the proposed SCE does

not vary much with the changing size of the training set, and

shows a flatter pattern. Although in the fixed acoustic condition,

SCE results a in a higher median error when 10% of the training

set is used (median azimuth error equal to 0.81◦) than when a

larger training set is used, the error is still lower than for the

other two methods (as feed-forward and LEM achieve median

azimuth errors equal to 1.08◦ and 2.56◦respectively when 10%

of the training data is used). This allows to conclude that the

SCE is more robust to the use of training data that not cover the

entire latent space.

The results allow us to hypothesize that the proposed SCE,

leveraged by the contrastive loss and the adaptive margin (see

Section 4.3), is aiming to learn a similarity metric between

input binaural cues from the latent space. This similarity

metric implies that the underlining structure in the latent space

is robust to unseen source locations. In contrast, the feed-

forward model tends to transform the measurement space to

an abstract high-level space in which the Euclidean distance

between embeddings is not necessarily a similarity metric, and

thus it is difficult to infer the unseen source locations from this

embedding space.
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5.4. WSCE for multidimensional source
localization

The LEM embedding as well as the proposed WSCE are

capable of estimating the sound source azimuth and elevation

simultaneously. It should be noted that both the proposed

WSCE and the LEM need source annotations in order to

localize new examples under the nearest-neighbor localization

framework, thus the localization phase is still a supervised

learning task for both methods.

To explore the learned latent space structure, we test

several similarity threshold angles ǫu ∈ {5◦, 15◦, 30◦}, indicated

as “_sim5,” “_sim15,” and “_sim30,” respectively. Since when

calculating the similarity labels, we first normalize the relative

source location coordinates to have unit norm (i.e., source

coordinates are relocated to have unit distance to the receiver),

chosen the similarity threshold angles yield the following

similarity threshold for the physical source distance: ǫs ∈

{0.09, 0.26, 0.52m}. Figure 5 shows the training set embeddings

and the testing set embeddings for the CAMIL testing set

and the VAST testing-set-1. Firstly, it can be observed that

the proposed WSCE method learns a manifold from the

binaural cues that can reflect the sound source location without

any azimuth/elevation annotations. This manifold has a clear

structure and a similar structure is obtained in both the CAMIL

dataset (with reverberant speech) and the VAST dataset (with

varying reverberation). Secondly, when using smaller similarity

threshold angles (i.e., ǫu = 5◦), the structure of the manifold

tends to become irregular and folded, and when using larger

threshold angles (i.e., ǫu = 15◦ and ǫu = 30◦), the structure of

themanifold tends to become smooth and unfolded. Elaborating

the intuition introduced in Section 4.3, this may be due to

the fact that when the similarity threshold angle is small, the

contrastive loss has a small range of action on penalizing

mislocated dissimilar pairs, resulting in many dissimilar pairs

not being subject to repulsive forces, and instead, similar pairs

are attracted and clustered in local areas. When a large similarity

threshold angle is used, each embedding is subject to both

attractive and repulsive forces from a large number of other

embeddings, thus maintaining an overall uniformly equilibrium

state in the global perspective.

In addition to the above mentioned qualitative experiments,

we also conduct quantitative experiments to use the WSCE

for source localization and compare the results to the

LEM embeddings and the SCE_sim5. The localization results

are shown in Figure 6. In the fixed acoustic condition

with the CAMIL dataset, the SCE_sim5 still performs the

best but it trains separate embeddings for azimuth and

elevation. In contrast, both the proposed WSCE and the

LEM embedding train one embedding for both azimuth and

elevation estimation and show a strong source localization

ability as well. In azimuth estimation, the WSCE_sim15

performs slightly better than the WSCE_sim5, then followed

by LEM and WSCE_sim30 (achieving median errors equal to

0.64, 0.69, 0.72, and 1.16◦, respectively). In elevation estimation,

LEM exhibits a median error equal to 0.49◦ and performs

slightly better than the WSCE_sim15 and WSCE_sim5, which

have the same median error equal to 0.58◦. WSCE_sim30

performs worst in elevation estimation and achieves a median

error equal to 0.82◦. Nevertheless, the WSCE shows a

comparable localization ability to the LEM in the fixed acoustic

condition.

In varying acoustic conditions with the VAST dataset,

instead, the WSCE shows a much lower localization error

than the LEM embeddings and it is even approaching the

SCE_sim5 performance. Firstly, with the VAST testing-set-1,

the WSCE_sim5, WSCE_sim15, and WSCE_sim30 perform

equally well (azimuth median errors equal to 1.96, 1.94,

and 1.98◦, respectively, and elevation median errors equal to

3.69, 3.64, and 3.69◦, respectively), and the SCE_sim5 has

slightly better elevation estimation than either WSCE method

(achieving azimuth and elevation median errors equal to 1.96

and 3.32◦, respectively). For the VAST testing-set-2, similarly,

the WSCE_sim5, WSCE_sim15, WSCE_sim30, and SCE_sim5

perform somewhat equally well (achieving azimuth median

errors equal to 1.93, 2.1, 2.1, and 2.1◦, respectively, and elevation

median errors equal to 3.99, 4.34, 4.44, and 3.94◦, respectively).

Although the unidimensional SCE_sim5 and the WSCE with

a small similarity threshold show narrower interquartile range

than other methods, we do suggest to use a similarity threshold

angle ǫu = 15 ◦forWSCE to achieve both good visualization and

localization performance.

Secondly, the WSCE largely outperforms the LEM

embeddings in varying acoustic conditions where LEM only

obtains an azimuth median error of 3.28◦and an elevation

median error of 11.7◦ for VAST testing-set-1, and an azimuth

median error of 3.09◦and an elevation median error of 13.27◦

for VAST testing-set-2, respectively. Also, theWSCE has a much

narrower interquartile range than the LEM, which may indicate

that the proposed WSCE is more robust to reverberation than

the LEM embeddings.

5.5. WSCE with unseen HRTFs

To further verify the generalization capability of the

proposed WSCE, we test the WSCE with different HRTFs that

are not seen during the training. To create simulated binaural

recordings, we use the CIPIC dataset (Algazi et al., 2001), which

consists of 45 real-life measured HRTFs. There are in total 45

subjects (43 human subjects and 2 dummy head subjects), and

for each subject, 1250 HRTFs are measured for each ear and

from different azimuth and elevation angles. We select azimuth

and elevation angles in range the [−90, 90◦] and [−45, 45◦],

respectively, corresponding to the other datasets mentioned

in the former sections. The HRTFs are then convoluted with
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FIGURE 5

Visualizations of the WSCE embeddings. Column 1 and 2 are azimuth training and testing embeddings. Column 3 and 4 are elevation training

and testing embeddings.
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FIGURE 6

Localization performance on the CAMIL testing set (A), the VAST testing-set-1 (B), and the VAST testing-set-2 (C) for the LEM, the SCE and the

WSCE methods.

FIGURE 7

Testing set localization performance for the WSCE_sim15 and

WSCE_sim15 retrained with 33 di�erent HRTFs other than the

once used in generating test recordings.

simulated reverberant recordings (excited by 2 s white noise).

Those recordings are generated using the image method (Allen

and Berkley, 1979), in a shoebox room that has dimension 3.5×

5× 2.8m, and reverberation time equal to 0.3 s.

We randomly select recordings from 10 subjects for testing,

and use WSCE_sim15 for estimating their source locations.

The localization results are plotted in Figure 7. Since we train

the WSCE_sim15 only using one HRTF, the model could

not generalize well to recordings made with unseen HRTFs.

Therefore, we observe a dramatic performance degradation, in

which the median errors of azimuth and elevation localization

are 24.3 and 20.1◦, respectively.

To overcome the performance degradation, we propose two

approaches:

1. Personalized training (user-dependent): this approach is

especially interesting for hearing-aid applications since the

hearing-aid is designed for a specific user, and it is not shared

with different people. Therefore, the HRTF of the designated

user can be measured and be used in the model training or

fine-tuning process to create a user-dependent model.

2. Increase training data variety (user-independent): another

solution consists in using more HRTFs to create the training

data for training the WSCE. Then, the trained model can

generalize to people with different HRTF than the ones

in training data. A rule of thumb is that the higher the

variety of the training data (with annotation), the better the

generalization capability of the model.

We adopt the second approach to retrain the WSCE_sim15

and use the rest of the HRTFs from the CIPIC dataset,

which are different from the data used in the testing (i.e.,

user-independent). This results in 33 HRTFs that are used

for training, 2 for validation and 10 for testing. We also

simulate random shoebox rooms that have reverberation time

between 0.1 and 0.4 s. The localization error of the retrained

model is shown in Figure 7 with name “WSCE_sim15_retrain.”

The azimuth and elevation median errors of the retrained

model have been largely reduced from 24.3 to 1.1◦and

20.1 to 3.6◦, respectively, showing the effectiveness of this

approach.

We further analyse the relationship between the CIPIC

testing set embeddings and their respective nearest training set

neighbors and illustrate the results in Figure 8. The X-axis is

the true azimuth or elevation angle of the testing embedding,

and the Y-axis is the location of the corresponding nearest

training set neighbor predicted by the WSCE_sim15 which is
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FIGURE 8

True locations of sources in the testing set versus the locations of their respective nearest neighbor in the training set for WSCE_sim15 and

WSCE_sim15 retrained with 33 di�erent HRTFs other than the once used in generating test recordings (i.e., WSCE_sim15_retrain).

summarized using box plots. For the original WSCE_sim15, the

median nearest neighbor location angles are shifted compared

to the true testing location in the case of both azimuth and

elevation angles, and the interquartile ranges of the nearest

neighbor location angles are large, indicating that the neighbors

of the original WSCE_sim15 are poorly preserved, which also

suggests that the original WSCE_sim15 trained with only one

HRTF cannot be generalized to the unseen HRTFs. In contrast,

WSCE_sim15_retrain preserves the neighborhoods much better

because the median of the location angles of the nearest

neighbors predicted by the WSCE_sim15_retrain is close to the

true location angle of the test embedding. In addition, compared

to the original WSCE_sim15 model, the location angle of the

nearest neighbor predicted by the WSCE_sim15_retrain has a

smaller interquartile range. In summary, the generalization to

unseenHRTFs ismuch better after retrainingWSCE_sim15with

33 real-life HRTFs.

However, a limitation of our simulations is that we use

synthetic rooms with slightly different acoustic properties than

real-life rooms. In addition, we always excite the sound source

with white noise, which has a broadband spectrum, while real-

life soundsmay not have the same characteristics.We propose to

increase the variety of training data covering real-life conditions,

using more HRTFs recorded at finer azimuth/elevation angles,

and using Room Impulse Responses (RIRs) from more complex

rooms, which we believe will further improve the generalization

capability of the proposed WSCE model.

6. Conclusions

We proposed a DNN framework for supervised

dimensionality reduction of binaural cue measurements,

followed by a nearest-neighbor regression method for source

localization. Our manifold-learning-based method has better

binaural sound source localization performance than the

baseline manifold learning method in both know and unknown

reverberant conditions and in a small training set condition. In

comparison with a feed-forward learning method, our proposed

method not only provides a better visualization ability, but

also achieves a similar or better performance in binaural

sound source localization. Moreover, our proposed method

can capture a smooth manifold structure for low data density

regions and outperforms the baseline manifold learning method

and the feed-forward method in case of a small amount of

training data.

In addition to the supervised dimensionality reduction

method, we also proposed a weakly supervised embedding,

i.e., WSCE, that only requires implicit latent space proximity

labels for training. This WSCE can simultaneously estimate the
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azimuth and elevation of the sound source, and is also robust

to unknown reverberation. Quantitative experimental results

demonstrate that this WSCE has almost similar localization

performance as the supervised method, and it performs much

better than the traditional unsupervised embedding in varying

acoustic conditions.

To further increase the generalization capability of the

proposed model, we hope to learn the SCE and WSCE

embeddings with big variety of training data covering more real-

life conditions, such as using more HRTFs recorded at finer

azimuth/elevation angles and using RIRs from more complex

rooms. In addition, we also aim to further investigate how to

apply the proposed SCE and WSCE in data synthesis. When

combining these methods with a generative model, we speculate

that the embeddings can be used to synthesize binaural features

or even audio waveforms to aid data-driven binaural source

localization models.

Since potentially applicable systems for the proposed model

(e.g., hearing aids) often have limited computational resources,

reducing the model complexity and the number of model

parameters is therefore a relevant direction for future research.

Possible approaches to achieve this include model pruning (i.e.,

removing the DNN neurons that are associated with very small

weights), model information distillation (Hinton et al., 2015)

and model parameter quantization.
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