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Brain-Computer Interfaces (BCIs) are increasingly useful for control. Such

BCIs can be used to assist individuals who lost mobility or control over their

limbs, for recreational purposes such as gaming or semi-autonomous driving,

or as an interface toward man-machine integration. Thus far, the performance

of algorithms used for thought decoding has been limited. We show that by

extracting temporal and spectral features from electroencephalography (EEG)

signals and, following, using deep learning neural network to classify those

features, one can significantly improve the performance of BCIs in predicting

which motor action was imagined by a subject. Our movement prediction

algorithm uses Sequential Backward Selection technique to jointly choose

temporal and spectral features and a radial basis function neural network

for the classification. The method shows an average performance increase

of 3.50% compared to state-of-the-art benchmark algorithms. Using two

popular public datasets our algorithm reaches 90.08% accuracy (compared

to an average benchmark of 79.99%) on the first dataset and 88.74% (average

benchmark: 82.01%) on the second dataset. Given the high variability within-

and across-subjects in EEG-based action decoding, we suggest that using

features from multiple modalities along with neural network classification

protocol is likely to increase the performance of BCIs across various tasks.

KEYWORDS
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Introduction

Brain-Computer Interfaces (BCIs) act as a link between neural activity and machine
operations. The BCI extracts data from electrodes or sensors acquiring neural signals
and translates those data into digital code (Bulárka and Gontean, 2016). Applications of
BCI include those focused on improved health outcomes (i.e., rehabilitation of impaired
motor function; Courtine et al., 2013), restoration of sensory functions (Hochberg et al.,
2012), interpreting thoughts from individuals who cannot otherwise communicate them
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(Cerf et al., 2010), enhanced control of devices (i.e., operating
heavy machinery, flying drones, or driving; Chiuzbaian et al.,
2019, Nader et al., 2021), or recreational uses (i.e., gaming; Cerf
and Garcia-Garcia, 2017). Invasive BCIs, such as ones built on
single-neuron recordings, have recently shown high accuracy
in interpreting human/animal intentions, actions, and imagery
(Cerf et al., 2010; Hochberg et al., 2012). Non-invasive tools
such as ones using electroencephalography (EEG) data have
demonstrated high performance in interpreting thoughts and
actions. For example, interpreting imagined motor action–a
commonly used task for evaluating BCIs–has shown decoding
accuracies ranging between 70 and 85% in recent works
(Gordleeva et al., 2017).

Notably, BCIs based on motor imagination (MI) tasks,
where subjects imagine an action (i.e., clenching of the
fist) and the BCI aims to identify the action imagined,
have shown remarkable improvement in recent years. In
a typical MI task, the BCI derives neural signatures (i.e.,
power changes in the alpha and beta rhythms extracted
from sensory-motor regions) that accurately predict the
action intent following a training period. Given that non-
invasive signals generated by EEG are often contaminated by
artifacts derived from eye movement or muscle movement,
a typical EEG-based BCI requires larger training data and
isolated trials to increase the action identification accuracy.
The repeated trials enable the averaging of the event-
related signals and the extraction of a synchronized clean
input. Variance across individual subjects, electrode montages,
experimental sessions, and trial types add difficulty to the
interpretation of the signals.

Given the challenges in EEG-based BCI development
using noisy inputs, numerous methods have been proposed
to improve the decoders performance (Lebedev and Nicolelis,
2006; Lotte et al., 2007; Prashant et al., 2015; Abiri et al., 2019;
Andersen et al., 2019). The suggested methods often focus
on the isolation of temporal or spectral components in the
signal. Algorithms based on spectral feature selection are more
prominent in the BCI arsenal since the time courses of event-
related synchronization (or de-synchronization) vary heavily
among subjects during motor tasks (Hochberg et al., 2012;
Andersen et al., 2019).

Within the feature selection BCIs signal toolkit arsenal,
common spatial patterns (CSPs) algorithms are dominant
(Bhatti et al., 2019). These algorithms seek to find an optimal
spatial filter that distinguishes one brain state from another.
In EEG, the performance of CSPs is highly sensitive to the
choice of frequency bands, making the decision on which filter
to use heavily dependent on the recording configuration. To
afford some generalization, variants of CSP were proposed as
ways to improve the signal processing. Those variants often use
narrower frequency bands (termed: sub-band CSP; SBCSP; Novi
et al., 2007) and Filter Banks (FBCSP; Ang et al., 2008) and show
increased performance for action decoding, yet are still scarce.

In addition to the extended frequency bands and filters
improvements, recent attempts to include temporal signals in
BCIs emerged in the form of Temporally Constrained Group
Spatial Pattern (TSGSP) algorithms (Zhang et al., 2018). TSGSP
optimally select the CSP features by considering different
temporal windows for signal extraction derived from multi-task
learnings. That is, instead of collapsing all the trials within one
MI class (i.e., all left-hand movement trials) various MI tasks
are combined to suggest the ideal CSP for a specific individual
subject. The TSGSP algorithms use Support Vector Machines
(SVM) for the classification of new trials to their corresponding
action class. This inclusion of temporal data was recently shown
to improve the performance of CSP-based BCIs (Sakhavi et al.,
2018; Zhang et al., 2018; Deng et al., 2021).

Neural network based classifiers that frequently show
superiority in data-rich non-linear clustering tasks such as MI
decoding were recently suggested as a potential improvement
for the CSP algorithms (Bhatti et al., 2019). Specifically, the
usage of Sequential Backward Floating Selection method along
with a radial basis function neural network (RBFNN) for
optimal CSP features selection was suggested as a potential
superior algorithm for BCIs (Bhatti et al., 2019).

Here we implement and test a combination of the suggested
improvements for MI decoding and show the tuning curves
of key parameters driving the performance increase. Namely,
we introduce a number of additions to the BCI motor
classification algorithms arsenal. First, we incorporate both
temporal and spectral features in the MI BCI. Second, we
use sub-bands rather than typical frequency bands for the
BCI inputs. Third, we combine the successful Sequential
Backward Selection (SBS) method with CSP features for the
temporal-spectral feature selection. Fourth, we separate the
feature selection process from the following feature classification
process. Finally, we incorporate the suggested RBFNN (rather
than SVM) in the motor classification. We demonstrate the
effectiveness of our method using popular public datasets and
compare our performance to the current state-of-the-art BCI
benchmark algorithms.

This work contributes to the BCI literature by showing that
the combination of a SBS and temporal-spectral EEG signals
with RBFNN significantly outperforms other methods. This is
the first work to test the combination of all previously suggested
improvements to existing algorithms in a single implementation
(see Sakhavi et al., 2018; Zhang et al., 2018; Deng et al., 2021; for
discussions of the improvements implemented here).

Materials and methods

Data

Two popular BCI datasets were used for the algorithm
testing:
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Dataset 1
Brain-computer interface competition IV, dataset 2a, which

contains 22-channel EEG data recorded from 9 healthy subjects
(A01–A09) participating in different MI tasks. In each task,
subjects were asked to imagine movement of the left hand,
right hand, feet, and tongue. The experiment consisted of two
sessions. In each session, there were 72 trials for each of the
four classes of movement. The EEG signals were sampled at
250 Hz and bandpass filtered between 0.5 and 100 Hz with a
50 Hz notch filter. We used the data from the left- and right-
hand imagery tasks alone to align with the second dataset and
some of the benchmark algorithms that focused solely on those
movement classes.

Dataset 2
Brain-computer interface competition IV, dataset 2b, which

contains 3-channel EEG data recorded from 9 different subjects
(B01–B09) participating in two MI tasks. The experimental
protocol was nearly identical to dataset 1 other than the fact
that subjects only imagined movements of the left-hand and
right-hand, and that instead of two sessions there were five
session. For each subject, separate training and testing sets were
available. The EEG signals were sampled at 250 Hz and bandpass
filtered between 0.5 and 100 Hz with a 50 Hz notch filter.

See Leeb et al. (2008) for additional details on the two
datasets.

Feature extraction

Pre-processing
Raw EEG signals were filtered between 4 and 40 Hz

with fifth-order Butterworth filter. For each trial, we used
samples between 500 and 4,500 ms from the trial onset in the
analyses. The first 500 ms were excluded, in alignment with
the instructions of the BCI IV competition winners, because of
response times deviations across trials.

Feature selection
The neural signals were divided to five overlapping 2-s

windows with a step size of 500 ms. This ensured temporal
generalizability within a trial. Following, the data were filtered
along 17 overlapping frequency bands ranging from 4 to 40 Hz
with a 2 Hz step. Finally, a common spatial filter (Bhatti et al.,
2019) was identified such that it maximized the variance within
a single class (i.e., across all left-hand trials) and minimized the
variance across classes (i.e., between left-hand and right-hand
trials).

The data for a single trial were represented as a matrix, X ∈
RN·T (with N reflecting the number of channels, and T the time)
whose normalized covariance matrix, C, is:

C =
XXT

trace(XXT)
(1)

Averaging across all trials within a class yielded a matrix, Ct (t
indicating the class type).

The spatial covariance was calculated by averaging all
covariance matrices:

Cc = Cleft−hand + Cright−hand (2)

The Cc matrix was white transformed:

CC = UCλCUT
C (3)

with UC the eigenvector matrix and λC the eigenvectors.
Defining P as:

P =
√

λ−1
C UT

C (4)

the individual class matrices were transformed to:

Sleft−hand = PCleft−handPT (5)

Sright−hand = PCright−handPT (6)

such that the St matrices have the same eigenvectors.
Given that St could be represented as BλtBT with B the

eigenvectors matrix and λt the eigenvalues:

St = BλtBT (7)

the projection matrix, W, was derived:

W = BTP (8)

Thus, the EEG data were projected to a matrix, Z:

Z =WTX (9)

where the columns of Z corresponded to the data’s spatial
source distribution vectors. The vectors maximized the variance
across classes and corresponded to the maximum eigenvalues
(λleft−hand and λright−hand ).

Finally, the classification features were represented by:

fp = log(
var(Zp)∑n
i=1 var(Zi)

) (10)

where Zp are the CSPs (p = 1..N).
A subset of Z (first and last m rows) were used in

further analyses.
An SBS (Pasyuk et al., 2019) was used to reduce the

initial 85-feature set (17 frequency bands × 5 time-windows)
from each individual trial. According to the SBS criteria, in
every iteration of the algorithm the feature yielding the lowest
accuracy was discarded. That is, if the initial performance
with all 85 features was, say, 87%, the performance using 84
features was computed next, leaving one feature out in each
iteration (f1 = 78%, f2 = 82%, f3 = 77%, . . .). Comparing
all 85 leave-one-out iterations, the feature whose contribution
to the performance was lowest (i.e., one without whom the
performance drops least; f2 in the particular example) was
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discarded. Following, the performance of the remaining 84
features was set as the anchor performance and the evaluation
was repeated with 83 features. Each run led to a drop of a single
feature. The optimal performance across all 3,655 iterations
(85+84+. . .) was regarded the network’s accuracy, with the
feature set yielding the highest performance being the preferred
set.

Neural network

An RBFNN was used for the classification. The network
consisted of two layers: an input layer and a hidden layer. The
output of the hidden layer was summed proportionally to the
input features to yield the output classification. Formally, this is
represented as:

F (x) =

k∑
i=1

wifi(x, ci)+ b (11)

where wi are the weights, fi the Gaussian radial basis functions,
ci the center values of the Gaussian radial function, b the bias,
and k the number of neurons in the hidden layer.

With fi formally computed as:

fi(x, ci) = e
(
−||x-ci||

2

2σ2
i

)
(12)

where σi is the standard deviation.
In each iteration of the RBFNN implementation the

extracted input features are scaled and used to train the network,
followed by a testing. The network was implemented using

Matlab’s newrbe function default hyperparameters, with the
spread of the radial basis functions set to 16.

Implementation

The implementation of the method–pre-processing, feature
selection, and neural network classification are available online
at https://www.morancerf.com/publications.

Analyses
We compared our algorithm’s performance to that of all

state-of-the-art methods which: (a) were published in the last
5 years, (b) used the same datasets as ours, and (c) were
implemented on both the left- and right-hand MI data. We used
one implementation of each method to avoid focusing on coding
variations but rather on conceptual differences in the protocol.
Altogether, 38 methods were compared to our algorithms, and
19 were not included in our analyses because they did not satisfy
the inclusion criteria (namely, those algorithms used different
movement classes outside of the ones we tested).

For dataset 1 we compared our performance to the following
methods (see results in Table 1):

(1) Deep Neural Network (DNN) (Kumar et al., 2016)
(2) Kernel Principal Component Analysis using Conformal-

Isometric Linearizing Kernel (KPCA-CILK) (Sadatnejad
and Ghidary, 2016)

(3) Weighted Overlap Add Common Spatial Patterns
(WOLA-CSP) (Belwafi et al., 2018)

TABLE 1 Performance comparison for dataset 1, sorted by accuracy.

Method Year A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± std

SBS-FBCSP 2022 80.00 72.76 83.79 70.42 73.10 68.97 75.17 77.93 77.59 75.52± 4.76

DNN 2016 86.81 66.70 95.83 76.39 57.64 68.06 75.00 93.75 77.08 77.47± 12.72

KPCA CILK 2016 88.89 59.03 90.28 78.47 62.50 75.00 72.92 93.06 87.50 78.63± 12.34

WOLA-CSP 2018 86.81 63.19 94.44 68.75 56.25 69.44 78.47 97.91 93.75 78.78± 15.15

MEMDBF-CSP-LDA 2019 90.78 57.75 97.08 70.69 61.48 70.37 72.14 97.76 94.62 79.19± 15.85

JSTFD-LDA 2020 86.40 55.90 96.30 73.10 89.50 58.20 76.10 93.80 86.60 79.54± 14.78

nCSP-TSLR 2019 89.23 76.15 90.60 71.38 59.82 63.26 91.70 89.18 85.26 79.62± 12.36

W-CNN 2019 76.67 72.00 90.00 73.33 83.33 80.00 82.67 80.00 80.00 79.78± 5.45

SS-MEMDBF 2018 91.49 60.56 94.16 76.16 58.52 68.52 78.57 97.01 93.85 79.87± 15.01

CSP-Wavelet + LOG 2020 93.06 61.81 95.83 72.92 58.33 68.06 81.25 95.14 93.06 79.94± 15.06

SW-LSR 2021 86.81 64.58 95.83 67.36 68.06 67.36 80.56 97.22 92.36 80.02± 13.45

EEGnet 2016 71.43 78.51 100 64.28 71.43 78.57 71.43 92.86 100 80.95± 13.37

R-MDRM 2019 91.61 63.28 97.20 72.91 64.08 69.71 81.25 96.52 92.30 80.98± 13.86

SR-MDRM 2019 90.21 63.28 96.55 76.38 65.49 69.01 81.94 95.14 93.01 81.22± 13.19

TSGSP 2018 87.00 64.70 93.80 74.30 90.40 63.90 91.40 95.80 81.30 82.51± 12.24

DCR-MEMD 2021 89.79 94.18 78.92 94.01 71.32 86.71 89.36 82.11 86.18 85.84± 7.40

Ours 2022 93.45 84.83 95.52 88.33 86.55 83.10 88.97 95.52 94.48 90.08± 4.78
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(4) Multivariate Empirical Mode Decomposition Based
Filtering-Common Spatial Pattern-Linear Discriminant
Analysis (MEMDBF-CSP-LDA) (Gaur et al., 2019)

(5) Joint Spatio-temporal Filter Design Linear Discriminant
Analysis (JSTFD-LDA) (Jiang et al., 2020)

(6) Normalized Common Spatial Pattern Tangent Space
Logistic Regression (nCSP-TSLR) (Olias et al., 2019)

(7) Wavelet Convolutional Neural Network (W-CNN) (Xu
et al., 2018)

(8) Subject Specific Multivariate Empirical Mode
Decomposition Based Filtering (SS-MEMDBF) (Gaur
et al., 2018)

(9) Common Spatial Pattern-Filter Bank-Log (CSP-FB-LOG)
(Zhang S. et al., 2020)

(10) Sliding Window-Longest Consecutive Repetition (SW-
LSR) (Gaur et al., 2021)

(11) EEG Network (EEGnet) (Lawhern et al., 2018)
(12) Regularized Minimum Distance to Riemannian Mean (R-

MDRM) (Singh et al., 2019)
(13) Spatial Regularized Minimum Distance to Riemannian

Mean (SR-MDRM) (Singh et al., 2019)
(14) Temporally Constrained Sparse Group Spatial Patterns

(TSGSP) (Zhang et al., 2018)
(15) Dynamic Channel Relevance-Multivariate Empirical

Mode Decomposition (DCR-MEMD) (Song and
Sepulveda, 2018)

For dataset 2 we compared our results to the following
methods (see results in Table 2):

(1) Robust Support Matrix Machine (RSMM) (Zheng et al.,
2018)

(2) Deep Learning with Variational Autoencoder (DLVA) (Dai
et al., 2019)

(3) Sparse Group Representation Model (SGRM) (Jiao et al.,
2018)

(4) Unsupervised Discriminative Feature Selection (UDFS)
(Al Shiam et al., 2019)

(5) Sparse Spectro-temporal Decomposition Squeeze-and-
Excitation Convolutional Neural Network (SSD-SE-CNN)
(Sun et al., 2020)

(6) Wavelet Spatial Filter Convolution Network (WaSF
ConvNet) (Dy et al., 2019; Fang et al., 2022)

(7) Neighborhood Component analysis based Feature
Selection (NCFS) (Molla et al., 2020)

(8) Common Spatial Pattern-Wavelet-Log (CSP-Wavelet-
LOG) (Zhang S. et al., 2020)

(9) Multi-Attention Adaptation Network (MAAN) (Chen
et al., 2021)

(10) Multilayer Temporal Pyramid Pooling EEG Network
(MTPP-EEGNet) (Ha and Jeong, 2020)

(11) Dynamic Joint Domain Adaptation (DJDA) (Hong et al.,
2021)

(12) SincNet-based Hybrid Neural Network (SHNN) (Liu et al.,
2022)

(13) Tangent Space Linear Discriminant Analysis (TSLDA) (Ai
et al., 2019; Fang et al., 2022)

(14) Deep Representation-based Domain Adaptation (DRDA)
(Zhao et al., 2020)

(15) Random Forest Dynamic Frequency Feature Selection
(RF-DFFS) (Luo et al., 2016)

(16) Frequential Deep Belief Network (FDBN) (Lu et al., 2016)
(17) Temporally constrained Sparse Group Spatial Patterns

(TSGSP) (Zhang et al., 2018)
(18) Multi-branch Multi-scale Convolutional Neural Network

(MMCNN) (Jia et al., 2020)
(19) Wavelet Package Decomposition Spatio-Temporal

Discrepancy Feature (WPD-STDF) (Luo et al., 2019)
(20) Central Distance Loss Convolutional Neural Network

(CD-CNN) (Yang et al., 2021)
(21) Filter Banks and Riemannian Tangent Space (FBRTS)

(Fang et al., 2022)

Additionally, we implemented a version of the Sequential
Backward Selection Filter Bank Common Spatial Patterns (SBS-
FBCSP) algorithm, which is an adaptation of the Sub-Band
Common Spatial Patterns with Sequential Backward Floating
Selection (SBCSP-SBFS) proposed by Bhatti et al. (2019). The
original SBCSP-SBFS algorithm did not use temporal features
and was limited to 12 overlapping frequency bands (4–30 Hz).
Conceptually, the SBS-FBCSP algorithm resembled our method
in that it, too, used sub-bands and CSPs feature selection. SBS-
FBCSP differed from our method in that it used the full trial as
temporal dimension.

For dataset 1, we varied the parameter m from 1 to 7 (with
2m options yielding up to 14 features in each trial) since the
parameter selection impacts the performance. To calculate the
accuracy, we used 5-fold cross validation with all the trials
from the first dataset (combining the first and second sessions
onto one data set).

For dataset 2 we varied m from 1 to 3 yielding up to six
features. To calculate the accuracy, we combined all sessions
data in random order and used 80% of the trials for training and
the remaining 20% for testing sessions as training set and the
remaining two for testing, with five-fold cross validation (see
Luo et al., 2016).

The excluded methods were:

(1) Distance Preservation to Local Mean (Davoudi et al.,
2017)

(2) Neighborhood Rough Set Classifier (Udhaya Kumar and
Hannah Inbarani, 2017)

(3) Channel-wise Convolution with Channel Mixing
(Sakhavi et al., 2018)
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TABLE 2 Performance comparison for dataset 1, sorted by accuracy.

Method Year B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean ± std

SBS-FBCSP 2022 70.14 60.29 62.50 89.19 82.43 73.61 66.67 74.34 79.86 73.23± 9.49

RSMM 2016 72.50 56.43 55.63 97.19 88.44 78.75 77.50 91.88 83.44 77.97± 14.56

DLAV 2019 76.10 67.30 71.80 95.40 82.30 82.10 77.50 75.30 75.90 78.19± 7.95

SGRM 2019 76.30 56.00 49.20 98.20 91.10 74.80 88.30 85.40 84.90 78.24± 16.26

UDFS 2019 76.09 58.64 53.45 99.38 83.83 76.96 83.15 90.66 83.48 78.40± 14.53

SSD-SE-CNN 2021 78.50 67.90 68.30 96.50 81.40 85.70 76.90 79.30 79.60 79.34± 8.65

WaSF ConvNet 2019 73.80 64.20 85.70 96.20 85.20 68.50 88.30 90.10 81.50 81.50± 10.58

NCFS 2020 79.25 63.48 56.65 99.28 88.67 79.96 88.76 92.66 84.95 81.52± 13.72

CSP-FB-LOG 2020 88.75 52.50 48.75 98.75 88.75 90.00 90.00 92.50 83.75 81.53± 17.98

MAAN 2021 82.81 60.36 59.06 97.50 91.88 86.38 84.06 93.44 86.88 82.49± 13.73

MTPP-EEGNet 2020 78.75 66.43 67.50 95.00 94.38 84.38 85.31 92.19 81.56 82.83± 10.61

DJDA 2021 83.44 58.57 59.06 98.13 96.56 84.38 86.25 92.81 87.81 83.00± 14.64

SHNN 2022 83.33 61.76 58.33 97.30 91.89 88.89 86.11 92.11 91.67 83.49± 13.89

TSLDA 2019 76.30 68.90 86.40 94.20 88.10 72.30 89.20 92.80 87.30 83.94± 9.13

DRDA 2021 81.37 62.86 63.63 95.94 93.56 88.19 85.00 95.25 90.00 83.98± 12.67

RF-DFFS 2016 73.24 67.48 63.01 97.40 95.49 86.66 84.68 95.93 92.61 84.06± 13.06

FDBN 2016 81.00 65.00 66.00 98.00 93.00 88.00 82.00 94.00 91.00 84.22± 11.94

TSGSP 2018 84.00 62.60 56.30 99.40 94.80 83.80 94.10 93.30 90.10 84.27± 15.01

MMCNN 2020 84.90 70.40 75.50 96.30 92.40 86.30 87.60 84.20 81.80 84.38± 7.92

WPD-STDF 2019 69.50 64.00 86.50 96.00 94.00 87.00 83.00 95.50 92.00 85.28± 11.47

CD-CNN 2021 79.69 60.71 82.19 96.87 94.37 89.37 82.19 93.75 90.00 85.46± 11.08

FBRTS 2022 82.40 75.20 86.90 95.20 89.70 80.20 90.50 91.20 91.10 86.93± 6.40

Ours 2022 90.28 75.00 73.61 100 97.30 90.28 84.03 92.11 95.83 88.72± 9.40

Li M.-A. et al., 2019 2019 – – – – – – – – – 96.48

Li M. et al., 2021 2021 – – – – – – – – – 97.03

Two of the algorithms that were excluded from our benchmark comparisons are shown in the table in gray. These algorithms were excluded since they could only be implemented on
the second dataset. However, since they showed higher performance than ours on we listed them here to highlight their potential superiority (no individual subject data were available for
these works, hence we only show the overall average performance).

(4) Gated Recurrent Unit Recurrent Neural Network Long-
Short Term Memory-Recurrent Neural Network (Luo et al.,
2018)

(5) Deep Recurrent Spatial-Temporal Neural Network (Ko
et al., 2018)

(6) Long-Short Term Memory network (Wang et al., 2018)
(7) Dempster-Shafer Theory (Razi et al., 2019)
(8) Densely Feature Fusion convolutional neural Network

(Li D. et al., 2019)
(9) Convolutional Neural Network Long-term Short-term

Memory Network (Zhang R. et al., 2019)
(10) Multi-branch 3D Convolutional Neural Network (Zhao

et al., 2019)
(11) Channel-Projection Mixed-scale convolutional neural

Network (Li Y. et al., 2019)
(12) Convolutional Recurrent Attention Model (Zhang D.

et al., 2019)
(13) Weight-based Feature Fusion Convolutional Neural

Network (Amin et al., 2019)
(14) Multi-Scale Fusion Convolution Neural Network (Li D.

et al., 2020)
(15) Multiple Kernel Stein Spatial Patterns (Galindo-Noreña

et al., 2020)
(16) Graph-based Convolutional Recurrent Attention

Model (Zhang D. et al., 2020)

(17) Temporal-Spatial Convolutional Neural Network
(Chen et al., 2020)

(18) Temporal-Spectral-based Squeeze-and-Excitation
Feature Fusion Network (Li Y. et al., 2021)

(19) Shallow Convolution Neural Network and Bidirectional
Long-Short Term Memory (Lian et al., 2021)

(20) Temporal Convolutional Networks-Fusion (Musallam
et al., 2021)

(21) EEG-Inception-Temporal Network (Salami et al., 2022)

Results

Performance

Our algorithm, which we term Sequential Backward
Selection with Temporal Filter Bank Common Spatial
Patterns (SBS-TFBCSP), significantly outperformed the
average performance (79.99% ± 2.23; mean ± std) of all
other algorithms. By 12.61% (T(8) = 5.057, p < 0.001;
t-test; Table 1) and outperformed each of those algorithms
individually. The algorithm outperformed the contender
leading algorithm (DCR-MEMD) by 4.94%, yet this was not
significant (T(8) = 1.322, p = 0.223, t-test). While conceptually
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similar, the SBS-FBCSP yielded the lowest score among the
methods compared.

Using the second dataset, our algorithm significantly
outperformed the average (82.01% ± 3.25) of all other
algorithms by 8.18% (T(8) = 5.697, p < 0.001; t-test) and
each of those algorithms individually (Table 2). Comparing
our algorithm’s performance to the leading state-of-the-art
contender algorithm (FBRTS), we see a non-significant 2.06%
increase in performance favoring our method (T(8) = 0.707,
p = 0.499, t-test). The SBS-FBCSP again yielded the lowest
performance among the methods compared.

Noting that the performance of SBS-FBCSP is lower across
datasets while the key difference between our algorithm and
the SBS-FBCSP is the features selected, we suggest that the
inclusion of temporal features in the CSPs is likely driving
the performance increase (Figure 1). The expansion of the
frequency range implemented in our algorithm increases the
feature selection granularity, and in turn the performance. As
an intuition for the advantage of the method with respect to the
feature selection, we show examples (subjects A01, A02; chosen
arbitrarily; Figure 1) where the feature-subsets selected by the
algorithms are highlighted. In both subjects, a larger proportion
of the selected features were drawn from the last 2 s (which
SBS-FBCSP would ignore since it averages across the entire
4-s window). Additionally, a number of the selected features
were drawn from frequency bands above 30 Hz which would be
excluded in the standard SBCSP-SBFS implementations (Bhatti
et al., 2019) because they correspond to frequencies not typically
associated with MI.

To further investigate the difference between our work
and similar methods we highlight two additional algorithms
that share various features with ours. The Sparse Filter Bank
Common Spatial Pattern (SFBCSP) and the Multiple Windows

SFBCSP (SFBCSP-MT) both used a feature selection to choose
the CSP features from multiple filter banks (SFBCSP) and
5 (dataset 1) or 6 (dataset 2) time windows (SFBCSP-MT).
However, the contender algorithms did not use SBS. Our
method outperformed the SFBCSP contender algorithm among
eight of the nine subjects using both dataset 1 and 2, and among
seven (dataset 1) and eight (dataset 2) of the nine subjects with
the SFBCSP-MT contender algorithm (Tables 3, 4).

Taken together, our results suggest that the performance
increase is driven by broader choice of inputs, and the feature
selection process.

Results of other performance measure
To further evaluate the performance of our algorithm

we used additional standard accuracy metrics. Namely, we
estimated the Positive Precision Value (PPV, TP/TP + FP),
Negative Precision Value (NPV, TN/TN + FN), sensitivity
(True Positive Rate, TP/TP + FN), specificity (True Negative
Rate, TN/TN + FP), and Kappa value (Po − Pe

/
1− Pe), where

TP represents the number of testing samples whose real
value aligned with the model prediction (True Positive), TN
represents the number of testing samples whose real value and
model predicted values were both negative (True Negative), FP
represents the number of testing samples whose real value is
negative while their model predicted value is positive (False
Positive), and FN represents the number of testing samples
whose real value is positive while their model predicted value
is negative (False Negative). Po is the proportion of observed
agreement, and Pe probability that the agreement is at chance.
In both dataset 1 (Table 5) and dataset 2 (Table 6) our
algorithm proved superior compared to the SBS-FBCSP using
those metrics.

FIGURE 1

Illustration of the results of the 5-fold feature selection comparing a contender algorithm (SBS-FBCSP) and our algorithm, which namely differ
in the breakdown of temporal features. The colors (taken from subject A01, A02; chosen arbitrarily) denote the number of times a
feature-subset was selected during the 5-fold cross validation.
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TABLE 3 Performance comparisons of our method and two similar ones, for dataset 1.

Measurement A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± std

SFBCSP 82.80 59.80 92.00 68.00 81.03 59.30 89.10 92.80 70.20 77.30± 13.30

SFBCSP (MT) 84.10 62.90 92.90 71.60 86.90 61.20 89.80 94.30 80.90 80.50± 12.50

Ours 93.45 84.83 95.52 88.33 86.55 83.10 88.97 95.52 94.48 90.08± 4.78

Performance metrics for the algorithms were taken from Zhang et al. (2018).

TABLE 4 Performance comparisons of our method and two similar ones, for dataset 2.

Measurement B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean ± std

SFBCSP 79.10 59.00 53.10 98.90 91.50 81.30 90.80 88.90 85.40 80.90± 15.30

SFBCSP (MT) 81.80 60.30 54.00 99.10 92.60 82.00 91.80 91.10 87.30 82.20± 15.30

Ours 90.28 75.00 73.61 100 97.30 90.28 84.03 92.11 95.83 88.72± 9.40

Performance metrics for the algorithms were taken from Zhang et al. (2018).

TABLE 5 Performance comparison between SBS-FBCSP and our method, using dataset 1.

Measurement A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± std

SBS-FBCSP

PPV 81.10 74.57 85.91 70.78 75.19 72.63 75.00 80.28 78.65 77.12± 4.75

NPV 80.04 72.64 82.97 71.93 71.46 67.41 76.85 77.52 77.41 75.36± 4.85

TPR 79.31 71.03 82.07 71.67 68.97 62.07 77.24 77.24 76.55 74.02± 6.15

TNR 80.69 75.17 85.52 69.17 77.24 75.86 73.10 78.62 78.62 77.11± 4.64

Kappa 60.00 46.21 67.59 40.83 46.21 37.93 50.34 55.86 55.17 51.13± 9.47

Ours

PPV 94.58 85.77 94.57 88.65 88.48 82.28 90.51 94.75 92.40 90.22± 4.35

NPV 92.89 85.48 96.62 88.39 87.62 86.56 88.10 96.56 97.35 91.06± 4.79

TPR 92.41 84.14 96.55 88.33 85.52 86.21 87.59 96.55 97.24 90.50± 5.23

TNR 94.48 85.52 94.48 88.33 87.59 80.00 90.34 94.48 91.72 89.66± 4.89

Kappa 86.90 69.66 91.03 76.67 73.10 66.21 77.93 91.03 88.97 80.17± 9.56

TABLE 6 Performance comparison between SBS-FBCSP and our method, using dataset 2.

Measurement B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean ± std

SBS-FBCSP

PPV 65.93 61.67 62.50 87.18 83.33 72.97 64.29 74.03 77.22 72.12± 9.25

NPV 77.36 59.21 62.50 91.43 81.58 74.29 70.00 74.67 83.08 74.90± 10.09

TPR 83.33 54.41 62.50 91.89 81.08 75.00 75.00 75.00 84.72 75.88± 11.51

TNR 56.94 66.18 62.50 86.49 83.78 72.22 58.33 73.68 75.00 70.57± 10.49

Kappa 40.28 20.59 25.00 78.38 64.86 47.22 33.33 48.68 59.72 46.45± 18.97

Ours

PPV 86.25 73.61 75.00 100 97.30 92.65 78.82 92.00 95.83 87.94± 9.95

NPV 95.31 76.56 72.37 100 97.30 88.16 91.53 90.91 95.83 89.77± 9.44

TPR 95.83 77.94 70.83 100 97.30 87.50 93.06 90.79 95.83 89.90± 9.68

TNR 84.72 72.06 76.39 100 97.30 93.06 75.00 92.11 95.83 87.39± 10.60

Kappa 80.56 50.00 47.22 100 94.59 80.56 68.06 82.89 91.67 77.28± 18.74

Specifically, with respect to dataset 1, our algorithm
significantly outperformed the PPV of the SBS-FBSP
(77.12% ± 4.75) by 16.99% (T(8) = 13.653, p < 10−7;
t-test), the NPV of the SBS-FBSP (75.36% ± 4.85) by 20.83%

(T(8) = 14.704, p < 10−7; t-test), the TPR of the SBS-FBSP
(74.02% ± 6.15) by 22.26% (T(8) = 11.469, p < 10−6;
t-test), the TNR of the SBS-FBSP (77.11% ± 4.64) by 16.28%
(T(8) = 8.125, p < 10−5; t-test), and the Kappa of the
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SBS-FBSP (51.13%± 9.47) by 56.80% (T(8) = 18.318, p < 10−8;
t-test).

In dataset 2, our algorithm again significantly outperformed
the PPV of the SBS-FBSP (72.12% ± 9.25) by 21.94%
(T(8) = 14.33, p < 10−7; t-test), the NPV of the SBS-FBSP
(74.90% ± 10.09) by 19.85% (T(8) = 10.952, p < 10−6;
t-test), the TPR of the SBS-FBSP (75.88% ± 11.51) by 18.48%
(T(8) = 8.514, p < 10−5; t-test), the TNR of the SBS-FBSP
(70.57% ± 10.49) by 23.83% (T(8) = 8.169, p < 10−5; t-test),
the Kappa of the SBS-FBSP (46.45% ± 18.97) by 66.37%
(T(8) = 15.479, p < 10−7; t-test).

Parameters sensitivity

Given that the performance of our proposed method heavily
depends on the selection of the m parameter we tested the
robustness of our results by enumerating over all m values
possible in dataset 1 (Table 7) and dataset 2 (Table 8). While,
indeed, the choice of m impacts the algorithm performance
across subjects, the average difference in performance for dataset
1 was 2.23% ± 0.85 and average difference in performance for
dataset 2 of 0.99%± 0.67 (with the highest drop in performance
yielding 83.94% accuracy). The lowest performance was aligned
with the accuracy of the DCR-MEMD algorithm, but better than
all other methods. The highest performance drop yielded an
accuracy of 86.79%. which was on par with the FBRTS method
but better than all other methods. Combined, these results
suggest that the method is robust to perturbations of its single
free parameter and maintains its efficiency irrespective of the
parameter choice.

Additionally, as our algorithm used temporal windows
similar to those suggested in previous work (Zhang et al., 2018),
yet the selection of number of windows in both ours and the
previous work was arbitrary, we estimated the sensitivity of
the algorithm to the selection of window sizes. We altered the
number of temporal windows used from 4 to 6 to see the impact
of this change on the accuracy. We used this range under the
assumption that keeping the number of windows proportional
to the number of frequency bands would align with existing
works and the theoretical reasoning that they suggest for the bin
sizes (Zhang et al., 2018). Testing the algorithm with varying
window sizes shows that the range of perturbations yields a
performance change of ±1.74%, proportional to the number of
windows used. While manipulating the window size impacted
the performance, the change was not significant. That is, the
impact of ±1 window size usage had a marginal difference in
performance (±1.29% on average for dataset 1, and ±0.87% for
dataset 2). This non-significant change in performance along
with the fact that a change from a single window (SBS-FBCSP)
to 5 bins (ours) yields a notable difference suggest that there is a
plateau in the performance increment after four bins.

Ablation study
To further investigate the validity of the proposed algorithm

we conducted a series of tests where we hindered the algorithm’s
inputs and evaluated the performance change. As one key
difference between our algorithm and existing ones is the
inclusion of both temporal and spectral bands, we varied both
input features. In a series of ablation studies, we decreased
the range of spectral features from 17 (our algorithm) to

TABLE 7 Performance comparison of different values ofm for our method, using dataset 1.

m A01 A02 A03 A04 A05 A06 A07 A08 A09

1 84.48 80.69 88.28 83.75 82.41 77.24 82.41 86.56 89.66

2 88.97 81.38 92.41 84.58 84.83 80.69 85.52 86.90 93.10

3 89.31 83.79 94.83 84.58 84.83 82.76 85.52 90.69 93.79

4 91.38 84.83 94.83 85.00 85.52 83.10 85.17 93.10 94.14

5 93.45 81.38 95.52 88.33 84.14 81.38 87.24 94.83 93.79

6 92.41 83.45 95.52 86.25 86.55 82.41 88.62 95.17 93.45

7 93.45 82.41 93.79 87.50 83.79 82.41 88.97 95.52 94.48

STD 3.21 1.51 2.59 1.70 1.32 2.02 2.27 3.85 1.62

TABLE 8 Performance comparison of different values ofm for our method, using dataset 2.

m B01 B02 B03 B04 B05 B06 B07 B08 B09

1 90.28 75.00 72.92 100 93.92 90.28 84.03 91.47 93.75

2 88.89 72.79 73.61 100 97.30 90.28 84.03 92.11 95.83

3 89.58 70.69 72.22 100 95.95 88.89 83.33 90.13 93.06

STD 0.70 2.16 0.70 0 1.70 0.80 0.40 1.01 1.44

Frontiers in Neuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2022.952474
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-952474 October 5, 2022 Time: 11:31 # 10

Wang and Cerf 10.3389/fninf.2022.952474

12 (as is done in contender algorithms) and the range of
temporal features from five (our algorithm) to one (as is done
in contender algorithms, namely SBS-FBCSP). Across all tests,
the feature selection (Sequential Backward Selection) and the
classifications parameters were held constant. Across all ablation
tests, the performance drop ranged from −4.62% to −2.05%
for dataset 1, and −7.33% to −1.61% for dataset 2. Our
algorithm remained on par with the state-of-the-art benchmarks
despite the drop in performance. The algorithm maintained its
superiority for dataset 1, and ranked 15th (out of 21) for dataset
2 at its most hindered state, when the number of frequency
bands used was lowest. That is, the selection of time windows
and frequency bands that led to our algorithm’s performance
seem to be mostly sensitive to the number of frequency bands
used as inputs (Figure 2). Importantly, the drop in frequency
bands to a lower number puts our algorithm in line with the
contender ones, suggesting that some of the improvement is
contingent on this input feature broadening.

Additionally, we replicated the accuracy metrics tests with
the ablated inputs to evaluate the impact of the input on
performance in an additional manner (Table 9). We attempted
various implementations of the model with input features
ranging from 12 to 17 frequency bands and 3–5 temporal
windows. Our algorithm significantly outperformed a variety
of contender algorithms with ablated input. Highlighting three
of the ablation studies (“Ablation 1” with 60 input features,
“Ablation 2” with 51 input features, and “Ablation 3” with
36 input features), our algorithm maintained its performance
improvement. Specifically, for ablation test “1” our algorithm
outperformed the non-ablated input by over 2% (T(8) = 4.143,
p = 0.003; t-test) using dataset 1, and by over 1.5% using dataset
2 (T(8) = 2.024, p = 0.078; t-test). Similarly, in ablation test “2,”
dataset 1 (T(8) = 3.869, p = 0.005; t-test), dataset 2 (T(8) = 2.883,
p = 0.020; t-test) as well as in ablation test “3,” dataset 1
(T(8) = 7.051, p < 10−4; t-test) and dataset 2 (T(8) = 6.553,
p < 10−4; t-test) the performance was consistency significantly
higher for the non-ablated implementation.

Comparison of computational time

Finally, to demonstrate that the new method is useful for
BCI applications, we tested its computational efficiency. As BCIs
require not only high decoding accuracy but also relatively
fast parsing of the intended motion, a speedy classification is
important. We used a 2.67 GHz i5-M480 processor with 4 Gb
RAM to analyze the classification speed.

Runtime profiling of the algorithm took 366.91 ± 51.29 s
for the entire assessment. While this is nearly 2.8 orders of
magnitude longer than the similar contender algorithm (SBS-
FBCSP) which took only 8.05 ± 3.02 s) this test compared both
the feature selection/validation and classification. As the feature
selection is only required for the model training, a comparison

of the online classification alone showed that our algorithm is on
par with competing algorithms that report their computational
efficiency (Zhang et al., 2018). Namely, it is within 3 s from
the SBS-FBCSP algorithm (n.s.). Together with the improved
classification accuracy, we argue, the sacrifice in computational
efficiency still renders our method ideal for BCI applications,
and comparable to leading benchmark algorithms.

Discussion

We evaluated the performance of a novel neural decoding
algorithm, which used both temporal and spectral EEG signals,
in predicting a motor action planned by subjects. Our algorithm
showed increased accuracy of 2.06–4.94% above benchmark
algorithms using two different standard dataset (Tables 1, 2).

The main differences between our method and the state-of-
the-art algorithms tested were the inclusion of both temporal
and spectral signals as inputs, and the extended features
selection process. We suggest that these changes are key drivers
of the performance improvement. Namely, we propose that
the combined feature sets capture information that amplifies
the variance within trials of a single individual and therefore
increase the performance. To explore this hypothesis, we
performed an ablation study where we hindered the inputs by
altering the set of features included in the analyses and showed
that the decoding accuracy decreased by an average of 3.88%.
Even with the drop in accuracy, our algorithm was on par
with state-of-the-art algorithms. As a sanity check, our results
show that a decrease of the number of temporal features to a
single feature yielded performance that was parallel to that of
contender methods which only used spectral features.

Given that our method relies on the choice of a free
parameter, m, we also tested the algorithm’s robustness to
the parameter selection and showed that the results remain
consistent (Tables 7, 8). Further, given that the choice of
temporal window size was done arbitrarily in previous works,
we tested a range of windows as well as a numbers of frequency
bands permutations and showed that the results remain within
±1.49% for dataset 1 and ±1.74% for dataset 2, indicating that
the decision is valid and reasonable.

In dataset 2, two algorithms outperformed our
implementation. Both algorithms used an approach that
deviated from traditional feature extraction methods. One
algorithm used multi-scale CNN as a mechanism for the feature
selection and the other used montage irregularities. These
algorithms’ average performance increase was 8.03% (0.85
standard deviations) above our method. Given that both our
algorithm and the contender ones show an effective deviation
from traditional feature extraction methods, we suggest that a
focus on improving this part of the MI classification process
may be key to the success of novel methods.
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FIGURE 2

Ablation tests. Reducing the number of features as ablation tests for dataset 1 (top row) and dataset 2 (bottom row). The shaded areas depict
the range of performance for all nine subjects across all ablation tests, with the three tests showing the extremal performance highlighted
individually as “Ablation #.” Right panels show the average performance across all subjects. “Ablation 1” corresponds to a test that included all
five time windows (500–4,500 ms range, with 2 s windows size, and 500 ms step size) and 12 frequency bands (4–30 Hz range, with 4 Hz
window size, and 2 Hz step size) for a total of 60 input features (12 bands × 5 time windows) reduced gradually to 10 features through the
selection. “Ablation 2” corresponds to a test with three time windows (500–3,500 ms range, with 2 s windows size, and 500 ms step size) and 17
frequency bands (4–40 Hz range, with 4 Hz window size, and 2 Hz step size) for a total of 51 input features (17 bands × 3 time windows)
reduced gradually to 10 features through the selection. “Ablation 3” corresponds to a test with three time windows (500–3,500 ms range, with 2
s windows size, and 500 ms step size) and 12 frequency bands (4–30 Hz range, with 4 Hz window size, and 2 Hz step size) for a total of 36 input
features (12 bands × 3 time windows) reduced gradually to 10 features through the selection.
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TABLE 9 Details of three ablation tests using our algorithm in dataset 1 and 2.

Measurement A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± std Significance
[T(8) = (T,p,

t-test)]

Ablation 1

PPV 89.94 84.06 92.35 83.33 84.94 83.32 89.52 97.23 91.75 88.49± 4.88 2.033, 0.076

NPV 92.38 82.36 95.77 87.50 79.92 81.20 86.39 94.83 95.76 88.46± 6.43 3.232, 0.012

TPR 92.41 80.69 95.86 88.33 77.93 80.00 85.52 94.48 95.86 87.90± 7.16 2.908, 0.020

TNR 89.66 83.45 91.72 81.67 85.52 83.45 89.66 97.24 91.03 88.16± 5.02 1.394, 0.201

Kappa 82.07 64.14 87.59 70.00 63.45 63.45 75.17 91.72 86.90 76.05± 11.34 4.140, 0.003

Ablation 2

PPV 88.54 79.32 94.15 89.93 84.94 76.19 90.06 94.69 92.96 87.86± 6.51 2.235, 0.056

NPV 89.90 80.00 91.81 86.01 84.97 86.98 87.42 93.89 96.04 88.56± 4.91 4.034, 0.004

TPR 89.66 80.00 91.03 85.00 84.83 88.97 86.21 93.79 95.86 88.37± 4.91 2.701, 0.027

TNR 88.28 78.62 93.79 90.00 84.83 71.72 90.34 94.48 92.41 87.16± 7.59 2.021, 0.078

Kappa 77.93 58.62 84.83 75.00 69.66 60.69 76.55 88.28 88.28 75.54± 10.95 3.871, 0.005

Ablation 3

PPV 87.23 80.10 88.30 86.12 79.23 78.15 85.33 91.70 93.07 85.47± 5.36 4.870, 0.001

NPV 88.94 77.16 92.92 84.55 80.72 78.15 88.37 93.82 92.59 86.36± 6.47 5.048, 10−4

TPR 88.28 75.86 93.10 84.17 78.62 77.24 88.28 93.79 92.41 85.75± 7.07 4.792, 0.001

TNR 86.90 80.69 87.59 85.83 79.31 77.93 84.14 91.03 93.10 85.17± 5.18 4.313, 0.003

Kappa 75.17 56.55 80.69 70.00 57.93 55.17 72.41 84.83 85.52 70.92± 11.97 7.047, 10−4

Ablation 1

PPV 82.72 75.38 75.00 100 89.87 95.45 82.43 94.37 87.18 86.93± 8.81 0.669, 0.552

NPV 92.98 73.24 72.37 100 95.65 88.46 84.29 88.89 93.94 87.76± 9.61 2.618, 0.031

TPR 93.06 72.06 70.83 100 95.95 87.50 84.72 88.16 94.44 87.41± 10.19 2.577, 0.033

TNR 80.56 76.47 76.39 100 89.19 95.83 81.94 94.74 86.11 86.80± 8.68 0.308, 0.766

Kappa 73.61 48.53 47.22 100 85.14 83.33 66.67 82.89 80.56 74.22± 17.42 1.897, 0.094

Ablation 2

PPV 83.13 69.62 75.36 100 90.12 89.23 83.78 88.24 91.30 85.64± 9.01 1.942, 0.088

NPV 95.08 77.19 73.33 98.67 98.51 82.28 85.71 80.95 88.00 86.64± 9.20 2.213, 0.058

TPR 95.83 80.88 72.22 98.65 98.65 80.56 86.11 78.95 87.50 86.59± 9.43 1.881, 0.097

TNR 80.56 64.71 76.39 100 89.19 90.28 83.33 89.47 91.67 85.07± 10.27 1.427, 0.191

Kappa 76.39 45.59 48.61 98.65 87.84 70.83 69.44 68.42 79.17 71.66± 16.94 2.938, 0.019

Ablation 3

PPV 74.42 69.14 66.25 100 86.67 85.48 74.36 83.78 86.49 80.73± 10.58 5.884, 10−4

NPV 86.21 78.18 70.31 96.10 87.67 76.83 78.79 82.05 88.57 82.75± 7.71 4.510, 0.002

TPR 88.89 82.35 73.61 95.95 87.84 73.61 80.56 81.58 88.89 83.70± 7.42 2.953, 0.018

TNR 69.44 63.24 62.50 100 86.49 87.50 72.22 84.21 86.11 79.08± 12.77 5.040, 0.001

Kappa 58.33 45.59 36.11 95.95 74.32 61.11 52.78 65.79 75.00 62.78± 17.75 6.560, 10−4

Bold significance values indicate p-values below 0.05.

Contribution

In addition to proposing a new algorithm that implements
various suggestions from a large corpus of prior works and
yielding an improved performance, we also demonstrate the
robustness of the method in multiple ways. We estimate the
algorithm on two different datasets (allowing for generalizability
of the implementation) and identify dominant parameters
driving the performance. We situate the work in the context
of existing algorithms and suggest that the process of feature

extraction followed by independent classification maximizes
the performance yield. Using inputs that are not traditionally
considered for MI the expansion of classification set affords the
algorithm a richer idiosyncratic noise minimization and tuning
option. We show that the algorithm is offering an improvement
without considerable hyperparameters tuning. Finally, we show
that expanding the input set and the processing steps does
not come at a significant cost with respect to decoding speed.
The proposed algorithm can show generalized improvement in
near real-time on consumer-grade computation tools, making
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it a viable method for future implementations by practitioners
(Massaro et al., 2020) as well as academics (Cerf et al., 2007).

Prior works

Our method is not the first to consider the multi-modal
structure of EEG signals along with a dedicated classification
tool during MI. For example, previous work (Deng et al.,
2021) has combined temporally constrained group LASSO
with CNN to interpret the underlying mechanisms driving the
successful EEGNet decoding (Lawhern et al., 2018). Similarly,
a framework for time frequency CSP smoothing was recently
implemented to improve EEG decoding performance through
ensemble learning (Miao et al., 2021). Both those methods
focused on selecting CSP features by ranked weight. Conversely,
our method incorporated the temporal features selection
using a neural network. The neural networks classifiers were
previously suggested as an extension of the establish body
of works for MI tasks (Bhatti et al., 2019), yet were not
implemented. Our work suggest that the non-linear feature
selection provided by the network yields notable performance
increase.

Focusing on the neural network implementation, it is
noteworthy that a number of classifiers were proposed as
variations on the method we used. Due to the recent
developments in deep learning algorithms a majority of the
methods proposed focused on CNN for the motor classification
(Lawhern et al., 2018; Xu et al., 2018; Amin et al., 2019;
Dy et al., 2019; Zhang D. et al., 2019; Zhang R. et al.,
2019; Zhao et al., 2019; Chen et al., 2020; Ha and Jeong,
2020; Jia et al., 2020; Lian et al., 2021; Musallam et al.,
2021). Specifically, Sakhavi et al. (2018) utilized CNN with
temporal data, spectral data, and combination of these data to
show a notable improvement in the classification performance
compared to benchmark methods. Similarly, Dai et al. (2019)
and Sun et al. (2020) showed that adoption of Squeeze-and-
Excitation networks (Hu et al., 2018) in the CNN architecture
improved the classification further because they accounted
for the inter-dependencies among the EEG channels in the
calibration of the spectral responses. In parallel, Zhang D.
et al. (2019, 2020) and Chen et al. (2021) have implemented
attentional mechanisms within the neural network architecture
to benefit from the temporal dynamics of subject-specific signal
properties. In line with these methods, Zhang D. et al. (2019) and
Jia et al. (2020) deployed a multi-branch strategy that benefited
from the idiosyncratic temporal-properties of different subjects
by utilizing complementary networks. Applying the same logic
to spatial-temporal signals, Li Y. et al. (2019) used CNN to
capture mixed-scale temporal information and improve the
decoding accuracy. In addition to improving the input signal
features selection, novel methods have focused on bettering
the feature discrimination and selection strategies (Yang et al.,

2021) and the data augmentation tools (Li Y. et al., 2019;
Yang et al., 2021). Specifically, investigating the input features
further, Jin et al. (2021) have introduced time filter to a task-
related component analyses method that enhanced the signal
detection. The works used singular value decomposition to
suppresses the general noise and increase the classification
accuracy. The method was implemented on steady-state visual
evoked potential based BCIs which are different than our data,
but it is likely that the method will be useful for our data
as well because of the similarity in decoding performance.
Beyond similarity in noise reduction, previous works have also
improved the feature selection optimization as we did. Jin et al.
(2020) implemented feature selection based on the Dempster-
Shafer theory which considers the distribution of the features
and found the optimal combination of CSPs that minimized
the influence of non-stationarity in the signal. Similar to our
implementation, this method took into account the inherent
defects of CSPs. Further, the work proposed an investigation
of the temporal-spectral feature binning for the BCIs similar
to the way bins were integrated into the sequential backward
feature selection process in our work. Additionally, Jin et al.
(2019) have proposed a correlation-based channel selection
combined with regularized CSP (RCSP) as a way to improve
the classification accuracy. The method seems to align with
ours in its performance despite the fact that the RCSP does not
consider both the temporal and spectral properties of the MI.
The inclusion of both temporal and spectral feature types is
suggested in the work as a future endeavor to be investigated.
Completing the previous work, Li et al. (2018) have reported
that using multiple modality inputs (in their work, both audio
and visual signals) to enhance the representation of incoming
signals yield increased accuracy in action decoding task (in
their case: decoding “crying” vs. “laughing”). The work suggests
that in addition to richer signal, the multi-modal inputs afford
comprehensive data that benefits from the internal correlation
among features. Besides being analogous to our work in their
approach to the decoding, these works suggest that rich (or
even superfluous or noisy) data inputs can prove useful in
classification improvement. While the data in some of the
listed works are different (i.e., fMRI data, or different tasks
data) we intuit that the methods could be used to improve
our work toward an even greater accuracy in the MI decoding.
Finally, the network architecture itself was optimized in several
works. For example, LSTM and RNN were incorporated in
the CNN with the intent to capture additional properties of
the EEG signal segments (Ko et al., 2018; Zhang D. et al.,
2019; Zhang R. et al., 2019; Lian et al., 2021). Together, all
these methods have demonstrated the benefit of incorporating
subject-specific temporal properties in the neural network and
the advantages these data have in improving the decoding
performance.

Since our method implements feature selection and
subject-idiosyncratic inputs in the training, as well as
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further granular features breakdown along the one discussed
here, we suggest that our proposed method benefits from
the collection of previous advantages. Namely, as our
method separated the feature selection process from the
following classification task, we suggest that the two-
stage process, which enabled the reduction of features
number, is one of the significant drivers of the performance
increase.

Comparison to leading contender
algorithms

Comparing our method to an algorithm that uses similar
routines (SBS-FBCSP) showed average increased performance
of 20.22% (19.28% for dataset 1, and 21.15% for dataset 2).
Similarly, a comparison to two other algorithms that share key
characteristics with ours, albeit with less direct alignment in
the protocol (SFBCSP and SFBCSP-MT) showed an incremental
performance increase for our proposed method.

While the SBS-FBCSP was the algorithm conceptually
closest to ours and, therefore, the subject of the main
comparison, it is useful to highlight some of the similarities
and differences between our method and other popular
classification protocols.

Examining the notable similarities and differences between
our method and 15 methods tested with dataset 1 (Table 10) or
21 tested with dataset 2 (Table 11) we note the main difference
being the type of features selected as inputs, and the separation
of the feature selection and generation steps.

Limitations

The proposed decoding method suffers from a number of
limitations that are driven by the extension of the temporal
components. First, the method requires a priori intuition
about the data in order to accurately choose the temporal
segments. To prove the method’s superiority in datasets where
no prior knowledge is available it would be useful to test either
arbitrary datasets, or randomly selected temporal windows. If

TABLE 10 Comparison of contender algorithm implemented with dataset 1.

Method Similarity Difference

1 DNN Combined CSP with neural network Did not use both temporal and spectral
information

2 KPCA-CILK Applied a conformal transformation to decrease the
non-Euclidian characteristics of the signal while
preserving the geometry

Did not use both temporal and spectral
information

3 WOLA-CSP Performed dynamic filtering of the EEG signal Implemented the BCI on embedded
platform, and did not use both temporal
and spectral information

4 MEMDBF-CSP-LDA Adopted common spatial pattern on reconstructed data
from the multivariate empirical mode decomposition

Did not use both temporal and spectral
information

5 JSTFD-LDA Considered both temporal and spatial features by
extending the CSPs

Did not use spectral information

6 nCSP-TSLR Normalized and regularized the CSP to improve
performance

Did not use temporal and spectral
information

7 W-CNN Took the wavelet time-frequency image of the EEG as
input for the CNN

Both feature generation and selection done
by the neural network

8 SS-MEMDBF Utilized the MEMD to extract cross channel information
as well as localize the specific frequency information

Did not use temporal information

9 CSP-FB-LOG Adopted ensemble learning for feature selection from
newly proposed feature extraction based on CSPs

Did not use temporal information

10 SW-LSR Introduced the sliding windows techniques into the CSP Did not use spectral information

11 EEGnet Utilized depth-wise and separable convolutions in the
CNN

Both feature generation and selection done
by the neural network

12 R-MDRM Regularized the covariance matrices using data from
prior analyses of the EEG channels in small sample
settings to reduce calibration time

Did not use both temporal and spectral
information

13 SR-MDRM Regularized the covariance matrices using data from
other subjects in small sample settings to reduce
calibration time

Did not use both temporal and spectral
information

14 TSGSP Adopted Group Lasso selecting the temporal-spectral
common spatial pattern features in a multi-task learning
manner. The selection of filter banks as well as temporal
windows was similar to ours

Used SVM. Tuned three parameters rather
than one

15 DCR-MEMD Utilized the Gini and Maximum Information Coefficient
for optimal channel selection as well as Multivariate
Empirical Mode Decomposition for feature extraction

Did not use both temporal and spectral
information
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TABLE 11 Comparison of contender algorithm implemented with dataset 2.

Method Similarity Difference

1 RSMM Adopted a novel unified framework of robust matrix
classifier as well as decomposition of EEG solved by
alternating direction method of multipliers

Eliminated the effect of outlier and noise.
Did not use temporal and spectral
information

2 DLVA Simultaneously incorporated temporal, spatial and
spectral information using a CNN-variational
autoencoder

Both feature generation and selection
done by the neural network, and had no
independent feature selection process

3 SGRM Reduced the required training samples from target
subject using auxiliary data from other subjects

Did not use temporal and spectral
information

4 UDFS Utilized an unsupervised feature selection strategy to
select the potential CSP feature from multiple
frequency bands

Did not use temporal information

5 SSD-SE-CNN Proposed squeeze-and-excitation blocks embedded
CNN to explore time-frequency features and
classification

No independent feature selection process

6 WaSF ConvNet End-to-end CNN using time-frequency and spatial
information and using wavelet-like kernels to reduce
the number of parameters

No independent feature selection process

7 CSP-Wavelet-LOG Ensemble learning for feature selection using
CSP-based feature extraction

Did not use temporal and spectral
information

8 MAAN CNN with multi-attention layers to capture the spatial
property of the signal as well a domain discriminator to
reduce the difference between sessions

Did not use spectral information

9 MTPP-EEGNet Multi-layer temporal pyramid pooling approach
incorporated into the CNN

Did not use spectral information

10 UDFS Utilized an unsupervised feature selection strategy to
select the potential CSP features from specific multiple
frequency bands

Did not use temporal information

11 DJDA Novel dynamic joint domain adaptation network based
on adversarial learning strategy to learn
domain-invariant feature representation using
information from the source session

Did not use temporal and spectral
information

12 SHNN Consider both temporal and spectral information by
segmenting the raw EEG into different windows and
band-pass filtering the signal

Both feature generation and selection
done by the neural network

13 TSLDA Linear discriminant analysis included in covariance
matrix

Covariance matrix did not use temporal
and spectral information

14 DRDA Deep representation-based domain adaptation to
improve the classification performance on a single
subject using information from multiple subject
sources

CNN did not use temporal and spectral
information for both the source and target
domains

15 RF-DFFS Dynamic feature selection strategy where EEG
frequency domain features are selected one by one in a
boosting protocol

Did not use temporal information

16 FDBN Deep Belief Network classifier using the FFT features Did not use temporal information

17 TSGSP Group LASSO selecting the temporal-spectral CSPs in
a multi-task learning manner. Selection of filter banks
as well as temporal windows

Used SVM. Tuned three parameters rather
than one

18 MMCNN Multi-scale, multi-branch CNN to overcome the
variation between time and subjects using convolution
kernel in different sizes

Did not use both temporal and spectral
information

19 WPD-STDF New spatio-temporal discrepancy feature combined
with frequency information

No feature selection strategy

20 CD-CNN EEG data augmented using a circular translation
strategy, followed by a central vector shift strategy to
strengthen the discriminative power of the CNN

Did not use both temporal and spectral
information

21 FBRTS Fusing the features extracted from CSP as well as
multiple time windows

Fusion strategy did not have feature
selection strategy
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the method proves superior even with those selections, it will be
regarded more robust.

Second, the algorithm has additional degrees of freedom
that could be optimized with regards to the selection
of hyperparameters. We elected to use the default ones
operationalized by the Matlab implementation (Matlab version
2018a) without any additional tuning, but recognize that future
work could focus solely on tuning those hyperparameters.
Given the lack of theoretical justification for any alternative
choice and given that the contender algorithms also used
the default hyperparameters without additional emphasis on
tuning, we did not deviate from this norm. Ideally, future
work will yield theoretical reasoning for some of the tuning
alternatives and thereby improve the algorithm’s performance
as well as its usefulness for varying test cases outside of the MI
implemented here.

Third, our method could be orders of magnitude slower in
its initial computation training time than other methods. This
means that usage of the method for BCIs that continuously
update the feature set would either be challenging or require
extensive computational resources. To overcome this challenge,
one should investigate whether smaller time-window sizes
(presumably yielding faster processing) could produce higher
performance. Shorter time-window that maintain the high
performance would elevate the usefulness of the algorithm.

Fourth, it is not clear whether the method would easily
generalize to BCI tasks outside of MI. Specifically, because MI
tasks are less likely to show the types of noise that pollutes
active motor actions, the fact that our method shows superiority
in one domain does not guarantee its success in others. We
focused on implementing the method on MI tasks as these are
the ones mostly implemented thus far and because of their
ecological validity in the context of therapy and rehabilitation
(Sokol et al., 2019). Implementing the method in other domains
(i.e., language decoding) would validate the usefulness of the
method further, or highlight the differences in the BCI uses.

Future directions

Two research venues that directly extend our work are: i)
the enhancement of the features selection granularity (while
attempting to maintain the feature-classification performance),
and ii) the generalization of the temporal features classification
process. Specifically, as EEG and other biological signals
are heavily dependent on combined temporal and spectral
dynamics, usage of feature selection process with tools such as
the recently proposed attention guided neural networks (Sun
et al., 2019) may improve the ability to extract the appropriate
features without a priori knowledge on the data. This would
make the algorithm generalizable to other BCI inputs.

Further, as the majority of the benchmark algorithms we
compared use neural networks for the full classification process

(thereby effectively using all the available features without pre-
selection) we suggest that amending the benchmark algorithms
to focusing on the deep learning ones incorporating the two-step
selection-classification process may increase the performance of
all the benchmark methods.

It has not escaped our notice that as SVMs were previously
shown to be superior with respect to feature classification
(whereas deep learning networks were shown to be superior in
BCI feature selection; Li Y. et al., 2019; Deng et al., 2021; Tiwari
and Chaturvedi, 2021) a combination of both methods might
improve our algorithm further and allow it to generalize to tasks
outside of MI or motor control (i.e., non-verbal communication,
language decoding, or parsing of thoughts).

Conclusion

In this work we have shown that an algorithm which
incorporates both temporal and spectral EEG inputs can
yield high performance in recognizing which action was
imagined by a subject. The algorithm uses SBS technique
to reduce the number of inputs and to identify which
inputs are less likely to be idiosyncratic across subjects. Once
the input features are selected, a RBFNN is used for the
classification of the action. We suggest that the method yields
performance improvements compared to existing protocols
primarily because the inclusion of the large subset of features
reduces the individual noise idiosyncrasies within subjects. The
suggested algorithm incorporates many of the benefits of the
current corpus of state-of-the art BCI protocols and implements
the improvements suggestion offered by numerous prior works.
In line with these prior suggestion, the method could be
applicable for other neural classification problems, modalities,
and domains outside of the ones tested herein.
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