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Color constancy methods are generally based on a simplifying assumption

that the spectral distribution of a light source is uniform across scenes.

However, in reality, this assumption is often violated because of the presence

of multiple light sources, that is, more than two illuminations. In this paper,

we propose a unique cascade network of deep multi-scale supervision

and single-scale estimation (CN-DMS4) to estimate multi-illumination. The

network parameters are supervised and learned from coarse to fine in the

training process and estimate only the final thinnest level illumination map

in the illumination estimation process. Furthermore, to reduce the influence

of the color channel on the Euclidean distance or the pixel-level angle error,

a new loss function with a channel penalty term is designed to optimize

the network parameters. Extensive experiments are conducted on single

and multi-illumination benchmark datasets. In comparison with previous

multi-illumination estimationmethods, our proposedmethod displays a partial

improvement in terms of quantitative data and visual e�ect, which provides the

future research direction in end-to-end multi-illumination estimation.

KEYWORDS

color constancy, multi-illumination, convolution neural network, cascade, multi-

scale

1. Introduction

With the rapid proliferation of digital imaging and digital video, accurate recording

of the constant color of a scene from the device-captured image is of extreme importance

for many practical applications, ranging from color-based object recognition and

tracking to quality control of textiles (Funt et al., 1999; Vrhel et al., 2005; Gao et al., 2017,

2019). The color of an object is influenced by the illumination color and the observed

color of an object in an image (representing the observed values in RGB space) depends

on the intrinsic color and light-source color (Ebner, 2007).
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Human color constancy (HCC) is a perceptual phenomenon

that stabilizes the appearance of an object’s colors throughout

changes in illumination. One possible-ecological justification

for color constancy in mammals is to facilitate scene object

recognition (Kraft and Brainard, 1999; Smithson, 2005). In

Helmolt’s words: “Colors are mainly important for us as

properties of objects and as means of identifying objects.” Then

a mechanism that preserves the color appearance of objects will

serve this purpose. As a perceptual phenomenon, all variables

affecting color constancy lie in the content of the perceived

scene, e.g., scene chromaticity, three dimensional information,

object movement, and some others. All these factors are called

visual cues (Jameson, 1989; Roca-Vila et al., 2009). Numerous

tests of human perception of colored surfaces indicate a high

level of perceptual constancy, in which the appearance of

the surface is relatively little changed. However, endowing a

computer with the same ability is difficult (Gilchrist, 2006;

Roca-Vila et al., 2009). To assist a computer in solving this

problem, our central problem is to estimate the real object’s color

coordinates in some color space, which is called computational

color constancy (CCC).

Previous methods have mostly been limited to a single-

illumination assumption. However, in reality, most scenes have

more than one illumination. In multi-illumination scenes, each

pixel in an image is influenced by different light sources,

unlike that of single illumination. For example, in an image

with shadows, there are at least two lights (the light colors of

different degrees of shadow areas and normal sunlight areas

are different). Therefore, research on multi-illumination color

constancy (MCC) has more practical significance.

However, fewer studies have been conducted on MCC than

on single illumination. This is mainly because it is difficult

to obtain datasets for multiple lighting conditions, especially

for lighting colors requiring manual calibration of pixel-level

accuracy.

As with single illumination, MCC methods can be classified

into optimization- and learning-based methods.

Optimization-based methods: Land et al. first proposed

the Retinex model (Brainard and Wandell, 1986; Land, 1986;

Funt et al., 2004), which is the earliest theoretical model that

can deal with the MCC problem. This theory is based on

a series of psychological and physical experiments. The early

purpose was not to estimate the illumination under multiple

illumination conditions but to restore the relative reflectivity

of objects in a scene. Barnard et al. (1997) proposed a model

to deal with the MCC problem by detecting the change of

illumination color in the scene. The model is patch-based and

estimates the illumination of an image patch through single-

illumination color constancy. Xiong and Funt (2006) used a

diffusion technique in which a large-scale convolution kernel

is used to filter the color-biased images in complex scenes. It is

assumed that the images after convolution meet the local gray-

world assumption. Although this method has achieved good

results, it only uses simple convolution kernels that are easily

affected by the real color of the object itself. For example, part

of the obtained illumination map is the color of the object itself,

rather than the illumination color.

Learning-based methods: Like other data mining tasks, this

method learns useful information from large amounts of data

(Barnard et al., 2010; Kannimuthu et al., 2012; Arunkumar et al.,

2019). Shi et al. (2016) and Bianco et al. (2017) used patch-

based convolutional neural networks (CNNs) to estimate a single

illumination for each patch. By inputting each patch into the

network, the local illumination of all patches can be obtained.

Afifi and Brown (2020) proposed an end-to-end approach to

learning the correct white balance, which consists of a single

encoder and multiple decoders, mapping an input image into

two additional white-balance settings corresponding to indoor

and outdoor illuminations. This method can also be used in

multi-illumination estimation; however, our experiments show

that it is very time-consuming.

The abovementioned multi-illumination and single-

illumination estimation methods have achieved good

performance on some multi-illumination datasets. However,

these methods may not find the optimal solution in some

complex situations owing to their inflexibility. To summarize,

there are still some unsolved open problems in these approaches,

which can be generally summarized as two aspects:

• Many of these methods (Xiong and Funt, 2006; Zeng et al.,

2011; Mutimbu and Robles-Kelly, 2016) are implemented

by clustering the illumination of local regions. However,

the process of clustering is a difficult problem. If the

illumination distribution in the scene is scattered, then it

is difficult to obtain accurate illumination. In addition, the

selection of region size is also a key problem. Inappropriate

region size will reduce the accuracy of illumination

estimation, and these methods are based on the traditional

assumption of illumination estimation. If the region does

not meet this assumption, the corresponding regional

illumination estimation may be in error.

• Most existing CNN-based single-illumination estimation

methods used for multi-illumination estimation are time-

consuming (Barron, 2015; Shi et al., 2016; Bianco

et al., 2017) when adopting the local image patches for

estimation.

In recent years, CNNs have been widely used, especially

the fully convolutional networks for image pixel classification

(Shelhamer et al., 2014; Yu and Koltun, 2015; Badrinarayanan

et al., 2017) and image depth estimation (Eigen et al., 2014;

Eigen and Fergus, 2015), to improve the estimation accuracy

to a new level. In multi-illumination estimation, the pixel-

level illumination is estimated from the original color-biased

image, which is consistent with the image segmentation scene

and depth estimation scene (Eigen et al., 2014; Shelhamer
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et al., 2014; Yu and Koltun, 2015; Badrinarayanan et al.,

2017).

In this paper, we propose a cascade network of deep

multiscale supervision and single-scale estimation to estimate

multi-illumination (CN-DMS4)1. For training, the parameters

are learned from coarse to fine and through different scales. In

the test phase, only the illumination map of the thinnest level is

estimated.

The CN-DMS4 network differs from existing methods, and

provides two contributions:

• Multiscale supervision and single-scale estimation. The

network is an end-to-end cascaded structure; the network

parameters are supervised and learned from coarse to

fine during the training process. Only the final thinnest

level illumination map is estimated in the illumination

estimation process.

• A new loss function with a channel penalty term is designed

to optimize the network parameters, which can solve the

influence of color channels in the Euclidean distance or

pixel-level angle error.

The remainder of this paper is organized as follows. In

Section 2, the structure of the proposed network and training

strategy are presented. The experimental results are provided in

Section 3. The conclusion is given in Section 4.

2. Multi-scale supervision and
single-scale estimation in a cascade
convolutional neural network

Following the widely accepted simplified diagonal model

(Finlayson et al., 1994; Funt and Lewis, 2000), we also use

this model in our study. For multi-illumination estimation, we

modify the diagonal model as follows:

Ic(x, y) = Ec(x, y)× Rc(x, y), c ∈ {r, g, b}, (1)

where the illumination in the scene is Ec(x, y), (x, y) is the

spatial position in an image, Ic(x, y) represents the image under

unknown illumination, Ec(x, y) represents the illumination

image, and Rc(x, y) represents the image under standard

illumination.

2.1. Problem formulation

As in the single-illumination estimate, we only know the

image Ic(x, y) under an unknown light source Ec(x, y), which

1 We assume that there are multiple light sources in the scene and that

the illumination of the multiple light sources is uniform.

needs to be estimated. The goal of multi-illumination estimation

is to estimate Ec(x, y) from Ic(x, y), and then compute it as

Ec(x, y) = Ic(x, y)/Rc(x, y). To address the problem of estimating

Ec(x, y) from Ic(x, y), we formulate it as a regression. A new

color-space model, log − uv, has been used in color constancy

methods (Finlayson et al., 2004; Barron, 2015; Shi et al., 2016)

in recent years, and has certain advantages2. The calculation

method is as follows:

Lu = log(R/G), Lv = log(B/G), (2)

After estimating the light, it can be converted back to the RGB

space through a very simple formula:

R = exp(−Lu)/z,G = 1/z,B = exp(−Lv)/z,

z =

√

exp (−Lu)
2 + exp (−Lv)

2 + 1,
(3)

where (Lu, Lv) is the image in the log − uv color space, and

(R,G,B) is the image in the RGB color space.

In this study, we first convert the RGB image Ic(x, y) to log-

uv image Iuv(x, y) = (Iu(x, y), Iv(x, y)). Our goal is to find a

mapping f theta, such that fθ (Iuv) = Euv(x, y), where Euv(x, y)

represents the illumination value at each (x, y) in the log − uv

space; Euv(x, y) should be as close as possible to the real light at

the position of (x, y). In this paper, we define f theta as a CNN

model that is optimized by the parameter θ .

Based on the semantic segmentation model, we define the

network into the encoding and decoding parts. The encoding

part performs the process of feature extraction, and the decoding

part performs the process of remapping these features back to

the image. We define the encoding process by Equation (4), and

the decoding the process by Equation (5):

Enc = ψ1(Iuv, θ1), (4)

Dec = ψ2(Enc, θ2), (5)

where ψ1 represents the network of the encoding process,

θ1 indicates the parameters to be optimized in the encoding

part, ψ2 represents the decoding process, and θ2 indicates the

parameters to be optimized in the decoding part.

In addition, refer to the idea in the literature (Mutimbu and

Robles-Kelly, 2016), which uses a factor graph defined across

the scale space of the input image and estimated the multi-

illumination at multiple scales from fine to coarse (i.e., the

image becomes increasingly blur), the pixelwise illuminant can

be viewed as the geometric mean of the illuminants across all

2 As demonstrated in the literature (Finlayson et al., 2004; Barron, 2015),

log-uv has advantages over RGB. First, there are two variables instead of

three. Second, the multiplicative constraint of the illumination estimation

model is converted to a linear constraint.

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2022.953235
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Wang et al. 10.3389/fninf.2022.953235

scales. In this paper, we also try to use a multiscale network

to improve the estimation accuracy. The difference is that our

method supervises and learns the parameters from coarse to fine

(i.e., the image becomes increasingly clear).

2.2. Network architecture

As introduced in the previous section, it is necessary to

design a network structure that includes an encoding part ψ1

and decoding part ψ2. The network structure is shown in

Figure 1.

Encoding part of the network. In Figure 1, the encoding

part indicates ψ1 in Equation 4. The encoding part is used

to extract features, which are then input to the decoding

part to estimate the illumination. In this part, we also used

AlexNet (Krizhevsky et al., 2017), VGGNet-16 (Simonyan and

Zisserman, 2014), and VGGNet-19 (Simonyan and Zisserman,

2014), but the results showed little difference. Finally, we used

the structure improved from AlexNet (Krizhevsky et al., 2017)

containing 5 convolutions. We removed all the pooling layers

and replaced them with a large stride of convolution kernels. All

the layers use the convolution kernel of 3 × 3, and the stride of

all the convolutions is set to 2.

Decoding part of the network. In Figure 1, the decoding

part indicates ψ2 in Equation 5. The decoding part is used to

reconstruct the pixel-level illumination. However, conv6, conv7,

conv8, and conv9 use the convolution kernel of 1 × 1 to reduce

the dimension, while the others use the convolution kernel of

3×3 and the stride is set to 2. In the training phase, in addition to

Ec, the Ec
1,Ec

3, and Ec
3 also participates in supervised learning.

In the illumination estimation stage, illumination images at

FIGURE 1

The network structure of CN-DMS4.
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different scales can be obtained, or only the final and the finest

illumination can be obtained but the part marked by the green

box in Figure 1 cannot participate in the calculation.

2.3. Loss function

Our goal is to train a mapping function for generating an

illumination image E(u, v) that is close to the ground-truth

illumination image Et(u, v). Instead of minimizing the mean

squared error between E(u, v) and Et(u, v) at each scale, we

propose a variant of the L1. The overall loss function is defined

as:

Loss =
1

N

N
∑

i=1

S
∑

j=1

ω(ω(E
j
u − E

j
u_t)+ ω(E

j
v − E

j
v_t)), (6)

where ω(x) =
√

x2 + ε2, N indicates the number of samples for

each batch, S indicates the scale of the cascade, E
j
u, E

j
v represents

the illumination in the log-uv space estimated by the model at

the j scale, E
j
u_t and E

j
v_t represents the ground truth at j scale,

and ε takes the empirical value ε = 0.001.

3. Experimental results

3.1. Datasets

There are only a few public multi-illumination datasets, and

the number of images in the datasets is limited. In the phase of

network training, more data is needed. Based on the dissertation

in Gao (2017), we use the single-illumination datasets Color

Checker (Gehler et al., 2008) and NUS 8-Camera (Cheng et al.,

2014) to render a large number of multi-illumination datasets.

The operation process is as follows. First, the images are

corrected to standard white light according to the illumination

provided by the datasets. Next, multiple spatial positions are

randomly generated on each image, and 3 − 8 different lighting

colors are simulated, as shown in Figure 2A (the boundary is

blurred).

In addition, the following multi-illumination datasets

collected in real scenes are used, respectively. The Gijsenij

dataset (Arjan et al., 2012), is a multi-illumination dataset

collected in a natural scene that includes 59 indoor and 9

outdoor multi-illumination images, and their corresponding

illuminations. Figure 2B shows an indoor and an outdoor image

from this database.

The multiple-input multiple-output (MIMO) dataset

(Beigpour et al., 2014) was established by Beigpour et al., which

contains 57 indoor images and 21 outdoor images; it provides

pixel-level illumination images. Figure 2C shows an indoor and

an outdoor image from this database.

The Bleier dataset (Bleier et al., 2011) was collected and

established by Bleier et al. The dataset contains 36 high-quality

images and corresponding illumination images obtained by nine

different illuminations in four scenes. Figure 2D shows two

images from the database.

To enable the model to be used for single-light estimation,

we added a single-light dataset, SFU Grayball dataset (Ciurea

and Funt, 2003).

In addition, we utilize horizontal and vertical mirroring,

rotating at [90o, 180o] and at [−60o, 60o] every five degrees,

FIGURE 2

Images under multiple illuminations. From left to right: (A) Synthetic images; (B) Images from Gijsenij dataset: http://www.colorconstancy.com/

wp-content/uploads/2014/10/multiple_light_sources_dataset.zip Reproduced with permission from Arjan et al. (2012); (C) Images from MIMO

dataset available at: http://www5.cs.fau.de/research/data/two-illuminant-dataset-with-computed-ground-truth/. Reproduced with

persmission from Beigpour et al. (2014); (D) Images from Bleier dataset available at: http://www5.cs.fau.de/research/data/multi-illuminant-

dataset/index.html. Reproduced with permission from Bleier et al. (2011).
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respectively. At the same time, we scale the data from [0.6, 1.5]

times to obtain a total of 14,500 real scene datasets. We

selected 5,000 images from the real multi-illumination dataset,

4,000 from the dataset that we constructed as training data,

3,000 from SFU Grayball dataset (Ciurea and Funt, 2003),

and 2,500 from Shadow removal datasets (Zhu et al., 2010;

Gong and Cosker, 2014; Sidorov, 2019). Finally, we resized

these data to 512 × 512 as the input of the training network.

Similar to most learning-based tasks, we used the 3-fold

cross-validation.

3.2. Metrics

Similar to color constancy under single illumination, we use

angular error to measure the performance of our MCC method.

The difference is that we calculate the angular error pixel-by-

pixel, and then average the angular error of the whole image.

The angular error is defined by Equation (4).

err =
1

M × N

N
∑

y=1

M
∑

x=1

(arccos

(

Ee(x, y).E
∗
e (x, y)

||Ee(x, y)||.||E
∗
e (x, y)||

)

) (7)

where Ee(x, y) and E
∗
e (x, y) represents the estimated illumination

and real illumination at position (x, y), respectively, and M,N

represents the width and height of the image. The less the err is,

the better the method performs.

Similar to previous multi-illumination estimate studies

(Brainard and Wandell, 1986; Land, 1986; Barnard et al., 1997;

Funt et al., 2004; Xiong and Funt, 2006; Zeng et al., 2011;

Mutimbu and Robles-Kelly, 2016), we only compare the mean

andmedian on multi-illumination datasets.

3.3. Implementation parameters

In this subsection, the parameter sets for training our final

model are given.

FIGURE 3

Performance curves under di�erent parameters. (A) Comparison of training time of di�erent decoding scales; (B) Comparison of average

angular errors of di�erent decoding scales; (C) Comparison of average time consumption of illumination estimation at di�erent decoding

scales; (D) Comparison of training curves of di�erent loss functions.
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Encoding network selection: Different network structures,

such as AlexNet (Krizhevsky et al., 2017), VGGNet-16

(Simonyan and Zisserman, 2014), and VGGNet-19 (Simonyan

and Zisserman, 2014), are used to test the performance. The

network we designed (modified from AlexNet Krizhevsky

et al., 2017) is slightly worse than VGGNet-19 (Simonyan

and Zisserman, 2014), but the speed is more than 4 times

faster than AlexNet (Krizhevsky et al., 2017) and VGGNet-

19 (Simonyan and Zisserman, 2014). Finally, considering the

effect and efficiency, the structure in Figure 1 is used in

this study.

Decoding network selection: The decoder part is equivalent

to a process of feature reconstruction. The backbone network

structure we used was symmetrical to the encoding network.

We tested with different resized stages and compared the

performance. The resulting curve is shown in Figures 3A– C.

Finally, considering the effect and efficiency, the decoding

structure shown in Figure 1 is used in this study. It can also

be seen from the curve that under different resize levels of the

decoder, the number of deconvolution layers does not increase,

and the time consumptions of illumination estimations are

essentially equal.

Loss function selection: During training, the angular error

and loss function proposed in this study are compared, and the

resulting curve is shown in Figure 3D. As can be seen from the

curve, the loss function used in this paper converges faster than

the angular error, and the training error is relatively smooth. At

the same time, the test average error in several datasets is slightly

lower than the angular error.

Training parameters: We used Adam (Kingma and Adam,

2014), and set batch = 64 to optimize the network in this work.

The learning rate was set to 0.0001. Approximately 4, 000 epochs

(total 906, 250 iterations at batch = 64) were performed.

3.4. Comparison with state-of-the-art
methods

This paper is aimed at multi-illumination estimation. We

compare the proposed method with some existing MCC

methods and with some methods that can estimate local

illumination, including the following three types.

One type consists of methods for which segmentation is

not required, such as gray pixel (GP) (Yang et al., 2015), and

a retinal neuron mechanism-based method proposed by Zhang

et al. (2016).

The second type requires image segmentation, including

the method of Arjan et al. (2012), the multi-illumination

model proposed by Gu et al. (2014), and a multi-illumination

estimation model based on the factor graph (FG) model

(Mutimbu and Robles-Kelly, 2016).

The third type, developed in recent years, comprises single-

illumination estimation methods based on CNNs, including the

CNN method of Bianco et al. (2015) CC-CNN, DS-Net (Shi

et al., 2016), and the grayness index (GI) (Qian et al., 2019).

The quantitative performance comparison on the Gijsenij

dataset (Arjan et al., 2012) is presented in Table 1, the results on

FIGURE 4

Qualitative results on MIMO multi-illumination datasets (Beigpour et al., 2014), the top right-hand corner of each image indicates the angle

error. From left to right: (A) Original image; (B) Ground truth illumination image; (C) Estimated illumination image; (D) Corrected image; (E)

Ground truth image. Dataset available at: http://www5.cs.fau.de/research/data/two-illuminant-dataset-with-computed-ground-truth/.

Reproduced with permission from Beigpour et al. (2014).
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TABLE 1 Quantitative evaluation on the Gijsenij dataset (Arjan et al.,

2012), red indicates the best.

Lab Outdoor

Method Mean Median Mean Median

Retinex (Funt et al., 2004) 13.15 13.16 6.62 7.25

Zhang (Zhang et al., 2016) 14.64 14.48 8.45 8.23

GIJ-GW (Arjan et al., 2012) 11.7 - 6.4 -

GIJ-GE2 (Arjan et al., 2012) 12.4 - 5.1 -

GU-GE1 (Gu et al., 2014) 3.25 - 3.26 -

GU-WP (Gu et al., 2014) 2.97 - 3.20 -

FG (Mutimbu and

Robles-Kelly, 2016)

2.68 - 3.10 -

CC-CNN (Bianco et al., 2015) 5.71 5.97 3.92 4.26

DS-Net (Shi et al., 2016) 3.76 4.13 4.60 4.80

CN-DMS4 2.51 2.58 2.39 2.41

MIMO (Beigpour et al., 2014) in Table 2, and Bleier (Bleier et al.,

2011) in Table 3. Some results are shown in Figure 4.

From Tables 1, 2, it can be seen that the mean error of the

proposed method is reduced by 6.3% on the Gijsenij dataset

and 15.5% on the MIMO dataset compared to the second

best way.

It can be seen From Figure 4, from the first row of

images, we find that the approximate shadow boundary can

be accurately distinguished at the position of the illumination

shadow boundary. Better fineness can be achieved in these

scenes because our method is a step-by-step process; thus, we

can accurately estimate the illumination position. In addition,

there are a large number of synthetic images in the training

datasets. The illumination boundary position of the synthetic

color biased image is very similar to the light and shadows.

Therefore, our method can deal with this boundary well. The

images in the second column have more illumination colors,

and almost every pixel given by the dataset is different. There

is no such fine data in the training data, hence the estimated

illumination is only consistent in the overall color. In addition,

it is observed that the real illumination color in the training

datasets is close to the color of the actual object surface in many

areas and, in our method, it is difficult to accurately distinguish

whether the color is that of the real illumination or the color

of the object surface itself. However, it should be noted that the

best existing MCC method must use gray-world to estimate the

color of the light source. Gray-world is prone to different degrees

of color deviation because of the color of the scene object itself.

Because the high-precision dataset of multi-illumination scenes

is limited, a learning-based method cannot learn the features

well. Therefore, it can be considered that all known MCC-based

methods have such problems, which may lead to color deviation.

Further research is required to solve this problem with a small

number of samples.

TABLE 2 Quantitative Evaluation on MIMO (Beigpour et al., 2014), red

indicates the best.

MIMO dataset Lab Outdoor

Method Median Mean Median Mean

Retinex (Funt et al., 2004) 4.92 5.36 4.69 5.84

Zhang (Zhang et al., 2016) 2.71 3.21 4.35 5.18

GIJ-WP (Arjan et al., 2012) 4.2 5.1 3.8 4.2

GIJ-GE1 (Arjan et al., 2012) 4.2 4.8 9.2 9.1

GU-GE1 (Gu et al., 2014) 3.16 - 3.54 -

GU-GW (Gu et al., 2014) 3.86 - 4.43 -

FG (Mutimbu and

Robles-Kelly, 2016)

2.96 - 3.48 -

CC-CNN (Bianco et al., 2015) 2.98 3.22 3.35 3.72

DS-Net (Shi et al., 2016) 3.21 3.46 3.01 3.86

CN-DMS4 2.50 2.83 2.99 3.33

TABLE 3 Quantitative evaluation on Bleier (Bleier et al., 2011), red

indicates the best.

Bleier dataset Lab

Method Median Mean

Retinex (Funt et al., 2004) 2.68 3.40

Zhang (Zhang et al., 2016) 3.97 4.50

GIJ-GW (Arjan et al., 2012) 4.71 4.93

GIJ-GE1 (Arjan et al., 2012) 14.89 14.52

GU-GE1 (Gu et al., 2014) 3.39 3.32

GU-GW (Gu et al., 2014) 1.18 1.16

FG (Mutimbu and Robles-Kelly, 2016) 2.90 2.95

CC-CNN (Bianco et al., 2015) 3.32 3.51

DS-Net (Shi et al., 2016) 3.10 3.46

CN-DMS4 2.54 2.61

In addition, we searched and downloaded several visual

deviation images with multiple lighting from the Internet3.

These color-biased images are corrected by different MCC

methods. Because real illumination cannot be obtained, the

effect of the corrected images can only be judged subjectively.

Some correction comparison results are shown in Figure 5. As

can be seen from the first row in the figure, these scenes contain

a variety of lighting. Visually, the color deviation caused by a

different illumination has been partially improved; for example,

in the images in the first column, the light of the morning

glow is yellow, which blocks the green of some trees. After our

method, the trees and the sky are more real in visual effect. It

can be seen from the images in the second and fourth columns

that although other methods also eliminate part of the light,

the overall color tone still shows color deviation visually. On

applying our method, although the image still looks a little color

biased, the image is more natural.

3 https://image.baidu.com
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FIGURE 5

Qualitative results on natural scenes. The images in columns 1, 2, and 4 are taken from Baidu.com, available at: http://mms2.baidu.com/it/u=

3199546478,84333290&fm=253&app=138&f=PNG&fmt=auto&q=75?w=669&h=500, http://mms0.baidu.com/it/u=576667012,

1565892735&fm=253&app=138&f=JPEG&fmt=auto&q=75?w=500&h=331 and http://mms2.baidu.com/it/u=3592193920,2788102915&fm=

253&app=138&f=JPEG&fmt=auto&q=75?w=500&h=329. The image in the third column is from the doctoral thesis (Gao, 2017). For each

column, from top to bottom: Original image; (A) Result By GP (Yang et al., 2015); (B) Result By Retinex (Brainard and Wandell, 1986); (C) Result

By Zhang (Zhang et al., 2016); (D) Our method.

As the lack of multi-illumination datasets, as an extension,

we evaluate the proposed method using a tinted Multi-

illuminant dataset (Sidorov, 2019) which is synthesized from

the SFU Gray-Ball (Ciurea and Funt, 2003), this method

not only synthesizes multiple lights but also synthesizes the

superposition of multiple lights. Performance is quantitatively

compared to the performance of state-of-the-art methods and

is reported in Table 4, and some images are demonstrated for

visual evaluation in Figure 6. It may be seen that the proposed

technique outperforms all existing multi-illuminant algorithms.

We observed that some images had slightly increased or reduced

brightness, although the color cast is removed correctly.

3.5. Adaptation for single-illumination

As mentioned in this paper, the proposed method aims to

solve the color constancy problem under multiple illuminations,

and we mainly compare it with existing MCC methods and
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with methods that can estimate local illumination. For single-

illumination, we added some single-illumination datasets and

used the same illumination as illumination maps for training.

we take the mean value of the illumination map as the

estimated illumination, and compare it with three single-

illumination methods: DS-Net (Shi et al., 2016), FC4 (Hu

TABLE 4 Quantitative evaluation on the tinted multi-illuminant

dataset (Sidorov, 2019), red indicates the best.

Method Median Mean

GIJ-GW (Arjan et al., 2012) 6.61 10.50

GIJ-GE1 (Arjan et al., 2012) 6.70 12.10

GU-GE1 (Gu et al., 2014) 8.14 15.56

GU-GW (Gu et al., 2014) 5.51 9.78

CC-CNN (Bianco et al., 2015) 5.64 5.88

DS-Net (Shi et al., 2016) 6.19 7.66

FC4 (Hu et al., 2017) 4.27 4.89

CN-DMS4 3.42 3.71

et al., 2017), and our previous single-illumination method,

MSRWNS (Wang et al., 2022). The quantitative performance

TABLE 5 Quantitative evaluation on SFU Gray-Ball (Ciurea and Funt,

2003), red indicates the best.

Method Median Mean

DS-Net (Shi et al., 2016) 0.96 2.41

FC4 (Hu et al., 2017) 1.12 2.33

MSRWNS (Wang et al., 2022) 0.82 1.83

CN-DMS4 0.95 2.24

TABLE 6 Quantitative evaluation on ADE20k (Zhou et al., 2016), red

indicates the best.

Method Median Mean

DS-Net (Shi et al., 2016) 0.96 1.68

FC4 (Hu et al., 2017) 1.32 1.56

MSRWNS (Wang et al., 2022) 0.61 1.68

CN-DMS4 1.13 0.95

FIGURE 6

Results produced by the proposed approach on removing of multi-illuminant color cast, the images come from SFU Gray-Ball (Ciurea and Funt,

2003). From left to right: (A) Tint maps; (B) Synthesized images; (C) Predictions; (D) Ground truth. Dataset available at: https://www2.cs.sfu.ca/~

colour/data/gray_ball/index.html. Reproduced with permission from Ciurea and Funt (2003).
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FIGURE 7

Result of single illumination, the images come from ADE20k (Zhou et al., 2016). From left to right: (A) Original image; (B) Result by DS-Net (Shi

et al., 2016); (C) Result by FC4 (Hu et al., 2017); (D) Result by MSRWNS (Wang et al., 2022); (E) Result by proposed method; (F) Ground truth.

Dataset available at: https://groups.csail.mit.edu/vision/datasets/ADE20K/. Reproduced with permission from Zhou et al. (2016).

comparison of the SFU Gray-Ball dataset (Ciurea and Funt,

2003) and ADE20k dataset (Zhou et al., 2016) are presented

in Tables 5, 6, some results are shown in Figure 7. It may

be seen that the proposed method also shows a better

performance in single-light estimation, second only to our

previous method.

3.6. E�ciency

The code used to test the efficiency of the proposed method

is based on PyTorch (Paszke et al., 2019) and the training took

approximately 8 h, after which the loss tended to stabilize. In

the testing phase, we used OpenCV (Bradski, 2000) to load the

model. An average image required 200 ms on a CPU, and 32 ms

on a GPU 4. For low-resolution images, the real-time estimation

can be achieved using a GPU, but for high-resolution images, the

algorithm requires significant time. In the future study, we will

try to prune the model to further improve its efficiency.

4. Conclusion

Most studies of color constancy are based on the assumption

that there is only a single-illumination in the scene. However,

in reality, most scenes have more than one illumination. For the

4 Experimental hardware platform: Intel Xeon Silver 4210R, 64-GB

memory, GTX3090. The resolution of the test image was less than

800*600.

illumination estimation in this study, the encoding and decoding

network was introduced, and a unique network model of

multiscale supervision and single-scale estimation was designed.

An optimization network with an improved loss function and

a simple operator with a penalty was designed to train the

network. By testing on several public datasets, our method

yielded a partial improvement in terms of quantitative data

and visual effects compared with previous multi-illumination

estimation methods. This provides a research direction in end-

to-end multi-illumination estimation.
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