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Creating high-quality polygonal meshes which represent the membrane

surface of neurons for both visualization and numerical simulation purposes

is an important yet nontrivial task, due to their irregular and complicated

structures. In this paper, we develop a novel approach of constructing a

watertight 3D mesh from the abstract point-and-diameter representation

of the given neuronal morphology. The membrane shape of the neuron is

reconstructed by progressively deforming an initial sphere with the guidance

of the neuronal skeleton, which can be regarded as a digital sculpting process.

To e�ciently deform the surface, a local mapping is adopted to simulate the

animation skinning. As a result, only the vertices within the region of influence

(ROI) of the current skeletal position need to be updated. The ROI is determined

based on the finite-support convolution kernel, which is convolved along the

line skeleton of the neuron to generate a potential field that further smooths

the overall surface at both unidirectional and bifurcating regions. Meanwhile,

the mesh quality during the entire evolution is always guaranteed by a set of

quasi-uniform rules, which split excessively long edges, collapse undersized

ones, and adjust vertices within the tangent plane to produce regular triangles.

Additionally, the local vertices density on the result mesh is decided by the

radius and curvature of neurites to achieve adaptiveness.

KEYWORDS

neuronal morphology, quasi-uniform mesh, dynamic sculpting, multiresolution

techniques, geometry-based techniques, local mapping query, finite-support
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1. Introduction

With a rapid technical development, increasing attention

has been paid to biologically detailed brain visualization and

simulation. As the most significant information-processing cells

in the brain, neurons are made up of dendrites and axons, which

are responsible for receiving and sending signals, respectively.

Each neuron is an electrical entity and various methods have

been proposed to simulate the electrical behavior of neurons.

However, due to the complexity of neuronal structure, most of

thesemethods simulate the conduction behavior of electrical and

biochemical signals in a low-dimensional space. Recently, there

is a growing requirement to simulate cellular behavior based on

3D high-fidelity models (Mörschel et al., 2017). Since numerical

simulation of a reaction-diffusion problem requires a fully-

defined neuronal geometry, a key challenge in neuroscience is

to robustly generate a high-quality neuronal membrane surface,

which can be used to create tetrahedrons for reaction-diffusion

simulation in full neurons or networks of neurons.

From amorphological point of view, the anatomy of neurons

can be obtained by interactively tracing neuron elements from

microscope images, or automatically extracted using a series

of software tools (Wang et al., 2019; Chen et al., 2022). The

neuronal morphology tracking program usually provides a tree-

like structure: the unique morphological point in the center of

a soma serves as the root node, and the morphology of the

neurite is composed of an ordered sequence of interconnected

nodes. Besides the 3D coordinates of the skeletal nodes,

thickness at each node can also be included to form a point-

and-diameter structure. The anatomical features of neurons

captured through morphological reconstruction can be used for

detailed electrophysiological simulations of voltage dynamics

throughout the 3D structure of the neuron (Wilson et al., 1988;

Carnevale and Hines, 2006; Gleeson et al., 2007). Unfortunately,

the point-and-diameter approximation becomes a problem

when one wishes to use the morphologies for visualization

or simulation. Thus, the visualization of such spatiotemporal

data poses a particular challenge because of the complexity of

neuron morphologies and the limitations of the morphological

point-and-diameter representations.

For the neuronal morphologies of tree-like structures,

branch modeling is usually the most complicated part of

producing neuronal membrane surfaces, as a self-intersection

tends to occur at branches. However, we note that smooth

branch ramifications are not taken into consideration in most

of previous approaches, and the majority of them concentrate

on uniform remeshing, which try to generate a whole mesh with

a same edge length (Vorsatz et al., 2003; Botsch and Kobbelt,

2004; Kil et al., 2006; Stanculescu et al., 2011). To be able to

represent fine geometric details, these approaches inevitably

place too many triangles in regions with low-curvatures.

To solve these problems, a novel approach is proposed in

this paper for robust neural morphology modeling based on

skeleton-driven progressive adaptive remeshing, which achieves

both smooth surface approximation and high-quality mesh

vertex distributions at the branches (see Figure 1).

This paper presents a sculpting-like mesh generation

method for 3D visualization of neuron surface and reaction-

diffusion simulation applications. A pair of neuronal skeleton

and surface mesh are illustrated in Figure 2. In the presented

method, the skeletons are firstly loaded from neuronal

morphology files, which are then used to drive iterative

deformations of the initial triangular mesh placed at the

root node (see Figure 3). This method allows subsequent

adaptive mesh refinements according to different geometric

details and creates high-quality neuronal membranes robustly.

Additionally, the watertight nature of our surface can also

be used to create tetrahedral volumes for stochastic reaction-

diffusion simulations. In summary, the main contributions of

this paper are as follows:

1. A high-quality neuronal membrane modeling approach is

proposed, and the topological robustness can be easily

guaranteed through a progressive surface evolution, as the

shape of each updated triangle satisfies the adopted quasi-

uniform remeshing rules which result in regular triangles.

2. A local convolution surface approximation is presented to

model branching neuron morphology and achieve a pleasing

smoothness and efficiency of the progressive mesh evolution.

3. Procedural adaptive mesh refinements are utilized to capture

varying scales of geometric details, which balances the mesh

quality and the computational expense.

4. A skeletal vertex mapping scheme is introduced to accelerate

the neighboring queries, and also to relate mesh vertices to

the original morphological skeleton, which is a requirement

for other visualization and simulation applications.

2. Methods

2.1. Overall workflow

The neuronal membrane mesh is gradually generated

through iterative ROI (Region of Influence) queries of an

initial model, weighted deformations and local topology

reconstructions, which can be represented with vertices and

triangles. The whole workflow consists of the following steps (see

the flow chart in Figure 4).

1. Precondition the neuronal tree.

2. Traverse the neuronal tree from the soma location.

3. Query the ROI in skeletal mappings.

4. Stretch and deform the mesh in the affected area to the

approximated positions.

5. Optimize the mesh vertex distribution using remeshing with

adaptive resolutions according to various geometric details.
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A B

FIGURE 1

(A) Non-adaptive mesh generation with ill-shaped triangles by traditional approaches. (B) High quality mesh generation with adaptive vertex

densities by the proposed approach.

A B

FIGURE 2

A basal ganglia neuron acquired from NeuroMorpho.Org. (A) The point-and-diamter representation. (B) The generated mesh representation.

A B C

D E F

FIGURE 3

The iterative deformation process. (A) An initial spherical mesh placed at the root node. (B–F) Generation of the gradually evolved mesh

structure driven by the neuronal skeletons.
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FIGURE 4

The workflow for the progressive meshing of neuronal morphology. The procedure starts from an initial soma mesh at the root of the neuron

tree, then searches the vertices a�ected by the skeleton-based implicit surfaces, and finally projects these vertices onto the implicitly defined

convolution surfaces for further remeshing if the relevant edges are longer than the predefined threshold.

6. Iteratively perform the same steps for all

neurite paths.

2.2. Morphology preconditioning

Our approach takes skeleton-based representation of

neuronal trees (e.g., the SWC files) as input. A neuronal tree

typically origins from the soma node, and consists of a number

of neurite segments that further bifurcate at branching points.

While such segments should have a reasonable length in order

to faithfully and effectively portray the geometry of the neuron,

it is not unusual to find neurons with overly short segments

in common data repositories such as NeuroMorpho.Org. Such

artifacts in a neuronal tree could not only lead to redundant

representation and thus slow down the overall mesh generation

speed, but causemalfunction of the approach as well if the length

of a segment is even smaller than the marching step. Therefore,

as a pre-processing step, we eliminate all such trivial segments

whose length lseg < ǫ ·Rneuro in the neuronal tree (see Figure 4).

2.3. ROI query strategy based on skeletal
mapping

In order to generate the neuronal membrane mesh, a

skeletal mapping-based ROI strategy is proposed, which allows

local deformation region queries. A list container is attached

to each skeleton node for storing the indices of the vertices

that are close to the current node. The mappings are created

procedually, and the mesh vertex mappings are created based on

the exact projection position of the current neuronal segment

that deforms the vertex in question. We first query skeleton

nodes in the ROI, and then query their mapping vertices on

the membrane surface mesh. Compared with the ROI query

algorithm based on space partition proposed in Zhu et al. (2013),
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FIGURE 5

Mapping mesh vertices to the skeleton. For each position on the

skeleton, an ROI (e.g., the hollow black sphere) is defined based

on the local radius of the skeleton. All the mesh vertices inside

of the ROI (e.g., the hollow red circles) are mapped to the

current skeletal position and will be deformed accordingly.

ourmethod further accelerates the generation of skeleton-driven

mesh modeling. Figure 5 shows the ROI query of skeletal skins.

2.4. Local convolution surface
approximation

Skeleton-based implicit surfaces are usually introduced

to create branching structures (Bloomenthal and Shoemake,

1991; Hart and Baker, 1996; Jin and Tai, 2002) due to

their smoothness and topological variations. However, the

marching cubes polygonizations (Lorensen and Cline, 1987) of

the iso-surface they employed suffer from high computation

complexity, limited resolution, and low-quality triangular

meshes. Furthermore, it is prone to missing small twigs

for complex branch models because the output of the

marching cubes is resolution-dependent. Even though there

are a large number of improvements (Wyvill et al., 1986;

Bloomenthal, 1994; Bottino et al., 1996; Akkouche and Galin,

2001; Van Overveld and Wyvill, 2004; Zhu et al., 2013),

it is still difficult to balance the quality of the iso-surface

polygons and the performance. Recently, a point skeleton-based

metaball policy (Abdellah et al., 2020) is introduced to create

accurate mesh models of brain vasculatures, and metaballs

are also used to skin the different structural components of

astrocytes (Abdellah et al., 2021) and then blend them in

a seamless fashion. However, at straight line skeletons, too

many metaballs have to be placed closely to approximate the

cylindrical neuronal or vascular morphologies.

2.4.1. Skeleton-based convolution surfaces

In this paper, our approach begins with an initial triangular

mesh (soma), and progressively deforms it to approximate the

target shape, which is defined as a convolution surface based on

embedded neuronal line skeletons. Therefore, the final neuronal

membrane surface mesh achieves high-order smoothness at

arbitrary branches.

Convolution surfaces can be regarded as an isosurface

embedded in a three-dimensional scalar field, which is calculated

by convolving the geometric skeleton Vi with a low-pass filter

function f . Given a skeleton segment:

gi(p) =

{

1, p ∈ skeleton Vi

0, otherwise
(1)

and a kernel function: f :R3 → R, the contribution of the

potential value of the current skeleton in question at point p is

the convolution of the function f and gi:

Fi(p) =

∫

Vi

gi(q)f (p− q)dV = (f ⊗ gi)(p) (2)

2.4.2. Finite support quartic kernel

Among them, the kernel function can be divided into infinite

support (such as: Cauchy kernel function; McCormack and

Sherstyuk, 1998) and finite support (such as: quartic polynomial

kernel function; Jin et al., 2009). For a finitely supported kernel

function, if the distance of a certain point from the skeleton

is greater than the support radius of the kernel function, the

potential contribution of the skeleton drops to zero. Instead,

for an infinite support kernel function, no matter how far the

point in the three-dimensional space is from the skeleton, the

potential contribution of the skeleton to the current point is

always greater than zero even though it is very tiny. As neuronal

morphology usually appears to be a tree-like graph shape, we

take line segments as the convolution skeleton, and the fourth-

degree polynomial kernel function as the kernel function whose

formula can be defined as:

fQuartic (r) =







(

1− r2

R2

)2
, r ≤ R

0, r > R
(3)

where R is the effective radius of the kernel function.

2.4.3. Local convolution approximation

The convolution surface S based on a series of skeleton

segments can be defined as:

S =

{

p |

n
∑

i=1

λiFi(p)− T = 0

}

(4)

where Fi is the field contribution of the ith skeletal segment

as defined in Equation (2), λi is its weight factor, and T is

the threshold for extracting the iso-surface from the embedded

potential scalar field.

For a point p on the membrane mesh, the adopted local

approximation scheme assumes that the closest skeleton to
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p is a line segment with infinite length. This assumption

could not only reduce unnecessary convolution calculation

beyond support radius, but also create natural blending between

adjacent line segments due to their smooth thickness variations.

Therefore, it is highly suitable for large amount of neuronal

morphology approximation with complex graph structures.

Actually, the potential contribution of an infinite skeleton to an

arbitrary 3D position p can be calculated as:

FQuartic (p) = 2λi

∫

√

R2i−d
2
i

0

(

1−
d2i + x2

R2i

)

dx = T (5)

⇒ λi =
15TR4i

16
(

R2i − d2i
)

5
2

(6)

where di is the average distance between the ith skeleton and

p, and T is still the global iso-value for the entire convolution

surfaces; Ri is the effective radius of the kernel function

corresponding to the current skeleton, which can be set to be

an empirical value of 2di in our experiments; λi is the weight of

the current skeleton segment, which can be derived analytically.

The solution to the above kernel function is based on the

assumption that the value of the kernel function outside a

certain distance is infinitesimal. Therefore, the fourth-order

polynomial kernel function is usually preferred for its local

support characteristics, which could reduce huge convolution

computation.

2.4.4. Convolution field-guided mesh
projection

The implementation of approximation is to project each

vertex of the remeshed surface onto the implicit convolution

surface in their respective gradient directions by performing

standard Newton iterations (Vaillant et al., 2013):

p = p+ sign(F(p)− T) · lstep ·
1F(p)

| 1F(p) |
(7)

where, the initial evolution step length lstep of the vertex p

can be set as step = 1
2 le and le is the length of the shortest

edge coincident to p. After each subdivision, the projection step

length of a new vertex can be derived from its adjacent vertices

(Figure 6).

2.5. Remeshing algorithm based on
quasi-uniform mesh structure

Isotropic remeshing is a valid scheme to optimize the

distribution of mesh vertices and topological connectivity.

Botsch et al. (2010) and Alliez et al. (2008) have reviewed various

methods for surface remeshing. Numerous techniques like the

particle-based methods (Ahmed et al., 2016), the Delaunay

refinement methods (Cheng et al., 2013), and the randomized

sampling methods (Ebeida et al., 2016) pay attention to

generating isotropic meshes. The methods based on Centroidal

Voronoi (Du et al., 1999) tessellation attempt to make each

point in accord with the centroid of its Voronoi region. There

are various ways to calculate a Voronoi diagram on surfaces,

such as mesh parameterizations, discrete clustering, restricted

Voronoi diagram (Yan andWonka, 2015), and geodesic Voronoi

diagram (Liu et al., 2016). The fundamental theory of the

field-based methods is that isotropic triangular meshes can be

taken out from sixway rotational symmetry directional fields

(Du et al., 2018). In addition, there are edge-based approaches

derived from local operators, including edge split, edge collapse,

edge flip, and vertex repositioning (Botsch and Kobbelt, 2004;

Dunyach et al., 2013; Wang et al., 2018).

Therefore, in our implicit mesh approximation, two

significant aspects will be taken into consideration: (1) a

triangular mesh representation of implicit surfaces should

approximate the underlying geometry as accurate as possible,

and (2) the mesh vertex distribution and connectivity

should satisfy high-quality triangles with similar edge

lengths coincident to the same polygon, allowing smooth

membrane surface visualization and more stable voxelization

for simulation.

A quasi-uniform mesh (Stanculescu et al., 2011) supports

successive surface deformation and subdivision at any level

of detail, ensuring high-quality triangular mesh during the

entire progressive deformation process. The details about how

to build and remesh a quasi-uniform mesh will be given

in the following subsections. Figure 7 illustrates the dynamic

progressive mesh evolution with (right) and without (left) the

adopted optimization operations. In the mesh generation, the

remeshing based on quasi-uniform configuration can optimize

the membrane mesh effectively, thereby achieving robust

progressive modeling.

2.5.1. Quasi-uniform mesh configuration

Auniformmesh is composed of polygon elements of roughly

the same size, while a non-uniform mesh has elements of

different sizes. In many aspects, uniform meshes enjoy such

advantages as stable structures and efficient high-level geometric

algorithms over non-uniform ones. However, creating uniform

meshes is non-trivial especially for surfaces with complex

topology. Therefore, a relaxation on constraints on uniform

meshes is used here. As defined in Stanculescu et al. (2011),

a mesh M is said to be quasi-uniform if there exist lT and d,

such that M results from iterative remeshing which assures a

maximum edge length lT and a minimum edge d. That is to say,

for each edge e ∈ edgesM , it should falls in the definite interval

lengthe ∈ (d, lT).
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FIGURE 6

Convolution surface approximation at the branching regions using progressive evolution. In a branching region, a second neurite starts to grow

from the main trunk (left), and the implicit approximation and projection produce smooth structures (right), which is the result of both

deformation of the current neurite and blending of the neighboring branches.

FIGURE 7

Quasi-uniform remeshing. The mesh without vertex optimization (left) includes many low-quality triangles especially near branching regions, as

highlighted by the blue color. Our approach adjusts the unsatisfactory triangles by iterative remeshing optimization and generates

quasi-uniform meshes (right).

Given a closed manifold mesh M and a threshold lT ,

we can ensure that all edges of M are smaller than lT
by iteratively splitting the edges larger than lT , known as

lT tight mesh. The split operation amounts to adding a

vertex at the midpoint of an edge, and correspondingly

splitting the relevant triangle face into two adjacent

triangles. The iteration over the edges is performed using

a simple queue, and the resulting new edges are inserted into

the queue.

The lT tight property is not the only factor to ensure

high quality triangles, since edge collapses should be

performed to delete too short edges to generate higher-

quality triangle meshes. A edge collapse operation moves the

two vertices of a short edge to its midpoint to collapse the

edge, ensuring that all the edges of M will not be shorter

than the collapse threshold d (that is, the minimum edge

length). Moreover, it is necessary to check the validity

of the collapse operation before each implementation.

If a collapse operation produces intersected triangles,

the operation is illegal and will not be performed for the

current edge.

Obviously, it is difficult to guarantee that the lengths of all

the edges generated after the collapse operation are greater than

the minimum length d, and the collapse operation may also

destroy the lT tightness property on the mesh. Therefore, before

establishing the lT tight mesh M, it is necessary to perform

the collapse operation to ensure that the minimum length of

the mesh edges is greater than d, and then the lT tightness

property should be restored. In fact, d can be taken as an

internal parameter of a quasi-uniform mesh, since it is bound

to lT : d <= lT/2, ensuring that the edges greater than lT will

not be divided into edges shorter than d while establishing the lT
tight mesh after a collapse operation.

2.5.2. Local quasi-uniform mesh remeshing in
ROI

Based on the quasi-uniform mesh configuration, too long

or too short edges should be splitted or collapsed, respectively,

which will be followed by mesh optimizations including vertex

valence equalization, triangle area equalization, and implicit

surface projection (see Algorithm 1).
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Input: init_surface, target_edge_length

Output: quasi-uniform mesh

1: function REMESH(init_surface, target_edge_length)

2: result← init_surface

3: low← α ∗ target_edge_length

4: high← β ∗ target_edge_length

5: for vHandle : vHandles do

6: spilt_long_edges(high)

7: collapse_short_edges(low, high)

8: equalize_valences()

9: tangential_relaxation()

10: project_to_surface()

11: end for

12: return result

13: end function

Algorithm 1. Remeshing.

2.5.2.1. Vertex valence equalization

In order to optimize each triangle of a mesh as regularly as

possible, an edge flip operation can be applied to achieve the

vertex valence of 6. Similar to edge collapses, a legality check is

also needed before each flip implementation.

2.5.2.2. Triangle area equalization

After iteratively performing the above optimization

operations on the mesh M, we can get a quasi-uniform

triangular mesh. The edge lengths of the mesh are basically close

to the target length l, which satisfies d < l < lT , and the valences

of the vertices are close to 6. However, the triangle areas and the

edge lengths may still vary with each other, which can be further

optimized. Therefore, we carry out a vertex fine-tuning through

an area-based tangential smoothing. Each vertex pj is assigned

a weight that equals to its averaged area A(pj), and a tangential

smoothing moves pj to its weighted barycentric position

gi =
1

∑

pj∈N(pi) A
(

pj
)

∑

pj∈N(pi)

A
(

pj
)

pj. (8)

2.5.2.3. Iterative implicit surface projection and

smoothing

Following each tangential smoothing, a projection onto

implicit surfaces can be performed for each smoothed vertex

(Figure 8), otherwise jitter artifacts could occur. The new

position can be updated according to the projection formula

pi ← pi + λ

(

I − nin
T
i

)

(

gi − pi
)

, (9)

where ni is the normal vector and λ is the damping factor

for oscillation avoidance. Vertices with relatively large Voronoi

regions have more weight, attracting mesh vertices and thus

reducing their own area. Experiments show that the mesh area

of vertex-related region can be averaged without too many

iterations.

2.6. Strategies for adaptive mesh vertex
density

To ensure robust generation of high-quality mesh models

for neuronal morphologies, a mesh optimization for high-

resolution levels of details is required. However, a high-

resolution representation usually results in too many tiny

triangles on the surface parts with low curvatures, which

not only imposes high burden on memory but also wastes

unnecessary computational time. On the other hand, in order

to generate topologically correct surfaces at branches robustly,

a relative high-resolution surface mesh is preferred. Therefore,

the marching step size of the mesh evolution should be related

to both the skeletal structures and mesh vertex densities so as to

create neuronal morphology with adaptive edge lengths.

The robustness of the surface mesh generation at branches

and the correspondingmesh vertex density depend on the angles

between the branches, which are used to control the marching

step size along the skeletons. Actually the mesh vertex density

can be determined according to the target edge length in the

current region, which is indirectly related to the branching

angles. It should be noted that themesh vertices in the ROI ought

to be queried as fast as possible for efficient mesh evolution,

so the step sizes of both the marching along skeletons and the

convolution surface approximation should not exceed the lower

length limit of themesh edges. The details for determining vertex

densities at a branch are as follows:

1. Separating point. According to the angle of a neuron branch

and the support radius R of the target convolution surfaces,

the separating position t at the branch can be pre-calculated.

Since the distances between t and the two bifurcations

are both R, the projection points of t on the skeleton

segments can be deduced based on the branching angle θ ,

which correspond to the positions with the maximum vertex

densities in dynamically adaptive mesh evolution (Figure 9).

2. Maximum vertex density. As the neuronal morphology at

the branching t usually creates a surface with locally maximal

curvature, the maximum vertex densities are assigned for

the mesh in the nearby region. Therefore, triangles with the

minimum edge length are generated in the separating region

based on a marching along the skeleton with the minimum

step size.

3. Minimum vertex density. On the other hand, the maximum

target edge length can be usually set as the average edge length

of the initial mesh, as our mesh evolution begins with the

soma that has the largest radius. The local maximum edge

lengths at other positions that are far away from branching

can be calculated according to the ratio of the current skeletal

radii and the soma radius.

4. Edge length interpolation. After the locally minimum target

edge lengths and the maximum ones are determined, edge

lengths for intermediate regions between each pair of the

minimum lmin at t and maximum length lmax can be linearly

interpolated accordingly.
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FIGURE 8

A 2D illustration for the update of pi ’s position by tangential relaxation and iso-surface projection.

A B

FIGURE 9

(A) A 2D illustration of a bifurcation and its corresponding iso-surface. (B) The calculation of the separating position t.

FIGURE 10

Adaptive mesh vertex distributions in a bifurcating region. High-density vertices are placed at the bifurcating region to e�ectively capture

geometrical details.

As demonstrated in Figure 10, the adaptive mesh evolution

makes the overall vertex distribution more reasonable.

Moreover, such optimization also leads to accelerated surface

generation and subsequent rendering.

3. Results and conclusion

3.1. Visual results

We use several data from NeuroMorpho.Org, one

of the largest cell morphology database, to validate our

proposed approach, as shown in Figure 11. It can be

seen that the underlying convolution potential field can

well smooth the whole membrane surface. Due to the

advantageous superposition property of convolution surfaces,

crease-free rounded neuronal surfaces can be produced

without any advanced blending operations. Moreover, in

order to improve the efficiency of the modeling system,

we propose the ROI query strategy based on skeleton-

vertices mapping, which can effectively accelerate the

mesh evolution.

On the other hand, the mesh vertex density distribution

is optimized to represent adaptive details. The density of the

surface vertices is related to both the thickness (Figure 12) of
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A

B

C

FIGURE 11

Examples of three surface meshes generated by the proposed approach. Local regions on the meshes are zoomed in for the display of details.

The corresponding input point-and-diameter morphology data are shown in small panels. (A) A cell of a mouse, which includes 345 nodes and

61 branches. (B) A cell of a mouse, and it is composed of 247 nodes and 46 branches. (C) A cell of a drosophila melanogaster with 3224 nodes

and 1169 branches.
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FIGURE 12

Membrane surfaces with adaptive edges for di�erent thickness:

surfaces with larger radius are created with vertices of lower

densities, and vice versa.

FIGURE 13

Adaptive vertex distribution at a bifurcating structure. Special

care is taken at the separating position to create smooth

high-curvature surfaces.

the neuronal morphology and the surface curvature (Figure 13).

Although the thickness can be easily obtained from the

morphology files, it is non-trivial to calculate the curvature in

a dynamic mesh evolution. The main reason lies in that the

curvature has to be pre-determined before the quasi-uniform

remeshing, which is used in the edge length limitations. To

this end, our insight is that high curvatures are distributed

at branching regions especially at the separating regions of

skeleton-based convolution surfaces. Therefore, a proportionate

ratio to the distance between an edge and the separating points

is employed to the current edge length.

As the final mesh is progressively deformed from an

initial sphere (Figure 14), no deliberate stitching operations are

involved. During the dynamic mesh evolution, a quasi-uniform

mesh structure is used to guide the edge split and collapse, which

prevents too long or too short edges that are detrimental to a

robust mesh generation.

3.2. Comparisons

Neuronal membrane surface meshing is a fundamental

preparation for neuronal electrical and chemical simulations. In

Figure 15, we compare the mesh generation performance among

our software and several other tools. Earlier software packages,

such as Neurolucida (Glaser and Glaser, 1990), NeuroConstruct

FIGURE 14

Progressive surface evolution. The mesh growing processes at a branch (top) and at the root node (bottom) are illustrated for several di�erent

timestamps.
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(Gleeson et al., 2007), NeuGen (Eberhard et al., 2006), and

Genesis (Wilson et al., 1988) provide approximations of neuron

surfaces with mesh-based methods. Unfortunately, they tend to

create meshes with low qualities, in which self-intersected parts

usually occur in branching regions. Other methods such as the

one presented in Lasserre et al. (2011) start from a sphere (made

with quads) with a fixed resolution, and the dendrites are then

generated by quad-extrusions starting from the soma. At the

end of the method, a Catmull-Clark subdivision is employed

to smooth the whole mesh, generating realistic, smooth, and

closedmeshes. However, the preservation of desirable properties

of being 2D-manifold is not stated as an objective in the work.

CTNG (McDougal et al., 2013) uses constructive solid

geometry to define a plausible reconstruction without gaps,

which represents a geometry as the unions and intersections

of three-dimensional graphics primitives. It then uses

“constructive cubes” to produce a watertight triangular

mesh of the neuron surface. However, it depends on the

underlying marching cubes, which create triangles with greatly

varying aspect ratios.

Neuroize (Brito Menéndez et al., 2013) defines a physics-

based mass-spring system to generate a neuron mesh, which

could create a high-quality mesh. However, due to the versatility

of the mass-spring system, complicated fine-tuning of several

simulation parameters is required to achieve an accurate

reconstruction.

NeuroTessMesh (Garcia-Cantero et al., 2017) improves the

technique in Neuronize by applying a FEM (Finite Element

Method) (Erleben et al., 2005) to simulate the deformation,

which enables a convenient control over the mesh deformation.

The approach approximates the cell bodies and the dendritic and

axonal arbors in independent procedures that are later merged,

resulting in a closed surface that approximates a whole neuron.

However, NeuroTessMesh does not deal with mesh generation

at branch points, and in particular, the junction between neurite

and soma is not smooth, which is obviously not desirable

as shown in Figure 15A. Although NeuroTessMesh can adapt

mesh resolution based on the distance to the camera, it cannot

adapt mesh resolution based on different geometric details when

generating individual neuron mesh models.

AnaMorph (Mörschel et al., 2017) uses a recursive

tessellation algorithm starting from an icosahedron to construct

the soma mesh as an initial mesh. The AnaMorph framework

can produce relatively high-quality meshes, but it is not robust

for building some complex neuronal structures, especially for

high resolution modeling at branches. Moreover, a complex

stitching operation has to be performed on adjacent branches

in order to produce a watertight surface (Figure 15B).

Neuromorphovis (Abdellah et al., 2018) extends an earlier

meshing algorithm (Abdellah et al., 2017) and is capable

of reconstructing piecewise watertight meshes that could be

employed to visualize detailed electrophysiological activities

A

B

C

D

FIGURE 15

Comparison of the generation of a same neuron using di�erent

approaches. Models generated using NeuroTessMesh (A),

AnaMorph (B), Neuromorphovis (C), and our proposed method

(D) are shown, respectively.

obtained from voltage dynamics simulations. However, too

many metaobjects have to be placed for creating a smooth-

varying implicit field for extracting a neuronal membrane

iso-surface. In addition, a post-optimization is required to

improve the extracted triangles with greatly varying aspect ratios

(Figure 15C).

Our approach takes the membrane surface mesh creation

as a digital sculpting guided by the neuronal morphologies.

It produces high-quality meshes (Figure 15D) robustly by

deforming an initial mesh iteratively.

3.3. Quantitative evaluations

As our approach employs a progressive mesh generation,

considerable time is required to complete the growing process.
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TABLE 1 Performance evaluation.

Models Figure 2 Figure 3 Figure 10 Figure 11A Figure 11B Figure 11C Figure 14

Skeleton nodes 217 10 35 345 247 3,324 108

Mesh vertices 293,556 3,880 4,652 99,383 69,749 346,819 174,445

Time (s) 2,608 21 166 2,720 2,092 6,647 821

Memory (Mb) 70.6 42.1 44.4 63.9 53.5 100 56.7

TABLE 2 Voxelization using TetGen (Si, 2015).

Species Global Local

Figure 2 Mouse

Figure 3 Mouse

Figure 10 Zebrafish

Figure 11A Mouse

Figure 11B Mouse

Figure 11C Drosophila

melanogaster

Figure 14 Mouse

In spite of this, acceptable performance can be obtained

for regular neuronal membrane mesh creations as shown by

the timings listed in Table 1 for the examples used in our

experiments. All the data are tested on a PC with a 2.9 GHz

Intel Core i7-10700 CPU (only 1 core is used) with 16 GB

memory. Although our approach is computation-intensive due

to its procedural deformation, very fewmemories are enough for

successful executions. Therefore, our system can be performed

on regular PCs.

For 3D simulations, our produced membrane

meshes can be directly passed into TetGen (Si, 2015) to

generate 3D tetrahedrons without any post-processing in

spite that post-processing such as laplacian smoothing

and global anisotropic analysis can be beneficial to

TetGen voxelization. In our experiments, seven of our

created surface meshes could be successfully voxelized

(Table 2).

Finally, we processed more than 200 neuronal morphology

data in batches from NeuroMorpho.Org for a more thorough

evaluation of our approach, and achieved a success rate of 90%.

In Table 3, attributes for both the morphology data and the

generated meshes are given. It is worth mentioning that all of the

produced meshes are manifold and watertight, with an average

vertex valence of 6.
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TABLE 3 Attributes of neuronal morphologies from NeuroMorpho.Org and produced membrane meshes averaged from groups of data.

Morphology attributes Membrane mesh attributes

Archives Species Brain

regions

# Models # Avg.

faces

Avg. face

areas

# Avg.

vertices

Avg.

valence

Manifold

(%)

Watertight

(%)

A. Mortensen Rat Neocortex 13 1,014,973 0.501 507,484 6 100.00 100.00

Aharon_Zuo Mouse Neocortex 12 1,063,122 0.934 531,562 6 100.00 100.00

Abrous Mouse Hippocampus 18 1,189,064 0.400 594,158 6 100.00 100.00

Acharya Mouse Hippocampus 15 1,303,338 0.728 674,744 6 100.00 100.00

Bock Drosophila

Melanogaster

Protocerebrum 15 1,875,781 0.270 959,308 6 100.00 100.00

Cardona Drosophila

Melanogaster

Protocerebrum 14 576,926 0.272 288,457 6 100.00 100.00

Baier Zebrafish Optic lobe 15 97,976 0.819 75,959 6 100.00 100.00

Borst Drosophila

Melanogaster

Optic lobe 20 877,115 3.226 438,454 6 100.00 100.00

Badea Mouse Retina 5 200,818 0.910 100,400 6 100.00 100.00

Baier Zebrafish Peripheral

nervous system

5 71,776 1.094 35,890 6 100.00 100.00

Adori Mouse Peripheral

nervous system

8 453,986 0.500 226,984 6 100.00 100.00

Badea Mouse Peripheral

nervous system

11 453,986 1.488 226,984 6 100.00 100.00

Almuhtasib Mouse Basal ganglia 14 1,764,502 0.276 1,596,530 6 100.00 100.00

Anderson Mouse Basal ganglia 5 843,365 0.340 421,684 6 100.00 100.00

Alzheimer Rat Basal ganglia 11 1,100,110 1.664 550,028 6 100.00 100.00

Arenkiel Mouse Main olfactory

bulb

5 502,111 0.284 251,068 6 100.00 100.00

Baier Zebrafish Main olfactory

bulb

5 287,455 0.844 143,726 6 100.00 100.00

Adke_

Carrasquillo

Mouse Amygdala 5 138,940 0.924 175,644 6 100.00 100.00

Argue Rat Amygdala 7 212,161 0.661 106,082 6 100.00 100.00

3.4. Conclusion and future work

This paper has presented a novel progressive approach for

robustly generating high-quality 3D neuron models based on

widely used point-and-diameter input of morphological

tracings, such as those available in public repositories

NeuroMorpho.Org. The final mesh is created by iteratively

evolving an initial soma along the neuron skeletons. The

adopted skeletal mapping policy assigns each vertex of the mesh

to a definite skeletal node, which enables an efficient query of

ROI. As described above, a sphere with uniformly distributed

vertices is set as the initial soma for subsequent evolution,

which performs dynamic local refinement, simplification and

convolution surface approximation to generate a smooth

neuronal membrane mesh with adaptive vertex density

distribution. Therefore, the whole neuronal surface is always

a closed 2D manifold mesh throughout all the evolution

stages. Due to the superposition property of the adopted

convolution surfaces, the soma surface can be automatically

created based on the embedded skeletons, which are connected

with each other at the soma. Actually the by-product of

bumps at branches assists to create a plump shape without

any special soma processing. In addition, to accelerate

the computation-intensive convolution field generation,

an analytical local convolution surface approximation is

employed to approximate the line-skeletons in the form of

point-and-diameter.

Neuronal membrane surfaces with high-quality meshes

and smooth branches can be robustly achieved using our

approach. Since the iterative deformation in our approach
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sacrifices the generation efficiency compared to a global

mesh creation, advantageous superposition of convolution

surfaces can be exploited to perform a “divide-and-conquer”

policy for the whole neuron surface mesh generation in

our future work. Moreover, a better soma can be modeled

based on advanced physical simulation and contour-constrained

implicit surface fitting. It is also worthwhile to extract

a more precise soma model from raw volume data and

use it as our initial evolution mesh. Finally, our created

mesh model is a 2D manifold surface, which can be

directly 3D printed for physical visualization and education

purposes.
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