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The goal of this study was to identify features in mouse electrocorticogram

recordings that indicate the depth of anesthesia as approximated by the

administered anesthetic dosage. Anesthetic depth in laboratory animals must

be precisely monitored and controlled. However, for the most common lab

species (mice) few indicators useful for monitoring anesthetic depth have been

established. We used electrocorticogram recordings in mice, coupled with

peripheral stimulation, in order to identify features of brain activity modulated

by isoflurane anesthesia and explored their usefulness in monitoring

anesthetic depth through machine learning techniques. Using a gradient

boosting regressor framework we identified interhemispheric somatosensory

coherence as the most informative and reliable electrocorticogram feature for

determining anesthetic depth, yielding good generalization and performance

overmany subjects. Knowing that interhemispheric somatosensory coherence

indicates the e�ectively administered isoflurane concentration is an important

step for establishing better anesthetic monitoring protocols and closed-loop

systems for animal surgeries.

KEYWORDS

depth of anesthesia, gradient boosting, cortico-cortical coherence, mouse,

somatosensory cortex (S1)

1. Introduction

General anesthesia is commonly used in surgical procedures and acute experiments

performed on laboratory animals in both fundamental and biomedical research.

Exposure to general anesthetic agents strongly perturbs multiple brain networks and can

have profound, lasting effects on the physiology of exposed animals (Franks, 2008; Bajwa

et al., 2018; Pal et al., 2020). In order to minimize both the acute and chronic effects

of anesthesia while also safeguarding the welfare of laboratory animals during surgery,

the exposure to anesthetic agents should be expertly balanced. Namely, the administered

anesthesia should be sufficient to maintain the animal in an unconscious state, while

still minimally dosed to reduce the anesthetic’s acute effect on brain function and its

longitudinal effect on general physiology.
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These anesthetic constraints are well-known in human

medicine where, to prevent post-operative complications,

general anesthesia should be titrated to avoid detrimental

physiological effects (Eger et al., 1965; Dumont, 2012). To

facilitate an anesthetic delivery that balances the demands

of interoperative awareness and adverse effects, a significant

amount of research has focused on measuring the human depth

of anesthesia (DoA) (Nguyen-Ky et al., 2012; Ferdous and

Kiber, 2014; Sadrawi et al., 2015). Such work has prominently

led to the development of the proprietary Bispectral Index

Score (BIS), which makes use of several electroencephalographic

parameters to estimate DoA, and has been established as the

predominant anesthetic monitor used during human surgeries

(Dumont, 2012). Other published approaches for human

DoA estimation rely on non-linear features extracted from

electroencephalographic measurements or evoked potentials

(Al-Kadi et al., 2013), which are used as inputs to traditional

machine learning algorithms or artificial neural networks (Li

et al., 2020; Abel et al., 2021).

While methods to estimate DoA in humans are well-

developed and validated, for laboratory animals, and in

particular mice, the most commonly used animal model

in biomedical research, specific techniques and findings

remain sparse (Hickman et al., 2017). Previous work has

investigated closed-loop anesthetic delivery in rats to control

the electroencephalogram-determined burst suppression,

a signature of inactivated brain states (Ching et al., 2013;

Yang et al., 2019). Another study has linked human DoA

techniques to viable methods in neonatal mice using

intracortical electrophysiology (Chini et al., 2019). More

recent research has helped to elucidate the signatures of

anesthesia induced effects on electrocorticogram recordings

in rats (Wang et al., 2022). Despite prior work, a gap remains

in the understanding of DoA monitoring in adult mice and

of the specific features of electroencephalographic signals

beyond burst suppression that are modulated by anesthesia.

Further research has investigated alternative physiological

measures for their usefulness in monitoring anesthetic depth,

however heart rate and blood pressure have been shown to less

accurately assess DoA than the bispectral index, suggesting

that methods for monitoring anesthetic depth in mice based

upon electroencephalographic signals may be most effective

(Jaber et al., 2015).

In the present study, we want to address this lack of robust

indicators for monitoring DoA in mice. We set out to identify

features of brain activity that are modulated by anesthetic

depth. While performing electrocorticogram recordings with

concurrent sensory stimulation inmice, we systematically varied

the anesthetic depth by changing the isoflurane concentration.

Different features of the electrocorticograms were then provided

to a machine learning framework to estimate the instantaneous

anesthetic depth. Our findings elucidate that interhemispheric

somatosensory coherence varies with the isoflurane anesthesia,

that it has good predictive capacity and is less subject to

interindividual variability. These properties of interhemispheric

somatosensory coherence make it a useful feature for designing

a future DoA monitoring systems in mouse models.

2. Results

Acute experiments were conducted on eleven adult female

mice. Two epidural electrocorticogram (ECoG) electrodes were

placed above the right- and left- hemisphere somatosensory

cortices (see Section 4). Throughout the experiment, stimulation

of the right whisker pad was used to evoke somatosensory

responses, yielding the right- and left- hemispheres as the

ipsi- and contra- lateral hemispheres to simulation, respectively.

Concurrent to the ECoG recordings and somatosensory

stimulation, animals were subjected to an anesthesia protocol

that varied the concentration of administered isoflurane in

consecutive blocks of approximately 15 minute duration

(Figures 1A,B). Signal features were extracted from both ECoG

channels, tested for anesthetic modulation, and ultimately

provided as input to a gradient boosting regressor trained

to estimate two proxies of anesthetic depth, namely the

administered isoflurane concentration and the evoked response

amplitude. The regressor was trained and evaluated across data

collected from all experimental animals in a leave-one-out cross-

validation scheme, showing good generalization errors across

the entire population.

2.1. Electrocorticogram feature qualities

Statistical and spectral features were extracted from the

ECoG signals and the effects of varying the administered

isoflurane concentration were evaluated (Figures 1C,D). An

exhaustive list of the tested features and their median values

across all administered isoflurane concentrations, as well as

the statistical significances of their anesthetic modulation,

can be found in Supplementary Tables 1, 2. Similar to results

in humans (Ching et al., 2012; Akeju et al., 2014; Liang

et al., 2015), several features showed significant dependency on

the administered isoflurane concentration, specifically: sample

entropy (p = 5.35× 10−5), interhemispheric somatosensory

coherence (p = 4.08× 10−5), Lempel-Ziv complexity

(LZC) (p = 1.93× 10−3), and the burst suppression ratio

(p = 9.04× 10−3).

The interhemispheric somatosensory coherence between

the two somatosensory cortex channels within the spectrum

of 5Hz to 40Hz, comprising the theta, alpha, beta, and

low gamma bands, significantly increases with administered

isoflurane concentration (see Figure 2A). Important for DoA
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FIGURE 1

Electrocorticogram signals are extracted for estimation of anesthetic depth. (A) Schematic overview of the recording setup. Two electrodes over

the somatosensory cortices (CH1 and CH2) were measured against a common reference over cerebellum (Ref), while stimulating the right

whiskers and varying the isoflurane concentration. The gray shaded bars in the “Vaporizer” inset mark the first 5 min of each given isoflurane

concentration segment which were excluded from statistical analysis. (B) (Top) Craniotomy over barrel cortices. The Ag/AgCl electrodes were

placed directly on the dura, then covered in phosphate-bu�ered saline based agar and two component silicone. (Bottom) Partial craniotomy

over cerebellum for the reference electrode, drilled to 20% thickness, and covered as above. (C) Example ECoG traces recorded using the

OpenBCI during di�erent administered isoflurane concentrations. Red shaded areas denote the [−0.2, 0.5 s] interval around a stimulus. (D) The

evoked responses averaged over all trials in each isoflurane concentration block, zero-aligned at t = 0. The shaded area indicates the 2σ-range

of the standard error of the mean.

estimation, the interhemispheric somatosensory coherence

exhibits highly significant differences across all tested isoflurane

regimes, indicating a robust modulation across the spectrum of

tested dosages.

As depicted in Figure 2B, increasing administered

isoflurane concentration affects the burst suppression ratio

by inducing more extended off (i.e., suppression) times.

Increased offtime corresponding to increased administered

isoflurane concentrations can be observed in both the contra-

and ipsilateral hemispheres, though the former shows a

higher statistical significance (p = 4.31× 10−3). Notably,

while the hemisphere contralateral to stimulation exhibits

a significant dynamic between offtime and administered

anesthetic concentration, the on (i.e., bursting) times are

not significantly effected by the administered anesthetic

concentration (see Supplementary Table 1), indicating that the

offtime measurement may be a more effective indicator of DoA

than the overall burst suppression ratio of on- to off- times.

Both LZC (i.e., the compressibility of the signal) and sample

entropy values (i.e., the randomness of the signal) peak for

the lowest administered isoflurane concentration of 1.0%,

and are significantly different from the values observed at

the higher concentrations of 1.5 and 2.3% (p ≤ 1.28× 10−2

for LZC and p ≤ 2.91× 10−3 for sample entropy, illustrated

in Figures 2C,D). The increase of almost 100% for sample

entropy and 20% to 30% for LZC at lower anesthetic levels

is observed in the electrode channels both contralateral

and ipsilateral to the location of whisker stimulation

(Figures 2C,D).

The distribution of all four of these features are

appreciably separated across different administered

isoflurane concentrations, rendering them useful measures
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FIGURE 2

ECoG signal features display modulation to administered isoflurane concentrations. The leftmost column depicts representative examples of the

features found to be most modulated by changes in administered isoflurane concentrations. The middle column depicts violin plots of the

respective feature averages over animals across isoflurane concentrations. The rightmost column depicts violin plots of the respective standard

deviation within the di�erent isoflurane segments, relative to the mean value in the segment. All violin plots display the minimum, maximum,

and median values of the distributions. The regions highlighted in red in the left panels depicts the data used in further analysis shown in the

right panels. (A) Interhemispheric somatosensory coherence based on the unfiltered raw-data. The traces illustrate median and 95% confidence

interval calculated over all isoflurane blocks (right panels: 5–40 Hz). (B) Bursting Patterns. Shaded regions in representative example depict

signal portions classified as burst. (C) Lempel-Ziv Complexity. Representative examples of signal segments with maximum and minimum LZC.

(D) Sample Entropy. Representative examples of signal segments with maximum and minimum sample entropy. Significance testing computed

with two-sided Mann–Whitney U-test across isoflurane concentrations with three Benjamini-Hochberg False Detection Rate controls

(Benjamini and Hochberg, 1995). Significant results are denoted with ∗p < 0.05, ∗∗p < 0.01. Precise p-values are listed in Supplementary Table 1.

for robust estimation of anesthetic depth. However, while

the interhemispheric somatosensory coherence values clearly

distinguish the three different isoflurane regimes, sample

entropy, LZC, and the burst suppression ratio do not show

significant differences between the two highest concentrations

of administered isoflurane (1.5 and 2.3%). Although the
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aforementioned features displayed consistent modulation

by the administered isoflurane concentration, others we

tested did not reliably vary with the anesthesia protocol

(Supplementary Tables 1, 2). Aligned with prior research in

rats (Antunes et al., 2003), modulation of the spectral edge

frequency and 1/f -slope was not detected in our population of

mice. We observed that the absolute power density reduces with

increasing anesthesia (Supplementary Table 2), but is subject

A

B

E F G

C D

FIGURE 3

ECoG features serve as input to a gradient boosting regressor to successfully estimate DoA. Feature importances indicate interhemispheric

somatosensory coherence as a critical DoA readout. (A) Overview of feature extraction and estimator workflow. Notch and high-pass filtered

signal traces were extracted in 10 s blocks, signal features were calculated (FE), and then the three most recent consecutive blocks provided as

input to estimate a target variable ŷ via a gradient boosting ensemble. (B) Example of the estimation of isoflurane concentration. GT denotes the

measured ground-truth. The filled area under the predicted curve shows the standard error of the past minute. (C) Distribution of the Mean

Absolute estimation Error (MAE) over all animals in each isoflurane regime, corresponding to estimation of the isoflurane concentration. (D)

Feature importance over all folds. The interhemispheric somatosensory coherences are the most important features, over almost all folds,

corresponding to estimation of the isoflurane concentration. (E) Example estimation of the evoked response attenuation (ERA). GT denotes the

measured ground-truth. The filled area under the predicted curve shows the standard error of the past minute. (F) MAE over all folds or animals

(n = 11), corresponding to estimation of the ERA. (G) Distribution of the feature importances over all animals, corresponding to estimation of

the ERA. All the violin plots indicate the minimum, maximum and median values.
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to large inter-animal variations (a standard deviation larger

than 62% of the mean), likely rendering these frequency related

features ineffective in identifying consistent trends across

animals without prior baseline knowledge.

2.2. Estimator performance

To further test the power of the ECoG features to estimate

the instantaneous anesthetic depth, the extracted values were

provided as input to a customized machine learning framework.

A gradient boosting regressor with 100 boosting steps and

maximum tree-depth of three was trained with the values of

all of the previously described extracted features from the three

most recent 10 s recording windows (t-0: 0 s to −10 s, t-1:

−10 s to −20 s, t-2: −20 s to −30 s) as inputs and targeted

two measures of anesthetic depth, namely, the administered

isoflurane concentration and the evoked response amplitude

(depicted in Figure 3A). Gradient boosting was chosen in

a pre-trial review among Support Vector Regression (SVR)

with Gaussian kernels, SVR with linear kernels, K-nearest

neighbors and standard linear regression after exhibiting the best

performance. Estimators for each anesthetic depth target were

each trained eleven times, using a leave-one-out cross-validation

scheme (i.e., for each iteration, one animal was removed

from the whole dataset before training and the estimation

performance evaluated against that animal). Individual feature

importances (measured by the Gini gain, i.e., the total estimation

improvement achieved by inclusion of the feature) were then

extracted and their statistics over all 11-folds were considered.

Stable estimation should yield similar feature importances

over all folds. Such stability was observed when estimating

the administered isoflurane concentration, however, estimation

across folds was less reliable when the regressor was trained on

evoked response amplitude, as shown in Figure 3G.

The administered isoflurane concentration was selected as

the first target variable for DoA estimation, yielding estimators

capable of inferring the effective isoflurane concentration.

Similar to the concepts underlying the bispectral index score

used in human surgeries, training the gradient boosting

regressor to estimate the administered isoflurane concentration

over a population of mice results in an estimate reflective

of the ECoG feature values expressed by the average mouse

at the specified isoflurane concentration. Furthermore, under

certain assumptions, estimating the administered isoflurane

concentration is similar to estimating the true depth of

anesthesia (see Section 4 for mathematical derivations).

Estimation of the administered isoflurane concentration

performed robustly over all animals [mean absolute error over

folds: 0.238 ± 0.076 (mean ± std), R2-score: 0.576 ± 0.289].

Since the test set target variable is binned into three discrete

isoflurane values, treating the isoflurane regression results as

classification via nearest-neighbor quantization additionally

allows for evaluation of standard multi-class classification

metrics. Averaging over all One-vs.-All pairs yields an accuracy

of 0.715 ± 0.134 (mean ± std), an F1-score of 0.699 ±

0.156, a precision of 0.780 ± 0.088 and recall of 0.714 ±

0.134. Figure 3B depicts the regression results over time for an

example animal and demonstrates that the estimation quickly

captures changes in administered isoflurane concentration. The

stability of estimating this variable is further demonstrated

by the low variance in estimation performance over all 11-

folds, particularly for administered isoflurane concentrations

of 1.0 and 1.5%, depicted in Figure 3C. Figure 3D displays

the feature importance extracted from all 11-folds. The high

accuracy achieved for estimating the administered isoflurane

concentration establishes ourmethodology is a proof-of-concept

depth of anesthesia monitoring system for mice.

Analysis of the feature importances using the Gini gain

shows that the interhemispheric somatosensory coherence

between the two barrel cortex electrodes is critical for estimation,

with the interhemispheric somatosensory coherence from the

oldest time block (i.e., t − 2, representing the window 30 − 20

s before current time, from Figure 3D) exhibiting the strongest

importance for estimation. Sample entropy in the barrel cortex

electrode located ipsilateral to the whisker stimulation was also

important for estimation, again with the oldest values (t − 2)

displaying highest importance. Finally, for estimation of the

administered isoflurane concentration, the burst suppression

ratio for the ECoG channel contralateral to the whisker

stimulation hemisphere demonstrated to be useful.

To rule out that the estimators use elapsed time as

a hidden variable and subsequently learn a static map

from elapsed time to isoflurane concentration, an identical

gradient-boosting regressor was trained to estimate elapsed

time. The performance-metrics of both estimators were then

tested for correlation, yielding no significant correlation (see

Supplementary Figures 4, 5).

Evoked response amplitude was selected as an alternative

target variable for DoA estimation in order to test for properties

of anesthetic depth systematically reflected in the neural

response to peripheral stimulation. To perform this estimation,

rather than using the raw maximum evoked response amplitude

(as would be measured in volts), a unit-less ratio of the

evoked response amplitude, as recorded from the ECoG channel

contralateral to peripheral stimulation, was calculated. The unit-

less ratio was computed using a moving-window average of the

stimulus-by-stimulusmaximum evoked response amplitude and

dividing these averaged values across isoflurane concentration

blocks by those computed during all 1.0% isoflurane blocks.

If the evoked response amplitude would scale similarly across

varied anesthetic depths between animals, an accurate, stable

estimation could be achieved.

Training the gradient boosting regressor to estimate the

evoked response amplitude proved less accurate and robust

[mean absolute error over folds: 0.446 ± 0.252 (mean ± std),
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R2-score: −1.103 ± 2.009, mean absolute errors depicted in

Figure 3F]. While the estimation was accurate for several folds,

or several animals, the results did not generalize well across

all folds (example regression results for one fold depicted in

Figure 3E). This irregularity can be observed in Figure 3G, which

depicts highly variable feature importance.

3. Discussion

Here we have investigated the effect of varying

concentrations of administered isoflurane anesthesia on

electrocorticogram features and explored the capacity of

these features to estimate the instantaneous DoA in mice.

Our results show that many of the important features

previously identified in human models translate also to mouse

models, suggesting that elements of techniques developed for

monitoring of human DoA may further warrant incorporation

into systems targeting laboratory animals. Our analysis

confirms the modulation of interhemispheric somatosensory

coherence (Michelson and Kozai, 2018), burst suppression

ratio (Tonner and Bein, 2006), Lempel-Ziv complexity, and

sample entropy (Liang et al., 2015) through administered

isoflurane concentration. However, we observed a number

of features that do not appear to be significantly effected by

anesthesia. Notably, the spectral measures of 1/f -slope (Antunes

et al., 2003; Barter et al., 2005), spectral edge frequencies and

absolute power distributions either show no modulation

or high inter-animal variability, rendering them unsuitable

for estimation.

Isoflurane is one of the most commonly used inhalable

anesthetic agents for laboratory animals and has an inhibitory

effect on excitatory neurons via a number of molecular

mechanisms (de Sousa et al., 2000; Franks, 2008). This reduction

in excitation results in a reduced stimulation of inhibitory

interneurons which later causes a depletion of endogenous

inhibition (Ferron et al., 2009). Such cycles of increased and

reduced inhibition are manifest in the burst suppression ratio,

where dose-dependent isoflurane delivery modulates the ratio of

on- and off-times in mice (Brown et al., 2018). Our experiments

also reveal a dependence between administered isoflurane

concentrations and the burst suppression ratio, however the

computed ratio values exhibit significant differences only

between the lowest administered isoflurane concentration and

the higher two concentrations (e.g., 1 vs. 1.5 and 2.3%). Our

data indicates that the burst suppression ratio is not a strong

indicator of anesthetic depth at higher DoA. The mechanisms

of isoflurane that contribute to the burst suppression ratio

similarly impact the Lempel Ziv Complexity and Sample

Entropy features, where induced extended offtimes create a

more stable, compressible signal. Similar to our observation in

the burst suppression ratio, both of these complexity features

exhibit stronger significance between 1 vs. 1.5 and 2.3%, again

yielding their values less useful in distinguishing between higher

levels of anesthetic depth.

As indicated by the feature importances in Figure 3D,

interhemispheric somatosensory coherence is a robust measure

for estimating depth of anesthesia, also between higher

concentrations of administered isoflurane. The variation

observed in interhemispheric somatosensory coherence from

5 to 40 Hz, comprising the theta, alpha, beta, and low gamma

bands, across different anesthetic depths has, to the best of our

knowledge, not been reported in recordings made from the

somatosensory cortices. Previous reports in humans and rats

have identified modulation of alpha coherence in recordings

made from somatosensory and frontal cortices under propofol

anesthesia (Cimenser et al., 2011; Supp et al., 2011; Baker et al.,

2014). Further studies using isoflurane in rats have indicated

that coherence between primary motor and visual cortices

during peripheral sensory stimulation declined as delivered

anesthetic concentrations increased (Imas et al., 2006). Our

results in recordings made from both hemispheres of the

somatosensory cortex may reflect that increased isoflurane

administration enforces more phase-coherence between

thalamocortical projections to the two sensory hemispheres

(Ching et al., 2010). While our experiments cannot reveal the

precise mechanisms of this isoflurane induced coherence, the

resulting effect proves to be a critical component for estimating

DoA across all depths.

Using all of the aforementioned features as input to

the gradient boosting regressor yielded poor performance

when the estimation of the evoked response amplitude

was targeted. This poor performance could be explained

by the intra- and inter-animal variability observed in the

somatosensory evoked response. Previous research investigating

the effects of anesthesia in mouse models identified that

the average amplitudes of visual evoked potentials were not

significantly affected by variations in administered isoflurane

concentration and that evoked responses exhibited large

trial-by-trial variability within delivered concentration blocks

(Aggarwal et al., 2019). Our results, coupled with these previous

findings, indicate that evoked responses recorded from primary

sensory cortices across sensory modalities may not be useful

readouts for DoA.

The administered isoflurane concentration estimator

performs reliably over all animals as shown in Figures 3B,C. All

of the identified features and estimators can be evaluated with a

low latency of 10 s. This evaluation latency timemakes the use of

the identified features suitable for integration into closed-loop

anesthetic delivery (CLAD) systems (Ching et al., 2013; Yang

et al., 2019), which could target specific variables reflective of

the DoA. Further enhancements could be made to estimator

performance via a more exhaustive exploration of possible

signal features, such as the bispectral coherence (Li et al., 2012),

or by the implementation of neural networks to replace manual

feature extraction (Sadrawi et al., 2015; Li et al., 2020).
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The use of the identified electrocorticogram signal features

exhibitingmodulation by anesthesia in DoAmonitoring systems

for mice could provide numerous improvements to animal

welfare and biomedical research, ultimately allowing for more

precise experimental control and informed adjustment of the

administered anesthesia. A potential future scenario would be

an (clinical) anesthesia monitoring systems that continuously

measures the effectively administered isoflurane anesthesia that

is independent of the individual subject. This may be particular

useful in scenarios where the drug dosage administration is

not well controlled or prone to miscalculation. However, such

a monitoring system certainly can go beyond and predict the

actual anesthetic depth when validated with other physiological

parameters. The development of such a monitoring system

would require testing the suitability of the identified ECoG signal

features obtained through less invasive electroencephalography

(EEG) recording methods and testing whether these results

generalize to different experimental paradigms (e.g., without

whisker stimuli or using a different anesthetic agent). Further,

we validated our system using isoflurane anesthesia, the most

common and recommended modality for acute recordings and

recovery procedures in experimental mice (Gargiulo et al.,

2012). A valuable next step would be to extend this to other

anesthetic regimens, a finding which would not only allow

standardization of anesthetic depth across experiments, but also

shed light upon the neuronal mechanisms involved in anesthetic

induced unconsciousness (Franks, 2008). Finally, a translation

of our results into a clinical system would require to test if

interhemispheric somatosensory coherence is a predictive DoA

feature for different pathological conditions as well. Such a

validation and new training of the network may be, in particular,

necessary for brain disorders which are known to affect the

electrocorticogram and EEG including neurodegenerative (e.g.,

in different mouse models of Alzheimer’s diseases; Kent et al.,

2018), neurological (e.g., after striatal stroke in mice; Baumann

et al., 2006), and neuropsychiatric conditions (e.g., SAPAP3-/-

mice which are a model for anxiety and obsessive compulsive

disorders; Lei et al., 2019).

4. Methods

4.1. Animal experiments

In this study, eleven adult female C57BL/6J mice (age

98.0± 19.3 days, weight 21.00± 1.83 g), housed in enriched

cages of four mice in husbandry facilities with a 12-h inverted

light/dark cycle, supplied by Charles River Laboratories

were used for acute experiments. All experimental and

surgical procedures were approved by the local veterinary

authorities and corresponding ethics committees of the

Canton Zurich, Switzerland, and were carried out in

accordance with the guidelines published in the European

Communities Council Directive of November 24, 1986

(86/609/EEC). This study is reported in accordance with

ARRIVE guidelines.

Mice were briefly induced with 3% isoflurane in oxygen

anesthesia and injected with 1 mg/kg Meloxicam (Boehringer

Ingelheim, Ingelheim am Rhein, Germany) as analgesic.

Remaining surgical procedures were completed under 2%

isoflurane in oxygen supplied at a 1 L/s flow rate. Body

temperature was regulated at 37 ◦C with a homeothermic

blanket control unit (Harvard Apparatus, Holliston,

Massachusetts). Animals were mounted in a stereotactic

frame and the scalp was removed to expose the skull.

Three silver electrodes were then positioned onto the

skull and affixed using dental cement (Dentsply Sirona, York,

Pennsylvania). Electrodes were manufactured with 250 µm

thin Teflon (PTFE) coated silver wire (Goodfellow Cambridge

Limited, Huntingdon, England). Teflon coating was removed to

expose the wire end, which was subsequently molten to a sphere

(diameter 500 µm) and chlorided to improve electrochemical

stability (Geddes et al., 1969).

Two craniotomies over the barrel field of primary

somatosensory cortex of both hemispheres (3.5mm lateral

and 1.5mm caudal of bregma) were performed to expose an

1 mm diameter circular region of intact dura. A third partial

craniotomy was drilled over the cerebellar region (2mm lateral

and caudal of lambda) until 80% of the skull was removed.

All three rounded electrode tips were then placed into the

craniotomies, with both barrel cortex electrodes making contact

with the dura and the reference electrode contacting the thinned

skull above cerebellum. Craniotomies and electrode tips were

covered with a phosphate buffered saline agar (PBS) mixture

(2% PBS) (Sigma-Aldrich, St. Louis, Missouri). The agar was

subsequently covered with a two-component silicone (World

Precision Instruments, Sarasota, Florida) to prevent drying

of the electrode sites. Silicone deposits over each craniotomy

were isolated from one another to avoid electrical connectivity

between recording sites. The skull surface was finally rinsed

with de-ionized water to prevent parallel resistances that

could interfere with the individual biological signals. Electrode

impedances were typically around 10 k� to 20 k� and usually

increased slightly during the recordings.

Multiple whiskers from the right hemisphere vibrissal field

(rows B-D, arcs 1-3) were then secured around a glass capillary

that was then positioned immediately tangential to the whisker

pads. The capillary was affixed to a piezo-bending actuator

(Piezo Systems, Woburn, Massachusetts) driven by a controller

with a maximum output voltage of 150V (Thorlabs, Newton,

New Jersey). Whisker stimulation sequences were generated

using custom LabVIEW code (National Instruments, Austin,

Texas), which produced an analog waveform with a sample

rate of 200 kHz and a resolution of 16 bits. The mechanical

waveforms at the capillary tip were single 120Hz raised cosine

pulses (8.3ms duration) with an amplitude of 300 µm (1.72◦)
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and a peak velocity of 113.1mm s−1 (648.8 ◦ s−1) (Musall et al.,

2017), confirmed using a 0.1 µm resolution laser displacement

sensor (Micro-Epsilon, Ortenburg, Germany). Throughout the

recording, whiskers were repeatedly deflected with a 1Hz

train containing 2 s stimulus-on and stimulus-off periods

(Figure 1A). Four of the eleven mice received tail pinches

delivered viaHoffman clamp to produce data used in subsequent

experiments. All time periods containing tail pinch stimulation

were removed from the analyzed dataset.

Contemporaneous with the whisker stimulation and

electrocorticogram recording, an anesthesia protocol was

applied to achieve stable conditions at a variety of isoflurane

concentrations. The protocol consisted of 15 min segments

of isoflurane concentration percentages delivered in the

following sequence: starting from 1.5%, then transitioning

to the following segments: 2.3, 1.0, 1.5, 1.0, 2.3, and 1.5%.

Isoflurane concentrations were selected to span a broad range of

depths while remaining below dosages of 1.5 minimum alveolar

concentrations as determined in mice (Cesarovic et al., 2010)

and represent values of inhalable isoflurane recommended for

maintenance of an anesthetized state in mice (Gargiulo et al.,

2012). We used the inhalable isoflurane anesthesia, as it allows

maximum temporal control of anesthetic depth over other

injectable alternatives (Tremoleda et al., 2012). From each 15

min segment of a given isoflurane concentration, the first 5 min

were excluded from the statistical analysis, yielding from each

animal a dataset of six segments of 10 min duration (see gray

bars in the inset “Vaporizer” of Figure 1A).

The completed setup was then enclosed in grounded

aluminum foil for improved shielding against electromagnetic

influences (e.g., from the proximal piezoelectric stimulators).

Recordings were made using an open-source neural data

acquisition platform (OpenBCI, Brooklyn, New York) with a

gain of 24x and sample rate of 250Hz. For all subsequent

analysis, the gain factor was removed from the raw data,

consequently all data reported is input referred. Electrode signals

and whisker stimulation onsets were communicated to the

recording computer via Bluetooth connection.

Data collected from all animals was considered to be in the

experimental group. In order to best capture the unique inter-

animal dynamics induced by the dosage of isoflurane anesthesia,

data collected from all animals was a priori selected for inclusion

in analysis.

4.2. Feature extraction

The recording setup yielded two electrocorticogram

channels obtained from the barrel cortex electrodes located

both ipsilateral and contralateral to the hemisphere of whisker

stimulation. Signal traces were preprocessed using a forward-

backward notch filter to remove line noise at 50Hz with a

quality factor Q = 30 and a forward-backward first order

Butterworth high-pass filter above 0.1Hz to eliminate signal

drift. Both raw ECoG signals were extracted from each 15min

isoflurane concentration block. The first 5 min of each block

were excluded from analysis such as to ignore the transient

effects of the previous concentration block. The following

spectral and time domain features of interest were then

extracted from consecutive, non-overlapping 10 s sequences

from each signal block.

Spectral features extracted from both electrophysiology

channels included the spectral edge frequency below which 95%

of the spectral power was contained (SEF 95) and the 1/f -

slope fit over the frequency range 20Hz to 40Hz. Additionally,

the interhemispheric somatosensory coherence was calculated

between the two electrophysiology channels and averaged over

the frequency range 5Hz to 40Hz. Finally, spectral power

content in multiple EEG bands (Newson and Thiagarajan, 2019)

were extracted, namely in the δ (0.1Hz to 4Hz), θ (4Hz to

8Hz), α (8Hz to 13Hz), β (13Hz to 30Hz), and γ (above

30Hz) bands. All spectral features are based on Welch’s power

spectral density estimation calculated independently over each

10 s window.

To complement the spectral features, a variety of time

domain features were identified for further use in the

algorithmic determination of anesthetic depth. The sample

entropy was computed over signal subsequences of 80ms

length. As a measure of compressibility of the electrophysiology

channels, a binary sequence was extracted from the voltage

traces by thresholding them against the median value in every

signal block, and its Lempel-Ziv complexity calculated. The

burst suppression ratio was calculated over the entire isoflurane

concentration block to quantify the ratio of periods of high and

low signal activity.

The described features were tested for modulation by

isoflurane through averaging them over segments of equal

isoflurane concentration for each mouse. The significance of

this modulation was quantified by executing a Mann–Whitney

U-Test for every pair of unequal isoflurane concentrations

for each feature. To correct for multiple comparisons, a

Benjamini-Hochberg False Detection Rate control (Benjamini

andHochberg, 1995) has been applied. Further details on feature

calculations can be found in Supplementary material.

4.3. Estimation

As anesthetic depth is a value on a continuous spectrum, we

perform a regression analysis to identify the current anesthetic

state of the animal based on the extracted features. All extracted

features were provided as inputs to a gradient boosting regressor

implemented by the python scikit-learn package (Pedregosa

et al., 2011). Such gradient boosting algorithms combine weak
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estimators gm into a strong estimator Gm via superposition:

GM(x) =

M
∑

m=1

wmgm(x) (1)

with w ∈ R
m weighting the individual estimators. Here the

individual estimators are chosen to be shallow decision trees

(with a maximum depth of three).

A decision tree is a binary tree whose leaf nodes are assigned

a real valued number—the estimation. On every non-leaf node,

a decision is made what child node to traverse to, based on

a single feature and a threshold for that feature. Estimation

using decision trees is thus a simple tree traversal, returning the

value assigned to the leaf. In the training process, the optimal

feature and threshold is determined for every node by iterating

through all possible features, determining the optimal threshold

(which can be done computationally efficient), and greedily

choosing the feature and threshold that minimizes the error

(Hastie et al., 2009). The decrease in error after the split based on

this feature is tracked globally, which (summed over all decision

trees and normalized over all features) is represented by the Gini

gain computed in feature importance calculations (Breiman

et al., 1983). In gradient boosting regression, every successive

estimator is trained on the residual error of the superposition

of all previous estimators, resulting in successively improved

overall loss (Hastie et al., 2009).

Two target variables for the estimators were used, namely the

administered isoflurane concentration and the evoked response

amplitude. As input, the estimator was provided the values of

each feature x in the set of all extracted features x described

above at three consecutive 10 s sub-sequences, yielding a

dataset of

D =
{

([x0, x1, x2], y2), ..., ([xN−2, xN−1, xN ], yN )
}

(2)

where xn represents the feature vector at the n-th 10 s sub-

sequence, and y represents the anesthetic depth, given as either

the administered isoflurane concentration of evoked response

amplitude, in the same sub-sequence. For analysis, the datasets

of all n = 11 mice were typically concatenated into a

single dataset.

Using the datasets acquired from the n = 11 mice,

leave-one-out cross-validation was performed, with each fold

excluding the dataset recorded from one animal. The estimator

was trained on the remaining n = 10 datasets, and evaluated

on the excluded test animal, yielding an estimation of the

generalization error. The training and evaluation set for the

estimator for the i-th fold is thus:

Deval,i =













xi,0 xi,1 xi,2 yi,2

xi,1 xi,2 xi,3 yi,3
...

...
...

...

xi,Ni−2 xi,Ni−1 xi,Ni , yi,Ni













(3)

Dtrain,i =









































x0,0 x0,1 x0,2 y0,2

x0,1 x0,2 x0,3 y0,3
...

...
...

...

x0,N0−2 x0,N0−1 x0,N0 , y0,N0

x1,0 x1,1 x1,2 y1,2
...

...
...

...

x1,N1−2 x1,N1−1 x1,N1 , y1,N1

...
...

...
...

xM,NM−2 xM,NM−1 xM,NM , yM,NM









































\ Deval,i

(4)

xm,n denotes the feature vector of the n-th block from the m-th

mouse, ym,n likewise the target variable on block n of mouse

m. Nm denotes the number of 10 s blocks in the recording of

mousem.

While the administered isoflurane concentration was

binned into the discrete values 1.0,1.5,2.3 in our experimental

protocol, a regression approach was nevertheless preferred to

classification, in order to capture the continuous nature of

anesthetic depth and to better gauge the promptness of response

without delays due to the quantization inherent to classification.

Therefore, for estimation of the administered isoflurane, a

surrogate classification metric has been used, by binning the

estimated effective isoflurane concentration into the three bins

1.0, 1.5, 2.3 via nearest-neighbor quantization and calculating

the 3-class classification scores with averaging over all One-vs.-

All pairs.

To rule out that the regression framework is merely

estimating the elapsed time as a hidden variable, and from that

a linear map to the isoflurane curve, the following approach

has been employed: an identical estimator is trained not on

isoflurane or Evoked Response Attenuation (ERA), but on the

elapsed time as ground-truth. Its R2-Score is then correlated

using Spearmans R, to see whether good performance on time-

estimation will also yield good estimation of isoflurane or ERA.

With this approach an estimator is established, capable of

making anesthetic depth estimations by requiring a total of only

30 s of feature data for estimation, with aminimal latency of 10 s.

4.3.1. Estimation for true depth of anesthesia

Estimating the administered isoflurane concentration can

be understood as an anesthetic depth estimation similar to the

bispectral index score. A population of mice has an average

reaction to any given isoflurane concentration. Training over

enough data yields an estimator that assigns the most probable

isoflurane concentration at which the average mouse (over the

training population) would have the observed reaction. We

can further show that, with certain assumptions, estimating

isoflurane concentration is equivalent to estimating the true

depth of anesthesia. We do this by modeling the DoA problem

as a Bayesian network, with probability density function
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f (EF, d, c) = f (EF|d) · f (d|c) · f (c) where EF is the extracted features,

d the true depth of anesthesia (which is a hidden variable), and c

the administered isoflurane concentration.

An optimal estimator (minimizing a square loss), which has

perfect knowledge of the density f (EF, d, c), will estimate E[d|EF]

(Hastie et al., 2009). Since d is a hidden variable, we have no way

to train on it, and thus settle on estimatingE[c|EF]. How does this

surrogate compare to the optimal estimation?

E[c|EF] =

∫

c
c · f (c|EF)dc (5)

This can be expanded if we marginalize over the hidden

variable d, and by applying the Bayes rule we get:

=

∫

c

∫

d
c · f (c|d)f (d|EF)dddc (6)

Swapping the integrals results in an inner expectation:

=

∫

d
Ec|d[c|d] · f (d|EF)dd (7)

= Ed|EF

[

Ec|d[c|d]
∣

∣EF
]

(8)

We can see that what separates this estimator from the

optimal one is a transformation from anesthetic depth to the

average isoflurane concentration h : d 7→ c, h(d) = E[c|d].

Assuming that h is sufficiently linear where f (d|EF) has most of

its support, we can apply the linearity of the expectation and get

the following approximation:

= Ed|EF

[

h(d)
∣

∣EF
]

(9)

≈ h
(

Ed|EF

[

d|EF
]

)

(10)

It is thus approximately a linear transformation of the

optimal estimation.

We estimate that the local linearity of E[c|d] should be

fulfilled for reasonable values of d, i.e., between very high

anesthetic depths and awake state.
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