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Introduction: Conventional MRI is routinely used for the characterization

of pathological changes in multiple sclerosis (MS), but due to its lack of

specificity is unable to provide accurate prognoses, explain disease heterogeneity

and reconcile the gap between observed clinical symptoms and radiological

evidence. Quantitative MRI provides measures of physiological abnormalities,

otherwise invisible to conventional MRI, that correlate with MS severity. Analyzing

quantitative MRI measures through machine learning techniques has been shown

to improve the understanding of the underlying disease by better delineating its

alteration patterns.

Methods: In this retrospective study, a cohort of healthy controls (HC) and MS

patients with di�erent subtypes, followed up 15 years from clinically isolated

syndrome (CIS), was analyzed to produce a multi-modal set of quantitative MRI

features encompassing relaxometry, microstructure, sodium ion concentration,

and tissue volumetry. Random forest classifiers were used to train a model able to

discriminate between HC, CIS, relapsing remitting (RR) and secondary progressive

(SP) MS patients based on these features and, for each classification task, to identify

the relative contribution of each MRI-derived tissue property to the classification

task itself.

Results and discussion: Average classification accuracy scores of 99 and

95% were obtained when discriminating HC and CIS vs. SP, respectively;

82 and 83% for HC and CIS vs. RR; 76% for RR vs. SP, and 79% for

HC vs. CIS. Di�erent patterns of alterations were observed for each

classification task, o�ering key insights in the understanding of MS phenotypes
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pathophysiology: atrophy and relaxometry emerged particularly in the

classification of HC and CIS vs. MS, relaxometry within lesions in RR vs. SP,

sodium ion concentration in HC vs. CIS, and microstructural alterations were

involved across all tasks.

KEYWORDS

MRI, multiple sclerosis, quantitative, multi-modal, di�usion, sodium, machine learning,

random forest

1. Introduction

Multiple sclerosis (MS) is an immune-mediated, inflammatory,

neurodegenerative disease of the central nervous system

characterized by inflammatory demyelination and heterogeneous

accrual of physical disability (Lucchinetti et al., 2000). The

onset is determined by the first inflammatory episode suggestive

of MS, referred to as clinically isolated syndrome (CIS), with

CIS being recognized as the first clinical instance in the MS

spectrum (Lublin et al., 2014). Further neurological symptoms may

lead to a clinically defined diagnosis, as determined by the updated

McDonald criteria (Thompson et al., 2018). Based on the clinical

course, patients can be categorized into three types of relapse-onset

MS: CIS, relapsing remitting (RR) and secondary progressive (SP).

RR is characterized by clinically defined focal activity followed

by periods of total or partial remission of neurological deficit,

and the lack of disease progression between attacks; SP may

follow from an initial RR course, with progressive worsening of

neurological symptoms, with or without acute relapses. Primary

progressive MS is associated with a progressive deterioration of

clinical symptoms from onset (Lublin et al., 2014). Understanding

why patients may develop different MS phenotypes over the years,

or why only a small fraction of the diversity of clinical disability in

MS can be explained by radiological evidence (clinico-radiological

paradox) (Barkhof, 1999, 2002), are cause for further research.

Magnetic resonance imaging (MRI) is instrumental in the

diagnosis and prognosis of MS, routinely used in clinical practice

for the acquisition of qualitative images, e.g., proton density-

(PD), T2- and T1-weighted, for lesion assessment. In the research

environment, a much wider spectrum of dedicated, quantitative

MRI techniques are employed for the study and characterization

of MS pathophysiology, investigating the complex relationship

between radiological evidence and clinical disability (Chard and

Trip, 2017; Filippi et al., 2019). In vivo imaging biomarkers

can be sensitive to inflammation, microstructural alterations, and

even sodium ions accumulation, providing a window into the

disease pathophysiology over time. Brain atrophy is a known

indicator of disease progression since the early stages of MS,

with recent studies providing further insight into the hierarchical

recruitment of different brain regions over time (Eshaghi et al.,

2018), although the integration of specifically cortical and sub-

cortical regional volumetric measurements in clinical practice

has yet to reach a consensus (Sastre-Garriga et al., 2020).

Relaxometry and quantitative PD imaging have been shown to

provide good biomarkers for inflammation and demyelination in

normal appearing tissue (Neema et al., 2007; Mezer et al., 2013),

invisible to the standard qualitative imaging. Through sensitivity

to the diffusion of water molecules within the structured axonal

environment of the brain, diffusion weighted imaging (DWI) has

shown microstructural alterations in both lesions and normal

appearing tissues, correlating with physical disability in progressive

MS (Filippi et al., 2001; Collorone et al., 2020); recent studies have

reported abnormalities at the early stages (Tur et al., 2020) and

potential links to cognitive disability as well (Savini et al., 2019).

Sodium (23Na) imaging has been used to access the signal induced

by sodium ions, showing promise in probing axonal function

directly (Gandini Wheeler-Kingshott et al., 2018), with evidence

of increased total sodium concentration (TSC) being reported in

MS, correlating with disability and disease progression (Inglese

et al., 2010; Paling et al., 2013; Maarouf et al., 2014). Whilst

the potential of advanced MRI modalities is evident, they lack a

unified consensus about their implementation, optimization and

interpretation, and require, when compared to standard routine

scans, additional acquisition times, costs and expertise, which make

their application in clinics limited.

In this work, we explored a multi-modal dataset acquired

in a cohort of patients with the same disease duration, where

clinical and MRI assessments were performed 15 years from

CIS, comprehending both routine and advanced MRI metrics

sensitive to inflammation, microstructural alteration and sodium

ions accumulation. Using a machine learning approach, we aimed

to gain further understanding of which modalities are more

likely to carry biophysically meaningful information for different

classification tasks. Machine learning indeed has shown to be a

key tool in the data-driven exploration of MRI datasets for the

identification of patterns and biomarkers of disease, including the

ability to identify discriminating factors of disease phenotypes

against each other and healthy controls (HC) (Wottschel et al.,

2015; Eshaghi et al., 2016). We therefore trained and tested a

random forest algorithm to classify different subtypes of MS vs. HC

and between each other, using a rich array of quantitative imaging

features extracted from both clinical and advanced MRI data.

Feature importance was calculated for each task and used to assess

which metrics mostly contributed to the decision-making process.

This provided us with novel insights into the pathophysiology of

different MS subtypes, while also informing future studies toward

more task-efficient MRI acquisitions.

2. Methods

A retrospective (Brownlee et al., 2019) multi-modal MRI

dataset of HC, CIS, RR, and SP patients with same disease duration
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was analyzed to provide evidence on what MRI features are best

representative for different classification tasks.

2.1. Cohort

The cohort consisted of a total of 123 subjects: 29 HC (10 men,

age: 35±10 years old), 18 CIS (6 men, age: 47±10 years old, EDSS:

0.4±0.5), 63 RR (15men, age: 47±8 years old, EDSS: 2.2±1.1), and

13 SP (4 men, age: 48±8 years old, EDSS: 5.5±1.2). All MS patients

(CIS, RR, SP) attended the MS center for clinical and radiological

follow-up after a mean of 15 years from onset (Brownlee et al.,

2019).

2.2. MRI protocol

Data were acquired on a 3T Philips Achieva MR system. The

acquisition protocol included:

1. PD/T2-w. Dual-echo 2D PD/T2-weighted turbo spin-echo

(resolution: 1 × 1 × 3mm3, echo time TE: 19/85m, repetition

time TR: 3,500ms, turbo factor: 10, echo spacing: 9.4ms, scan

time: 4′2′′).

2. T1-w. 2D T1-weighted spin-echo (resolution: 1 × 1 × 3mm3,

TE: 10ms, TR: 625ms, scan time: 5′43′′).

3. DWI. Cardiac-gated, multi-shell, diffusion-weighted echo-

planar imaging, with {8, 15, 30} isotropically distributed

directions at b-values: {300, 711, 2000} s/mm2 (resolution: 2.3

× 2.3 × 2.3mm3, TE: 82ms, nominal TR (12 heart-beats):

13846ms, scan time:∼ 16′).

4. Sodium. 23Na imaging with 3D-cone sampling trajectory

(resolution: 3 × 3 × 3mm3, TE: 0.22ms, TR: 120ms, scan time:

∼ 18′). Two 4% agar phantoms with sodium concentration of 40

and 80mM were placed near the subject’s head during the image

acquisition for calibration purposes (Riemer et al., 2014).

5. 3DT1. 3D sagittal T1-weighted magnetization-prepared rapid

gradient echo (resolution: 1× 1× 1mm3, TE: 3.1ms, TR: 6.9ms,

inversion delay time: 823ms, flip angle: 8′, scan time: 6′32′′).

All proton scans were acquired using a 32 channel head coil,

whilst sodium imaging was performed using a single channel

transmit-receive volume head coil (Rapid Biomedical, Rimpar,

Germany). Patients were repositioned prior to the sodium imaging

scans to allow for the coil change.

2.3. Image analysis

Lesion masks from Brownlee et al. (2019) studies were used.

Brain tissue segmentation was performed on lesion-filled (Prados

et al., 2016a) 3DT1 using the Geodesic Information Flows (GIF)

tool (Cardoso et al., 2015), obtaining masks of white matter (WM),

deep gray matter (dGM), and cortical gray matter (cGM).

PD/T2-weighted scans were initially acquired for lesion

segmentation only; however, given the availability of T1-weighted

scans with similar readout, they were also used to extract

quantitative estimates of PD, T2, and T1maps by fitting the relevant

Bloch equations, using the MyRelax toolbox (Grussu et al., 2020).

Further details are reported in the Supplementary material.

DWI data were corrected for motion and eddy current

distortion using FSL (Andersson and Sotiropoulos, 2016). The

spherical mean technique (SMT)multi-compartmentmodel (Kaden

et al., 2016) was used to analyse the DWI data, producing maps of

intra-neurite volume fraction, intrinsic diffusivity and orientation

dispersion entropy.

TSCmaps were calculated by calibrating the 23Na images by the

signal intensity within the phantoms (Inglese et al., 2010; Riemer

et al., 2014), which were segmented automatically (Prados et al.,

2016b).

Mean values for quantitative PD, T2, and T1, intra-neurite

volume fraction, intrinsic diffusivity, entropy, and TSC were

calculated in normal appearing white matter (NAWM), dGM,

cGM, and lesions, when present. Details about the calculation of

the summary statistics are reported in the Supplementary material.

The volume for the three tissue classes (WM, dGM, cGM) was

also calculated from the brain segmentation, and divided by the

total intra-cranial volume to take into account variability in head-

sizes. In total, for each of the 123 subjects, 31 regional variables, or

biophysically meaningful features, were therefore calculated.

Due to the HC group being significantly younger than the rest

(average age 12 years lower, p = 1×10−6 fromKruskal–Wallis test),

all features other than lesions-based ones were corrected for age

using the HC as reference. A linear model, with age as independent

variable and {β0,β1} as intercept and slope, respectively, was fitted

feature-wise on the HC data: the features that resulted significantly

(p < 0.05) correlated with age were corrected by subtracting

β1 × age from the original data.

2.4. Classification analysis

After correcting for age, the data was standardized feature-wise

such that the value distribution for each feature had mean of zero

and standard deviation of one. The dataset was used to train and

test a random forest algorithm over different binary classification

tasks: HC vs. MS (that is RR and SP), CIS vs. MS, and all binary

permutations of HC, CIS, RR, and SP. All HC and most CIS had no

lesions, therefore lesion features were included only for the RR vs.

SP classification task.

Classification was implemented using Python

3.7.4 (VanRossum and Drake, 2010) and the scikit-learn

package (Pedregosa et al., 2011). Default parameters for the

ensemble.RandomForestClassifier function were

selected, with the number of trees set to 1,000 based on the

available literature and previous experience on datasets with

similar dimensionality. For each classification task, a 10-fold

stratified cross-validation with 10 repetitions was implemented,

for a total of 100 iterations. The classification performance was

assessed by the average receiver operating characteristic (ROC) area

under the curve (AUC) score on the test set across the 100 train/test

iterations. Variable importance is defined by the improvement

in the split-criterion attributed to each variable (feature) during

training of the random forest. Variable importances were averaged

across iterations, returning the mean feature ranking for the task;
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FIGURE 1

Age-corrected data. Data points for some tissue types have been plotted against di�erent y-axes to better visualize boxplots across di�erent ranges.

PD, proton density; intra, intra-neurite volume fraction; di�, intrinsic di�usivity; entr, orientation dispersion entropy; TSC, total sodium concentration;

vol, tissue volume; WM, white matter; NAWM, normal appearing white matter; cGM, cortical gray matter; dGM, deep gray matter; les, lesions; a.u.,

arbitrary units.

this allowed to identify the features that most contributed to each

classification task, and thus are more likely to be biophysically

meaningful with respect to the groups characterization.

In order to assess the significance of the classification results,

the training and testing process was repeated identically 1,000 times

with randomly permuted labels of the subjects at each repetition.
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TABLE 1 ROC AUC classification results.

Tasks Mean Median [Q1,Q3] p-value

HC - RR 0.82 0.83[0.72, 0.94] < 0.001

HC - SP 0.99 1.00[1.00, 1.00] < 0.001

HC - MS 0.84 0.88[0.76, 0.92] < 0.001

CIS - RR 0.83 0.89[0.75, 1.00] < 0.001

CIS - SP 0.95 1.00[1.00, 1.00] < 0.001

CIS - MS 0.84 0.87[0.71, 1.00] < 0.001

RR - SP 0.76 0.83[0.67, 1.00] < 0.01

HC - CIS 0.79 0.83[0.67, 1.00] < 0.01

p-values calculated through permutation test. HC, healthy controls; CIS, clinically isolated

syndrome; RR, relapsing-remitting MS; SP, secondary progressive MS; MS, RR and SP; Q1,3 ,

1st, 3rd quartile, respectively.

The distribution of the 1,000 mean ROC AUC scores defined the

random classifier performance profile, which was used as reference

to calculate the p-value associated to the classification performances

on the original data.

3. Results

3.1. Age correction

Of the 24 non-lesion features, 5 resulted significantly correlated

with age: quantitative T2 in dGM (β1 = −0.09, p = 0.002),

and cGM (β1 = −0.07, p = 0.02), intrinsic diffusivity in dGM

(β1 = 5 × 10−6, p = 0.02), volume of dGM (β1 = 6.6 × 10−5,

p = 0.006) and cGM (β1 = 4.8 × 10−4, p = 0.009). Fitting

results for all features are reported in the Supplementary material.

Age-corrected feature distributions are shown in Figure 1.

3.2. Classification results

ROC AUC scores for each task are reported in Table 1. In

addition to the mean, the median and interquartile range [Q1,Q3],

with Q1,3 indicating the 25-th and 75-th percentiles respectively,

are also reported to assess dispersion instead of standard deviation,

as the ROC AUC distribution over the 100 iterations was not

symmetric, but skewed toward better-than-chance performance

values. The best classification performances were obtained for the

HC vs. SP and CIS vs. SP tasks, with mean ROC AUC scores of 0.99

and 0.95, respectively. Mean ROC AUC scores for HC vs. RR and

CIS vs. RR were 0.82 and 0.83, and when discriminating HC and

CIS against both the clinically defined MS groups, the performance

scores fell in between. The lowest scores were observed for the

RR vs. SP and HC vs. CIS tasks, with mean ROC AUC scores

of 0.76 and 0.79, respectively. Mean ROC AUC, sensitivity and

specificity scores have been also calculated with an random under-

sampling method to correct for group imbalance, and reported in

the Supplementary material.

FIGURE 2

Permutation test to assess the statistical significance of the

classification results. The orange line indicates the mean ROC AUC

for each classification task; the colored areas delineate the di�erent

ranges of significance. HC, healthy controls; CIS, clinically isolated

syndrome; RR, relapsing-remitting MS; SP, secondary progressive

MS; MS, RR and SP.

3.3. Permutation test

The random classifier performance profiles for the different

tasks are shown in Figure 2. Statistical significance of 0.001 < p <

0.01 was observed for the RR vs. SP and HC vs. CIS classification

tasks, whilst p < 0.001 was recorded for all others.

3.4. Feature importance

Average feature ranking for all classification tasks is shown

in Figures 3, 4. Features have been color-coded to group MRI

modalities from the same biophysical source (e.g., relaxometry

parameters are in orange, diffusion microstructure in blue, sodium

concentrations in green and tissue volume in gray); the top-ranking

features contributing to 50% of the decision process for each

task have been highlighted by a striped block and considered for

interpretation. Overall, tissue volumes were the most meaningful

when discriminating HC and CIS against clinically-defined MS;

relaxometry parameters mainly in lesions had a role when

discriminating the clinically-defined MS subtypes against each

others; diffusion metrics were meaningful across all tasks, although

particularly prominent in differentiating CIS vs. HC; TSC was

mostly relevant when discriminating CIS against HC.

• HC vs. RR. RR patients showed a reduced WM and dGM

volume, as well as reduced orientation dispersion entropy

and increased T2 in NAWM and cGM with respect to HC.

Increased intrinsic diffusivity in cGM also contributed to the

classification task, with reduced intra-neurite volume fraction

in NAWM at the 50% cumulative importance threshold.
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FIGURE 3

Variable importance. The bar-plot is color-coded to group MRI modalities from the same biophysical source. The striped block highlights the

features contributing to 50% of the classification process. The y-axis is shared between columns. PD, proton density; intra, intra-neurite volume

fraction; di�, intrinsic di�usivity; entr, orientation dispersion entropy; TSC, total sodium concentration; vol, tissue volume; WM, white matter; NAWM,

normal appearing white matter; cGM, cortical gray matter; dGM, deep gray matter; les, lesions; HC, healthy controls; CIS, clinically isolated

syndrome; RR, relapsing-remitting MS; SP, secondary progressive MS; MS, RR and SP. Continuing to Figure 4.

• HC vs. SP. The decision task was mostly driven by increased

T2 in cGM, and reduced WM volume and entropy in cGM

of SP compared to HC. Increased TSC and diffusivity in cGM

were also observed in SP at the 50% threshold.

• HC vs. MS. Top-ranking features were distributed similarly to

the HC vs. RR task.

• CIS vs. RR. Reduced dGM and WM volume mostly

characterized RR compared to CIS, together with reduced

intra-neurite volume fraction across all tissues, and increased

T1 in NAWM. Reduced intrinsic diffusivity also emerged in

NAWM in RR.

• CIS vs. SP. The task was driven mostly by reduced volume

of all tissues in SP, and increased T2 in cGM. Reduced

diffusivity and intra-neurite volume fraction in NAWM

was also observed at the 50% threshold in SP compared

to CIS.

• CIS vs. MS. Similar top-ranking features to the CIS vs. RR task

were observed.
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FIGURE 4

Variable importance. Continued from Figure 3.

• RR vs. SP. The task was driven mostly by relaxometry—

increased PD, T2 and T1—and diffusion metrics—reduced

intra-neurite volume fraction, diffusivity—alterations in

lesions in SP compared to RR. Increased T1, T2 and entropy

in cGM were also observed, with increased TSC in NAWM at

the 50% threshold.

• HC vs. CIS. Increased TSC in NAWM and dGM in CIS

compared to HC appeared as top-ranking features, together

with increased intra-neurite volume fraction in dGM and

cGM, reduced entropy in NAWM, and increased diffusivity in

cGM. Reduced T2 and T1 in dGM were also observed in CIS.

4. Discussion

In this work, we used random forest classifiers to study the

interaction between features extracted from both routine scans

and advanced diffusion and sodium weighted imaging for the

purpose of characterizing CIS and clinically-defined MS subtypes.

The results show that a combination of advanced quantitative MRI

and clinical features achieve classification scores between 76% and

99% depending on the task. Moreover, it is apparent that after 15

years from the initial CIS episode, features reflecting inflammation,

microstructure changes and sodium accumulation play a very
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different role in each MS subtype. Whether these alterations are

present from the start or are the result of a 15 years evolution,

it is not possible to say from this dataset, and requires targeted

longitudinal studies.

• Atrophy. Brain atrophy was observed in the MS groups

and emerged as a meaningful feature in all the classification

tasks discriminating MS patients against HC and CIS. No

strong involvement of brain volume features was observed

instead when classifying MS phenotypes against each other,

and in the HC vs. CIS task. Tissue volume loss in

MS showed heterogeneous behavior across the different

tissues, particularly with dGM consistently scoring higher

than cGM, which is in line with previous findings of

progressive recruitment of graymatter structures as part ofMS

neurodegeneration (Eshaghi et al., 2018; Soares et al., 2020).

dGM significant involvement is well-known in the scientific

community, however a consensus for the incorporation of

global gray matter volumetrics into clinical practice has only

recently been reached, and the specific inclusion of dGM

structures (e.g., thalami, basal ganglia) in particular is still

debated (Sastre-Garriga et al., 2020). Further research is

recommended, with this work providing evidence in this

direction.

• Relaxometry. Relaxometry features contributed partially to

most tasks involving the clinically defined MS population,

with prolonged T2 in cGM emerging particularly when

discriminating SP against HC and CIS, a possible biomarker

for the advanced cortical demyelination observed in the

progressive stages of MS (Magliozzi et al., 2018). The

strongest contribution was however observed in the RR

vs. SP classification task across all relaxometry features,

both in cGM and lesions: the involvement of quantitative

parameters measured in lesions in the discrimination of

MS phenotypes is indicative of the heterogeneous nature of

MS pathogenesis and neurodegeneration (Lucchinetti et al.,

2000). This result supports the need for adopting a more

quantitative approach to lesion characterization in clinics than

mere lesion load assessment. Reduced T2 in dGM was also

observed in CIS with respect to HC: this reduction goes

against a possible demyelination effect and could be due

to residual (after age correction) iron deposition (Aquino

et al., 2009). Further studies of iron deposition in MS,

using for example quantitative susceptibility mapping and

magnetic susceptibility source separation approaches, are

recommended (Shin et al., 2021).

• Diffusion imaging. Diffusion imaging metrics were

involved in all classification tasks, which is expected

given that microstructural alterations are at the core of MS

demyelination and neurodegeneration. Despite being the

most ubiquitous set of feature across all tasks, diffusion

metrics from multi-compartment models are also strongly

model-dependent, hence prone to modeling artifacts and

limitations, e.g., the lack of a myelin compartment, and results

should be interpreted with care. Against HC, MS patients

exhibited overall reduced orientation dispersion entropy,

and reduced intra-neurite volume fraction against CIS.

These results are in line with findings of reduced fractional

anisotropy associated to higher fiber dispersion and neurite

loss (Roosendaal et al., 2009). Reduced intrinsic diffusivity

in SP was also observed with respect to CIS and RR, both in

NAWM and lesions, but not in gray matter, which may be

spurious, or an indicator of new lesion formation compatible

with axonal undulation (Grussu et al., 2016). Increased intra-

neurite volume fraction in CIS emerged in the classification

against HC: whilst counter-intuitive in the context of neurite

loss, this may be suggestive of axonal swelling, as further

discussed below.

• Sodium imaging. TSC was particularly meaningful when

discriminating CIS vs. HC, with increased TSC being observed

in CIS in NAWM and dGM. Increased TSC was also

observed in MS patients, albeit with a lower contribution

with respect to other features, and has been reported in

literature from the early stages of the disease (Maarouf

et al., 2017). It has been associated with the over-expression

and redistribution of sodium-potassium channels from the

Ranvier nodes to newly demyelinated membrane: this is an

adaptive response to the disruption of saltuatory conduction

caused by demyelination, apt to preserve action potential

transmission, limit the onset of neurological deficits, and

facilitate recovery. This however also increases the axonal

metabolism, as the proliferation of the sodium-potassium

active pumps comes with higher energy expenditure which, if

not satisfied, causes the accumulation of intra-cellular sodium.

In MS, the impaired trophic support from oligodendrocites

and mitochondrial dysfunction contribute to energy under-

production which, coupled with the increased metabolic need,

can lead to axonal degeneration due to metabolic failure

secondary to chronic energy deprivation (Petracca et al.,

2016). In the case of CIS, the increased TSC might be

explained as a long lasting effect established in the brain

following the initial inflammatory event. It may be speculated

that this might be due to an over-expression of sodium

channels at the onset of CIS to support neuronal function,

which may also explain the increased intra-neurite volume

fraction detected with diffusion imaging: indeed, the intra-

cellular accumulation of sodiummight induce axonal swelling

through osmosis (Armstrong, 2003). To what extent this can

happen before functional derangement accrues, leading to a

more severe MS phenotype, is to be investigated.

Overall, the results of this unique dataset with MS patients

of same disease duration, and a rich multi-modal quantitative

MRI protocol, have shown that atrophy and relaxometry features

contribute significantly to the discrimination of MS patients

from HC and CIS; relaxometry in lesions emerges as particularly

involved in the classification of MS phenotypes, which highlights

the heterogeneity of MS pathophysiology. With both brain

volumetry and relaxometry features being extracted from routine

scans readily available in clinical practice, we have offered evidence

of the hidden potential qualitative MRI data holds beyond lesion

and tissue segmentation. Whilst advanced MRI acquisitions ought

to be preferred when available, they are far from being routinely

introduced in clinics; on the other hand, the use of routine scans
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can pave the way to quantitative studies on large historical datasets

otherwise lacking dedicated quantitative modalities. Advanced

diffusion and sodium imaging have proven particularly sensitive

to the characterization of MS phenotypes against each other, and

CIS against HC, where differences in atrophy or relaxometry

scores in normal appearing tissues were not as important, or

not present at all. In these cases, dedicated quantitative MRI

modalities showed their role in the quantification of subtle tissue

microstructural and physiological alterations, otherwise invisible to

conventional MRI, offering further insights on MS heterogeneous

neurodegeneration. Specifically, CIS presenting subtle alterations

compatible with MS histopathology (sodium ions accumulation

and possible axonal swelling) may mark long lasting subtle

damage accrued as a result of the first episode of neurologic

symptoms. Alternatively, the observed alterations suggest that

neuroprotective mechanisms may be at play in the stable CIS

population, but, unlike with the clinically-definedMS patients, they

do not lead to meaningful atrophy, inflammation, demyelination,

and axonal loss. In other words, the ability to adapt to the

increased metabolic demand without succumbing to energy failure,

or avoiding axonal degeneration by excessive osmotic swelling,

might be compensatory or even protective mechanisms, and as

such key factors in what determines conversion, or lack thereof, to

clinically defined MS.

Interestingly, what differentiates RR from a progressive form

of the disease characterizing SP are changes in relaxometry

parameters in the lesions. The classification task ranked as highest

not microstructure changes or sodium accumulation in normal

appearing tissue, but alterations of relaxometry parameters in the

lesions of SP patients compared to RR. This could give an insight

into the possible source of disease progression, driven not by the

number or volume of the lesions, nor by diffuse damage of tissue,

but by the severity and biophysical nature of lesion alterations. This

therefore calls on monitoring relaxometry, as well as potentially

others quantitative biophysically meaningful features, in the lesions

as potential predictor of risks of progression.

The interpretation of these findings is of course conditional on

this study’s limitations. The statistical significance is hindered by

the small sample size, especially tasks involving the SP group—

only 13 subjects: although spurious results due to the many

features may be expected, we strove to minimize their impact

on the final outcome through careful examination of the data

and corroboration with the published literature. In terms of

classification tasks, the class imbalance between RR and SP likely

caused the RR group to drive the classification results when

discriminating HC or CIS against the whole MS cohort (RR and

SP). Feature selection was performed implicitly by the random

forest based on the relative contribution of each feature to the

classification. No prior feature selection was performed as it

would have reduced the exploratory power of this study. Each

MRI modality came with its own limitations, which also must be

taken into consideration, e.g., the multi-compartment diffusion

model lacking a myelin volume fraction, or the use of surrogate

quantitative PD, T2, and T1 extracted from routine scans not

optimized to the scope. Particularly, theMyRelax algorithm for the

calculation of quantitative T1 diverges in regions of cerebrospinal

fluid, which were not of interest to this work; however, lesions

also exhibit a similar behavior at their core, therefore the summary

statistics for quantitative T1 in lesions is to be intended as

representative more of the peripheral part of lesions, where the

partial volume effect with cerebrospinal fluid is less pronounced,

than the central part. Additional studies with larger sample size and

histological evidence are required to substantiate these findings.

We showed that different MRI features appear to be

biophysically meaningful when discriminating CIS and clinically

defined MS phenotypes, with qualitative and quantitative MRI

modalities offering specific insights for different classification tasks.

Key to our results is highlighting the need for further studies

focused on the role of quantitative MRI in the lesions of early

CIS and MS subjects to score risks of progression. These findings

can help in further understanding MS pathophysiology, as well as

inform future studies toward more efficient acquisition protocols,

better tailored to the scope.
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