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Manual sleep scoring for research purposes and for the diagnosis of sleep

disorders is labor-intensive and often varies significantly between scorers, which

has motivated many attempts to design automatic sleep stage classifiers. With the

recent introduction of large, publicly available hand-scored polysomnographic

data, and concomitant advances in machine learning methods to solve complex

classification problems with supervised learning, the problem has received new

attention, and a number of new classifiers that provide excellent accuracy. Most

of these however have non-trivial barriers to use. We introduce the Greifswald

Sleep Stage Classifier (GSSC), which is free, open source, and can be relatively

easily installed and used on any moderately powered computer. In addition,

the GSSC has been trained to perform well on a large variety of electrode

set-ups, allowing high performance sleep staging with portable systems. The

GSSC can also be readily integrated into brain-computer interfaces for real-time

inference. These innovations were achieved while simultaneously reaching a level

of accuracy equal to, or exceeding, recent state of the art classifiers and human

experts, making the GSSC an excellent choice for researchers in need of reliable,

automatic sleep staging.
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Introduction

Analysis of sleep stages for diagnosis of various sleep disorders, as well as analysis on
more sophisticated microstructure of sleep like slow oscillations, spindles, and their coupling
for research purposes (Rasch and Born, 2013 for review), has become an important goal in
clinical and research context. Sleep consists of a rich diversity of neural and physiological
stages, which typically unfold in semi-regular cycles throughout the sleep period. These
stages have distinct signatures that can be measured with polysomnography (PSG), which
includes the measure of neurophysiology with electroencephalogram (EEG), as well as ocular
(EOG) and muscular (EMG) activity. Established guidelines (Rechtschaffen and Kales, 1973;
Silber et al., 2007) allow for manual classification of PSG data into discrete sleep stages in
30 s increments, but this is a highly laborious process, requiring as much as 2 h to classify
a single night’s sleep, even for a trained expert (Vallat and Walker, 2021). In addition to the
costs of manual classification, there is also substantial disagreement between expert sleep
stage scorers (70–80% agreement) and even within the same expert scorer at different times
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(90% agreement) (Rosenberg and Van Hout, 2013; Younes et al.,
2016; Muto et al., 2018), which introduces a non-trivial degree of
variability to both research findings and clinical diagnosis based on
manual sleep staging. This variability is an inevitable consequence
of the relative indeterminacy involved in applying sleep stage
criteria to highly complex and variable human polysomnographic
data. Sleep scorers make decisions on the basis of e.g., occipital
alpha for a certain period of time, sleep spindles, K-complexes,
certain types of eye movements, or overall EEG amplitude, to name
just a few. On top of this, there are extensive contextual rules that
specify under what circumstances one stage can follow another,
adding a further layer of complexity and subjectivity. There is
self-evidently wide interpretative discretion among sleep scorers as
to how to identify these phenomena and how exactly to balance
these rules against each other. The same indeterminacy also makes
algorithmic sleep staging with traditional, analytical approaches
difficult. Nevertheless, there have been many attempts, dating back
to at least the 1990s, though these generally have not demonstrated
robust generalizability [see Sun et al. (2017) for references and
discussion].

Meanwhile however, in the previous decade, tens of thousands
of hours of expert-scored PSGs have become publicly available
(Zhang et al., 2018, sleepdata.org), and an explosion of algorithmic
innovation and increased computing power has opened the
possibility to train machine learning and deep learning models
on these large datasets. Given the costliness and unreliability of
manual scoring on the one hand, and the limitations of analytical
approaches on the other hand, it is unsurprising that automatic
sleep staging with machine/deep learning immediately became a
field of intense focus and development. Deep learning in particular
has proven to be very well-suited to solving many highly complex
pattern recognition problems that had not been satisfactorily solved
with prior methods (LeCun et al., 2015). In a short period of
time, a large number of classifiers have been developed utilizing
machine learning or deep learning to successfully score sleep
stages [for review see Fiorillo et al. (2019)]. However, even though
this has produced a significant improvement to the state of the
art, there are still several drawbacks to most currently available
sleep classifiers. As Vallat and Walker (2021) point out in the
introduction of their own sleep classifier, YASA, these classifiers
have barriers which make them less accessible, such as either
(1) costing money or requiring expensive software to run (e.g.,
MATLAB), (2) requiring more technical knowledge to configure
and use than many researchers have at their disposal, or (3)
requiring data transmission to an external server. A further barrier
to wide-spread adoption of automatic sleep stage classifiers for
research purposes is the lack of transparency around the algorithms
and code, or non-standardized reporting of classifier accuracy.

To remedy these shortcomings and provide high-quality,
automatic sleep staging to a larger community of researchers, we
introduce here the Greifswald Sleep Stage Classifier (GSSC), with
the following overall goals in mind: First, as with YASA (Vallat
and Walker, 2021), we have endeavored to produce a sleep stage
classifier that is open source, freely available and not dependent
on paid software, relatively easy to install and use, and can be
run locally on any reasonably powered PC. Second, the GSSC was
trained in order to achieve high performance also on less common
electrode arrangements, including EOG only. Third, the GSSC has
been designed such that it can be straightforwardly integrated into

brain computer interfaces or closed loop brain stimulation systems
with minimal processing overhead. Fourth, we sought to make
improvements to the overall accuracy of the classifier in relation
to the state of the art.

Usage of the GSSC is documented at: https://github.com/
jshanna100/gssc/.

Materials and methods

Architecture

The GSSC uses a relatively simple architecture that requires
minimal preprocessing or assumptions about relevant data features.
The first part is a signal processing module that uses one-
dimensional Resnets to convert the signal(s) into an abstract
representation - expressed as a vector of size 1,280. Resnets are
a form of convolutional neural network that utilize skipping
connections to alleviate some of the typical problems encountered
with deeper networks (He et al., 2016; Wu et al., 2019). Two
separate Resnet stacks were trained; one for EEG and one for
EOG. During prototyping, we found that the EOG Resnet does not
benefit from significant depth, whereas the EEG Resnet improves
significantly from added layers; here we added four Resnet blocks
with each downsampling block. The next stage is a mixing and
compression network, which–in the case of either just one EEG
or just one EOG channel–compresses the vector of size 1,280
into a vector of size 512, and in the case of using both EEG and
EOG channels, mixes and compresses the EEG and EOG vectors
(2 × 1,280) into a vector of 512. Finally, this compressed vector
of size 512 is either sent to a three-layer fully-connected network
that decides the sleep stage, or passed onto a bidirectional Gated
Recurrent Network (GRU) (Cho et al., 2014), which decides the
sleep stage based on both the compressed vector and a hidden
state which encodes the preceding/subsequent context. Network
architecture is depicted schematically in Figure 1.

Preprocessing

All PSGs were finite impulse response filtered with a bandpass
of 0.3–30 Hz (one-pass, zero-phase, non-causal, filter length of
11.01 s, transition bandwidth of 0.3–7.5 Hz, 0.0194 passband ripple,
53 dB stopband attenuation). This band captures the most relevant
oscillatory phenomena in human sleep, and safely excludes all line
noise (50/60 Hz). Signals were Z-transformed on a per-channel,
per-PSG basis. The right EOG channel was subtracted from the
left EOG channels to form a single HEOG channel. All signals
were downsampled to 85.33 Hz, which reduces a 30 s section to
2,560 samples, the length of signal input to the networks. Data were
otherwise not cleaned or pruned in any way.

Signal permutations and data
augmentation

Every PSG in the training partition was trained multiple
times, each time with a different signal permutation. Possible
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FIGURE 1

Neural network architecture. In stage (1), 30 s
electroencephalogram (EEG)/ocular (EOG) signals downsampled to
a length of 2,560 samples are input through a series of Resnets. The
numbers in format X-Y indicate that the ResNet/ConvNet accepts X
dimensional filters as input and outputs Y dimensional filters. In
stage (2), the output of the ResNets are flattened into
one-dimensional vectors, concatenated, and then mixed and
compressed by three linear (fully-connected) layers into a vector of
length of 512. In stage (3), the 512 length vector is passed onto one
of two networks, depending on whether contextual or context-free
inference is desired. Context-free inference consists of another
three linear layers, and then a final layer which outputs a one-hot
vector of length five, which encodes the five sleep stages.
Contextual inference inputs the 512 length vector along with a
hidden state into a Gated Recurrent Unit, which outputs a 512
length vector and an updated hidden state. A final linear layer
outputs a one-hot vector of length five, which encodes the five
sleep stages.

permutations include (1) an EEG channel, (2) the HEOG channel,
(3) an EEG channel and HEOG channel together. Each possible
EEG channel in a dataset was the basis of a permutation under

conditions (1) and (3). In addition to these permutations, signals
could also be flipped in polarity, i.e., by multiplying them by −1.
This would mean for example that a dataset with two EEG channels
and one EOG channel would have 14 possible permutations. The
motivation for polarity flipping is to approximate the intrinsic
relativity of EEG signals; every signal can easily change polarity
simply by changing the EEG reference. Training under bipolarity,
in addition to significantly augmenting the dataset size, has the
goal of forcing the classifier to learn more abstract properties of the
signal, resulting in a more flexible classifier that is likely to perform
well under a larger variety of PSG recording set-ups and reference
channels. Earlier prototypes also made use of the chin EMG
channel, but it did not noticeably improve performance, similar to
what was reported in Perslev et al. (2021). In the YASA classifier
(Vallat and Walker, 2021), only one of the top 20 classification
features was EMG based, ranking at 18th. This suggests that chin
EMG contributes relatively little unique information to sleep stage
classification.

Training procedure

Neural networks were implemented within the PyTorch
framework (v.1.10.2). For 20 training epochs, the 2,652 training
PSGs were cycled through in random order. In order to fit
within GPU memory constraints, PSGs were divided into 128
batches each with a roughly equal amount of contiguous, 30 s
sections. A forward and backward pass was calculated on each
batch, moving sequentially through the PSG. The forward and
backward pass had two modes: context-free and context-aware.
Both modes shared a common path for the first two stages,
namely the signal processing and mixing/compression modules
(see Architecture, Figure 1). After this point, they branched off,
with the compressed vector going to the fully-connected, three-
layer decision network in the case of context-free mode, which
produced a one-hot vector of length 5, encoding for five possible
sleep stages. This vector was compared against the correct sleep
stage with a cross entropy loss function, and the loss was back-
propagated through the decision network, mixing/compression,
and signal processing modules. In the case of context-aware mode,
the compressed vector and the previous hidden state was sent to
the GRU network, which outputs a one-hot vector of length 5,
again encoding for five possible sleep stages, and a new hidden
state for the next batch. The loss was calculated in the same way
as in context-free mode, and back-propagated through the GRU
network, mixing/compression, and signal processing modules.
After the losses had been back-propagated in both modes, the
weights were updated, and the process was repeated for the next
batch. For the first 30 s section of a PSG, the initial hidden state
for the GRU network was set to all zeros. Because the models were
trained in both modes simultaneously, the signal processing and
mixing/compression modules learned to produce representations
which could be used interchangeably with either the context-free
decision network, or the context-aware GRU network. Weights
were updated with the AdamW optimizer (Zhang, 2018) with
hyperparameters beta1 = 0.9, beta2 = 0.999, and learning rate = 3e-
5. Dropout (Hinton et al., 2012) was applied after every layer
during training with a probability of 0.5. Because the frequency of
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sleep stages is severely imbalanced, it is necessary to provide the
loss function with class weights to prevent the model from simply
learning to guess blindly according to sleep stage probability.
We adopted the weights used for the YASA algorithm (Vallat
and Walker, 2021): Wake: 1, N1: 2.4, N2: 1, N3: 1.2, REM: 1.4,
changing only the N1 weight slightly from 2.2 to 2.4 on the basis
of prototyping.

Data sets

We briefly list here the datasets and how they were
implemented. For more information see sleepdata.org (Zhang et al.,
2018). All datasets used the AASM system for sleep scoring (Silber
et al., 2007), except the Sleep Health Heart Study (SHHS), which
used Rechtschaffen and Kales (Rechtschaffen and Kales, 1973); the
latter was rescored to be compatible with the other datasets. As we
used only publicly available datasets, no ethical approval of our own
was indicated; information on ethical approval of the individual
data sets can be found in their corresponding articles, cited below.

Sleep health heart study 2 (SHHS2)

The SHHS (Quan et al., 1997) is a large set of home
PSGs assembled through 5 cohorts throughout the United States,
primarily for the purpose of researching the connection between
sleep-related breathing and cardiovascular disease. All participants
were at least 40 years of age. We restricted ourselves here to the
second phase of the project SHHS2, collected between 2001 and
2003, and used here a sample of 936 PSGs from the total 3,295
PSGs. Relevant electrodes include C3-A2, C4-A1, and left and right
EOG. This study used the Rechtschaffen and Kales system, which
we rescored to the AASM system (all N4 stages become N3).

Cleveland family study (CFS)

The CFS (Redline et al., 1995) is a longitudinal (1990–2006)
study focusing on sleep apnea in the United States. It features a
particularly high proportion (46%) of Black American participants.
We use here all 730 of the available PSGs. Relevant electrodes
include C3-Fpz, C4-Fpz, and left and right EOG.

Nationwide children’s hospital sleep
databank (NCHSDB)

The NCHSDB (Lee et al., 2021) is a large pediatric dataset of
PSGs collected in the United States, with most participants under
the age of 10. We use here a sample of 665 of the 3,984 PSGs.
Relevant electrodes include F3-M2, F4-M1, C3-M2, C4-M1, and
left and right EOG.

Wisconsin sleep cohort (WSC)

The WSC is a still ongoing longitudinal study focusing on
various sleep disorders, collected in the United States. We use here

a sample of 983 PSGs from the second stage of the project, collected
with the Grass Comet Lab system (2009–present). Relevant
electrodes include F3-M2, C3-M2, O1-M2, and left and right EOG.
For more information see https://sleepdata.org/datasets/wsc and
Young et al. (2009).

Information on datasets are also summarized in Table 1.

Training, validation, and testing partitions

A combined total of 3,314 nights of manually scored PSGs,
comprising 29,299 h and 3,515,889 individual 30 s epochs, derived
from the four datasets listed above were used for training,
validating, and testing the networks. Additionally, the DREEM
dataset (Guillot et al., 2020) was used as a final test and point of
direct comparison with a few of the most recent other classifiers.
80% (2,652 PSGs) of the full dataset were used for training. 10%
(331) were used for validation (model prototyping, hyperparameter
selection, assessment of overfitting), and a final 10% were used for
testing; performance on these 10% as well as on the DREEM dataset
are the basis for all reported results.

Assessment measures

As a primary measure of performance, we use the Matthews
Correlation Coefficient (MCC), which requires high true positives
and negatives as well as low false positives and negatives to produce
a good score, and is particularly well-suited for evaluating results on
unbalanced datasets (Chicco and Jurman, 2020). In the interest of
comparability with other studies as well as offering quick, intuitive
results, we also report here F1 for each sleep stage, F1 macro, simple
accuracy, Cohen’s Kappa, and confusion matrices [see Menghini
et al. (2021) for discussion of these]. All of these metrics are
calculated for each PSG separately. Medians across all PSGs rather
than means are reported to prevent distortion from outlier PSGs.

Permutation consensus

The classifier can infer sleep stage from any combination of
EEG and EOG channels, or from only one of the two. It is therefore
possible to make multiple inferences from the same PSG using
different channel combinations. It also possible to calculate the
certainty of that inference using the cross entropy of the log
softmax vector of length 5 that is output by the classifier against

TABLE 1 Polysomnography datasets.

Dataset Used/
Total

Age
range

Pathologies

Sleep health heart study 2
(2001–2003)

936/3295 40+ Cardiovascular disease

Cleaveland family study 730/730 4–96 Sleep apnea

Wisconsin sleep cohort 983/8794 40–60 Primarily sleep apnea

Nationwide children’s
hospital sleep databank

665/3984 Mostly < 15 Primarily sleep apnea or
unspecified disorder
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the inferred sleep stage. Results indicated that inferences with high
certainty also tended to be correct more often than lower certainty
inferences (Supplementary Figure 1). By adopting the inference
of the permutation with the highest certainty, we can increase the
accuracy of the classifier.

Selection of optimal network and testing

Throughout training, the performance of the classifier on
training data continually improves. This does not necessarily
indicate however that the final state of the network is the best one;
overfitting on the training set can occur. To ascertain the optimal
stopping point for training, we assessed classifier performance at
the end of each training epoch on the testing dataset (331 PSGs),
and identified the point at which performance peaked. This point
was chosen as the optimal network which would be used in the
final, testing step.

As a final confirmation of the performance of the model on
unseen data, we assessed optimal network classifier performance on
the testing dataset (331 PSGs). In addition to this, we also assessed
performance on the DREEM dataset, both on healthy participants
(n = 25) and those with sleep related breathing disorders (n = 55).
The DREEM dataset was rated by five expert sleep scorers, and
we assessed the classifier against the majority consensus of their
scoring. In parallel to this, we assessed the YASA algorithm (Vallat
and Walker, 2021) on both the testing dataset and the DREEM
dataset for a direct comparison of the two. Finally, for the DREEM
dataset only, we report the performance of two other state of the
art classifiers, U-Sleep (Perslev et al., 2021) and that of Stephansen
et al. (2018), using data kindly provided to us by Raphael Vallat
(Vallat and Walker, 2021). In order to assess the flexibility of the
GSSC and YASA classifiers, we assessed performance on all possible
combinations of EEG/EOG/EMG channels. EMG combinations
were implemented for YASA only, as GSSC does not make use of
EMG channels, and combinations without EEG were implemented
for GSSC only, as YASA requires the use of an EEG channel.
Also, for the GSSC classifier we made use of the consensus
of permutations assessment (see section Permutation consensus
above).

Results

Training and model selection

During training, loss steadily declined and accuracy steadily
increased; by the 20th training epoch these were near asymptote
(Supplementary Figure 2). Performance on the validation set
however oscillated up and down across the 20 training epochs, and
did not reach convergence (see Supplementary Figure 3). For this
reason, we selected three epochs that had both a high Matthews
Correlation Coefficient and a high F1 Macro score. The reason
for balancing across these two measures is that a high F1 Macro
ensures that accuracy for all five sleep stages is relatively good; due
to the severely unbalanced nature of sleep stages, a model could
perform poorly in a less common sleep stage but still have a high
overall MCC or accuracy. The weights from these three training

epochs were averaged and the resulting weights were then used to
infer sleep stages on the testing datasets. Weight averaging across
multiple epochs throughout training has been shown to improve
accuracy and generalization to unseen data (Izmailov et al., 2018).

Context-aware and context-free
inference

To assess the influence that contextual information has on
inference accuracy throughout the PSG, we calculated accuracy by
PSG epoch across the 355 PSGs from the testing set (including
DREEM) that had at least 875 30 s epochs (7.5 h). This was done
under three contextual conditions: (1) the optimal, bidirectional
inference–where for a given PSG epoch both the preceding and
following context were taken into account–was used as the baseline.
This type of inference would be used in offline PSG scoring.
(2) In the forward inference, only the preceding context could
be used for inference. This type of inference would be used in
e.g., real-time/BCI inference. (3) Context free inference uses no
context at all. Results are shown in Figure 2. These indicate that
forward inference begins at around a 2% accuracy disadvantage
relative to bidirectional inference, that linearly decreases to about
1% over the course of the PSG. Context free inference begins
at a disadvantage somewhat below 4% relative to bidirectional
inference, which sharply decreases to around an 8% disadvantage
by around 2 h, then declines more slowly until around 5 h,
after which the relative disadvantage seems to asymptote. These
results underline the critical role of context in accurate sleep stage
inference.

Performance on DREEM dataset in
relation to other classifiers

Accuracy, F1 Macro, MCC, and Cohen’s Kappa scores
for GSSC and three other recent classifiers are given in
Figure 3. Supplementary Table 1 shows the exact numbers, and
Supplementary Figure 4 shows the F1 scores for individual sleep
stages. These indicate an accuracy advantage of 0.7% for Perslev
et al. (2021) over GSSC on the Healthy cohort (n = 25), and an
accuracy advantage of 2% for the GSSC over Perslev et al. (2021)
on the Obstructive cohort (n = 55). These differences were tested
statistically using a linear mixed effects model with performance as
the dependent variable, and classifier as a categorical factor. This
indicated no significant difference between the GSSC and Perslev
et al. (2021), but significantly better performance than YASA and
Stephansen et al. (2018). In summary, the GSSC performs at the
current state of the art, and is at parity with Perslev et al. (2021),
offering the highest possible accuracy.

Confusion matrices in Figure 4 show that, comparable to other
classifiers, the main errors were confusing N1 for N2, and to a much
lesser extent confusing N1 for Wake, N2 for N3, and vice versa.
This pattern of confusion is consistent with that of both expert
human raters and other automatic classifiers, and, aside from the
expected, relatively poor performance on N1, shows high accuracy
for all sleep stages.
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FIGURE 2

Contribution of contextual information to accuracy. (A) Accuracy of types of inference over time. The model performs optimally when making use
of both preceding and subsequent epochs (forward-backward inference)–this optimal performance is the baseline at 0. The red and green lines
indicate the loss in accuracy for context free inference and forward inference (preceding context only), respectively, across time for 355 PSGs in the
testing set. (B) Accuracy of sleep stages under different types of inference, higher bars indicate more accurate.

FIGURE 3

Violin plots of performance over DREEM dataset for four classifiers. Measures shown here include Accuracy, F1 Macro, Matthews Correlation
Coefficient, and Cohen’s Kappa. Asterisks indicate significant differences from GSSC performance, as assessed by a linear mixed effects model with
performance as the dependent variable, and classifier as a categorical factor.

Discrepancy analysis

We also directly compared the proportion of inferred sleep
stages against the proportions of the expert consensus. These
are depicted in Figure 5, and show generally very good
correspondence, except for a small GSSC bias of a few percent

toward N3. A linear mixed model with Proportion as the dependent
variable and Stage and Expert/GSSC as factors confirmed this with
an estimated interaction of N3 and Expert/GSSC, with a coefficient
of 0.029 (2.9%) (p = 0.003). No other sleep stage proportion differed
significantly between the GSSC and expert consensus. Finally, we
counted sleep stage transitions for expert consensus and GSSC to
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FIGURE 4

Confusion matrices. These row-normalized confusion matrices show the inferential behavior for four, recently developed, high performance
classifiers, including the Greifswald Sleep Stage Classifier (GSSC). The diagonal indicates the accuracy, and off-diagonal elements show how the true
sleep states tended to be misclassified. The first row shows results for the DREEM Healthy dataset (n = 25), and the second for the DREEM
Obstructed dataset (n = 55).

ascertain whether the GSSC has a tendency to overly smooth or
fragment the hypnogram. Expert consensus transitioned on average
0.125 (std. = 0.063) times per epoch, and the GSSC was slightly
smoother at 0.119 (std. = 0.054). This difference was significant at
t = 3.59, p < 0.001, with a small effect size (Cohen’s d = 0.099).

The violin plots in Figure 6 show the performance across all
testing sets for GSSC and YASA. Mean accuracy is well over 80%
in all cases, and outperforms YASA by at least a few points across
all datasets. Variance across PSGs also tends to be small except
with CFS, NCHSDB, and DREEM-O; these three datasets were
either composed of children or pathological populations. Figure 7
shows testing performance for different channels in isolation. All
EEG channels perform above 80% mean accuracy. Left and right
EOG as well as the difference of the two (HEOG) all have over
80% mean accuracy. Variance in performance across channels for
GSSC and YASA was systematically compared with a liner mixed
effects (LME) model that took accuracy for each individual EEG
channel in each PSG in the testing set as data points, and estimated
the fixed effects of channel and classifier on accuracy, with MCC
performance on channel C3 as a baseline condition. Estimated
effects with their confidence intervals are depicted in Figure 8.
These show that for the GSSC, the performance of the different
channels tended to cluster within a few percent above or below the
baseline. For YASA on the other hand, only channel C4 performed
comparably to their recommended C3 channel, and the others
tended to be about 5% less accurate. This demonstrates the superior
versatility of the GSSC classifier on diverse EEG channels.

Light sleep

Many portable sleep tracking devices do not attempt to
distinguish between N1 and N2 stages, but rather categorize these
as Light sleep. An analysis with N1 and N2 concatenated into one
stage can be found in the Supplementary Figures 5–8, and the
numbers are found in Supplementary Table 2. Overall the GSSC
was 91.5 and 91% accurate on the DREEM Healthy and Obstructed
datasets, respectively. Perslev et al. (2021) was 91.5 and 89.5%
accurate on the same datasets.

Network interpretability

After the signal mixing/compression stage, the signal or signals
have been transformed into a vector of length 512. This vector
is an abstract representation of the signals which serves as the
basis for the inference networks in the next stages: the context
free inference network or the context sensitive GRU network.
Even though these vectors are not the final outputs of the
classifier, they nonetheless may contain interesting insights into
the classifier’s internal properties. It is difficult to form intuitions
about vectors in 512 dimensional space, but manifold learning
algorithms can often embed high dimensional vectors into a much
lower dimensional space while still preserving key elements of
the high-dimensional topology. Here, we used Uniform Manifold
Approximation and Projection (UMAP) (Sainburg et al., 2021)
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FIGURE 5

Proportions of stages in ground truth versus those inferred by the Greifswald Sleep Stage Classifier (GSSC). There is a slight bias of the GSSC toward
N3.

FIGURE 6

Violin plots of performance over all testing datasets for YASA and the Greifswald Sleep Stage Classifier (GSSC). Measures shown here include
Accuracy, F1 Macro, Matthews Correlation Coeffecient and Cohen’s Kappa. Numbers in parentheses by the dataset name indicate the number of
PSGs within that testing set.

to transform the vectors for the entire testing set from 512
dimensional space to 2 dimensional space. In order to test the
contributions of EEG and EOG, we did this separately for EEG only
(C3), EOG only (Left EOG), and EEG and EOG together. Critical
UMAP hyperparameters were nearest neighbors = 15, minimum

distance = 0.1, and euclidean distance metric. In addition to the
mix vectors, we also transformed vectors from the penultimate
stage of both inference networks: the context-free network, and the
GRU based context-aware network. These are also of length 512,
and so can be readily compared with the mix vectors. Comparing
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FIGURE 7

Violin plots for single-channel performance on the testing datasets for YASA and Greifswald Sleep Stage Classifier (GSSC). Measures shown here
include Accuracy, F1 Macro, Matthews Correlation Coefficient and Cohen’s Kappa. Numbers in parentheses by the dataset name indicate the
number of PSGs which had that channel available.

FIGURE 8

Performance variance across channels. Deviance in Matthews Correlation Coeffecient for different electroencephalogram (EEG) channels and
Greifswald Sleep Stage Classifier (GSSC) and YASA classifiers from baseline of EEG C3, as estimated by a linear mixed effects model. Blocks show
95% confidence intervals around the estimated deviance (solid, colored lines).

Frontiers in Neuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2023.1086634
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1086634 February 24, 2023 Time: 15:5 # 10

Hanna and Flöel 10.3389/fninf.2023.1086634

FIGURE 9

2 dimensional uniform manifold approximation and projection (UMAP) (Sainburg et al., 2021) embeddings of the vectors produced by the
mixing/compression networks (left column), the context-free inference (middle column), and context-aware networks (right column) of the
classifier. Each dot represents an embedding of a vector calculated from a single, 30 s epoch of a PSG from the testing set. Dots are color-coded by
the sleep stage which was later inferred from that vector. See section Network Interpretability for details.

the three vectors from different stages of processing within the
classifier can give clues as to how these representations change. We
used the Aligned UMAP technique to transform vectors from the
three stages into a uniform space. The 2D embeddings are shown
in Figure 9, color coded according to the sleep stage which was
later inferred from them. Note that the manifold learning used
only the vectors; sleep stage played no role in the manifold learning
itself. These reveal the following insights: (1) Apart from N1, sleep
stages have clearly demarcated regions. (2) With EOG however, the
demarcations are visibly more degenerate than EEG. In particular
the wake region bleeds diffusely into REM, N2, and N1 regions.
(3) In EEG spaces, wake region transitions more sharply into N1
region, from which it may go on into REM or N2 regions. (4) In
all spaces, N3 region may be entered only from N2 region. (5)
In EOG only space, there is a cleft bisecting N2 and N3 regions,
suggesting the classifier has two broad, classificatory schema within
these stages. (6) There are a series of archipelagos along the "coast"
of Wake region. These may be noisy epochs where the participant
is moving around, which the classifier has learnt to associate
with waking state. (7) The spaces for the no context vectors are
practically identical to those of the mix vectors, indicating that the
no-context inference network could in fact be mostly superfluous.
(8) The N1 regions of the context vector spaces are more sharply
segregated, especially in the EEG spaces, underlining again the
critical role that context plays in identifying N1 as such.

Discussion

We have developed an automatic sleep stage classifier that is
free and requires no paid software, is easy to install and use, and
can be run locally on a moderately well-powered PC. The YASA

classifier (Vallat and Walker, 2021) also has these properties, but
we have added features to our classifier that will make it preferable
for many cases, including greater versatility, easy integration into
brain computer interfaces (BCI), and overall improved accuracy.
We discuss each of these in turn.

Free availability and easy access

There has been rapid progress in the sophistication of
automated sleep staging technologies, but it has not always been
a priority to make this accessible. We developed GSSC within
Python, which is free and can be run on any operating system,
including Linux, which is also free, meaning that the GSSC can
be run entirely on free software if desired. This offers high quality,
automatic sleep staging to a much broader base of users who, either
because of legal or resource constraints, are unable to use most of
the other previously developed classifiers. Even researchers who
do have the resources for paid software may nevertheless prefer
to work within the free, open-source ecosystem for any number
of reasons, not least of which because of the frictions that paid
software often impose on their usage with e.g., licensing. The GSSC
is at present built to work with MNE-Python (Gramfort et al., 2013,
website:mne.tools), an M/EEG analysis Python package that is also
free, open source, and community developed, though it could easily
be adapted to work with any number of EEG analysis programs.

Versatility

The training strategy we used has produced a versatile classifier
that performs well with a broad array of possible electrode
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configurations. This allows the use of fewer EEG electrodes during
recording, or to seamlessly move to backup channels if the more
standard channels fail during a recording. GSSC is the only
classifier of the four compared here to allow inference with only
a single EOG channel, and furthermore with excellent accuracy
(> 80%). This is concordant with the YASA classifier, which found
that EOG absolute power was the single most important feature for
sleep stage classification out of all the a priori defined features of the
EEG/EOG/EMG signals that they used (Vallat and Walker, 2021).
Highly accurate EOG-only inference is of particular use for more
portable, 1–2 channel miniature systems designed for home testing
(Gao et al., 2021).

Brain-computer interfaces

Recent advances in the relevant hardware and software have
fostered increased interest and development in brain-computer
interfaces (BCI) (Abiri et al., 2019 for recent review). One special
case of BCI that is of particular relevance here is the use of closed-
loop stimulation, whereby some form of stimulation is given to the
participant on the basis of their PSG/EEG activity; such systems
have recently been successfully applied during sleep with the goal
of modulating Slow Oscillations (e.g., Besedovsky et al., 2017; Fehér
et al., 2021). For such systems targeting the enhancement of sleep
oscillations, it is extremely useful to be able to assess the current
sleep stage of the participant. GSSC is relatively easy to integrate
into BCIs/closed-loop systems. This functionality is made possible
in part by using a recurrent neural network for context awareness.
Like human sleep stage scorers, all of the above cited classifiers
make use of sleep stage context when performing inference. The
GSSC implements context-awareness by use of a Gated Recurrent
Network, which takes a hidden state as part of its input, and
produces a new hidden state as part of its output. The hidden state
contains the information that the classifier needs to make a context-
informed decision on the present sleep stage. This makes it a natural
fit for performing real time inference, as one can perform context-
informed inference on each new 30 s epoch as it comes in, and does
not need to observe the entire PSG at once.

Accuracy

We compared the performance of the Greifswald Sleep Stage
Classifier (GSSC) against three other recently developed, high-
performance classifiers (Stephansen et al., 2018, U-Sleep, Perslev
et al., 2021, YASA, Vallat and Walker, 2021) and found that it
consistently outperformed Stephansen et al. (2018) and YASA
(Vallat and Walker, 2021), and was at parity with U-Sleep (Perslev
et al., 2021). This places GSSC at the current state of the art.

Limitations

One disadvantage that GSSC has compared to YASA is speed.
YASA can infer an entire night’s PSG in a few seconds, while GSSC
requires somewhat more time, even with a GPU. With a CPU,
inference time can go into the minutes for a full night–however this

time can be significantly reduced by opting for a specific channel
constellation rather than using the permutation consensus, likely
at the cost of 1–2 percent accuracy. Researchers who have limited
time and/or computing power, use conventional PSG setups and
electrodes, and do not need the highest level of available accuracy
might consider using YASA. Otherwise GSSC would be preferable
for the reasons described above.

Outlook

There are a number of things which should be improved in
future versions of the GSSC. First, performance on the validation
dataset over 20 training epochs did not converge, but rather
oscillated continually (see Supplementary Figure 3). An average
of the best three epochs produced excellent results on the testing
sets, but it would nevertheless be preferable for the classifier to
converge on a stable solution. Second, the classifier was trained
on only 2,652 PSGs from four datasets. This is somewhat less than
YASA, a non-deep learning classifier (3,163 PSGs, seven datasets),
and a small fraction of what was used for the deep learning-based
U-Sleep (19,924 PSGs, 21 datasets). Training on more data may
solve the non-convergence issue mentioned above, and also yield
a non-trivial accuracy increase; on the other hand, performance
at the current state of the art may already be near the intrinsic
limits of how accurate sleep staging can be, given the relative
indeterminacy of sleep staging criteria, and that machine/deep
learning classifiers are trained on manually scored data, which are
themselves quite variable (Rosenberg and Van Hout, 2013; Younes
et al., 2016; Muto et al., 2018). Third, during prototyping, we found
good performance on four-layer Resnets for the EEG channel, and
one-layer Resnets for the EOG. This is unsurprising given how
much more complex a brain signal is from an ocular muscle signal,
but there may be space to more thoroughly fine-tune these layer
numbers. Finally, the weights used to adjust the loss function for the
severe imbalance of sleep stages could potentially be improved. We
have simply adopted the ones reported for YASA, with a minimal
change to the N1 weight (Vallat and Walker, 2021), and they have
yielded excellent results, but some small adjustments could prove
beneficial, particularly with regard to the small N3 bias.

Finally, the results of the interpretability analysis have also
yielded some interesting insights into the internal representations
of the classifier. Future work can explore for example how these
insights might allow for improved network architectures, or to
provide more detailed inferential information, i.e., why a given
epoch may have been inferred as such.

Conclusion

The Greifswald Sleep Stage Classifier (GSSC) is free, open
source, easy to install and use, offers state of the art accuracy, and
performs well for all reasonable channel combinations, including
only a single EOG channel. It is particularly well-suited to real time
inference (BCI, closed-loop stimulation). These features render the
GSSC an excellent candidate for becoming a standard tool for
polysomnographers.
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