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The novel coronavirus pneumonia (COVID-19) is a respiratory disease of great

concern in terms of its dissemination and severity, for which X-ray imaging-

based diagnosis is one of the effective complementary diagnostic methods. It

is essential to be able to separate and identify lesions from their pathology

images regardless of the computer-aided diagnosis techniques. Therefore, image

segmentation in the pre-processing stage of COVID-19 pathology images would

be more helpful for effective analysis. In this paper, to achieve highly effective

pre-processing of COVID-19 pathological images by using multi-threshold

image segmentation (MIS), an enhanced version of ant colony optimization for

continuous domains (MGACO) is first proposed. In MGACO, not only a new

move strategy is introduced, but also the Cauchy-Gaussian fusion strategy is

incorporated. It has been accelerated in terms of convergence speed and has

significantly enhanced its ability to jump out of the local optimum. Furthermore,

an MIS method (MGACO-MIS) based on MGACO is developed, where it applies

the non-local means, 2D histogram as the basis, and employs 2D Kapur’s

entropy as the fitness function. To demonstrate the performance of MGACO, we

qualitatively analyze it in detail and compare it with other peers on 30 benchmark

functions from IEEE CEC2014, which proves that it has a stronger capability

of solving problems over the original ant colony optimization for continuous

domains. To verify the segmentation effect of MGACO-MIS, we conducted a

comparison experiment with eight other similar segmentation methods based

on real pathology images of COVID-19 at different threshold levels. The final

evaluation and analysis results fully demonstrate that the developed MGACO-MIS

is sufficient to obtain high-quality segmentation results in the COVID-19 image
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segmentation and has stronger adaptability to different threshold levels than

other methods. Therefore, it has been well-proven that MGACO is an excellent

swarm intelligence optimization algorithm, and MGACO-MIS is also an excellent

segmentation method.

KEYWORDS

ant colony optimization, continuous optimization, swarm intelligence, 2D Kapur’s
entropy, multi-threshold image segmentation

1. Introduction

The outbreak of novel coronavirus pneumonia (COVID-19)
in late 2019 and early 2020 is an emerging acute respiratory
disease, and diagnosis based on X-ray images is one of the effective
complementary diagnostic methods for COVID-19. In clinical
practice, imaging devices, such as chest X-ray and chest CT, can
significantly help to screen for COVID-19 (Bernheim et al., 2020;
Kanne, 2020; Xie et al., 2020). COVID-19 causes severe respiratory
symptoms, and most patients diagnosed with COVID-19 have been
found to have abnormal chest X-ray images in clinical management,
and the X-ray imaging presentation is varied. The diagnostic
process is laborious and time-consuming if it is based on the
experience of pathologists. As a result, computer-aided diagnostic
techniques are a key pre-condition for further X-ray image analysis,
which is vital for early illness diagnosis and functional analysis
of small parts of the lung, such as lung density analysis, airway
analysis, and pulmonary septum mechanics. A weakly supervised
deep active learning system called COVID-AL was suggested by
Wu et al. (2021a) to diagnose COVID-19 using CT images and
patient-level labels. In their research, Shorfuzzaman and Hossain
(2021) suggested an artificial intelligence (AI) method based on
deep meta-learning to speed up the interpretation of chest X-ray
images in the automated detection of COVID-19 patients. Hu
et al. (2021) analytical model for COVID-19 diagnosis and therapy
is built on complex networks and machine learning methods.
For the automated diagnosis of COVID-19, Chen et al. (2021)
introduced a new deep learning technique that only needs a
small number of training data. Jin et al. (2021) presented a self-
correction approach based on domain adaptation for COVID-
19 infection segmentation on CT images. Abdel-Basset et al.
(2020) suggested a new hybrid solution for COVID-19 chest X-ray
pictures based on the thresholding technique by mixing a slime
mold algorithm with the whale optimization algorithm. It is also
important to be able to separate and identify lesions from COVID-
19 pathology images regardless of the computer-aided diagnosis
techniques. Therefore, the introduction of image segmentation in
the pre-processing stage of COVID-19 pathology images would
be more helpful for effective analysis of COVID-19 pathology
images.

In recent years, multi-threshold image segmentation (MIS)
method is playing an increasingly important role in medical image
processing, which can achieve highly effective pre-processing of
pathological images and help to promote the development of
related medical aid diagnosis technologies (Manikandan et al.,
2014; Li et al., 2017; Kotte et al., 2018; Tarkhaneh and Shen, 2019;

Hilali-Jaghdam et al., 2020). Medical information systems are a key
requirement in the current medical sciences (Ban et al., 2022; Qin
et al., 2022). Therefore, in recent years, many scholars have carried
out research on MIS techniques based on swarm intelligence
optimization algorithms. Zhao et al. (2021a) developed an image
segmentation model that was proved by conducting an experiment
on a standard image set, in which a modified continuous version of
the ant colony optimizer was its core. Verma et al. (2021) presented
a hybrid algorithm by combining the excellent features of fuzzy
c-means and particle swarm optimization (PSO) to achieve MIS,
which was proved by an experiment on a triangular dataset and
publicly available real brain datasets. Zhao et al. (2021b) proposed
an MIS method based on an improved continuous ant colony
optimization algorithm, which was verified by a test on a standard
image set. Rakesh and Mahesh (2021) proposed a cuckoo search
optimization technique to achieve the initial segmentation of the
lung portion. Vaze et al. (2021) developed quantum entanglement-
inspired PSO, which was applied to MIS and employed eight
gray-scale standard test pictures. In order to resolve pre-treatment
and post-treatment organ segmentation difficulties, Chakraborty
et al. (2021) proposed a novel dynamically learned PSO-based
neighborhood-influenced fuzzy c-means clustering technique.
Aranguren et al. (2021) reported an MIS methodology for magnetic
resonance brain imaging segmentation based on the LSHADE
algorithm. Huang et al. (2021) used the fruit fly optimization
algorithm (FOA) for OTSU segmentation, resulting in an FOA-
OTSU segmentation method that employed a classical picture to
validate the proposed segmentation technique.

Xing (2020) proposed and evaluated a MIS method based on
improved Emperor Penguin Optimizer, utilizing Berkeley pictures,
satellite images, and plant canopy pictures. Dinkar et al. (2021)
suggested a modified equilibrium optimizer for segmenting gray-
scale images with MIS and tested their proposed technique by
utilizing some standard images. Wu B. et al. (2020) proposed a MIS
approach using an improved teaching–learning-based optimization
algorithm, which is successfully applied in casting X-ray image
segmentation for MIS. The Harris Hawks optimization (HHO)
technique was used by Rodríguez-Esparza et al. (2020) to suggest
an effective solution for MIS and test it on specific digital
mammography medical pictures. Abd Elaziz et al. (2021) presented
a modified version of the manta ray foraging optimizer algorithm to
deal with MIS problems, which is proved by a test on some standard
images. Radha and Gopalakrishnan (2020) provided an intelligent
fuzzy-level set approach for medical picture segmentation and an
overall search proficiency of enhanced quantum PSO.
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Kalyani et al. (2020) devised and evaluated an efficient
exchange market algorithm for image segmentation utilizing the
minimal cross-entropy thresholding approach on brain pictures
with varying threshold values. Elaziz et al. (2020) introduced an
improved Harris hawks optimizer for global optimization and
determining the best threshold values for MIS situations. With the
help of a greedy snake model and fuzzy C-means optimization,
Sheela and Suganthi (2019) suggested an effective automated brain
tumor segmentation. A brand-new multi-objective optimization
strategy for segmenting magnetic resonance imaging of the human
brain was introduced by Pham et al. (2019). Wang et al. (2022)
developed a unique, consistent perception generative adversarial
network for semi-supervised stroke lesion segmentation that
may eliminate the need for wholly labeled data. Authors in
You et al. (2022) proposed fine perceptive generative adversarial
networks, which are built to deal with the low-frequency and high-
frequency components of MR images separately and concurrently
by using the divide-and-conquer strategy (Wang et al., 2022)
presented a 3D end-to-end synthesis network dubbed Bidirectional
Mapping Generative Adversarial Networks for brain magnetic
resonance imaging and positron emission tomography synthesis
and segmentation. Through the study of various MIS methods
proposed in recent years, it is found that most MIS techniques
are based on swarm intelligence optimization algorithms. In
the MIS method based on swarm intelligence algorithm, the
swarm intelligence optimization algorithm is the core of the
segmentation, and the suitability of the optimization algorithm
directly determines the good or bad segmentation effect. Due to
the characteristics of the swarm intelligence algorithm itself, it is
difficult for the algorithm to converge to the optimal solution of
the problem in complex practical problems, so the segmentation
method based on the optimization algorithm still has more room
for improvement to a certain extent, and the image segmentation
effect can be improved as much as possible by proposing a suitable
optimization algorithm.

In terms of swarm intelligence optimization algorithms, not
only a series of basic algorithms have been proposed, such
as multi-verse optimizer (MVO) (Mirjalili et al., 2016), ant
colony optimization for continuous domains (ACOR) (Socha and
Dorigo, 2008), bat-inspired algorithm (BA) (Yang, 2010), different
evolution (DE) (Storn and Price, 1997), firefly algorithm (FA)
(Yang, 2009), gray wolf optimization (GWO) (Mirjalili et al.,
2014), moth-flame optimization (MFO) (Mirjalili, 2015), PSO
(Kennedy and Eberhart, 1995), sine cosine algorithm (SCA)
(Mirjalili, 2016), slime mold algorithm (Chen H. et al., 2022),
whale optimizer (WOA) (Mirjalili and Lewis, 2016), and HHO
(Heidari et al., 2019c), but also many variant versions based on
the basic algorithms have been proposed by many scholars, such
as boosted GWO (OBLGWO) (Heidari et al., 2019a), opposition-
based SCA (OBSCA) (Abd Elaziz et al., 2017), ant colony
optimizer with random spare strategy and chaotic intensification
strategy (RCACO) (Zhao et al., 2021a), hybrid bat algorithm
(RCBA) (Liang et al., 2018), A-C parametric WOA (ACWOA)
(Elhosseini et al., 2019), enhanced WOA with associative learning
(BMWOA) (Heidari et al., 2019b), bat algorithm based on
collaborative and dynamic learning of opposite population
(CDLOBA) (Yong et al., 2018), enhanced whale optimizer with new
communication mechanism and biogeography-based optimization
(EWOA) (Tu et al., 2021), hybridized gray wolf optimization

(HGWO) (Zhu et al., 2015), modified SCA (m_SCA) (Qu et al.,
2018), biogeography-based learning PSO (BLPSO) (Chen X. et al.,
2017), comprehensive learning PSO (CLPSO) (Liang et al., 2006),
enhanced GWO with a new hierarchical structure (IGWO) (Cai
et al., 2019), improved WOA (IWOA) (Tubishat et al., 2019)
and so on. Swarm intelligence algorithms have been applied
to solve many problems such as bankruptcy prediction (Zhang
et al., 2021), feature selection (Xue et al., 2019, 2022a; Liu
et al., 2022b), economic emission dispatch (Dong et al., 2021),
dynamic multiobjective optimization (Yu et al., 2022), constrained
multiobjective optimization (Liang et al., 2022), global optimization
(Deng et al., 2022), large-scale complex optimization (Huang et al.,
2023), and feed-forward neural networks (Xue et al., 2022b).

Among them, ACOR is an algorithm proposed by Socha and
Dorigo (2008) to apply it to solve problems in the continuous
domain, which not only retains the original ACO characteristics
but also overcomes the drawback that it can only be applied to
discrete problems. Therefore, ACOR has a high research value and
has been studied by many scholars. By combining the basic ant
colony optimizer with chaotic intensification and random spare
strategies, Zhao et al. (2021a) presented a unique variation of
ACOR and put it to the test using 30 benchmark functions. Kumar
et al. (2018) proposed a new ant colony optimization algorithm
that incorporated Laplace distribution-based interaction scheme
among the ants. A hybrid form of ant colony optimization for
continuous domains was presented by Karakonstantis and Vlachos
(2018), which can deal with continuous optimization issues with or
without constraints. An innovative population-based elite-mixed
continuous ant colony optimization with central initialization was
developed by Chen and Shen (2018). In order to solve issues
involving continuous variables, Wu et al. (2017) suggested a
dynamic-edge ant colony systems technique that could produce
edges between two nodes and provide pheromone measurements in
a continuous solution space. A cooperative continuous ant colony
optimization approach was put out by Juang et al. (2013) and used
to solve accuracy-focused design issues for fuzzy systems. A novel
classifier based on ant colony optimization in continuous domains
was proposed by Shahraki and Zahiri (2017), and it was utilized to
identify the decision hyperplanes between various classes. Falcon-
Cardona and Coello (2017) developed an ant colony optimizer-
based multi-objective ant colony optimizer for continuous search
spaces. Chen Z. et al. (2017) published a robust ant colony
optimization for continuous functions that employed self-adaptive
approaches for domain modification, pheromone increment,
domain division, and ant size. Zhang et al. (2016) introduced a
novel hybrid ant colony optimization and PSO technique to solve
the slow convergence of the ant colony optimization strategy for
continuous domain difficulties. In order to solve a continuous
space optimization problem, Huang (2016) suggested an ant colony
algorithm that enhanced the fundamental algorithm in terms of
ant colony initialization, information density function, distribution
methods, the direction of ant colony motion, and other areas.
Three crossover approaches are used in the enhanced continuous
ant colony optimization with crossover operators developed by
Chen and Wang (2017) to provide a new set of probability
density functions. By enhancing the selection mechanism and
incorporating horizontal and vertical crossover search into the ant
colony optimization, Zhao et al. (2021b) proposed an improved
ant colony optimization algorithm. This algorithm was tested in a
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series of comparative experiments using 30 benchmark functions
from IEEE CEC 2014. Wu et al. (2019) developed an effective
optimization technique for local search operations and established
a multimodal continuous ant colony optimization algorithm. Gao
(2015) proposed an unique immunological continuous ant colony
approach to improve the efficacy of the standard evolutionary
algorithm. Liu et al. (2014) provided an ant colony foraging
distribution model for continuous domains based on their study of
the interplay between position distribution and food supply in the
process of ant colony foraging.

The multiple study studies above discovered that when ACOR
is used to tackle real issues, it is more prone to slip into local
optimality, resulting in disappointing outcomes. Furthermore,
when applying ACOR to MIS, we discovered a similar issue: ACOR
is more prone to falling into local optima, resulting in pictures that
are as prone to falling into local optima during the segmentation
process, leading in worse segmentation outcomes. Therefore, we
propose an enhanced version of ACOR (MGACO) to apply ACOR
to MIS to avoid falling into local optima as much as possible
and obtain high-quality segmentation results. In MGACO, not
only a novel movement strategy is introduced, but also a Cauchy-
Gaussian fusion strategy is incorporated after this movement
strategy. The introduction of the novel movement strategy and
the Cauchy-Gaussian fusion strategy has led to a speedup in the
convergence rate of MGACO and has resulted in a significant
enhancement in the ability of MGACO to jump out of the local
optimum. To demonstrate these core advantages of MGACO, we
have used the 30 benchmark functions of IEEE CEC2014 as a
basis for qualitatively analyzing MGACO and ACOR in detail
and comparing MGACO with ten traditional basic algorithms
and ten variants of basic-based algorithms, respectively, in our
experiments. We conducted a detailed statistical analysis of the
obtained experimental results using mean, variance, Wilcoxon
signed-rank test (García et al., 2010), and Friedman test (Derrac
et al., 2011), all of which fully demonstrate that MGACO not
only has a certain acceleration in convergence speed but also
its ability to jump out of the local optimum is significantly
enhanced. In addition, we developed an MIS method based on
MGACO (MGACO-MIS) using the non-local means, 2D histogram
as the basis, and 2D Kapur’s entropy as the fitness function.
Intending to demonstrate that MGACO can obtain high-quality
segmentation results during image segmentation, we conducted
a comparison experiment between MGACO-MIS and eight other
similar segmentation methods based on real pathology images of
COVID-19 at threshold levels of 4, 5, 6, 15, 20, and 25, where 4, 5,
and 6 represent low threshold levels and 15, 20, and 25 represent
high threshold levels. First of all, three common and accepted
evaluation methods were evaluated for obtaining segmentation
results, including Peak Signal Noise Ratio (PSNR) (Huynh-Thu and
Ghanbari, 2008), Structural Similarity Index (SSIM) (Zhou et al.,
2004), and Feature Similarity Index (FSIM) (Zhang et al., 2011).
Secondly, the evaluation results were further analyzed in detail
using the mean, variance, Wilcoxon signed-rank test (Chen H.
et al., 2022), and Friedman test (Mirjalili and Lewis, 2016). Finally,
the evaluation and analysis result sufficiently demonstrate that
the proposed MGACO-MIS can obtain high-quality segmentation
results when performing image segmentation.

In summary, the main contributions of this paper are in the
following aspects.

λ Taking ACOR as a basis, an enhanced version of ACOR
combining a new mobility strategy and a Cauchy-Gaussian fusion
strategy is proposed, called MGACO.

λ Based on IEEE CEC2014, the qualitative analysis of
MGACO and ACOR is conducted, and MGACO is compared
with many similar methods, which fully demonstrate the core
advantages of MGACO.

λ An MIS based on MGACO, called MGACO-MIS, is
developed using non-local means, 2D histogram, and 2D Kapur’s
entropy as the fitness function.

λ Based on the real pathological images of COVID-19,
the comparison experiments between MGACO-MIS and similar
methods have been conducted at several threshold levels, and the
segmentation effect of MGACO-MIS has been well demonstrated.

The other sections of this paper are organized as follows:
Section “2. An overview of ACOR” provides a brief review
of the ACOR basic theory. Section “3. Proposed MGACO”
describes the proposed MGACO based on the new movement
strategy and the Cauchy-Gaussian fusion strategy in detail. The
experimental results and analysis are presented in Section “5.
Experiments and results.” In Section “6. Discussion,” the main
work of this paper is discussed, and Section “7. Conclusion and
future works” gives a summary of the whole paper and future
research directions.

2. An overview of ACOR

In 2008, Socha and Dorigo (2008) proposed ACOR, which
directly extends the ACO in the discrete domain to the continuous
domain by treating the solutions in the solution archive as its
pheromone, where the update of the pheromone is done by
updating the solutions in the archive.

In ACOR, the archive stores k solutions xl
(
l = 1, . . . , k

)
,

the fitness value of each solution, and the weight value
corresponding to each solution, where each solution has
n dimensions, which also represent the dimensions of the
problem. xl =

(
x1
l , x

2
l , . . . , x

i
l, . . . , x

n
l
)

denotes a solution of
the problem, f (xl) is its corresponding fitness value, and wl is its
corresponding weight value.

These k solutions are initially generated randomly, and then
the solutions xl are ordered according to the function value f (xl)
of the solutions.

Therefore, if the fitness value corresponding to each solution
satisfies f (s1) ≤ . . . f (sl) ≤ . . . f (sk), then the weight wl
corresponding to each solution satisfies w1 ≥ . . . wl ≥ . . . wk.
Based on the above principle, the ACOR archive can be shown in
Figure 1.

Therefore, the main mathematical model of the Gaussian kernel
function corresponding to ACOR is shown in Eq. (1).

Gi (x) =
k∑

l = 1

wlgil (x) =
k∑

l = 1

wl
1

σil
√

2π
e
−
(x−µil )

2

2σil
2

(1)

where w = {w1, . . . ,wl, . . . ,wk} is the weight vector
corresponding to each solution, and wl can be calculated by
Eq. (2), σi =

{
σi1, . . . , σ

i
l, . . . , σ

i
k
}

is the vector of standard
deviation corresponding to each solution, and σil can be calculated
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FIGURE 1

The constructed archive in ACOR.

from Eq. (3), µi
=

{
µi

1, . . . ,µ
i
l, . . . ,µ

i
k
}

is the vector of means
corresponding to each solution, and µi

l can be expressed as Eq. (4).

wl =
1

qk
√

2π
e
−
(i−l)2

2q2k2 (2)

σil = ξ

k∑
e = 1

|xie − xil
k − 1

(3)

µi
=

{
µi

1, . . .µ
i
l, . . .µ

i
k
}
=

{
xi1, . . . x

i
l, . . . x

i
k
}

(4)

where q and ξ > 0 are the algorithmic parameters, and the weight
wl is essentially a Gaussian function with l as the mean and qk
as the standard deviation. The sampling procedure is then carried
out in practice so that the probability pl is determined in the first
stage using the weight size wl and Eq. (5). In the second phase, a
Gaussian function gil (x) is picked using the probability pl from the
Gaussian kernel function Gi (x), and the selected guiding solution
xl is calculated. The third phase uses the Gaussian function gil (x) to
sample each of the n dimensions of the guiding solution xl.

pl =
Wl∑k
r = 1 Wr

(5)

After the completion of sampling, its pheromone
updating process is represented by the updating process of
the solutions in the archive. In each iteration, the m new
solutions constructed by the ants are combined with the
k old solutions in the archive, and the k better solutions
from these m+ k solutions are selected and sorted into the
archive, while the remaining m worse solutions are discarded.
Further, according to the algorithm principle of ACOR,
Algorithm 1 gives its corresponding pseudo-code, and Figure 2
further gives its corresponding flowchart according to the
pseudo-code.

3. Proposed MGACO

In MGACO, not only a new movement strategy is introduced,
but also the Cauchy-Gaussian fusion strategy is incorporated
after the movement strategy. Due to the introduction of the
new movement strategy and the Cauchy-Gaussian fusion strategy,
MGACO has been accelerated in terms of convergence speed, and
the ability of MGACO to jump out of local optimum has been
significantly enhanced.

3.1. The novel movement strategy

In 2015, Mirjalili et al. (2016) proposed an optimizer based
on multiverse theory with a strong ability to jump out of the
local optimum. Inspired by this, a new ant movement strategy is
proposed by analyzing the movement principles of white holes,
black holes, and wormholes in this optimizer.

In MGACO, when the archive is updated, the ants in the archive
will continue to search for the optimal food by mimicking the
movement principle of the universe individuals. Therefore, the ants
will mimic the movement of the universe individuals in order to
achieve local changes, and it will excite the internal objects to move
toward the current optimal individual, which can be expressed as
Eq. (6).

xil =




xl + TDR× ((ubl − lbl)× r4 + lbl),

r3 < 0.5
xl − TDR× ((ubl − lbl)× r4 + lbl),

r3 ≥ 0.5

, r2 <WEP

xil, r2 ≥WEP
(6)

where xil denotes the ith dimension of the current ant individual
l, lbl and ubl refer to the movement boundary of xil , and r2, r3, r4
are random numbers in the range of [0, 1]. In MVO, WEP denotes
the probability of wormhole existence, and TDR denotes the step
length of the current individual moving toward the current optimal
individual. Its update rule is represented by Eqs (7, 8).

WEP = WEPmin + t ×
(
WEPmax −WEPmin

MaxFEs

)
(7)

TDR = 1−
FEs1/p

MaxFEs1/p
(8)

where FEs is the number of current iterations, MaxFEs
is the maximum number of iterations, and p denotes the
exploitation level.

3.2. Cauchy-Gaussian fusion strategy

The Cauchy-Gaussian fusion strategy is a motion strategy that
incorporates the Cauchy distribution and Gaussian distribution,
and Kumar et al. (2017) applied this strategy to SCA, which
resulted in a significant enhancement of its ability to jump out
of the local optimum. Inspired by this, to further enhance the
ability of MGACO to avoid falling into local optimum, after the
individual ants simulate the locomotor behavior of the multiverse,
the individuals in the archive will continue to move toward the
optimal food according to the Cauchy-Gaussian fusion strategy.
The Cauchy distribution and Gaussian distribution function are
described as Eqs (9, 10).

fc (v) =
1
π

γ

γ2 + (v− v0)
2 (9)

fN (v) =
1
√

2ψ
e
[
−(v−u)2/2σ2]

(10)

where γ is proportional parameter, v0 is the peak position of the
Cauchy distribution C

(
v0, γ

2), σ2 and u are the variance and
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FIGURE 2

The flowchart of ACOR.

the mean value of the normal distribution N
(
u, σ2), respectively.

Therefore, C (0, 1) is also a Cauchy random number, and N (0, 1)
is also a normal random number.

On the basis of the Cauchy distribution and Gaussian
distribution, the Cauchy-Gaussian fusion strategy can be described
as shown in Eq. (11).

xil = xil × (1+ δ × (η × N (0, 1))+ (1− η) × C (0, 1))
(11)

where δ is inertia constant, and η = FEs/MaxFEs.

3.3. The proposed MGACO

In order to enable ACOR to have some speedup in terms of
convergence speed when dealing with real-world problems, as well
as to be enhanced in terms of the ability to jump out of local
optima, we propose an enhanced version of ACOR called MGACO.
In MGACO, when the archive is updated, first let the ants in the
archive will simulate the movement principle of the individuals in
the MVO to continue searching for the optimal food, and the ants
will move toward the current optimal individual in order to achieve
local changes. After that, let the individuals in the archive move
toward the optimal food according to the Cauchy-Gaussian fusion
strategy. After completing two successive movements of ants, the
ants in the archive are finally updated again in a constructive
manner. Therefore, the introduction of the new moving strategy
and the Cauchy-Gaussian fusion strategy makes MGACO speed up
in the convergence speed and enhances the ability of MGACO to
jump out of the local optimum significantly. According to the basic
principle of MGACO, Figure 3 further gives the corresponding
flowchart of MGACO according to the pseudo-code.

4. Proposed MIS model

4.1. Non-local means for 2D histogram

The algorithm’s starting point is that the picture created by
categorizing and weighting the regions with the same attributes in
the same image should be superior in terms of noise reduction. That
is, it employs all pixels in the picture, or more specifically, all pixels
within a search window, which are weighted and averaged based
on some similarity. Unlike bilinear and median filtering, which
utilize local information in the picture to filter, denoising uses the
entire image. To better filter out Gaussian noise in the picture, it
looks for comparable regions in the image in terms of image blocks
(neighborhoods) and then averages these regions. It is feasible to
determine the non-local mean values for image I using Eqs (12–15),
assuming that (p) and I(q) are the corresponding gray-scale values
of pixels p and q.

O
(
p
)
=

∑
q∈I I

(
q
)
ω
(
p, q

)∑
q∈I ω

(
p, q

) (12)

ω
(
p, q

)
= e−

|µ(p)−µ(q)|2

σ2 (13)

µ
(
p
)
=

1
m × m

∑
i∈L(p)

I (i) (14)

µ
(
q
)
=

1
m × m

∑
i∈L(q)

I (i) (15)

where O
(
p
)

is a corresponding filter value, ω
(
p, q

)
is the

corresponding weight, and σ is the corresponding standard
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FIGURE 3

The flowchart of MGACO.

deviation, and L
(
p
)

and L
(
q
)

are m × m blocks orientated at p
and q, respectively.

A 2D histogram for an image may be produced using grayscale
and non-local mean pictures. If we suppose that a gray image I(x, y)
has levels [0, L− 1] and an image size of M × N, then the picture
g(x, y) produced via non-local means filtering likewise has these
properties. Consequently, the level and gray values of I(x, y) and
g(x, y) may be used to create the point (i, j). The gray value of
the pixel in I(x, y) is denoted by I while the equivalent pixel in
g is denoted by j. In light of this, it is also conceivable to have
the quantity of pixels h(i, j) that occur at this location (s, t). This
method of developing a 2D histogram is standardized by Eq. (16).
A final 2D histogram that we may create is displayed in Figure 4
along with the accompanying plane view.

Pij =
h
(
i, j
)

M × N
(16)

4.2. 2D Kapur’s entropy

The Kapur entropy thresholding image segmentation method
utilizes the important concept of Shannon entropy in information
theory. In information theory, entropy is a physical quantity used
to measure the degree of uniformity of a given distribution; a
higher entropy value indicates a more uniform distribution (Hilali-
Jaghdam et al., 2020). Applied in the field of image segmentation,
the entropy value of the image grayscale histogram is measured to
find a pixel point such that the maximum amount of information
is distributed between the target and background regions in the
image, and that pixel point is the threshold image segmentation
point. It is possible to produce the 2D histogram and 2D plane
view shown in Figure 4 using the above-discussed non-local mean
2D histogram idea, where {t1, t2, L− 1} signify the levels of the

grayscale image and {s1, s2, L− 1} the levels of the non-local mean
image, respectively.

The majority of the visual data in the 2D histogram is
concentrated along its main axis, so the 2D Kapur’s entropy is only
computed for the n subsections on the center diagonal to make
calculation simpler and more precise. As a result of the foregoing
explanation, the 2D Kapur’s entropy is shown in the figure as
Eq. (17). As a result, when the 2D Karpur’s entropy is taken into
account as the objective function of MGACO, the threshold set
{t1, t2, , tn−1} that maximizes ϕ (s, t) is the optimal threshold set.

ϕ (s, t) = −
s1∑

i = 0

t1∑
j = 0

Pij
P1

ln
Pij
P1
−

s2∑
i = t1+1

t2∑
j = t1+1

(17)

Pij
P2

ln
Pij
P2
−

sL−1∑
i = sL−2+1

tL−1∑
j = tL−2+1

Pij
PL−1

ln
Pij
PL−1

where

P1 =

s1∑
i = 0

t1∑
j = 0

Pij, P2 =

s2∑
i = t1+1

t2∑
j = t1+1

Pij, PL−1

=

sL−1∑
i = sL−2+1

tL−1∑
j = tL−2+1

Pij.

4.3. The proposed MGACO-MIS method

The main objective of threshold-based segmentation, an
effective image segmentation approach, is to find an appropriate
threshold set to distinguish the target from the background in
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FIGURE 4

The 2D histogram and the 2D plan view.

a picture. The technique of identifying a threshold set in an
image and using that set to split the image into several pieces is
also defined as MIS. In order to achieve improved one-threshold
image segmentation, Pun (1981) presented a maximum entropy-
based thresholding approach that analyzes the histogram of a
picture as a probability distribution and calculates the maximum
entropy to establish an optimum threshold value. Later, Kapur et al.
(1985) presented Kapur’s entropy, an easy-to-compute modified
maximum entropy-based threshold segmentation technique that
yields better segmentation results. The temporal complexity is
O
(
(L−M + 1)M−1) and it increases exponentially when the

exhaustive approach is used to segment a picture with many layers
of maximum entropy.

L is the grayscale range of the image, and M denotes the
number of segmentation levels. Although 1D histogram-based
segmentation is more common, a serious misclassification issue
exposes the segmentation results to noise interference when the
target only takes up a small portion of a picture. The conventional
2D histogram segmentation technique, based on the local mean,
does not take into account certain precise information in an image,
such as some points, lines, planes, etc. (Buades et al., 2005).

The suggested MIS approach is based on 2D histograms with
non-local means and employs 2D Kapur’s entropy as the fitness
function of MGACO to lessen the aforementioned constraints.
Figure 5 gives a thorough description of it and is also used for the
multi-level segmentation of COVID-19 X-ray pictures.

5. Experiments and results

We employ 30 benchmark functions from IEEE CEC2014 as
our starting point to qualitatively assess MGACO and ACOR in
great depth as well as compare MGACO with 10 conventional
basic algorithms and 10 variations based on basic algorithms in
order to illustrate these essential benefits of MGACO firmly. The
acquired experimental findings show conclusively that MGACO
has improved leap out of local optimum capability in addition
to a certain speedup in convergence. In image processing tasks,
it is vital to utilize a valid dataset covering various features and

properties to assess the method sincerely (Jin et al., 2022). We also
performed comparison studies between MGACO-MIS and eight
other comparable segmentation algorithms at various threshold
levels using genuine pathological photos of COVID-19 in order
to show that MGACO-MIS can provide high-quality segmentation
results while doing image segmentation. The acquired experimental
findings adequately show that the suggested MGACO-MIS may
provide high quality segmentation results while conducting image
segmentation.

5.1. Experiment setup

To prove the core advantages of MGACO, we first conducted
a strategy analysis experiment, followed by a scalability test of
MGACO, and finally compared MGACO with some common
basic algorithms and some variant algorithms in the experiment.
In the strategy analysis experiments, various variants of ACOR
were constructed using the new movement strategy and Cauchy-
Gaussian fusion strategy, namely MACO, GACO, and MGACO,
and comparative strategy combinations were used conducted. Then
a directional analysis of MGACO was also performed, including
a multi-angle, balanced, and diversity analysis. In the scalability
experiments of MGACO, MGACO, and ACOR are compared
in different dimensions, where the dimensions are set to 10,
20, 50, and 100, respectively. In the comparative experiments
between MGACO and its peers, the comparison experiments
were mainly conducted first between MGACO and 10 traditional
basic algorithms involving MVO, ACOR, BA, DE, FA, GWO,
MFO, PSO, SCA, WOA. Further, we compared MGACO with
10 very high-performance variants, including OBLGWO, OBSCA,
RCACO, RCBA, ACWOA, BMWOA, CDLOBA, EWOA, HGWO,
m_SCA. The benchmark functions used in the benchmark function
experiments, which include unimodal, fundamental multimodal,
hybrid, and composition functions, are shown in Table 1. The
population size for each method in the comparison is 30, and the
maximum number of evaluations is 300,000. All algorithms are
performed under these identical settings. Doing this guarantees
the validity and trustworthiness of the experimental results.
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FIGURE 5

The flowchart of the MGACO-MIS method.

To decrease the influence of chance events, each algorithm is
also independently tested 30 times. Comprehensive statistics and
analysis were performed using the mean, variance, Wilcoxon
signed-rank test, and Friedman test for all experimental results on
the benchmark functions. The results unambiguously demonstrate
that MGACO not only shows some acceleration in convergence
speed but also significantly increases its ability to diverge from the
local optimum.

Then, to demonstrate that MGACO-MIS may provide
improved segmentation results, we used X-ray images of 8 COVID-
19 patients from a public database produced by Cohen et al. (2020).
Segmentation experiments were first carried out to represent
low threshold levels using MGACO-MIS and 8 other equivalent
approaches at levels 4, 5, and 6. Second, to illustrate high threshold
levels, we also ran segmentation trials at levels 15, 20, and 25.
The letters A, B, C, D, E, F, G, and H in Figure 6 represent
the X-ray images of the COVID-19 patients who participated
in the segmentation investigations. These comparisons were
conducted using the following methodologies: ACOR-MIS, MVO-
MIS, HHO-MIS, SCA-MIS, BLPSO-MIS, IGWO-MIS, IWOA-
MIS, and CLPSO-MIS. To guarantee fairness (Chen P. et al.,
2022; Liu et al., 2022a,c; Yang et al., 2022), and the reliability
of the findings, 100 iterations were used in each segmentation
experiment. The population size for each segmentation technique
included in the comparison was set to 20, the size of the selected
segmentation pictures was set to 512 × 400, and each experiment
was done 30 times separately to avoid randomization. We first
evaluated the segmentation results using the three commonly
used evaluation indices—PSNR, SSIM, and FSIM. Second, a
detailed analysis of the assessment results was performed using
the mean, variance, Wilcoxon signed-rank test, Friedman test,
and other statistical techniques. The assessment and analysis
results conclusively demonstrate that the suggested MGACO-MIS
is suitable for producing outstanding segmentation results in image
segmentation, which is the last but not least point.

5.2. Benchmark function validation

In this subsection, in order to demonstrate the core advantages
of MGACO, firstly, a strategy analysis experiment is conducted;
secondly, the scalability test of MGACO is conducted; and finally,
MGACO is compared with some common basic algorithms and
some variants of algorithms. All the results fully support that

MGACO has a certain faster convergence rate and its ability to
escape from the local optimum is significantly enhanced.

5.2.1. The impact of two novel enhanced
strategies

The new movement strategy and the Cauchy-Gaussian fusion
strategy construct the four different variant algorithms of ACOR
shown inTable 2, where “NM” denotes the new movement strategy,
“GCF” denotes the Cauchy-Gaussian fusion strategy, “1” denotes
that the strategy is included in the variant, and “0” denotes that
the strategy is not included in the variant. This section first
conducted comparative experiments using the four constructed
variant algorithms, and its results fully demonstrate that the best
performance is obtained only when both strategies are used for
the MGACO variants formed in ACOR. The new movement
strategy and the Cauchy-Gaussian fusion strategy construct the
four different variant algorithms of ACOR shown in Table 2, where
“NM” denotes the new movement strategy, “GCF” denotes the
Gaussian fusion strategy, “1” denotes that the strategy is included
in the variant, and “0” denotes that the strategy is not included in
the variant. This section first conducted comparative experiments
using the four constructed variant algorithms, and its results fully
demonstrate that the best performance is obtained only when both
strategies are used for the MGACO variants formed in ACOR.
Then, this section continues to analyze MGACO and AOCR not
only in multi-perspective but also in balance and diversity.

Supplementary Table 1 contains the findings from testing the
four variations on IEEE CEC2014, where "AVG" and "STD" stand
for the mean and variance of the variants obtained after 30 separate
runs, respectively. The terms "Mean" and "Rank" refer to ranking
results based on the overall mean. The terms "+" and "-" refer to
the number of functions where MGACO performs better than its
peers, respectively, while " = " signifies the number of functions
where MGACO performs equally with its peers. As shown in
Supplementary Table 1, MGACO achieves the least mean by a
significant margin, indicating that the ACOR improved by the two
improvement procedures is the best. MGACO is ranked first with
a "Mean" value of 1.57, which is substantially higher than GACO,
which is ranked second with a "Mean" value of 2.20.

The convergence curves for the four versions are shown in
Supplementary Figure 1, and the convergence processes for F9,
F11, F16, and F18 demonstrate that MGACO has the strongest
capacity to leap out of the local optimum as a slightly quicker
convergence pace than the other variants. Figure 7 displays the
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findings from the Friedman test analysis of the four variants, where
MGACO ranks first with a score of 1.84, outperforming the other
three variants. This further demonstrates that the MGACO created
using the new movement strategy and the Cauchy-Gaussian fusion
strategy has the best outcomes.

Supplementary Figure 2 displays the findings from several
viewpoints of research on MGACO. Supplementary Figure 2A
shows the distribution of the benchmark functions from a
3D viewpoint. The ideal site is shown by a red dot in
Supplementary Figure 2B, while black dots indicate investigated
positions. Supplementary Figure 2B shows the 2D distribution
of the searched locations. Supplementary Figure 2C displays the
variation of the first dimension of the individual position over time.
Supplementary Figure 2D illustrates how the average fitness of all
subjects changed during the course of iteration. Supplementary

Figure 2E shows the convergence curves for MGACO and ACOR.
It can be demonstrated, through the distributions in two and three
dimensions, that MGACO eventually locates the ideal solution
after performing all potential iterations for benchmark functions
of varying complexity. The initial oscillation of the individuals’
positions is large, but it gradually decreases and converges as they
iterate through the search space, allowing them to avoid being
stuck in a local optimum and improve their overall performance.
According to the downward oscillation of the average fitness curve
of all individuals, all persons may eventually sustain convergence
to the optimum solution throughout the search process until
they arrive at the perfect solution. The convergence curves from
MGACO are more accurate overall than those from AOCR, and
those from F9, F24, and F25 are also more accurate overall than
those from AOCR. The convergence curves for the two approaches

TABLE 1 The brief description of IEEE CEC2014.

Class ID Description Range F∗
i = F∗

i(x∗)

Unimodal functions 1 Rotated high conditioned Elliptic function [−100, 100] 100

2 Rotated bent cigar function [−100, 100] 200

3 Rotated discus function [−100, 100] 300

Simple multimodal
functions

4 Shifted and rotated Rosenbrock’s function [−100, 100] 400

5 Shifted and rotated Ackley’s function [−100, 100] 500

6 Shifted and rotated Weierstrass function [−100, 100] 600

7 Shifted and rotated Griewank’s function [−100, 100] 700

8 Shifted Rastrigin’s function [−100, 100] 800

9 Shifted and rotated Rastrigin’s function [−100, 100] 900

10 Shifted Schwefel’s function [−100, 100] 1000

11 Shifted and rotated Schwefel’s function [−100, 100] 1100

12 Shifted and rotated Katsuura function [−100, 100] 1200

13 Shifted and rotated HappyCat function [−100, 100] 1300

14 Shifted and rotated HGBat function [−100, 100] 1400

15 Shifted and rotated expanded Griewank’s plus Rosenbrock’s
function

[−100, 100] 1500

16 Shifted and rotated expanded Schaffer’s F6 function [−100, 100] 1600

Hybrid functions 17 Hybrid function 1 (N = 3) [−100, 100] 1700

18 Hybrid function 2 (N = 3) [−100, 100] 1800

19 Hybrid function 3 (N = 4) [−100, 100] 1900

20 Hybrid function 4 (N = 4) [−100, 100] 2000

21 Hybrid function 5 (N = 5) [−100, 100] 2100

22 Hybrid function 6 (N = 5) [−100, 100] 2200

Composition functions 23 Composition function 1 (N = 5) [−100, 100] 2300

24 Composition function 2 (N = 3) [−100, 100] 2400

25 Composition function 3 (N = 3) [−100, 100] 2500

26 Composition function 4 (N = 5) [−100, 100] 2600

27 Composition function 5 (N = 5) [−100, 100] 2700

28 Composition function 6 (N = 5) [−100, 100] 2800

29 Composition function 7 (N = 3) [−100, 100] 2900

30 Composition function 8 (N = 3) [−100, 100] 3000
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FIGURE 6

The COVID-19 X-ray images used in the segmentation experiment.

indicate that MGACO has superior final convergence accuracy than
AOCR, and the convergence curves for F9, F24, and F25 also
demonstrate that MGACO converges more rapidly than AOCR.
The convergence curves on F6, F8, as well as MGACO’s higher
potential to diverge from the local optimum, provide more evidence
of this.

Supplementary Figure 3 displays the analytical results for
variety and balance on the pertinent benchmark functions.
Supplementary Figure 3A displays the balance findings for
MGACO, Supplementary Figure 3B displays the balance results
for ACOR, and Supplementary Figure 3C displays the balance

TABLE 2 The constructed four variants with two novel enhanced
strategies.

Method NM GCF

ACOR 0 0

GACO 0 1

MACO 1 0

MGACO 1 1

results for both MGACO and ACOR. It is evident by comparing
the results of the exploration and exploitation balance between
MGACO and ACOR that the unique movement strategy and
Cauchy-Gaussian fusion technique aid MGACO in achieving a
superior balance, enabling it to reach convergence more quickly
and precisely than AOCR. Only on F8 and F9 do the diversity
curves of MGACO converge slower than AOCR in the early stage
and faster than ACOR in the late stage. This indicates that MGACO
can more fully traverse the entire search space in the early stage and
that the search individuals can approach the optimal position too
quickly in the late stage.

5.2.2. The scalability test for MGACO
To make a more comprehensive comparison of the

performance of MGACO and ACOR, this subsection sets the
problem dimensions to 10, 30, 50, and 100 based on IEEE
CEC 2014, followed by a comparative analysis of MGACO and
ACOR. The corresponding experimental results are given in
Supplementary Table 2, where the mean values of MGACO
on all problem functions are smaller than ACOR when the
problem dimensions are 30 and 50, and the mean values of
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FIGURE 7

Some convergence curves on benchmark functions.

MGACO on all 28 problem functions are smaller than ACOR
when the problem dimensions are 10 and 100, which indicates
that MGACO completely outperforms ACOR when dealing with
different problems. The results of the Wilcoxon signed-rank test
are also presented in Supplementary Table 2, where MGACO
completely outperforms ACOR on 24 functions at dimension
10, 26 functions at dimension 30, and 25 functions at dimension
50, and on 26 functions at dimension 100. As can be seen, the
results of the Wilcoxon signed-rank test also further illustrate that
the advantage of MGACO over AOCR is huge regardless of the
problem’s dimensionality. Moreover, Supplementary Figures 3–7
give the convergence curves on functions F1, F3, F12, F20, F24,
F27, F28, F29, F30 when the problem dimensions are 10, 30,
50, 100, respectively. In the given convergence curves, it is well
demonstrated that MGACO not only has a certain acceleration in
the convergence speed, but also its ability to jump out of the local
optimum has been significantly enhanced.

The aforementioned experimental findings comparing
MGACO and AOCR on 30 function problems demonstrate that
MGACO is more stable and can produce better outcomes when
the difficulty of the issues varies. Additionally, MGACO has
a superior capacity to resist entering local optima throughout
the problem-solving process, which aids in coming up with
a better solution. Additionally, the convergence accuracy and
speed of MGACO have been enhanced. In conclusion, the
suggested MGACO outperforms AOCR in terms of benefits and
problem-solving strength.

5.2.3. Comparison with some conventional
methods

The major goal of this subsection is to contrast MGACO
with a few relatively traditional basic algorithms in order to

highlight the technology’s key benefits better. In this experiment,
the fundamental algorithms up for comparison are MVO, ACOR,
BA, DE, FA, GWO, MFO, PSO, SCA, and WOA, and the algorithms
themselves choose the parameter values. The comparison between
MGACO and the ten fundamental algorithms is shown in
Supplementary Table 3, along with the mean, variance, and
Wilcoxon signed-rank test analysis findings. According to the
optimal values of the functions that were obtained, MGACO
obtained the optimal value, or minimum mean value, on 20
function problems, whereas DE, MVO, and WOA only obtained
the optimal value on 7 function problems, 2 function problems,
and 1 function problem, respectively. This shows that MGACO
still has a greater advantage over the fundamental algorithms.
Additionally, according to the Wilcoxon signed-rank test findings,
MGACO outperformed the DE, rated No. 2, on the 21 function
problems to achieve the top spot with a mean value of 1.43. Figure 8

FIGURE 8

Friedman test results of MGACO and its 10 basic peers.
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FIGURE 9

Friedman test results of MGACO and its 10 advanced peers.

displays the results of the Friedman test for MGACO and the
10 fundamental techniques. MGACO ranks first with an attained
value of 1.86, while DE ranks second with an obtained value of
3.73, further demonstrating that MGACO still has an edge over
the fundamental algorithms. Supplementary Figure 8 compares
the convergence curves of MGACO and 10 fundamental methods
for a set of benchmark functions. The convergence curves F6,
F23, F25, and F28 show how MGACO has improved in terms
of convergence speed, while F1, F11, F16, and F17 demonstrate
how MGACO outperforms other algorithms in terms of avoiding
local optimums. Therefore, when MGACO is compared to other
fundamental algorithms, its main benefits are also clearly shown.

5.2.4. Comparison with some excellent variants
This section compares MGACO with various newly suggested

enhanced variations to better highlight the fundamental benefits of
the algorithm. The comparison included the algorithms OBLGWO,
OBSCA, RCACO, RCBA, ACWOA, BMWOA, CDLOBA, EWOA,
HGWO, and m_SCA. Supplementary Table 4 displays the
experimental results for each algorithm after 30 separate runs,
including the mean, variance, and Wilcoxon signed-rank test
analysis findings. In terms of finding the best solutions to function
problems, MGACO finds the best solutions to 16 of them, RCACO,
CDLOBA, RCBA, EWOA, and HGWO each find the best solutions
to just 4 of them, MGACO finds the best solutions to 3 function
problems, and MGACO finds the best solutions to just 1 function
problem. As a result, MGACO outperforms all other advanced
peers and has the best performance among the optimum values

found for function issues. Additionally, we can observe that
MGACO only outperforms RCACO, which is rated. No. 2, on
two function problems, further proving that it outperforms other
approaches. The Friedman test results are shown in Figure 9, where
MGACO comes out on top with a score of 1.95 and RCACO comes
in second with a score of 3.38. This further proves that MGACO
outperforms other techniques. MGACO has the best convergence
accuracy on all benchmark functions, the fastest convergence rate
on F4, F20, and F29 than other techniques, and the strongest
capacity to jump out of local optimum on F9, F11, and F16 in
the convergence curves shown in Figure 9. As a result of the
above correlation research, its primary benefits are well highlighted
when comparing MGACO to other advanced variations. However,
the complexity of the algorithm inevitably increases because of
the clever integration of multiple mechanisms into ACO, which
can also be illustrated in the total CPU time consumption for 30
independent runs given in Figure 10, where although the time
consumption of MGACO is higher than that of some competing
algorithms, it is still at the average of its peers. Therefore, we
consider such a complexity level to be acceptable.

5.3. Experiment on COVID-19 X-ray
image segmentation

In this part, we performed our research on the X-ray images
of 8 COVID-19 patients to demonstrate the superior segmentation
performance of MGACO-MIS. First, segmentation tests were
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FIGURE 10

The total CPU time consumption of all methods for 30 independent runs.

performed at levels 4, 5, and 6 to reflect low threshold levels
utilizing MGACO-MIS and another 8 equivalent methodologies.
Second, segmentation studies were also performed using levels 15,
20, and 25 to represent high threshold levels.

5.3.1. Performance measures indicators
In this study, three widely used evaluation measures are

employed to more clearly show how well the algorithm performs
and how well the picture segmentation is done. The three indicators
utilized are PSNR, FSIM, and SSIM in the Table 3, with the
following definitions for each.

Furthermore, a higher value for any one of the three indices
mentioned above indicates a better degree of segmented image

quality. The SSIM and FSIM index values range is [0, 1]. Further
in-depth analysis was performed on the obtained assessment results
using the mean, variance, Wilcoxon signed-rank test, and Friedman
test. Based on the study and comparison of those experimental
outcomes, MGACO-superior MIS’s segmentation effect and its
flexibility to different threshold levels are well shown when it is put
up against other similar MIS approaches.

5.3.2. Experimental result analyses
In order to demonstrate that MGACO-MIS may yield better

segmentation results on COVID-19 pathology images, this section
compares MGACO-MIS with eight other peers at different
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threshold levels. These peers include the techniques ACOR-
MIS, MVO-MIS, HHO-MIS, SCA-MIS, BLPSO-MIS, IGWO-MIS,
IWOA-MIS, and CLPSO-MIS. The findings of the assessment using
PSNR, FSIM, and SSIM are shown in Supplementary Tables 5–
7, and they contain the mean and variance of PSNR, FSIM, and
SSIM obtained using all segmentation techniques at threshold
levels 4, 5, 6, 15, 20, and 25. It is clear that MGACO-MIS
receives the maximum number of optimum evaluation values
among the three evaluation results when looking at the number
of optimal evaluation results achieved on PSNR, FSIM, and SSIM.
This shows that MGACO-MIS is capable of producing extremely
good segmentation results. Following additional examination
of the PSNR, FSIM, and SSIM assessment findings using the
Wilcoxon signed-rank test, the results are presented in Tables 4–6,
where the bolded content indicates the first ranked algorithm.
MGACO-MIS came in first at various threshold settings, and
its performance on most pictures is comparable to that of
other approaches. In order to further analyze the PSNR, FSIM,
and SSIM assessment outcomes, the Friedman test results are
presented in Figure 11 and Supplementary Figures 10, 11, 2.
The MGACO-MIS was also able to achieve maximum values
at various threshold levels. When the results of the Friedman
test, Wilcoxon signed-rank test, Wilcoxon variance test, and
PSNR, FSIM, and SSIM evaluations are combined, they show
that MGACO-MIS can produce better segmentation results on
pathological pictures of COVID-19. Supplementary Figures 12,
13 also show the 2D Kapur’s entropy convergence curves for
all techniques used during level 6 and level 25 segmentation,
where MGACO–MIS ultimately achieves the highest value of
2D Kapur’s entropy. It further demonstrates that MGACO-MIS
can get superior segmentation results on the diseased pictures
of COVID-19 when combined with examining the maximum
2D Kapur’s entropy and its convergence curves. Supplementary
Table 8 lists the precise segmentation thresholds established
using each approach on all pictures when the threshold levels
were low. Figure 12 displays the precise segmentation results
at threshold level 6, and Supplementary Figure 14 displays the
results of the precise segmentation at threshold level 25. Combining

TABLE 3 Indicators of the multi-level image segmentation
techniques’ performance.

Indicators Formulation Remark

Peak signal to noise
ratio (PSNR)
(Huynh-Thu and
Ghanbari, 2008)

PSNR = 20 · log10

(
255

RMSE

) Compare the
divided picture to
the original image
and evaluate the
differences.

Structural similarity
index (SSIM) (Zhou
et al., 2004) SSIM =(

2µIµSeg + c1
) (

2σI,Seg + c2
)(

µI2 + µSeg 2 + c1
) (

σI2 + σSeg 2 + c2
)

Determines if a
segmented picture
and an
uncompressed or
distortion-free
image are similar.

Feature similarity
index (FSIM) (Zhang
et al., 2011) FSIM =

∑
I∈� SL (X) PCm (X)∑

I∈� PCm (X)

Establishes the
quality score that
measures the
importance of a local
structure.

TABLE 4 The PSNR analysis results of MGACO and its peers at different
threshold levels.

4 5

+/-/= Mean Rank +/-/= Mean Rank

MGACO-MIS ∼ 1.88 1.00 ∼ 1.50 1.00

ACOR-MIS 0/0/8 2.00 2.00 0/0/8 1.88 2.00

MVO-MIS 4/0/4 3.13 3.00 3/0/5 3.00 3.00

HHO-MIS 7/0/1 6.00 5.00 8/0/0 6.88 8.00

SCA-MIS 7/0/1 8.00 9.00 8/0/0 9.00 9.00

BLPSO-MIS 7/0/1 6.38 7.00 8/0/0 5.88 5.00

IGWO-MIS 5/0/3 4.13 4.00 6/0/2 4.13 4.00

IWOA-MIS 7/0/1 6.00 5.00 8/0/0 6.63 7.00

CLPSO-MIS 7/0/1 7.50 8.00 8/0/0 6.13 6.00

6 15

+/-/= Mean Rank +/-/= Mean Rank

MGACO-MIS ∼ 1.25 1.00 ∼ 1.38 1.00

ACOR-MIS 1/0/7 1.75 2.00 1/0/7 1.75 2.00

MVO-MIS 6/0/2 3.00 3.00 5/0/3 3.00 3.00

HHO-MIS 8/0/0 6.50 7.00 7/0/1 5.63 5.00

SCA-MIS 8/0/0 9.00 9.00 8/0/0 9.00 9.00

BLPSO-MIS 8/0/0 6.13 5.00 8/0/0 5.88 6.00

IGWO-MIS 7/0/1 4.50 4.00 8/0/0 7.00 8.00

IWOA-MIS 8/0/0 6.50 7.00 8/0/0 6.38 7.00

CLPSO-MIS 8/0/0 6.38 6.00 8/0/0 5.00 4.00

20 25

+/-/= Mean Rank +/-/= Mean Rank

MGACO-MIS ∼ 1.38 1.00 ∼ 1.50 1.00

ACOR-MIS 1/0/7 1.63 2.00 1/0/7 1.63 2.00

MVO-MIS 4/0/4 3.50 3.00 1/0/7 4.13 4.00

HHO-MIS 6/0/2 5.88 6.00 2/0/6 3.63 3.00

SCA-MIS 8/0/0 9.00 9.00 8/0/0 9.00 9.00

BLPSO-MIS 8/0/0 6.00 7.00 3/0/5 5.75 6.00

IGWO-MIS 7/0/1 7.50 8.00 6/0/2 7.13 7.00

IWOA-MIS 5/0/3 4.50 4.00 5/0/3 5.00 5.00

CLPSO-MIS 7/0/1 5.63 5.00 7/0/1 7.25 8.00

The bolded content indicates the first ranked algorithm.

the precise segmentation thresholds with the segmentation
outcomes at threshold level 6, it is clear that MGACO-MIS
produces better segmentation outcomes than other techniques
regarding detail retention, local feature retention, and overall
segmentation effect. This also suggests that the segmentation
thresholds produced by MGACO-MIS are reasonable and capable
of completing the segmentation task. Additionally, the precise
segmentation outcomes at the threshold level of 25 further
suggest that MGACO-MIS can achieve superior segmentation
outcomes.
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TABLE 5 The FSIM analysis results of MGACO and its peers at different
threshold levels.

4 5

+/-/= Mean Rank +/-/= Mean Rank

MGACO-MIS ∼ 1.63 1.00 ∼ 1.50 1.00

ACOR-MIS 0/0/8 2.00 2.00 0/0/8 2.13 2.00

MVO-MIS 2/0/6 3.25 3.00 3/0/5 2.88 3.00

HHO-MIS 7/0/1 7.25 9.00 7/0/1 6.00 6.00

SCA-MIS 7/0/1 6.38 5.00 8/0/0 8.88 9.00

BLPSO-MIS 8/0/0 7.00 8.00 8/0/0 6.63 7.00

IGWO-MIS 4/0/4 3.75 4.00 4/0/4 4.13 4.00

IWOA-MIS 8/0/0 6.88 6.00 7/0/1 7.13 8.00

CLPSO-MIS 7/0/1 6.88 6.00 8/0/0 5.75 5.00

6 15

+/-/= Mean Rank +/-/= Mean Rank

MGACO-MIS ∼ 1.00 1.00 ∼ 1.50 1.00

ACOR-MIS 1/0/7 2.00 2.00 0/0/8 1.63 2.00

MVO-MIS 5/0/3 3.00 3.00 7/0/1 3.00 3.00

HHO-MIS 8/0/0 6.25 6.00 6/0/2 5.00 4.00

SCA-MIS 8/0/0 9.00 9.00 8/0/0 9.00 9.00

BLPSO-MIS 8/0/0 6.50 8.00 8/0/0 6.38 7.00

IGWO-MIS 8/0/0 4.75 4.00 8/0/0 7.25 8.00

IWOA-MIS 8/0/0 6.38 7.00 8/0/0 5.88 6.00

CLPSO-MIS 8/0/0 6.13 5.00 8/0/0 5.38 5.00

20 25

+/-/= Mean Rank +/-/= Mean Rank

MGACO-MIS ∼ 1.38 1.00 ∼ 1.38 1.00

ACOR-MIS 1/0/7 1.63 2.00 2/0/6 1.88 2.00

MVO-MIS 4/0/4 3.50 3.00 1/0/7 3.75 3.00

HHO-MIS 8/0/0 5.50 5.00 3/0/5 4.25 4.00

SCA-MIS 8/0/0 9.00 9.00 8/0/0 9.00 9.00

BLPSO-MIS 8/0/0 6.25 7.00 7/0/1 5.88 6.00

IGWO-MIS 8/0/0 7.63 8.00 8/0/0 6.75 7.00

IWOA-MIS 6/0/2 4.25 4.00 4/0/4 4.88 5.00

CLPSO-MIS 8/0/0 5.88 6.00 8/0/0 7.25 8.00

The bolded content indicates the first ranked algorithm.

6. Discussion

We first conducted a comparison experiment based on the 30
test functions of IEEE CEC2014 between the new moving strategy
and the variants created by the Cauchy-Gaussian fusion strategy,
where MGACO obtained the minimum mean value the majority
of the time on all function problems. MGACO also outperformed
the other three variants of the algorithm in the analysis results.
Additionally, the effect of the two new mechanisms on ACOR is
thoroughly examined from a variety of angles, with an emphasis
on diversity and balance. This analysis demonstrates that MGACO
further optimizes the balance of exploration and development

TABLE 6 The SSIM analysis results of MGACO and its peers at different
threshold levels.

4 5

+/-/= Mean Rank +/-/= Mean Rank

MGACO-MIS ∼ 2.13 1.00 ∼ 2.00 1.00

ACOR-MIS 0/0/8 3.00 2.00 0/0/8 2.75 2.00

MVO-MIS 2/0/6 4.13 4.00 3/0/5 3.75 4.00

HHO-MIS 6/0/2 7.38 9.00 5/0/3 7.13 8.00

SCA-MIS 37989.00 4.63 5.00 7/1/0 6.13 6.00

BLPSO-MIS 8/0/0 7.25 8.00 7/0/1 6.75 7.00

IGWO-MIS 37261.00 3.00 2.00 37261.00 3.25 3.00

IWOA-MIS 7/0/1 7.13 7.00 6/0/2 7.38 9.00

CLPSO-MIS 6/0/2 6.38 6.00 7/0/1 5.88 5.00

6 15

+/-/= Mean Rank +/-/= Mean Rank

MGACO-MIS ∼ 1.88 1.00 ∼ 1.25 1.00

ACOR-MIS 1/0/7 2.50 2.00 0/0/8 2.00 2.00

MVO-MIS 4/0/4 4.25 3.00 5/0/3 2.75 3.00

HHO-MIS 7/0/1 7.13 9.00 7/0/1 5.25 4.00

SCA-MIS 7/1/0 7.00 8.00 8/0/0 9.00 9.00

BLPSO-MIS 7/0/1 6.13 7.00 8/0/0 6.50 7.00

IGWO-MIS 5/0/3 4.38 4.00 7/0/1 6.88 8.00

IWOA-MIS 7/0/1 5.88 5.00 8/0/0 6.00 6.00

CLPSO-MIS 5/0/3 5.88 5.00 7/0/1 5.38 5.00

20 25

+/-/= Mean Rank +/-/= Mean Rank

MGACO-MIS ∼ 1.50 1.00 ∼ 1.50 1.00

ACOR-MIS 1/0/7 1.88 2.00 2/0/6 2.38 2.00

MVO-MIS 4/0/4 3.50 3.00 2/0/6 3.50 3.00

HHO-MIS 6/0/2 5.50 5.00 2/0/6 3.75 4.00

SCA-MIS 8/0/0 8.75 9.00 8/0/0 9.00 9.00

BLPSO-MIS 8/0/0 6.13 6.00 6/0/2 5.88 6.00

IGWO-MIS 7/0/1 7.25 8.00 7/0/1 7.00 7.00

IWOA-MIS 5/0/3 4.38 4.00 4/0/4 4.63 5.00

CLPSO-MIS 7/0/1 6.13 6.00 7/0/1 7.38 8.00

The bolded content indicates the first ranked algorithm.

based on ACOR, enabling MGACO to handle more challenging
issues. Then, to analyze the effectiveness of MGACO and ACOR
more thoroughly, a comparison of the two programs is made
across several aspects. The findings of this comparison conclusively
show that MGACO can provide better outcomes and is more
stable. MGACO has a superior capacity to resist entering a local
optimum throughout the problem-solving process, which aids in
developing a better solution. Finally, we evaluate MGACO against
certain established, fundamental algorithms and some enhanced
variations. The results of the Friedman test analysis, Wilcoxon
signed-rank test analysis, and associated convergence curves clearly
show that MGACO not only produces high-quality solutions

Frontiers in Neuroinformatics 16 frontiersin.org

https://doi.org/10.3389/fninf.2023.1126783
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1126783 March 15, 2023 Time: 8:45 # 17

Zhao et al. 10.3389/fninf.2023.1126783

FIGURE 11

Friedman test results of MGACO-MIS and its peers for PSNR evaluation.

FIGURE 12

Segmentation results by using 2D Kapur’s entropy for all methods at threshold level 6.

but also has a little improvement in convergence speed and
the capacity to depart from the local optimum. In conclusion,
this paper’s proposal for the MGACO offers more advantages
over the AOCR and a higher capacity for problem-solving.

Additionally, we conducted MIS experiments based on actual
COVID-19 pathology images, the evaluation results of PSNR,
SSIM, and FSIM, and the additional Wilcoxon signed-rank test
and Friedman test results can show that MGACO-MIS can
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achieve better segmentation results on the pathological images
of COVID-19. The particular segmentation findings further
demonstrate that MGACO-MIS outperforms its competitors in
terms of detail preservation, local feature preservation, and overall
segmentation outcomes.

As a result, it is undeniably established that MGACO is a
very good swarm intelligence optimization algorithm and that
MGACO-MIS is an even better segmentation technique when
MGACO is used to segment problematic pictures from COVID-19.
In future work, the proposed method can also be applied to more
cases, such as the optimization of machine learning models iris
segmentation and recognition (Chen et al., 2023), fine-grained
alignment (Wang et al., 2023), remote pulse extraction (Zhao
et al., 2022), Alzheimer’s disease identification (Yan et al., 2022),
MRI reconstruction (Lv et al., 2021), renewable energy generation
(Sun et al., 2022), power distribution network (Cao et al., 2022),
retinal vessel segmentation (Li et al., 2022), privacy protection of
personalized information retrieval (Wu Z. et al., 2020; Wu et al.,
2021c,d, 2023), and privacy protection of location-based services
(Wu et al., 2021b, 2022).

7. Conclusion and future works

An MIS approach (MGACO-MIS) based on an improved
version of ACOR (MGACO) is developed in this study. Not
only is a new move strategy included in MGACO, but also the
Cauchy-Gaussian fusion approach. Due to the addition of the new
movement strategy and the Cauchy-Gaussian fusion approach,
MGACO’s convergence speed and capacity to jump out of the
local optimum have been much improved. To highlight these
fundamental benefits of MGACO, the 30 benchmark functions
from IEEE CEC2014 are used to compare MGACO and ACOR
with 10 conventional basic algorithms and 10 modifications. The
outcomes show that MGACO increases convergence speed and
considerably increases its capacity to exit the local optimum.
In order to show that MGACO can produce high-quality
segmentation results when performing image segmentation, a
comparison experiment was carried out between MGACO-MIS
and eight other comparable segmentation methods using real
pathological images of COVID-19 at threshold levels 4, 5, 6, 15,
and 25, where 4, 5, and 6 represent low threshold levels and 15,
20, and 25 represent high threshold levels. The final assessment
and analysis findings conclusively show that the created MGACO-
MIS can produce accurate image segmentation results. However,
the proposed method achieves very good results, but the time
consumption is still large. To better solve this problem, it will
be solved by introducing parallel computing or high-performance
computing in the future.

For future work, MGACO will be considered to be applied to
more fields, such as bankruptcy prediction (Zhang et al., 2020),
engineering design (Chen et al., 2019; Luo et al., 2019; Al-Betar
et al., 2020; Tu et al., 2020; Wang et al., 2020), and financial
stress prediction (Luo et al., 2018). Further, MGACO-MIS will be
considered for the segmentation of more pathological images to
achieve greater value and contribute to the advancement of medical
diagnosis technology.
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