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Information theory is a viable candidate to advance our understanding of how the

brain processes information generated in the internal or external environment.

With its universal applicability, information theory enables the analysis of complex

data sets, is free of requirements about the data structure, and can help infer the

underlying brain mechanisms. Information-theoretical metrics such as Entropy or

Mutual Information have been highly beneficial for analyzing neurophysiological

recordings. However, a direct comparison of the performance of these methods

with well-established metrics, such as the t-test, is rare. Here, such a comparison

is carried out by evaluating the novel method of Encoded Information with Mutual

Information, Gaussian Copula Mutual Information, Neural Frequency Tagging,

and t-test. We do so by applying each method to event-related potentials and

event-related activity in di�erent frequency bands originating from intracranial

electroencephalography recordings of humans andmarmoset monkeys. Encoded

Information is a novel procedure that assesses the similarity of brain responses

across experimental conditions by compressing the respective signals. Such an

information-based encoding is attractive whenever one is interested in detecting

where in the brain condition e�ects are present.
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1. Introduction

Efficient processing of information is a core capacity of the brain. It enables us to perceive

rapidly, comprehend, identify changes, and engage with our environment—sometimes even

without conscious effort. Accordingly, in attempting to understand the underlying brain

mechanisms responsible for these capacities, it is useful to employ approaches that originate

from information theory. This mathematical theory provides multivariate analysis tools, is

not bound to a single type of data, is model-independent (i.e., does not require assumptions

about the data itself), and can capture nonlinear interactions (Li and Vitányi, 2008; Ince

et al., 2017; Timme and Lapish, 2018; Piasini and Panzeri, 2019). Specifically, by measuring

the degree of redundancy, the branch of algorithmic information theory (AIT) estimates the

absolute information contained in individual brain responses. The higher the information

content, the more complex its structure. Accordingly, the less compressible or more random

the response (Li and Vitányi, 2008). Assessing the absolute information content of responses

recorded from different contact sites enables inferring the complexity of the activity recorded

at the respective sensors and potentially identification of underlying dynamics.
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Hence, principles from information theory can be utilized for

the analysis of neurophysiological recordings originating from

scalp electroencephalography (EEG), intracranial EEG (iEEG),

magnetoencephalography (MEG), or functional magnetic

resonance imaging (fMRI). While information theory-based

metrics have been employed to advance our understanding

of brain processes, direct comparisons with well-established

metrics or demonstrations of their easy applicability are highly

needed. More specifically, AIT has been applied to analyses of

task-related cognitive operations or to discriminate between

states of consciousness measured with EEG, iEEG, MEG, or

fMRI recordings (Sitt et al., 2014; Schartner et al., 2015, 2017;

Canales-Johnson et al., 2020; Fuhrer et al., 2021), however, its use

in neuroscience has been limited despite its clear potential.

Here, we carry out such a comparison and demonstrate the

AIT-based measure of encoded information (EI; Fuhrer et al., 2022)

as an advantageous tool to directly quantify the level of similarity

between responses of neurophysiological data across experimental

conditions. We do so by analyzing iEEG recordings stemming

from 34 humans (Blenkmann et al., 2019; Llorens et al., 2022) and

three marmoset monkeys (Komatsu et al., 2015; Canales-Johnson

et al., 2021) which were exposed to passive and active paradigms

as well as auditory or visual stimuli. We compare the performance

of encoded information with that of a conventional t-test, Mutual

Information (MI), Gaussian Copula Mutual Information (GCMI;

Ince et al., 2017), or Neural Frequency Tagging (NFT; Picton et al.,

2003; Norcia et al., 2015) considering the signal band-pass power

time series of theta (5 to 7Hz), alpha (8 to 12Hz), beta (12 to

24Hz), high-frequency (HFA; 75 to 145Hz), and event-related

potential (ERP).

2. Materials and methods

2.1. Test paradigms and neurophysiological
recordings

To evaluate the methods, we examined their sensitivity

to discriminate experimental conditions from three different

neurophysiological data sets. Two of these used auditory stimuli

and one used visually presented stimuli. We focused our analysis

on the cortical representation of theta, alpha, beta, HFA, and ERP

band-pass power time series.

2.1.1. Extraction of band-pass power time series
Data were low-pass filtered at 30Hz using a sixth-order

Butterworth filter to obtain the ERPs. Theta, alpha, and beta

frequency bands were extracted from the demeaned signals using

wavelet time-frequency transformation (Morlet wavelets) based on

convolution in the time domain (Oostenveld et al., 2011). Wavelets

of 3, 3, or 5 oscillations were used to extract respective frequencies

bands [theta (5 to 7Hz), alpha (8 to 12Hz), and beta (12 to

24Hz)] in steps of 1Hz. All trials were then baseline corrected by

subtracting the mean amplitude of the baseline period of each trial

and frequency band from the entire trial (see respective sections for

the different data sets for the used baseline intervals).

To extract the HFA, the pre-processed data were filtered into

eight bands of 10Hz ranging from 75 to 145Hz by use of bandpass

filters. Next, the instantaneous amplitude signal of each filtered

signal was computed by applying a Hilbert transform to the filtered

time series leading to the analytic signal (Foster et al., 2016),

constituting a complex-valued time series. The analytic amplitude

time series or signal envelope corresponding to specific frequency

bands was then obtained using Pythagoras’ Theorem. To obtain one

time series across all eight frequency bands, their mean amplitude

value was calculated. As the last step, the respective time series were

normalized by dividing them by a mean baseline period computed

from all trial recordings. This resulted in a normalized measure

relative to the baseline activity and termed HFA.

To eliminate any residual artifacts not rejected by visual

inspection, responses with an amplitude larger than five standard

deviations from the mean for more than 25 consecutive ms, or with

a power spectral density above five standard deviations from the

mean for more than six consecutive Hz were excluded.

2.1.2. Optimum-1 paradigm
We analyzed experimental iEEG data obtained from

intracranial electrodes implanted in (self-reported) normal-

hearing adults with drug-resistant epilepsy. Analyses of this

data have been previously presented in Blenkmann et al. (2019)

and Fuhrer et al. (2021, 2022). Participants (n = 22, mean age

31 years, range 19 to 50 years, 6 female) performed a passive

auditory oddball paradigm where a standard tone alternated with

random deviant tones. The tones had a duration of 75ms and

were presented every 500ms in blocks of 5min consisting of

300 standards and 300 deviants. At the beginning of each block,

15 standards were played. To capture automatic, stimulus-driven

processes, participants were asked not to pay attention to the

sounds while reading a book or magazine. They completed 3 to 10

blocks, providing at least 1,800 trials (for details, see Blenkmann

et al., 2019; Fuhrer et al., 2022). From the 22 participants, a total of

1078 channels (mean: 48, range: 12 to 104 ) were available after data

cleaning. Data were then segmented into 2000ms epochs (750ms

before and 1250ms after tone onset) and demeaned. The different

band-pass power time series were then extracted. For each time

series, differences between standard and deviant tone responses

were then evaluated in the 400ms time window following the

sound onset across channels and subjects. The baseline window

was from −100 to 0ms relative to tone onset. Additionally, for

this data set the neural oscillation synchronization to the tone

onset frequency (2Hz) and the frequency for standard and deviant

tones (1Hz) were examined by considering the pre-processed data

(needed for the NFT approach).

2.1.3. Roving Oddball paradigm
Further, we considered experimental iEEG data collected

during a passive auditory Roving Oddball paradigm on three

awake adult male common marmosets (Callithrix jacchus). This

experimental data has been previously studied in Komatsu et al.

(2015), Canales-Johnson et al. (2021). The paradigm consisted

of trains of three, five, or eleven repeated single tones of 20

different frequencies (250 to 6727Hz with intervals of 1/4 octaves).
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All tones were pure sinusoidal tones, lasted 64ms (7ms rise/fall)

and there was stimulus onset asynchrony 503ms between them.

For each sound train, all tones were identical but varied across

tone trains. Consequently, the mismatch occurred between the

transition from one train to another in the form of a frequency

change. Accordingly, the last tone of a train is defined as a standard

tone, while the first tone of a new train is considered a deviant

tone. Standard to deviant tone transitions then occurred 240 times

during a recording session.

The number of implanted electrodes varied from monkey to

monkey. For monkey “Fr”, 32 channels were implanted in the left

hemisphere epidural space, for “Go”, 64 channels were implanted

in the right hemisphere, and for monkey “Kr”, 64 electrodes were

implanted in the right hemisphere (Figure 5C; see Komatsu et al.,

2015; Canales-Johnson et al., 2021, for more detailed information).

Recorded data were re-referenced through an average reference

montage and epoched into −950 to 2000ms segments relative to

the standard or deviant tone onset. The different band-pass power

time series were then extracted and baseline corrected (by use

of the −100 to 0ms time interval relative to tone onsets). For

the analysis, all recordings were shortened to the −100 to 350ms

interval relative to sound onsets.

2.1.4. Verbal working memory paradigm
As a third data set, we investigated iEEG data stemming from

the insular cortex during a verbal working memory task (vWM;

see Llorens et al., 2022). Participants (n = 12, mean age 31.2

±11.1 yr, 4 female) performed a recent-probes task, where in

each trial a list of five letters was displayed (stimulus duration

500ms, inter-onset interval 1000ms) on the computer screen.

The letter presentation was followed by 4 s maintenance and a

2 s probe period. During the latter, a probe letter was displayed

where the participants had to answer whether the presented probe

letter was in the current list (p = 0.5). In total, 144 trials were

presented to each participant in a pseudo-random order within

three blocks (each 10min).

From the twelve participants, a total of 90 bipolar channels

(mean: 7.5, range: ±5.9) were available after data cleaning. Data

were then segmented into 16 s epochs (−12 s before and 4 s after

probe period) and demeaned. The different band-pass power

time series were then extracted, and for each band-pass power

time series, differences between maintenance (−2 to 0 s) and

probe period (0 to 2 s) were evaluated across channels and

participants. The window for the baseline correction was from

−9.5 to −8.5 s, i.e., the second preceding the presentation of the

letter list.

2.2. Encoded information

We estimated the EI of the mean responses of the different

experimental conditions as described in Fuhrer et al. (2022). In

short, by employing algorithmic or Kolmogorov Complexity (K-

complexity), we estimated the EI between conditions through the

measure of Normalized Compression Distance (NCD) (Li et al.,

2004; Li andVitányi, 2008). For a pair of signals (x, y), it is defined as

NCD(x, y) =
C(xy)−min(C(x),C(y))

max(C(x),C(y))
,

with C(xy) denoting the compressed size of the concatenation of x

and y, and C(x) and C(y) their respective size after compression

(Li et al., 2004; Li and Vitányi, 2008). Further, the NCD is non-

negative, that is, it is 0 ≤ NCD(x, y) ≤ 1+ ǫ, where the ǫ accounts

for the imperfection of the employed compression technique. Small

NCD values suggest similar signals and high values indicate rather

different signals.

To obtain a compressed version of a signal, it was first

simplified by grouping its values into 128 regular intervals (bins)

while keeping the temporal sampling rate unchanged. The bins

covered equal distances and in a range between the global

extrema of all the signals considered. The discrete signal was then

compressed by passing an integer representation of the signal to the

compressor. This representation constituted the mapping between

each respective signal value and the number of the closest bin

(Sitt et al., 2014; Canales-Johnson et al., 2020). For instance, the

signal value X(t) at time point t is closest to the bin Q ∈ N

with 1 ≤ Q ≤ 128. The value for the time point t which

is then used for the integer representation is Q. Compression

of this integer representation subsequently proceeded through a

compression routine based on Python’s standard library with gzip.

The statistical hypothesis testing was then performed through a

permutation-based approach as described below.

FIGURE 1

PSD and SNR of a responsive channel located in the superior

temporal sulcus of a human. The activity of the channel shows

synchrony to the main frequency of tone onsets, which is around

2Hz. The displayed deviation is due to a constant lag of tone

presentation during recording (the resulting theoretical main

sequence is at 1.919Hz). Further, it shows synchrony to half the

main frequency indicating that the underlying region of this channel

tags the presentation rate of solely standard or deviant tones. Thus,

it discriminates between standard and deviant conditions. The

dashed line indicates the statistical threshold.
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2.3. t-test

The t-test is one of the most common methods to compare

amplitude or power time series mean value differences across

experimental conditions. For each sample and channel, a two-sided

t-test was performed, where the resulting t-value represented the

activity difference between the two conditions (e.g., standard or

deviant). To correct for multiple comparisons across samples and

channels, a False Discovery Rate (FDR) adjustment was applied

with an FDR of 0.05.

2.4. Neural frequency tagging

For the Optimum-1 data, we used NFT to identify the

brain’s capability to automatically segment the continuous auditory

stream (Picton et al., 2003; Norcia et al., 2015). In the respective

auditory sequence, the two main segments are represented by

the frequency of sound onsets (∼2Hz) or by the frequency

of transitions between standards to standards or deviants to

deviants (i.e., half the frequency or ∼1Hz). If the neural activity

of a recording site showed such “tagging” of frequency-specific

properties within the stimuli, we defined it as “responsive”. If it

tagged half the frequency, we identified it as sensitive to the pattern

of a standard-deviant alternation.

To assess this tagging, we computed the power-spectral

density (PSD) of the epoched raw data using Welch’s method

(Figure 1; Gramfort et al., 2013). Subsequently, we estimated the

signal-to-noise ratio (SNR) of the PSD (Meigen and Bach, 1999).

Here, SNR defined the ratio of power in a given frequency (signal)

to the average power in the surrounding frequencies (noise). By

doing so, we normalized the spectrum and accounted for the 1/f

power decay (Gramfort et al., 2013). We then identified significant

peaks through a lower threshold consisting of two times the

standard deviation. The latter was estimated by computing the

median absolute deviation, which was obtained by taking the

median SNR multiplied by the constant distribution-dependent

scale factor (Figure 1). In the case of normally distributed

observations, it reflects the 50% of the standard normal cumulative

distribution function, leading to a scale factor of 1.4826 (Donoho

and Johnstone, 1994; Quiroga et al., 2004). Power peaks of

harmonics higher than the tone representation rate of 2Hz are

method-related peaks and are thus not regarded.

2.5. Mutual information

Besides the t-test and NFT, EI was compared to the measure of

MI. While it is also an information-theoretic quantity, in contrast

to EI it draws on the concept of Shannon entropy (i.e., classic

information theory). For a discrete random variable x with N

outcomes, the entropy can be defined as

H(x) = −

N∑

k=1

p(xk) log p(xk) , (1)

with p(xk) being the occurrence probability for each

element xk, . . . , xN of x. Given this definition, the MI between two

discrete random variables (x, y) with N or M outcomes can be

defined as

MI(x; y) = H(x)−H(x|y)

= H(y)−H(y|x)

=

N∑

k=1

M∑

j=1

p(xk, yj) log
p(xk, yj)

p(xk)p(yj)
,

(2)

with the joint probability p(xk, yj) and the marginal

probabilities p(xk) and p(yj).

This estimation of MI requires estimating the probability

distribution of Eq. 2 by binning the signal into discrete steps.

This is followed by a maximum likelihood estimation, yielding the

probability distribution estimates. In our analysis, the respective

signals were binned into four bins (Ince et al., 2017; Timme and

Lapish, 2018).

FIGURE 2

Sketch of the procedure for an example electrode. Based on the trials, a mean response for each condition is computed. Trials are then shu	ed,

resulting in surrogate mean responses. Subsequently, these signals undergo a simplification procedure, followed by their compression. The output of

the compression routine is the EI, quantifying the similarity between responses. The resulting values are then evaluated, leading to a null model

distribution. This distribution serves to assess the significance of the actual EI value.
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Besides this binning approach, a novel estimation technique of

MI after Ince et al. (2017) was employed. With this approach, MI is

estimated via Gaussian Copula. In short, each univariate marginal

distribution is transformed into a standard normal. Subsequently,

a Gaussian parametric MI estimate is applied. That yields a lower

bound estimate of MI, named GCMI. Statistical significance testing

was then estimated through surrogate data testing.

2.6. Surrogate testing

The statistical significance of the information-based measures

(EI, MI, and GCMI) was assessed through surrogate data

testing. Accordingly, p-values were obtained by evaluating the

observed information-based quantity in terms of a null distribution

(Figure 2). For EI and binned MI, null distributions were created

by repeatedly shuffling the trials (i.e., single evoked responses)

between conditions (e.g., standard and deviant) and then re-

computing the information-based measure. For the GCMI, this

proceeded for each sample of the time series signal. If not noted

otherwise, we chose 20.000 iterations to build the null distributions,

which is sufficiently above the recommendation of 100 shuffles

(Lancaster et al., 2018). Single-sided p-values lower or equal to

0.05 were considered statistically significant. To correct formultiple

comparisons across channels, FDR adjustment was applied with an

FDR of 0.05.

2.7. Significance ratio

To compare the different methods we determined the number

of channels with statistically different activity between conditions

relative to the total amount of channels. This ratio was computed

either for each subject, where the total significance ratio was the

mean ratio across all subjects accompanied by a bootstrapped 95%-

confidence interval. Or by taking the total ratio by collapsing

across all channels (regardless of subjects). The latter was used

when considering individual brain regions, where the number

of channels was limited, leading to distorted ratios with large

confidence intervals. For the Roving Oddball data, the ratio of each

monkey was considered individually.

2.8. Performance for limited amount of
data

We further considered scenarios where only a reduced number

of trials were available. Channels were selected from the Optimum-

1 paradigm with differing sensitivity to deviating tones. The

channels were located in the respective 25, 50, 75, and 97.5 -

percentiles of the t-value distribution emerging from the t-test-

based analysis of HFA (Figure 7A). The number of trials varied

from 1 to 100% of all available trials (759.50± 360.85 trials for

deviant responses and 715.14± 388.12 trials for standards across all

channels). For each percentage and condition, trials were randomly

chosen and a null distribution with 1.000 surrogates was created.

This step was repeated 50 times for each trial increment to

obtain an average p-value as a function of the number of trials

(Figure 7B). The surrogate number was chosen in line with the

recommendations of Lancaster et al. (2018) and the repetition

number was based on an empirical approach, keeping it as low as

possible to account for the considerable computational resources.

2.9. False positive estimates

Evaluating the methods’ performances, we employed

neurophysiological data sets and were thus not able to compute

the false positive rate of each method given the ground truth.

Therefore, we estimated the methods’ false positive rates through

a simulation-based approach. The methods were employed to

discriminate between two samples drawn from the standard

normal distribution (Colquhoun, 2014). Each sample consisted of

a time-course signal of 100 observations, was repeatedly drawn

(500 times), and for each draw the number of surrogates for EI, MI,

or GCMI was 1.000. Given that both samples originated from the

same distribution, each statistically significant output constituted

a false positive. The false positives were then accumulated

across simulations and put relative to the respective number of

simulations to estimate the false positive rate (Figure 7C).

3. Results

Based on three neurophysiological data sets, we compared the

methods’ performances of EI, a conventional t-test, MI, and GCMI

on discriminating evoked responses to that across five different

cortical band-pass power time series. Additionally, we considered

the approach of NFT. Overall, EI and t-test showed the greatest

significance ratios (Figures 3A, 5A, 6A).

3.1. Optimum-1 paradigm

Across the 1,078 channels stemming from the Optimum-1

paradigm, for alpha and HFA signals, EI’s significance ratio was

significantly greater than MI or t-test (Figure 3A) while the t-test

showed the greatest significance ratio for the ERP (two-sided paired

t-tests on a subject level, p = [1.02e−2, 4.17e−2, and 3.666e−3]).

MI resulted in the lowest ratios, although it was only significantly

lower on a subject level for HFA (two-sided paired t-test, p

max = 4.17e−2). Note that for human iEEG, the number of

channels and their distribution is not constant across subjects

and can thus vary greatly. Consequently, the fewer channels for

a subject, the less robust the estimated individual significance

ratio.

Given the differing sensitivity to deviating sounds across

individual brain regions and the number of participants for

the Optimum-1 paradigm, we then compared the methods’

significance ratios across individual cortical areas. For this reason,

we evaluated the methods’ performances across different areas

comprising temporal, frontal, insular, peri-central sulci, and

anterior cingulate cortices (ACC), as well as the hippocampus
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A

B

C

FIGURE 3

Performance of the di�erent methods for the Optimum-1 paradigm. Error bars indicate 95%-CIs across subjects. Importantly, each subject has a

unique electrode distribution such that the range of significant channels can greatly vary. (A) Significance ratio for each electrophysiological

representation. Statistical significance is indicated with *p ≤ 5e−2, **p ≤ 1e−2, ***p ≤ 1e−3, and ****p ≤ 1e−4. (B) Intersection of the significant

channels across methods. Each number is shown relative to the total number of significant channels. (C) Correlation matrices comparing the

subject-specific significant ratios. The respective p-value is annotated in each square.

(Figure 4; see Fuhrer et al., 2021 for exact definitions). Overall,

the significance ratios of EI aligned with the other methods across

brain regions and representation. Specifically, the ratio for higher

cortical areas such as the superior or middle frontal cortex was

low while being higher in areas such as the superior temporal

plane (which includes Heschl’s gyrus). The NFT method together

with MI showed the lowest sensitivities across brain regions.

However, there were higher or equally high ratios in responsive
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FIGURE 4

Significance ratio across brain regions for the di�erent methods based on the Optimum-1 paradigm. The number of channels per ROI is indicated in

brackets (For more detailed information on the ROIs, see supplementary of Fuhrer et al., 2021).

brain areas such as the superior temporal plane or posterior

insular cortices.

3.1.1. Performance of NFT
For the Optimum-1 paradigm, we further evaluated the

NFT of all contact sites. The number of responsive channels,

i.e., the number of channels that solely tagged the frequency

of standards or deviants, was lower in comparison to all

other methods (two-sided paired t-test between NFT and MI,

p = 3.55e−2).

3.2. Roving Oddball paradigm

The observations from this data set are in line with the results

from the marmoset recordings, which had 160 channels in total.

Based on the significance ratio of each marmoset monkey, for

theta, alpha, and beta signals, EI detected more channels than the

other approaches. For HFA, GCMI, and EI performed similarly

well, while for ERP, GCMI, and t-test performed best (Figure 5A).

Additionally, common to all methods was the variability in

significance ratios across monkeys.

3.3. vWM task

A similar observation was made by considering EI’s

performance for the vWM task (Figure 6A). Across all band-

pass power time series, EI showed the highest significance

ratios. Interestingly, for the ERPs, both EI and GCMI had

a significantly greater significance ratio than the t-test (p

max = 8.21e−3). Besides that, especially GCMI exhibited a

consistently higher significance ratio across band-pass power

time series in comparison to the Optimum-1 and Roving Oddball

paradigms.

3.4. Method overlap across data sets

To assess channels that the methods commonly detected,

we divided the number of common significant channels (i.e.,

the intersection) by the total amount of significant channels

for each pairwise method combination (Figure 5C, i.e., each

method’s specific unique set of significant channels plus their

intersection) and defined this ratio as the intersection ratio. For

the Optimum-1 paradigm, the intersection ratio between the t-

test and GCMI was the greatest across all band-pass power time
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series (Figure 3C). For beta and HFA signals, there was also a

high intersection ratio between the t-test and GCMI. However,

for these band-pass power time series, the number of significant

channels was low (Figure 3A), which led to higher percentages.

This can also be observed by correlating the method-specific

channel distributions across subjects (Figure 3C), i.e., by correlating

the significance ratios across subjects for each method-to-method

combination. Besides that, the approaches correlated the least

for beta signals, which were also the signals with the lowest

significance ratios. Overall, there was a high correlation across

methods (Figure 3C).

The relatively high intersection ratio between the t-test and

GCMI across band-pass power time series was not observable

for the Roving Oddball paradigm and the vWM task. For the

former, the intersection ratios were the highest for HFA and

ERP signals (Figure 5B), while for the latter it was highest for

HFA (Figures 6B, C). Furthermore, the same effect as for the

Optimum-1 paradigm recordings occurred for the Roving Oddball

paradigm. For HFA, the monkey Fr showed maximum intersection

ratios between t-test, GCMI, or MI. Of note, the respective

significance ratios were rather low (Figure 5A). Moreover, when

comparing Kr to Go it appeared that the latter had a smaller

number of significant and overlapping channels for EI and t-test.

However, because Kr exhibited more significant channels for both

methods, the intersection ratio was of comparable magnitude for

both monkeys.

3.5. Reduced trials and false positives

Considering the two best-performing methods of EI and t-test,

when reducing the number of trials they only marginally differed

in reaching statistical significance although EI tended to reach this

threshold slightly earlier (Figure 7B). In terms of the simulation-

based estimation of the false positive rate estimates, all methods

showed similar rates which were close to the level of significance α

of 0.05 (Figure 7C).

4. Discussion

Despite its ability to estimate the absolute information

contained in individual brain responses, the use of AIT in

neuroscience is limited. Hence, information-theoretical approaches

in neuroscience are needed to facilitate its use. With the measure of

EI, we proposed information-based task condition discrimination

as an alternative to the classical t-test and other information

theory approaches. Using compression as the core principle,

this procedure quantifies the similarity between recordings

stemming from different conditions. We applied all procedures

to event-related potentials extracted from different frequency

bands in three iEEG datasets and compared it to that of t-

test, MI, GCMI, and NFT. We discuss the performance and

sensitivity of these methods, their pros and cons, and similarities

and differences.

4.1. Sample vs. mean response approach

Besides their individual procedures in estimating test statistics,

the examined methods also differ in how the data were processed.

While for the t-test and GCMI approach, each sample or time point

across trials is considered independently, EI and MI in its current

implementation, make use of all time samples by computing the

respective mean responses across trials. Consequently, for each

channel, the first two methods result in test statistics along the

time axis, while the last two output a single value channel-

dependent test statistic. Such a time course is advantageous

when the core interest is within the time domain or latency

of responses, i.e., at which time point responses differ most.

However, when it comes to assessing how sensitive contact

sites are toward different conditions, this time course is of a

minor role. To assess a channel’s significance, it is necessary

to reduce the time course of the test statistics to one single

value. Additionally, the complete time series of the respective

statistic also needs to be corrected for multiple comparisons across

channels and trials (i.e., correction of a 2D array that covers

samples and channels vs. a 1D array that only includes channels).

Therefore, corrections might undermine the sensitivity of sample-

based approaches.

4.2. Performance of EI

Adopting the sample-based approach mentioned above is not

beneficial for EI. While MI or GCMI estimates the underlying

distribution of the input data, EI is a compression-based approach.

It thus compresses the entire time series while exploiting structures

along the time axis. This mechanism is a key feature of this

approach and is possibly responsible for the higher significance

ratios across evoked potentials and other band-pass power time

series. If EI is applied along trials for each sample, this feature of

exploiting structures along the time axis would be removed because

the input would be a concatenation of different signals. Further,

especially for time course responses that are close in magnitude

or partially overlapping, i.e., situations where the classical t-test

might fail to disentangle condition differences measuring EI proves

beneficial. By exploiting complementary structures within both

responses, subtle information-grounded differences that extend

beyond the width of one sample can be identified in such scenarios.

Additionally, the binning parameter or resolution along the time

axis plays minor importance when it comes to computation time,

while it can have a great effect on the computation time of GCMI

or cluster-based t-tests.

Especially for the beta and HFA power time series, EI appears

to be a useful tool for detecting active channels (Figure 3A). Across

all data sets, EI exhibited the highest significance ratios compared

to the t-test, MI, and GCMI. HFA presumably carries stimulus

mismatch or prediction error signals (Bastos et al., 2015). In that

regard, detecting a high number of channels in HFA discriminating

between standard and deviating sounds in regions such as the

hippocampus appears to be especially interesting (Figures 4, 6A).
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A

B

C

FIGURE 5

Performance of the di�erent methods for the Roving Oddball paradigm across the three marmoset monkeys “Go”, “Kr”, and “Fr”. (A) Global

significance ratio for each marmoset. (B) Intersection of the significant channels for each method combination. Each number is shown relative to the

total number of significant channels for each method combination. (C) Location of the significant channels for EI and t-test for HFA (monkey “Go”

has 64, “Kr” 62, and “Fr” exhibits 32 channels).

4.3. Performance of t-test

For the ERP, the t-test showed the greatest significance

ratios for the Optimum-1 and Roving Oddball paradigm. One

possible reason for this could be the generally low variance (or

standard error) in EPRs compared to the other electrophysiological

representations. This low variance leads to statistically strong

differences in ERP amplitudes resulting from the different stimulus

Frontiers inNeuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2023.1128866
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Fuhrer et al. 10.3389/fninf.2023.1128866

A

B

C

FIGURE 6

Performance of the di�erent methods across subjects for the vWM task. (A) Performance of the di�erent methods. The error bars indicate the

95% CIs across subjects. (B) Significance ratio across representation. Statistical significance is indicated with *p ≤ 5e−2, **p ≤ 1e−2, ***p ≤ 1e−3 and

****p ≤ 1e−4. (C) Correlation matrices comparing the subject-specific significant ratios. The respective p-value is annotated in each square.

conditions. Further, the number of samples that significantly

differ in amplitude across conditions after correcting for multiple

comparisons can be rather low for a channel (i.e., the entire trial vs.

only a few sample points differ). EI, on the other hand, considers

the full-time course and only assesses channels as significant when

the information content of the entire mean responses differs.

However, the high performance of the t-test is not observable

for the vWM task. Here, both EI and GCMI detected a greater

number of responsive channels, while also showing a relatively high

intersection ratio between t-tests, respectively.
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A B

C

FIGURE 7

Performance in the case of a limited amount of data and estimation of false positives. (A) Selection of channels according to their respective t-value.

The channels emerged from HFA or the Optimum-1 paradigm and were located in the respective 25, 50, 75, and 97.5 -percentiles of the t-value

distribution. (B) The number of trials was reduced by randomly selecting a varying number of trials for each condition. This was followed by

repeatedly applying the measures (50 times for each percentage). The dashed line represents the significance threshold (p = 0.05). Note that the

y-range is limited to 6 (corresponding to a p-value of 2.5e−3). 100% of the trials was around 759.50± 360.85 trials for deviant responses and

715.14± 388.12 trials for standards for each channel. The dots on the significance line indicate the trial percentage when each method exceeded the

significance level. (C) False positive rate estimation by repeatably discriminating two random samples with 100 observations each, drawn from the

standard normal distribution. The significance level α = 0.05 is indicated with a black dashed line.

4.4. Performance of NFT and MI

Compared to all the other measures (EI, t-test, MI, and GCMI),

the NFT approach had inferior performance. However, when

considering individual ROIs, it performed equally well for regions

close to or belonging to the temporal cortex. Notably, NFT is

based on a different procedure. It exploits the static presentation

rates of stimuli visible in the spectral decomposition of the entire

sequence. Figure 1 shows such a “tagging” effect in an exemplary

channel, where a specific brain region synchronizes to the exact

frequency of the stimuli presentation. The highest SNR or power

was contained at 1.92Hz, which was the presentation rate of the

tones (standards and deviants). In addition, it also showed a peak

at half this frequency, which is the combination of either standard-

to-standard or deviant-to-deviant tones. This implies that this

brain region discriminates between standard and deviant tones.

Importantly, one prerequisite for the frequency tagging approach

is that the presentation rate is static. Any temporal jitter during

the presentation critically disturbs the “tagging” effect. A possible

reason for the relatively low performance could be related to this

unique feature of NFT combined with the employed multi-featured

oddball paradigm. It may perform better in paradigms with fewer

deviant types than in the present task containing eight types of

deviant tones.

When it comes to performance, MI was close to NFT. It

detected fewer channels than the other methods, especially for

alpha, beta, and HFA band-pass power time series. It is important

to notice that for comparison reasons, we implemented MI in

the same way as EI. That is, the entire time series of a mean

response was considered. It is also possible to implement it in the

sample-based fashion of GCMI, where it has been shown to operate

similarly well (Ince et al., 2017).

4.5. Method overlap

Overall, the sample-based approaches of t-test and GCMI

correlated the most (Figure 3C). Besides that, there was no clear

outlier method apparent for the analyzed data sets. The same

conclusion can be drawn considering the significance ratios across

individual brain regions (Figure 4). This can be seen as a validation

of the EI measure: While showing higher significance ratios in

some ROIs (e.g., hippocampus or pre-central sulcus), it performed

similarly well as the other methods across brain areas and did not

indicate implausible results. Further, our simulation-based analysis

indicates that none of the methods exhibited a higher number

of false positives than the others (Figure 7C). All methods’ false

positive rate estimates converged to the theoretical value of 0.05

pointing toward the conclusion that all methods are equally reliable.

4.6. Choice of number of bins

Furthermore, the number of bins along the potential or power

dimension during the binning procedure was held constant across

data sets. We chose 128 bins for EI and 4 bins for MI (Ince et al.,

2017; Fuhrer et al., 2021, 2022). Adapting this parameter might
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be needed when the relevant trials are of increasing length, i.e., it

might be necessary to reduce the number of bins for the EI measure

for longer-lasting trials. The main motivation for this step is to

simplify the signal to an extent that ensures that the compressor

keeps operating effectively. However, both EI and MI should be

robust to this parameter choice. For example, EI showed similar

results when varying the number of bins from 128 to 64, but showed

a decreased performance when using only 32 bins (Sitt et al., 2014;

Canales-Johnson et al., 2020; Fuhrer et al., 2022). An alternative

to adapting the number of bins is to segment the time series into

shorter segments, which would then yield segments of EI values

along the trials, or to down-sample the signal along the time axis.

4.7. Reduced number of trials

Lastly, in the case of limited data availability, the two

best-performing methods showed relatively similar performance

(Figure 7). For lower t-values (below the 75-percentile), both

methods needed around 50% of the maximally available trials to

identify a channel as event-responsive. However, EI appeared to

require slightly fewer trials than the t-test. Noteworthy is that

for channels with relatively distinct responses to standards and

deviants (above the 97.5-percentile), both measures only required

around 3% (ca. 22 trials) of the available trials to identify the

respective channel as significant.

4.8. Performance across paradigms

Altogether, the examined neurophysiological data sets stem

from two species (human and non-human primates) and employ

both passive and active paradigms as well as auditory or visual

stimuli. In contrast to the Optimum-1 and Roving Oddball

paradigms, in the vWM study subjects were instructed to solve a

memory task where they were exposed to visual stimuli. Moreover,

as opposed to comparing standard with deviant tones responses, for

the vWM paradigm, the probe period was compared to the baseline

period based on one cortical region. Regardless of these differences,

EI as well as MI, and GCMI performed robustly across all data sets

(Figures 3A, 5A, 6A).

5. Conclusion

Taken together, our findings demonstrate that EI, MI, as

well as GCMI, constitute viable approaches to discriminate

differences in neurophysiological recordings of evoked responses.

Specifically, EI competed well in detecting iEEG channels

sensitive to deviating sound types across diverse types of

electrophysiological responses among the methods considered.

Especially for beta and HFA signals, EI detected a higher

number of sensitive channels in comparison to the other

procedures. Future studies focusing on EI could explore this

further by extending it through a hybrid approach, i.e., using

Shannon’s information theory besides AIT. Another possibility

is to focus on the compression method. Modern compressors

such as LZMA, Brotli, or neural network compressors might

be able to increase EI’s performance. On a more general note,

information-based encoding proved to be a worthwhile tool

in assessing where in the brain neural responses differ across

experimental conditions.
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