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The hippocampal subfields, pivotal to episodic memory, are distinct both in

terms of cyto- and myeloarchitectony. Studying the structure of hippocampal

subfields in vivo is crucial to understand volumetric trajectories across the

lifespan, from the emergence of episodic memory during early childhood to

memory impairments found in older adults. However, segmenting hippocampal

subfields on conventional MRI sequences is challenging because of their small

size. Furthermore, there is to date no unified segmentation protocol for the

hippocampal subfields, which limits comparisons between studies. Therefore,

we introduced a novel segmentation tool called HSF short for hippocampal

segmentation factory, which leverages an end-to-end deep learning pipeline.

First, we validated HSF against currently used tools (ASHS, HIPS, and HippUnfold).

Then, we used HSF on 3,750 subjects from the HCP development, young adults,

and aging datasets to study the e�ect of age and sex on hippocampal subfields

volumes. Firstly, we showed HSF to be closer to manual segmentation than

other currently used tools (p < 0.001), regarding the Dice Coe�cient, Hausdor�

Distance, and Volumetric Similarity. Then, we showed di�erential maturation

and aging across subfields, with the dentate gyrus being the most a�ected by

age. We also found faster growth and decay in men than in women for most

hippocampal subfields. Thus, while we introduced a new, fast and robust end-

to-end segmentation tool, our neuroanatomical results concerning the lifespan

trajectories of the hippocampal subfields reconcile previous conflicting results.
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1. Introduction

Episodic memory, the memory of specific episodes with spatiotemporal details, is

critically underpinned by the hippocampal subfields, namely the dentate gyrus (DG), cornu

ammonis from 1 to 3 (CA1/2/3), and the subiculum. Each subfield presents a distinct myelo-

and cyto-architectony, and plays a critical role in episodic memory functions. For example,

the DG and CA3 are involved in pattern separation, which allows the storage and retrieval

of similar but distinct events (Yassa and Stark, 2011). CA1 and subiculum are necessary for

pattern completion, i.e., the reconstruction of a full memory from partial elements. Since

episodic memory performance correlates with variations in hippocampal subfields volume
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(Palombo et al., 2018), we hypothesize that hippocampal subfields

volumetric trajectories are associated with the evolution of episodic

memory performance across the lifespan.

Analyzing hippocampal subfields’ dynamics implies delineating

their boundaries, boundaries often defined at a microscopic scale.

Unfortunately, Magnetic Resonance Imaging (MRI) cannot study

the unique myelo- and cyto-architectures of subfields, because

structures such as CA1 and the Subiculum have the same contrast

(Yushkevich et al., 2015a). Numerous efforts have been made

to use geometrical heuristics to map histological features to

MRI, thereby providing manual segmentation guidelines (Berron

et al., 2017; Dalton et al., 2017). Manual segmentation with

these protocols is now considered the gold standard for studying

the hippocampal subfields in vivo. However, it is a complex,

time-consuming, and subjective task which makes it error-prone

and limits reproducibility. MRI segmentation of hippocampal

subfields faces multiple difficulties, mainly caused by a lack of

resolution, tissue ambiguity (notably in the head and the tail of the

hippocampus), and noise. This problem is amplified by the lack of

standardized segmentation protocols. For example, some protocols

merge CA1, 2, and 3, sometimes delineating a separate CA4 or

even excluding the hippocampal head or tail. This leads to multiple

divergent protocols, inducing a lot of variabilities, notably in the

boundary between DG and CA3, 4, and the boundary between CA1

and the subiculum with inter-protocol differences of almost 2mm

(Yushkevich et al., 2015a).

Recent efforts have been made to uniformize and automatize

the hippocampal subfields segmentation task (Yushkevich

et al., 2015a; Wisse et al., 2017). New hippocampal subfields’

segmentation tools have recently been developed, such as ASHS

(Yushkevich et al., 2015b), HIPS (Romero et al., 2017), or even

more recently HippUnfold (DeKraker et al., 2021). They provide

better segmentations, closer to manual segmentation, but neither

of them implements state-of-the-art end-to-end deep learning

which has been proven to be more fault-tolerant and adaptable

to new observations, especially on complex and non-linear tasks

(O’Mahony et al., 2020). Recent studies highlighted the possible

gains of end-to-end deep learning for hippocampal segmentation

(Qiu et al., 2019; Zhu et al., 2019; Yang et al., 2020), promising

fast inference time (less than a minute per subject against several

hours for FreeSurfer), higher accuracy, and higher robustness to

anatomical variations. Unfortunately, most deep learning solutions

are currently provided as a proof-of-concept, with either no public

implementation, no pre-trained models, or are trained on small

and specific datasets limiting generalizability. The current literature

lacks an end-to-end deep learning segmentation protocol trained

on a heterogeneous database to ensure segmentation quality across

(i) contrast, (ii) magnetic field intensity, (iii) age range, or (iv)

health condition.

Even though segmentation protocols still need to be

uniformized, there is a disparity of available segmentation tools for

the hippocampal subfields. The current understanding of the effect

of age and sex on volumetric changes in hippocampal subfields

across the lifespan is based on manual or (semi-)automatic

segmentation studies. Uematsu et al. (2012) found that the total

hippocampal volume is increasing until early adulthood. Another

study showed a differential maturation between the posterior and

anterior hippocampal portions (Gogtay et al., 2006). Regarding

sex difference, Suzuki (2004) showed that the myelination process,

which is thought to contribute to the increase in volume during

adolescence, takes place earlier in women (i.e., before the age of

18) than in men (i.e., after the age of 20), with a potentially more

pronounced developmental dynamic in men than in women.

Ziegler et al. (2012) noted an increase of gray matter volume during

adulthood in the hippocampus up to 41 years old, with a maximum

at 62 years old for the DG and CA, followed by fast atrophy. This

is in accordance with Yang et al. (2013), who identified a quadratic

relationship between the overall volume of the hippocampus and

age, with an inflection point at 63 years old, followed by a strong

negative correlation between volume and age.

Non-human primate studies (e.g., 20) have shown that subfields

such as the DG, CA2/3, and the subiculum (but not the pre-

nor para-subiculum) are growing asynchronously until adulthood.

However, this question has only been recently addressed in human

children and adolescents with inconsistent results. According

to Ellis et al. (2021), the DG exhibits a very rapid growth in

infants, doubling in size, associated with an increase in CA1

and CA3 volumes during development (8–14 years old). This

contrasts with a stable or a slight linear decrease in subicular

volumes (Ziegler et al., 2012; Lee et al., 2014). Concerning normal

aging, data suggest a volumetric decrease of all subfields which

predominates in the DG (de Flores et al., 2015; Foster et al., 2019).

While the literature suggests a differential maturation and aging

of hippocampal subfields, there is currently a lack of accurate

automated segmentation tools which hinders the use of large

datasets to study trajectories across the lifespan.

Here, we offer the first end-to-end deep learning pipeline to

segment the hippocampal subfields. Hippocampal segmentation

factory (HSF) is an open-source tool that leverages new computer

vision segmentation methods. It was trained on a heterogeneous

database comprising all public datasets with manually segmented

hippocampal subfields and new manually segmented observations

to ensure generalization. We hypothesized (i) that HSF provides a

better overlap (dice coefficient), fewer outliers (Hausdorff distance),

and a better volumetric similarity than currently available tools

abiding Barron’s protocol (Berron et al., 2017); (ii) that subfields

such as DG and CA1 exhibit differential lifespan dynamics which

can be divided into three periods (a. growth, b. stability, and c.

decay); (iii) a fast decay for all subfields starting from 60 to 65

years old; (iv) finally that there are sex differences in the volumetric

trajectories, with volumetric variations being more intense in men

than in women.

2. Method

This section aims at describing (i) the technical details of

HSF development in terms of computational architecture, training

regime, and inference peculiarities, (ii) how it differs from other

state-of-the-art tools addressing the same segmentation problem,

and (iii) how we leveraged the potential of HSF to study

hippocampal subfields volumetric trajectories in large healthy

individuals datasets which covers the lifespan (5–100+ years old).

Please note that we conducted a speed test comparing the tools

included in our benchmark. While FreeSurfer, one of the most used

neuroimaging tools, possesses modules for hippocampal subfields
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segmentation, we chose not to compare it. Although FreeSurfer

(Iglesias et al., 2015) is still considered a classic neuroimaging

tool, it has recently incorporated deep learning-based approaches.

Because it has useful automated features outside the scope of this

study, it produces many outputs leading to a long computing time,

which makes it inconvenient for scientific studies interested in

a single substructure of the human brain: its inference time of

approximately 10 h per subject is slower than manual segmentation

of the hippocampal subfields. While previous studies found the

segmentation quality of FreeSurfer to be good enough to study

the hippocampal subfields (Schmidt et al., 2018), others have

demonstrated that FreeSurfer has poorer segmentation quality in

comparison to the tools included in our benchmark (de Flores

et al., 2015; DeKraker et al., 2022), with segmentations that are

in a mismatch with known anatomical boundaries leading to a

significantly different volumetry, especially in the head and the

tail of the hippocampus (Wisse et al., 2014). Thus, as we are

only interested in fast tools only tackling hippocampal subfields

segmentation, we only used FreeSurfer as a benchmark for

speed comparison.

2.1. HSF: description of the hippocampal
segmentation factory

HSF is designed to be a fully customizable end-to-end pipeline,

handling tasks from the preprocessing of raw anatomical images, to

the segmentation of the hippocampal subfields through specialized

and highly efficient deep learning models comprised in a “Model

Hub” on any hardware acceleration platform such as CUDA,

TensorRT, or OpenVINO. HSF also supports the DeepSparse

compute engine to benefit from the AVX512 (VNNI) vector

instruction set. HSF is distributed under the MIT license at https://

github.com/clementpoiret/HSF.

2.1.1. Datasets description
The key strength of HSF lies in its training database, which

consists of 12 datasets of manually segmented hippocampi by

individual expert raters (Table 1), totaling 411 subjects.

2.1.2. Internal information processing
The HSF pipeline consists of three main steps: 1/a

preprocessing step handled by ROILoc (a standalone by-

product of HSF available at https://github.com/clementpoiret/

ROILoc) to extract the hippocampi from a given MRI (Figure 1),

2/an augmentation pipeline, and 3/a segmentation by multiple

expert models in order to produce both the segmentation and an

uncertainty map (Figure 2).

In order to limit the computational impact of HSF, we

used a preprocessing step to extract the hippocampi from

the MRI. To do so, ROILoc registers the MNI152 09c Sym

template (Fonov et al., 2009) to the T1w or T2w input MRI.

Utilizing the CerebrA atlas (Manera et al., 2020), the registration

process facilitated the inference of approximate coordinates of

the hippocampus in native space. ROILoc then crops the MRI

into two volumes corresponding to the right and left hippocampi

from head to tail, with an arbitrary safety margin. To finish the

preprocessing, the resulting crops are Z-normalized and padded

to obtain shapes that are multiple of 8 to satisfy hardware

acceleration constraints.

HSF provides a “Model Hub” offering multiple pre-trained

models that can handle preprocessed hippocampi. Our built-

in models are 3D Residual UNets of depth 4, with ResNet

building blocks (Zhang et al., 2018) and transposed convolutions

as the upsampling method. We have replaced the additive skip

connections with a self-attention mechanism inspired by the one

introduced for 2D images by Oktay et al. (2018), with BatchNorm

layers replaced by SwitchNorm layers (Luo et al., 2019). Each

segmentation model has its efficient counterpart that can benefit

from the AVX512-VNNI instruction set due to pruning (at 70%)

and int8-Quantization through NeuralMagic’s SparseML.

2.1.3. Training methodology
To augment the quality of the segmentation, we employed

the widely used technique called bagging. We trained five “weak-

learner” models, each of which was generated by random sampling,

with replacement, N samples from the original training set,

which contained 822 hippocampi. The bagging technique then

amalgamated each weak learner into a strong learner, which

displayed a superior accuracy of prediction compared to each weak

learner on its own. Bagging outperforms the conventional random

split because it introduces more variability (i.e., some subjects

can be observed multiple times during a single epoch), thereby

enhancing the prediction of the strong learner (Opitz and Maclin,

1999). Each model is trained with an AdamW optimizer, a one-

cycle learning rate scheduler, and stochastic weight averaging for

512 epochs with a batch size of 1 to handle heterogeneous input

volumes. int8-Quantized models are trained with quantization-

aware training.

Given an input x, our segmentation loss L is defined with TP

and TN the true positives and negatives, FP and FN the false

positives and negatives, and α = 0.3, β = 0.7, γ = 3
4 such as:

L =

(

1−
TP

TP + βFN + αFP

)γ

While the base loss function is a focal Tversky, the loss

function was modulated for each observation to handle different

segmentation protocols. As HSF predicts CA1, CA2, and CA3,

we merged classes (e.g., CA2 and CA3) at training time to learn

from observations that do not distinguish them. For segmentation

protocols having a separate head or tail class, all predictions are

merged to form a single ‘hippocampus’ class so that predicting any

subfield outside the ‘head’ or ‘tail’ class is penalized but not inside

of them.

2.1.4. Inference
To further enhance the segmentation pipeline, test-time

augmentation is natively implemented, augmenting each

hippocampus with random horizontal flips, and with affine

and elastic deformations. The final segmentation is computed
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TABLE 1 Training datasets used for HSF.

Dataset Contrasts Subfields Field Age Condition

Winterburn et al. (2013) T1 and T2 DG/CA/Sub 3T 29–57 -

Kulaga-Yoskovitz et al. (2015) T1 and T2 DG/CA/Sub 3T 21–53 -

Yushkevich et al. (2015b) T1 and T2 DG/CA1/CA2-3/Sub 3T MCI

Hindy et al. (2016) T2 DG/CA1/CA2/CA3/Sub 3T 18–30 -

Bouyeure et al. (2021) T1 and T2 DG/CA1/CA2-3/Sub 3T 4–12 -

Yushkevich et al. (2010) T1 and T2 DG/CA1/CA2/CA3/Sub 4T 38–82 MCI/AD

HIPlay7∗ T1 and T2 DG/CA1/CA2/CA3/Sub 7T 12–21 TLE

Wisse et al. (2016) T2 DG/CA1/CA2/CA3/Sub 7T 50–68 -

Berron et al. (2017) T1 and T2 DG/CA1/CA2/CA3/Sub 7T 19–32 -

Haeger et al. (2020)∗∗ T2 DG/CA1/CA2/CA3/Sub 7T 50–70 -

Shaw et al. (2020)∗∗ T1 and T2 DG/CA1/CA2/CA3/Sub 7T 23–29 -

Lagarde et al. (2021)∗∗ T2 DG/CA1/CA2/CA3/Sub 7T 50–84 SC/MCI/AD

Description of the training database, alongside theirmanually segmented hippocampal subfields, namely the dentate gyrus (DG), the cornu ammonis (CA)1, CA2, andCA3. Included participants

are either healthy, exhibiting mild cognitive impairments (MCI), Alzheimer’s disease (AD), hippocampal sclerosis (SC), or temporal lobe epilepsy (TLE).
∗In-house dataset, ANR-16-NEUC-0001-01; Manual Segmentation on 23 controls and 4 temporal lobe epilepsies; 1mm T1w and 0.125∗0.125∗1.2mm T2wMRIs.
∗∗Manual segmentations on 7 subjects per dataset performed by the authors (CP, SP, MF, MB, and MN), following Berron et al. (2017).

FIGURE 1

Technical description of ROILoc. ROILoc aims at locating and extracting any region of interest on a given MRI.

as a voxel-wise plurality vote, assigning to a given voxel the

most frequent class. For the sake of further post hoc analysis

of the segmentation quality, a voxel-wise aleatoric uncertainty

H
(

Y i ∨ X
)

is also computed (Wang et al., 2019). Given a set Y of i

predictions, in HSF:

H
(

Y i ∨ X
)

≈ −

M
∑

m=1

p̂im ln p̂im (1)

where p̂im is the frequency of themth unique value in Y i.

2.2. Benchmarking HSF against ASHS, HIPS,
and HippUnfold

HSF has been assessed against the most recent and widespread

tools for hippocampal segmentation: ASHS (Yushkevich et al.,

2015b), HIPS (Romero et al., 2017), and HippUnfold (DeKraker

et al., 2021). To compare it with manual segmentations, CP,

AB, SP, and MF randomly segmented 25 subjects who were

excluded from our training set from 5 different datasets: HiPlay7,

MemoDev (Bouyeure et al., 2021) (Table 1), as well as HCP-

Development (HCP-D), HCP-Young Adults (HCP-YA), and HCP-

Aging (HCP-A). This segmentation process took approximately 5 h

per hippocampus. In relation to an earlier study on MemoDev, an

assessment was conducted by Bouyeure et al. (2021) to determine

the reliability of the manual segmentations. This evaluation

involved the computation of an inter-rater reliability index,
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FIGURE 2

Complete overview of HSF. A (T1w or T1w) MRI passes through ROILoc to extract the left and right hippocampi. Each subvolume is then randomly

augmented to obtain 21 di�erent versions of the same hippocampus. Each segmentation goes through five independent deep learning models, and

the final segmentation is a voxel-wise plurality vote across all segmentations. A voxel-wise aleatoric uncertainty map is computed for further post

hoc analysis.

specifically the dice coefficient, between two individual tracers,

who followed the same segmentation protocol. Furthermore, it

is worth noting that both raters had no prior knowledge of the

participants’ age, sex, or memory performance. The obtained inter-

rater reliability indices were notably high at 0.77 and 0.79 for

the right and left hippocampi, respectively. Segmentations are

compared on three metrics:

• the dice coefficient (DC), an overlapmetric ranging from 0 (no

overlap) to 1 (full overlap) defined as DC =
2|ym∩yp|
|ym|+|yp |

,

• the Hausdorff distance (HD), a metric of surface distance

ranging from 0 to +inf. With the directed Hausdorff distance

between two point sets X and Y such as hd (X,Y) =

max

x ∈ X

min

y ∈ Y

∥

∥x− y
∥

∥

2
, the HD is defined as HD

(

ym, yp
)

=

max
(

hd
(

ym, yp
)

, hd
(

yp, ym
) )

,

• and the volumetric similarity (VS), a comparison between

volumes of two segmentations ranging from 0 (complete

dissimilarity between volumes) to 1 (exact match between

volumes). With the volume of a region S, it is defined as

VS = 2
|Sm∩Sp|
|Sm+Sp |

.100%.

As both T1w and T2w images can be segmented by HSF, we

conducted an additional analysis to evaluate any discrepancies

in quality across these contrasts using the same metrics. Given

the strong correlation between contrast and resolution (e.g., an

isometric millimetric MPRAGE 3D T1w and anisotropic 2D

Coro-T2w), we limited our study to only 15 subjects from

our test set sourced from the HCP databases, where T1w and

T2w MRIs are in the same space and at the same resolution.

Owing to the presence of either heteroscedasticity or non-normal

distributions of scores, we compared segmentations utilizing non-

parametric Kruskal–Wallis or pairwise Wilcoxon–Mann–Whitney

tests, with p-values corrected using the Benjamini–Hochberg false

discovery rate.

2.3. HSF: analyzing the Human
Connectome Project

The following sections are specifically dedicated to explaining

how we used HSF (process and inference) to study hippocampal

subfields trajectories across the lifespan in the HCP datasets (HCP-

D, HCP-YA, and HCP-A).

2.3.1. Datasets descriptions
All databases are acquired on a 3T Siemens Prisma (Skyra for

HCP-YA) scanner:

- HCP-D: HCP-D contains 1350 healthy children, adolescents,

and young adults aged from 5 to 21 years. T1w and T2wMRIs

are acquired at an isotropic resolution of 0.8mm across four

sites (Somerville et al., 2018),

- HCP-YA: HCP-YA includes 1,200 subjects with ages ranging

from 22 to 35 years. T1w and T2w MRIs have been acquired

on a single site at an isotropic resolution of 0.7mm,

- HCP-A: HCP-A comprises 1,200 subjects from 36 to 100+

years old. T1w and T2w MRIs are acquired at an isotropic
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resolution of 0.8mm across four different sites (Bookheimer

et al., 2019).

The HCP datasets were provided in part by the

Human Connectome Project, WU-Minn Consortium

(Principal Investigators: David Van Essen and Kamil Ugurbil;

1U54MH091657) funded by the 16 NIH Institutes and Centers

that support the NIH Blueprint for Neuroscience Research

and by the McDonnell Center for Systems Neuroscience at

Washington University.

2.3.2. MRI segmentation
Prior to HCP’s datasets’ segmentation and after the HSF

validation, we retrainedHSF’s models with themanually segmented

observations coming from the previous section (see Section 2.2.)

including observations from the HCP’s datasets. We thereby

improved the reliability of segmentations by including new and

HCP-specific observations to ensure there was no mismatch

between our training set’s distribution and HCP’s distribution of

observations. All segmentations are performed on T2w images,

with ROILoc’s location algorithm using the ‘Affine‘ registration

and a margin of 16 voxels in all directions to ensure that whole

hippocampi are included in their boxes.

2.3.3. Lifespan modeling
The whole hippocampus and each subfield were modeled for

each sex as a natural cubic spline (NCS) regression between age

and volume, a flexible, simple, and efficient model to describe

trends (Greenland, 1995; Elhakeem et al., 2022). Cubic models

have been validated to study developmental trajectories of the

amygdala and the whole hippocampus (Uematsu et al., 2012; Bussy

et al., 2021). NCS allowed us to model the growth and decay

of hippocampal subfields by fitting a set of piecewise polynomial

regressions smoothly joining at points called knots, with a linearity

constraint at the extremity of the curve. Significance and goodness

of fit for the NCS are computed similarly to linear regressions

because NCS are fitted using an ordinary least-squares algorithm.

We chose the number of degrees of freedom by minimizing

an Akaike Information Criterion. Then, inflection points in the

volumetric trajectories of the ROIs were detected as suggested by

Satopaa et al. (2011). Finally, we computed an anteroposterior

evolution of the subfield’s volume on a per-slice basis averaged

across every subject.

2.3.4. Statistical analysis
Although lifespan dynamics of the hippocampus and its

subfields are thought to be non-linear (e.g., 15,18,34), we assume

that within a single period, defined as the uninterrupted period

between two distinct inflection points (e.g., young adults), the

relationship between age and volume is linear. Therefore, for each

lifespan period, we tested (i) the relationship between age and

volume, (ii) the relationship between sexes, and (iii) the interaction

between these two independent variables using an ordinary least-

squares regression. P-values are corrected using a Benjamini–

Hochberg false discovery rate.

3. Results

3.1. Benchmarking HSF against ASHS, HIPS,
and HippUnfold

First, we validated HSF against three state-of-the-art

hippocampal subfields segmentation tools: ASHS, HIPS, and

HippUnfold (Figure 3). While manual segmentation may require

up to 5 h per subject, FreeSurfer 7 may take even longer, exceeding

10 h due to its all-inclusive pipeline, encompassing whole-brain

segmentation and cortical morphometry. As we were interested

solely in hippocampal subfields segmentation, we have compared

only the specialized tools, which were, therefore, much faster:

HIPS, ASHS, and HippUnfold can segment a new subject in under

an hour. HSF is even faster, taking only minutes to segment a new

subject from the HCP. While HIPS requires the use of the volBrain

service and can take up to a day to complete due to queueing,

HSF is much quicker. In its most accurate mode, HSF takes only

5 mi on a CPU and 90 s on an NVIDIA A100 GPU (Table 2).

In its fast mode, HSF can segment a new subject in only 15 s on

both CPU and GPU, with the main speed bottleneck being the

registration tool ANTs, which is used to localize the hippocampus

(ROILoc).

We used dice coefficient, Hausdorff distance, and volumetric

similarity (Figure 4) with manual segmentations as benchmarking

metrics. We found HSF to exhibit a significantly better DC than

ASHS (p = 4e − 6; hedge’s g = 1.636), HIPS (p = 7e − 9; hedge’s

g = 4.934), and HippUnfold (p = 7e− 9; hedge’s g = 5.440), with

no differences between HippUnfold and HIPS.

Regarding HD, which is sensitive to outlier voxels in the

segmentation, we found HSF performing on par with HIPS, but

being better than HippUnfold (p = 7e − 8; hedge’s g = −1.184).

Importantly, ASHS mainly penalized by poor segmentation results

in a few observations although estimation statistics may suggest

a difference between the two tools (Figure 4). Our statistical tests

failed to reject the null hypothesis.

With respect to the VS, all three methods had similar volumes,

but HSF was the closest to manual segmentations (VS = 0.862),

better than ASHS (p = 2e−4; hedge’s g = 1.210), HIPS (p = 9e−9;

hedge’s g = 3.391), andHippUnfold (p = 8e−9, hedge’s g = 3.550).

We found no differences between HIPS and HippUnfold.

After an extensive evaluation, we analyzed the disparities in

segmentation quality compared to the T1w and T2w images on

a subset of our test set where both contrasts were acquired using

the same resolution, as outlined in Table 3. While the effect sizes

were negligible, we found that T2w images tend to exhibit a

slight inclination, with HSF producing segmentations closer to the

manual ones, especially on the smallest regions, CA1, 2, and 3

(DC increased by 0.045, HD decreased by 2.386, and VS increased

by 0.035).

3.2. Human Connectome Project

3.2.1. Lifespan development dynamics
After the HSF’s retraining including new HCP subjects to

ensure segmentation quality, we established lifespan trajectories

(Figure 5) consisting of Natural Cubic Splines, from which we

inferred inflection points reflecting lifespan critical periods. DG
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FIGURE 3

Segmentation example from a random subject. The dentate gyrus is in red, CA1/2/3 are in green, yellow, and purple, and the subiculum is in blue.

TABLE 2 Segmentation time of reference software vs. manual segmentation.

Manual FreeSurfer 7.3 HIPS ASHS HippUnfold HSF

Segmentation time (min) ∼300 678.58 (baseline) N/A 30.10± 1.31 29.52± 2.35 1.64± 0.27

FreeSurfer segmentation time is computed as a reference point for a single HCP-aging subject (0.8mm iso.). HIPS, ASHS, and HSF timings are mean ±std of segmentations on our complete

test set of 25 subjects. Computations are conducted on a machine with an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz, and an Nvidia A100 GPU.

FIGURE 4

Cumming estimation plots comparing HSF (T2w) against ASHS (T1w and T2w), HIPS (T1w and T2w), and HippUnfold (HU) (T1w and T2w). The first

row illustrates three performance metrics—the dice coe�cient (higher is better), the Hausdor� distance (lower is better), and the volumetric similarity

(higher is better). The vertical bars in this row represent the mean ±std for each metric group. The dashed line in this row represents the inter-rater

reliability for manual segmentation obtained in the earlier study of Bouyeure et al. (2021). As this earlier study only computed the inter-rater

comparison as the dice coe�cient, it is not available for the other two metrics. The second row depicts the mean e�ect size (Cohen’s d) with a black

dot to facilitate statistical comparison between the groups. The black bars in this row represent 95% CIs for variability estimations. The 95% CIs are

obtained through non-parametric bootstrap resampling to generate distributions of all possible e�ect sizes.

was the subfield whose developmental trajectory was the most

correlated with age (p = 0.005). Total hippocampal volume was

negatively correlated with age for both sexes starting from 70 years

old (p = 0.03), which is also reflected in the subiculum (p =

2e − 8). In addition to significant differences in volumes between

sexesmostly during the “stable adulthood” period, except for CA2/3

(p = 0.120), we found differences between men and women during

the “development” period in the DG (p = 0.01), and CA2/3 (p =

0.01), and during the aging period for the DG (p = 0.015) and

CA1 (p = 0.04). Interestingly, we found differences in trajectories

betweenmen and women (i.e., interaction between age and sex), for

the development period of CA2/3 (p = 0.017), for the aging period

of the DG (p = 0.04), and before 60/70 years for the subiculum

(p = 0.016).
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TABLE 3 Comparison of the segmentations produced on T1w and T2w MRIs.

DC HD VS

Label T1w T2w Delta T1w T2w Delta T1w T2w Delta

DG 0.850 0.900 0.050 4.880 2.540 −2.340 0.960 0.980 0.010

CA1 0.819 0.868 0.049 5.170 2.448 −2.722 0.907 0.952 0.045

CA2 0.781 0.828 0.047 4.400 1.952 −2.448 0.852 0.905 0.053

CA3 0.796 0.849 0.053 4.534 2.767 −1.767 0.868 0.924 0.056

Sub 0.830 0.859 0.029 5.492 2.787 –2.705 0.921 0.932 0.010

MRIs are coming from HCP-development, HCP- young adults, and HCP-aging. Those 15 subjects are a subset of our test set (N = 25). Those subjects are special cases where T1w and T2w

MRIs are in the same space, with the same resolution. Deltas in bold denote significant differences at a p-value of < 0.05.

3.2.2. From head to tail: subfields’ distribution
Delineating the subfields in the head and the tail of

the hippocampus is a complex task, with some protocols

not even delineating subfields in the tail. Due to the

peculiar training methods, we trained HSF to segment the

head and the tail even when there was no ground truth

subfield segmentation in these regions. Using HSF, we

created an overall normalized anteroposterior distribution

of subfields across all three HCP datasets (Figure 6). We

found no anatomical differences between lifespan periods

and sexes.

According to HSF, the hippocampal head starts mostly with

CA1, quickly followed by the subiculum and then the DG before the

hippocampal body. After the body, CA2 and CA3 start to disappear

and then followed by the DG. The tail comprises mostly subiculum,

CA1, and a small portion of DG which disappears near the middle

of the tail.

4. Discussion

This study had two main goals: 1/to introduce a new

segmentation tool for the hippocampal subfield based on machine

learning named hippocampal segmentation factor (HSF), which

leverages the latest advances in computer vision, and 2/to

study lifespan volumetric trajectories of hippocampal subfields

in healthy individuals using the proposed tool. We developed

and validated HSF, and demonstrated that it is faster than all

previous tools while offering a better segmentation quality closer

to manual segmentation. Then, applying our tool to data from

3,750 individuals (HCP-development, HCP-young adults, and

HCP-aging), we show that hippocampal subfields have different

volumetric trajectories across the lifespan. These trajectories are

non-linear, and inflection points differ between males and females

in accordance with prior literature (16).

First of all, we validated HSF in comparison to ASHS,

HIPS, and HippUnfold. When looking at the DC, it has to be

noted that, even in the absence of histological ground truth,

HSF matches the inter-rater agreement (Figure 4). Moreover, its

scalability benefits out-of-the-box from the latest advances in

computing due to the open neural network exchange (ONNX)

ecosystem and NeuralMagic’s DeepSparse inference engine. HSF

shows an unprecedented segmentation speed which makes it

particularly suited to the processing of big datasets such as the

HCP. The bootstrap aggregation strategy, coupled with the test-

time augmentation, makes HSF more robust than ASHS and

HippUnfold as suggested by our results, with a lower variance

with respect to the DC, HD, and VS (Figure 4). One feature of

interest is the ability of HSF to segment both T1w and T2w

images. Our investigation yielded superior quality segmentations

through the utilization of T2w images—a result that aligns with

the existing literature. It is important to note, however, that our

dataset contained a larger quantity of T2w images compared to

T1w images. Therefore, we are unable to definitively conclude

whether the observed disparities in quality are a direct result

of superior T2w contrast or a potential bias within our dataset.

However, because each tool was trained using data segmented

with different protocols, it is difficult to compare their accuracy,

especially regarding the boundary between CA1 and the Subiculum

(Yushkevich et al., 2015a). As HSF learned from multiple datasets,

we interpret its segmentation as following a consensus between

multiple segmentation guidelines, even if our results show it is very

close to Barron’s protocol (Berron et al., 2017). All tools segment the

head and the body of the hippocampus in a similar manner, except

HIPS which after manual verification, did not seem to respect

the hippocampal subfields’ boundaries visible to the naked eye.

HippUnfold underperforms compared to HSF and ASHS because

it overrepresents CA2 and CA3 in the tail. The way HSF learned

to segment the hippocampal tail (Figure 6) is very similar to the

histology-based tail segmentation proposed by Dalton et al. (2017),

Flores et al. (2020), which both differ from Barron’s protocol. There

is no histological ground truth to support the superiority of HSF

over HippUnfold regarding tail segmentation. If HSF was to be

proved wrong regarding this particular point, future investigators

could easily add new deep learning models to HSF’s Model Hub

in a plug-and-play fashion. Ever since the most recent launch

of FreeSurfer 7, the original authors (Iglesias et al., 2015) have

been endeavoring to enhance their segmentation pipeline of the

hippocampal subfields. Due to the fact that this updated version

is still untested and limited, it has not been integrated into our

benchmark because of the current limitation to low-resolution T1

images. Thus, we highly suggest that future studies thoroughly

examine this novel update as soon as it exits the beta stage.

After validating HSF, we segmented and analyzed hippocampal

ROIs obtained from the HCP-development, HCP-young

adults, and HCP-aging datasets. This allowed us to study the

developmental trajectories of hippocampal subfields during the

lifespan with a bigger age range than previous studies [e.g., (Yang
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FIGURE 5

Lifespan dynamics of hippocampal subfields. Trend lines (surrounded by standard errors) are defined as natural cubic splines with a number of

degrees of freedom minimizing an Akaike Information Criterion. Vertical dashed lines indicate inflection points.

et al., 2013; Bookheimer et al., 2019)]. Our model selection of

NCS based on AIC found three main patterns. The first pattern,

as expected, divided the hippocampus developmental trajectory

into three main periods: growth, stabilization, and decay (GSD).

This is the overall developmental pattern of the hippocampus,

showing a maximal volume at approximately 20 to 25 years old,

which is lower than some previous studies [e.g., (Yang et al., 2013)]

but this may be due to the finer resolution of our model, thus

allowing the observation of three distinct trends. After the stable

period, we found a significantly negative correlation between

hippocampal volume and age from 70 years old onwards, which is

approximately 8 years later than previously found (Ziegler et al.,

2012; Yang et al., 2013; de Flores et al., 2015). As previously, this

may be caused by modeling artifacts, survivor bias, or inclusion

bias in the used datasets (inclusion of “super-healthy” individuals

with better aging than the general population). This GSD trajectory
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FIGURE 6

Normalized anteroposterior composition of subfields, going from 0% of the hippocampus (head) to 100% (tail). Vertical black lines are approximate

delimiters of the head, body, and tail of the hippocampus.

was observed in DG and CA1, which is consistent with previous

studies showing growth during infancy and childhood (Lavenex

and Banta Lavenex, 2013; Lee et al., 2014; Ellis et al., 2021), [up to

a 2-fold increase in size for DG (Bachevalier, 2013)]. Moreover,

the inflection points of DG and CA1 were very similar to those of

the total hippocampus (Figure 5). However, we observed different

trajectories for CA2/3 and the subiculum. Although the literature

suggested a volumetric increase of CA2/3 (Lavenex and Banta

Lavenex, 2013; Lee et al., 2014), we found this structure to be the

most stable across the lifespan with no clear trend. This may be due

to an insufficient resolution, forcing us to merge CA2 and CA3,

thus averaging their dynamics. Another possible factor might be a

too-noisy segmentation because of partial volumes resulting in a

lack of sensibility to detect fine changes in these small and complex

regions. Finally, our results for the subiculum are consistent with

the literature: mostly flat (i.e., absence of correlation of volume

with age) or a slight quasi-linear negative correlation between age

and volume (Ziegler et al., 2012; Lee et al., 2014; de Flores et al.,

2015; Foster et al., 2019). Our bigger age range and finer model

allow us to refine those characteristics: by examining our results,

we found a plateau, no correlation between age and volume,

until the age of 60∼70 years after which a fast decay happens

similar to other subfields. Overall, this suggests that the DG,

followed by CA1, is the most affected by development and aging.

Most of the development of the subiculum appears to happen

before the age of 5, which would relate to mnesic developments

(Bouyeure and Noulhiane, 2021). While the subicular volume

is positively correlated with the learnings of the when, where,

and what components of episodic memory (Chi et al., 2022),

prior studies found correlations between episodic memory and

subiculum only up to 5 years old, which might be caused by the

earlier maturation of the monosynaptic pathway (Canada, 2020).

If the subiculum appears to mature earlier, it also decays earlier

than others, which suggests that it might be a relevant biomarker

for the early identification of age-related cognitive impairments.

Furthermore, given that our findings are largely consistent with

prior research, this serves to strengthen the validity of HSF, our

novel segmentation tool.

Finally, besides sexual dimorphism with men having, over

the stable part of their life, bigger hippocampal subfields than

women, we found differences in developmental trajectories of

hippocampal subfields betweenmen andwomen. These are debated

in the literature since some studies did not find interactions

between volume, sex, and age (Sullivan et al., 2005; Mueller et al.,

2007), while others did (). The present study suggests a complex

relationship since we did not find such an interaction for all

subfields. We found significant differences only for the growing

period of the DG and CA2/3 with a faster growth in men than

in women. This may be due to gonadal hormones modulating

neoneurogenesis and increasing adult-born cells’ survival in the

DG (Galea et al., 2006; Spritzer and Galea, 2007; Hamson et al.,

2013). However, this literature suggests that this interaction also

exists in CA1 (Leranth, 2004; Islam et al., 2020), which was not

the case in our study. Interestingly, we also observed a stronger

negative correlation between age and volume for the DG and CA1

inmen than in women. Overall, our results add to the literature and

reconcile previous results on the lifespan volumetric trajectories of

hippocampal subfields.

Our study suffers from several limitations. First, the lack of

a standardized protocol to segment the hippocampal subfields

negatively affects the way algorithms will learn to segment. This

is partly solved by learning from a consensus between guidelines,

but we lack a better in vivo ground truth than the one provided

by manual segmentations. Then, volume might not reflect all

the age-related changes in hippocampal structures. Although

we found no anteroposterior differences between subjects, we
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believe it is critical to go beyond volumetric analysis and assess

additional information, such as shape as suggested by Yang et al.

(2013), Voineskos et al. (2015), and Lynch et al. (2019) or other

complementary measures gathered through diffusion imaging, or

even quantitative T1 relaxation maps, a proxy for intracortical

myelin (Vos de Wael et al., 2018).

Therefore, while the hippocampal subfields are critical in the

physiology of episodic memory, the lack of efficient segmentation

tools hinders the use of large datasets to study their role in

health and disease. Here, we introduced a new segmentation

tool, HSF, robust to changes in populations, and acquisition

parameters such as contrast, resolution, or magnetic field intensity.

After its validation against other existing tools (ASHS, HIPS,

and HippUnfold), we used it to segment large datasets (HCP-

development, HCP-young adults, and HCP-aging) in order to

model volumetric trajectories of the hippocampal subfields from

5 to 100 years old. Our volumetric analysis has shown that most

subfields except the subiculum are positively correlated with age

until the early 20s, and that the most correlated subfield is the

dentate gyrus. This study also found a major inflection point at

approximately 70 years old (even earlier in the subiculum) where

a fast and significant volumetric decrease occurs. Our study has yet

to be correlated with evaluations of mnesic performances, which

could help to validate subicular volumes as a relevant biomarker

for the early diagnosis of age-related cognitive decline.
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